University of Alabama
 Department of Physics and Astronomy

Problem Set 6: Solutions

1. We found the wave functions and energies for a particle in an infinite potential well of width 2 a to be

$$
\begin{array}{ll}
\psi^{-}(x)=\frac{1}{\sqrt{\mathrm{a}}} \sin \left(\frac{\mathrm{n} \pi x}{\mathrm{a}}\right) & \mathrm{E}_{\mathrm{n}}^{+}=\frac{\left(\mathrm{n}-\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}} \\
\psi^{+}(x)=\frac{1}{\sqrt{\mathrm{a}}} \cos \left(\frac{\left(\mathrm{n}-\frac{1}{2}\right) \pi x}{\mathrm{a}}\right) & \mathrm{E}_{\mathrm{n}}^{-}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}}
\end{array}
$$

The + and - here indicate the even/odd solutions (i.e., an even or odd number of half-wavelengths fitting inside the well). Noting that $\left\langle p^{2}\right\rangle=2 \mathrm{mE}_{n}^{ \pm}$, calculate $\Delta \mathrm{p} \Delta \mathrm{x}$ for even and odd solutions, with $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$. How does the uncertainty behave for increasing n ?

Solution: Here the well extends over the interval $[-a, a]$.

First, $\langle\mathfrak{p}\rangle=0$ by symmetry for both + and - states - the particle goes to the left as much as it goes to the right, and overall the average momentum is zero. Similarly, $\langle x\rangle=0$. Since the well is symmetric, the particle should have an average position in the middle at $x=0$; this is readily verified. Since ψ is purely real, we don't need to worry about the complex conjugate, and the limits of the integral are from $-a$ to a since ψ is zero outside of the potential well:

$$
\begin{aligned}
\left\langle x_{-}\right\rangle & =\int_{-\infty}^{\infty} x|\psi|^{2} d x=\int_{-a}^{a} \frac{x}{a} \sin ^{2}\left(\frac{n \pi x}{a}\right)=\left[-\frac{a}{8 n^{2} \pi^{2}} \cos \left(\frac{2 n \pi x}{a}\right)-\frac{x}{4 n \pi} \sin \left(\frac{2 n \pi x}{a}\right)+\frac{x^{2}}{4 a}\right]_{-a}^{a} \\
& =-\frac{a}{8 n^{2} \pi^{2}}(\cos (2 n \pi)-\cos (-2 n \pi))-\frac{a}{4 n \pi} \sin (2 n \pi)-\frac{a}{4 n \pi} \sin (-2 n \pi)+\frac{a^{2}}{4 a}-\frac{a^{2}}{4 a}=0
\end{aligned}
$$

We could have noted that cos and $x \sin$ are even functions of x, and the integration interval is symmetric, so the first two terms must give zero.

$$
\begin{align*}
\left\langle x_{+}\right\rangle & =\int_{-\infty}^{\infty} x|\psi|^{2} d x=\int_{-a}^{a} \frac{x}{a} \cos ^{2}\left(\frac{\left(n-\frac{1}{2}\right) \pi x}{a}\right) \tag{3}\\
& =\left[\frac{a}{8 a \pi^{2}\left(n-\frac{1}{2}\right)^{2}} \cos \left(\frac{2\left(n-\frac{1}{2}\right) \pi x}{a}\right)+\frac{x}{8 a \pi\left(n-\frac{1}{2}\right)} \sin \left(\frac{2\left(n-\frac{1}{2}\right) \pi x}{a}\right)+\frac{x^{2}}{4 a}\right]_{-a}^{a} \\
& =0 \tag{4}
\end{align*}
$$

In both cases, noting that $\cos x=\cos (-x)$ and $\sin x=-\sin (-x)$ speeds things up considerably. In order to find Δx we need $\left\langle x^{2}\right\rangle$ for both + and - solutions:

