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Problem Set #8: Sensitivity and Elasticity Analyses 
 
Objectives 
 Using a stage-based matrix model for a Loggerhead sea turtle population, conduct a 

sensitivity analysis of model parameters to determine the absolute contribution of each 
demographic parameter to population growth rate. 

 Conduct an elasticity analysis on model parameters to determine the relative contribution 
of each demographic parameter to population growth rate. 

 Interpret the meaning of the sensitivity and elasticity analyses from a conservation and 
management perspective. 

 
Introduction 
 
Let’s imagine that you are a biologist working for 
an international conservation organization and 
your task is to suggest the best ways to manage the 
population of an endangered marine reptile, the 
loggerhead sea turtle, Caretta caretta.  Let’s say 
that you have already constructed a stage-based 
matrix model for the population and you want to 
manage it so that population growth, λ, increases. 
You know that loggerhead sea turtles have a 
complex life cycle, and that individuals can be 
classified into 1 of 5 stages: hatchlings (h), small juveniles (sj), large juveniles (lj), subadults 
(sa), and adults (a).  Individuals in each stage have a specific probability of surviving; they can 
either: 
 
1. survive and remain in the same stage class, denoted by the letter P followed by 2 identical 

subscripts (i.e., the probability that a small juvenile remains a small juvenile in the next year 
is Psj,sj); 
 

2. survive and move into the next stage class, denoted by the letter P followed by 2 different 
subscripts (i.e., the probability that a small juvenile will become a large juvenile in the next 
year is Psj,lj); or 
 

3. die, thus exiting the population.   
 
Only subadults and adults can breed, and the letter Fi denotes their fertilities.  Turtles in our 
population are counted every year postbreeding.  The matrix for this population (Crowder et al. 
1994) has the following form: 
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Given this L matrix, the population reaches a stable stage distribution with all stage classes 
declining by 5% per year, or λ = 0.95.  Your task is to suggest the best ways to manage the turtle 
population to increase the long-term asymptotic λ, and hence increase the population size.  But λ, 
of course, can be increased in a variety of ways.  Should you focus your efforts on increasing 
adult fertility?  Should you focus your efforts on increasing the probability that hatchlings in year 
t will become small juveniles in year t + 1?  Or should you focus on increasing survivorship of 
adults?  As always, finances and resources are limited, so it is not likely that you can do all these 
things at once. 
 
In this problem set, you will extend a stage-based model developed for loggerhead sea turtles to 
conduct a sensitivity and/or elasticity analysis of each model parameter.  These analyses will 
inform you on how λ, population size, and the stable distribution might change as we alter the 
values of Fi and Pi in the L matrix. 
 
Sensitivity Analyses 
 
Sensitivity analysis reveals how very small changes in each Fi and Pi will affect λ when the 
other elements in the L matrix are held constant.  These analyses are important from several 
perspectives.  From a conservation and management perspective, sensitivity analysis can help 
you identify the life-history stage that will contribute the most to population growth of a species. 
From an evolutionary perspective, such an analysis can help identify the life-history attribute that 
contributes most to an organism’s fitness. 
 
Conducting sensitivity analysis requires some basic knowledge of matrix algebra.  While we will 
not delve into matrix formulations in detail here (see Caswell 2001 for a comprehensive 
discussion), we will very briefly overview the concepts associated with sensitivity analysis.   
 
In stage-based matrix models, the population size is projected from time t to time t + 1 by 
multiplying the L matrix by a vector of abundance, n, at time t (in matrix algebra, uppercase 
boldface letters (L) indicate a matrix and lowercase boldface letters (n) indicate a vector).  The 
result is a vector of abundances, n, at time t + 1: 
 

n(t + 1) = L x n(t)            
 
 
After attaining a new vector of abundances, the process is repeated for the next time step; yet 
another vector of abundances is attained.  When the process is repeated over many time steps, 
eventually the system reaches a stable stage distribution, where λt remains constant from 1 time 

Equation 1 
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step to the next.  This stabilized λt is called the long-term or asymptotic population growth 
rate, λ.  In our sea turtle example, the population stabilizes within 100 years.  If λ > 1, the 
numbers of individuals in the population increase geometrically; if λ < 1, the numbers of 
individuals in the population decline geometrically; and when λ = 1, the numbers of individuals 
in the population remain constant in numbers over time.  Since λ = 0.95 for our sea turtle 
population, the number of individuals in the population decreases geometrically at 5% per time 
step.  Graphically, the point in time in which the population reaches a stable stage distribution is 
the point where the population growth lines for each class become parallel (Figure 1).  When λt 
has stabilized, the population can be described in terms of the proportion of each stage class in 
the total population.  When the population stabilizes, these proportions remain constant 
regardless of the value of λ. 