$$
\begin{align*}
\left\langle x_{-}^{2}\right\rangle & =\int_{-\infty}^{\infty} x^{2}|\psi|^{2} d x=\int_{-a}^{a} \frac{x^{2}}{a} \sin ^{2}\left(\frac{n \pi x}{a}\right) \\
& =\left[-\frac{a x}{4 n^{2} \pi^{2}} \cos \left(\frac{2 n \pi x}{a}\right)-\frac{1}{8 n^{2} p^{3}}\left(2 n^{2} \pi^{2} x^{2}-a^{2}\right) \sin \left(\frac{2 n \pi x}{a}\right)+\frac{x^{3}}{6 a}\right]_{-a}^{a} \\
& =\left(\frac{-a}{2 n^{2} \pi^{2}}\right)(a \cos (2 n \pi)+a \cos (-2 n \pi))+0+\frac{a^{2}}{6}+\frac{a^{2}}{6}=a^{2}\left(\frac{1}{3}-\frac{1}{n^{2} \pi^{2}}\right) \tag{5}\\
\left\langle x_{+}^{2}\right\rangle & =\int_{-\infty}^{\infty} x^{2}|\psi|^{2} d x=\int_{-a}^{a} \frac{x^{2}}{a} \cos ^{2}\left(\frac{\left(n-\frac{1}{2}\right) \pi x}{a}\right)^{2}\left[-3 a\left(2 a^{2}-4\left(n-\frac{1}{2}\right)^{2} \pi^{2} x^{2}\right) \sin \left(\frac{2\left(n-\frac{1}{2}\right) \pi x}{a}\right)\right. \\
& \left.=\frac{1}{48 a\left(n-\frac{1}{2}\right)^{3} \pi^{3}}-\frac{1}{2}\right) \\
& =\frac{a^{2}}{2 \pi^{2}\left(n-\frac{1}{2}\right)^{2}}+\frac{a^{2}}{6}+\frac{a^{2}}{6}=a^{2}\left(\frac{1}{3}+\frac{1}{2 \pi^{2}\left(n-\frac{1}{2}\right)^{2}}\right)
\end{align*}
$$

For large n, we have $\left\langle x_{-}^{2}\right\rangle \approx\left\langle x_{+}^{2}\right\rangle \approx a^{2} / 3$. The uncertainty in position is then $\Delta x=\sqrt{\left\langle x^{2}\right\rangle}$ for both + and - solutions, since $\langle x\rangle$ is zero for both.

We now need only $\left\langle\mathrm{p}^{2}\right\rangle$, since $\langle\mathrm{p}\rangle=0$ for both odd and even states. From the energy formulas given,

$$
\begin{align*}
& \left\langle p_{-}^{2}\right\rangle=2 m E_{n}^{+}=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}} \tag{7}\\
& \left\langle p_{+}^{2}\right\rangle=2 m E_{n}^{-}=\frac{\left(n-\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{a^{2}} \tag{8}
\end{align*}
$$

Since $\langle\mathrm{p}\rangle=0$ for both solutions, $\Delta \mathrm{p}=\sqrt{\left\langle\mathrm{p}^{2}\right\rangle}$. The uncertainty relationship is then

$$
\begin{align*}
& \Delta x_{-} \Delta p_{-}=\sqrt{a^{2}\left(\frac{1}{3}-\frac{1}{n^{2} \pi^{2}}\right)} \sqrt{\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}}}=\hbar \sqrt{\frac{1}{3} n^{2} \pi^{2}-1} \tag{9}\\
& \Delta x_{+} \Delta p_{+}=\sqrt{a^{2}\left(\frac{1}{3}+\frac{1}{2 \pi^{2}\left(n-\frac{1}{2}\right)^{2}}\right)} \sqrt{\frac{\left(n-\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{a^{2}}}=\hbar \sqrt{\frac{1}{3}\left(n-\frac{1}{2}\right)^{2} \pi^{2}+\frac{1}{2}} \tag{10}
\end{align*}
$$

We see that in general uncertainty grows with n (linearly with n for large n), and that for any n the uncertainty relationship $\Delta x \Delta p \geqslant \hbar / 2$ is satisfied.
2. The state of a free particle is described by the following wave function

$$
\psi(x)= \begin{cases}0 & x<-b \tag{11}\\ A & -b \leqslant x \leqslant 2 b \\ 0 & x>2 b\end{cases}
$$

(a) Determine the normalization constant A.
(b) What is the probability of finding the particle in the interval $[0, b]$?
(c) Determine $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for this state.
(d) Find the uncertainty in position $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.

Solution: As above, we can normalize the wavefunction by integrating its square over all space. Conveniently, the wavefunction is zero except over the interval [$-\mathrm{b}, 2 \mathrm{~b}$]

$$
\begin{equation*}
\int|\psi(x)|^{2} d x=\int_{-b}^{2 b} A^{2} d x=3 b A^{2}=1 \quad \Longrightarrow \quad A=\frac{1}{\sqrt{3 b}} \tag{12}
\end{equation*}
$$

The probability of finding the particle in $[0, \mathrm{~b}]$ means integrating the probability density, $|\psi|^{2}$ over that interval:

$$
\begin{equation*}
\mathrm{P}(\mathrm{x} \in[0, \mathrm{~b}])=\int_{0}^{\mathrm{b}} \mathrm{~A}^{2} \mathrm{~d} x=\int_{0}^{\mathrm{b}} \frac{1}{3 \mathrm{~b}} \mathrm{~d} x=\frac{1}{3} \tag{13}
\end{equation*}
$$

Finding $\langle x\rangle$ proceeds as above, though now we integrate over all space. As with the normalization integral above, we need only integrate over the interval where ψ is nonzero:

$$
\begin{equation*}
\langle x\rangle=\int_{-b}^{2 b} \frac{x}{3 b} d x=\frac{1}{3 b}\left[\frac{1}{2} x^{2}\right]_{-b}^{2 b}=\frac{1}{6 b}\left(4 b^{2}-b^{2}\right)=\frac{b}{2} \tag{14}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\int_{-b}^{2 b} \frac{x^{2}}{3 b} d x=\frac{1}{3 b}\left[\frac{1}{3} x^{3}\right]_{-b}^{2 b}=\frac{1}{9 b}\left[8 b^{3}+b^{3}\right]=b^{2} \tag{15}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\mathrm{b}^{2}-\frac{\mathrm{b}^{2}}{4}}= \pm \frac{\mathrm{b} \sqrt{3}}{2} \tag{16}
\end{equation*}
$$

3. A particle of mass m is confined to a one-dimensional box of width L, that is, the potential energy of the particle is infinite everywhere except in the interval $0<x<L$, where its potential energy is zero. The particle is in its ground state. What is the probability that a measurement of the particle's position will yield a result in the left quarter of the box? The wavefunction for a particle in a 1D box may be written

$$
\begin{equation*}
\psi(x)=A \sin (B n x) \tag{17}
\end{equation*}
$$

where A and B are constants you will need to find, and n is an integer. Hint: normalize and apply boundary conditions.

Solution: UA physics graduate qualifying exam, 2002. Our boundary conditions are that the wavefunction vanish at the boundaries of the box $x=0$ and $x=L$, since the potential is infinite outside of that region ${ }^{\text {i] }}$ This allows us to determine B already:

$$
\begin{align*}
& \psi(0)=A \sin 0=0 \tag{18}\\
& \psi(L)=A \sin B n L=0 \quad \Longrightarrow \quad B n L=n \pi \quad B=\frac{\pi}{L} \pi \tag{19}
\end{align*}
$$

Thus, $\psi(x)=A \sin \left(\frac{n \pi x}{L}\right)$. We need only determine the overall constant A, which can be done by enforcing normalization (i.e., the probability density integrated over all space must give unity). Since the wavefunction vanishes outside [0, L], we need only integrate over that interval.

$$
\begin{equation*}
1=\int_{0}^{\mathrm{L}}|\psi(x)|^{2} d x=\int_{0}^{\mathrm{L}} A^{2} \sin ^{2}\left(\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) d x=\frac{1}{2} A^{2} \mathrm{~L} \quad \Longrightarrow \quad A=\sqrt{\frac{2}{\mathrm{~L}}} \tag{20}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \tag{21}
\end{equation*}
$$

[^0]The probability that the particle will be found in the left quarter of the box is determined by integrating the probability density over that interval:

$$
\begin{align*}
\mathrm{P}(x \in[0, \mathrm{~L} / 4]) & =\int_{0}^{\mathrm{L} / 4} \frac{2}{\mathrm{~L}} \sin ^{2}\left(\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) \mathrm{d} x=\int_{0}^{\mathrm{n} \pi / 4} \frac{2}{\mathrm{~L}}\left(\frac{\mathrm{~L}}{\mathrm{n} \pi}\right)\left(\frac{1}{2}\right)(1-\cos 2 \mathfrak{u}) \mathrm{du} \quad\left(\text { let } u=\frac{\mathrm{n} \pi x}{\mathrm{~L}}\right) \\
& =\frac{1}{\mathrm{n} \pi}\left[\mathfrak{u}-\frac{1}{2} \sin 2 \mathfrak{u}\right]_{0}^{\mathrm{L} / 4}=\frac{1}{\mathrm{n} \pi}\left[\frac{\mathrm{n} \pi}{4}-\frac{1}{2}\right]=\frac{1}{4}-\frac{1}{2 \mathfrak{n} \pi} \tag{22}
\end{align*}
$$

For the ground state, $\mathrm{n}=1$, and $\mathrm{P}=\frac{1}{4}-\frac{1}{2 \pi} \approx 0.091$.
4. Given the wave function

$$
\begin{equation*}
\psi(x)=\frac{N}{x^{2}+a^{2}} \tag{23}
\end{equation*}
$$

(a) Find N needed to normalize ψ.
(b) Find $\langle x\rangle,\left\langle x^{2}\right\rangle$, and Δx.
(c) What is the probability that the particle is found in the interval $[-a, a]$?

Solution: Normalize by enforcing unit probability that the particle is somewhere, i.e, integrate $|\psi|^{2}$ over all space and set the result equal to one ${ }^{\text {fii }}$

$$
\begin{align*}
1 & =\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=\int_{-\infty}^{\infty} \frac{\mathrm{N}^{2}}{\left(x^{2}+\mathrm{a}^{2}\right)^{2}} d x=\frac{\mathrm{N}^{2}}{2 \mathrm{a}^{3}}\left[\frac{\mathrm{ax}}{x^{2}+\mathrm{a}^{2}}+\tan ^{-1}\left(\frac{x}{\mathrm{a}}\right)\right]_{-\infty}^{\infty} \tag{24}\\
1 & =\frac{\mathrm{N}^{2}}{2 \mathrm{a}^{3}}\left[0-0+\frac{\pi}{2}-\frac{-\pi}{2}\right]=\frac{\pi \mathrm{N}^{2}}{2 \mathrm{a}^{3}} \tag{25}\\
\Longrightarrow \quad \mathrm{~N} & =\sqrt{\frac{2 \mathrm{a}^{3}}{\pi}} \tag{26}
\end{align*}
$$

The average position is

$$
\begin{equation*}
\langle x\rangle=\int_{-\infty}^{\infty} x|\psi|^{2} d x=\int_{-\infty}^{\infty} \frac{N^{2} x}{\left(x^{2}+a^{2}\right)^{2}} d x=\left.\frac{-1}{2\left(a^{2}+x^{2}\right)}\right|_{-\infty} ^{\infty}=0 \tag{27}
\end{equation*}
$$

Since ψ is an even function and x an odd function, the integral is zero as we expect. The rms position is

[^1]\[

$$
\begin{align*}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{\infty} x^{2}|\psi|^{2} d x=\int_{-\infty}^{\infty} \frac{N^{2} x^{2}}{\left(x^{2}+a^{2}\right)^{2}} d x=N^{2}\left[\frac{1}{2 a} \tan ^{-1}\left(\frac{x}{a}\right)-\frac{x}{2\left(x^{2}+a^{2}\right)}\right]_{-\infty}^{\infty} \tag{28}\\
& =\frac{N^{2}}{2 a}\left(\frac{\pi}{2}-\frac{-\pi}{2}+0-0\right)=\frac{N^{2} \pi}{2 a}=\frac{2 a^{3}}{\pi} \frac{\pi}{2 a}=a^{2} \tag{29}
\end{align*}
$$
\]

Thus, the uncertainty in position is

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{a^{2}-0}=a \tag{30}
\end{equation*}
$$

The probability of finding the particle in the interval $[-a, a]$ is

$$
\begin{align*}
P(\text { in }[-a, a]) & =\int_{-a}^{a}|\psi(x)|^{2} d x=\frac{2 a^{3}}{\pi} \int_{-a}^{a} \frac{1}{\left(x^{2}+a^{2}\right)^{2}} d x=\frac{1}{\pi}\left[\frac{a x}{x^{2}+a^{2}}+\tan ^{-1}\left(\frac{x}{a}\right)\right]_{-a}^{a} \tag{31}\\
& =\frac{1}{\pi}\left[\frac{a^{2}}{2 a^{2}}+\tan ^{-1} 1-\frac{\left(-a^{2}\right)}{2 a^{2}}-\tan ^{-1}(-1)\right]=\frac{1}{\pi}\left(1+\frac{\pi}{2}\right) \approx 0.818 \tag{32}
\end{align*}
$$

5. In electromagnetic theory, the conservation of charge is represented by the continuity equation (in one dimension)

$$
\begin{equation*}
\frac{\partial \vec{j}}{\partial x}=-e \frac{\partial \rho}{\partial t} \tag{33}
\end{equation*}
$$

where \vec{j} is current density and ρ charge density.

Identifying $|\psi(x)|^{2}$ as a 'probability density,' the quantum-mechanical analog of charge density is

$$
\begin{equation*}
j(x)=-\frac{i \hbar e}{2 m}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right) \tag{34}
\end{equation*}
$$

(a) Show that the continuity equation above is satisfied with this definition of current density.
(b) For a bound-state wave function (a wave that isn't traveling), ψ can be chosen to be perfectly real, and $\psi^{*}=\psi$. What does this imply about the current density for bound states?
(c) Verify that the wave function from problem 4 gives zero current density everywhere.

Solution: The probability density is $|\psi(x)|^{2}$, and its time derivative is

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\frac{\partial}{\partial t}|\psi(x)|^{2}=\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=\psi^{*} \frac{\partial \psi}{\partial t}+\psi \frac{\partial \psi^{*}}{\partial t} \tag{35}
\end{equation*}
$$

The time-dependent Schrödinger equation tells us

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{i \hbar}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{i}{\hbar} V \psi \tag{36}
\end{equation*}
$$

Taking the complex conjugate (replacing all i 's with $-i$'s), we have

$$
\begin{equation*}
\frac{\partial \psi^{*}}{\partial t}=-\frac{i \hbar}{2 m} \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+\frac{i}{\hbar} V \psi^{*} \tag{37}
\end{equation*}
$$

Replacing the time derivatives in Eq. 35 ,

$$
\begin{equation*}
\frac{\partial P}{\partial t}=\left(\frac{i \hbar}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{i}{\hbar} V \psi\right) \psi+\left(-\frac{i \hbar}{2 m} \frac{\partial^{2} \psi^{*}}{\partial x^{2}}+\frac{i}{\hbar} V \psi^{*}\right) \psi=\frac{i \hbar}{2 m}\left(\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right) \tag{38}
\end{equation*}
$$

Using the proposed equation for current density, Eq. 34,

$$
\begin{equation*}
\frac{\partial j}{\partial x}=-\frac{i \hbar e}{2 m}\left(\frac{\partial \psi^{*}}{\partial x} \frac{\partial \psi}{\partial x}+\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\partial \psi}{\partial x} \frac{\partial \psi^{*}}{\partial x}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right)=-\frac{i \hbar e}{2 m}\left(\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}}-\psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}}\right) \tag{39}
\end{equation*}
$$

Comparing, we see that $\partial j / \partial x$ only differs from $\partial P / \partial t$ by a factor $-e$, and thus

$$
\begin{equation*}
\frac{\partial \vec{j}}{\partial x}=-e \frac{\partial \rho}{\partial t} \tag{40}
\end{equation*}
$$

There is also a derivation of the continuity equation here: http://en.wikipedia.org/wiki/ Probability_current.

If ψ is perfectly real, as is the case for a bound state, then $\psi^{*}=\psi$, and the same is true of their derivatives, so \mathfrak{j} must be zero. Bound states are just what they sound like - bound - and do not flow out of a region.

The function in problem 4 is purely real, so $\psi^{*}=\psi$ and $\partial \psi^{*} / \partial x=\partial \psi^{/} \partial x$ and the identity holds.
6. A particle is in a stationary state in the potential $\mathrm{V}(\mathrm{x})$. The potential function is now increased over all x by a constant value V_{o}. What is the effect on the quantized energy? Show that the spatial wave function of the particle remains unchanged.

Solution: Changing the overall value of the potential by V_{o} is equivalent to changing the zero of potential energy by V_{o}. Since we can only measure differences in potential energy, all this does is globally shift our energy readings by V_{o}, and the measured energies must also then increase by V_{o}.

The time-independent Schrödinger equation in 1D reads

$$
\begin{equation*}
E \psi=\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi \tag{41}
\end{equation*}
$$

Adding V_{o} to the potential energy gives

$$
\begin{align*}
E \psi & =\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\left(V(x)+V_{o}\right) \psi \tag{42}\\
\left(E-V_{o}\right) \psi & =\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi \tag{43}
\end{align*}
$$

Thus, the same time-independent Schrödinger equation is obeyed, with the energies are shifted upward by V_{0}. The spatial part of the wave function remains unchanged, since $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi$ is still just equal to a constant times ψ.

[^0]: ${ }^{\text {i }}$ We also require that the derivative of the wavefunction vanish at the boundaries, but this does not help us in the present case.

[^1]: ${ }^{\text {ii }}$ This function is a well-known one, and you will probably encounter it again. See http://mathworld.wolfram. com/LorentzianFunction.html

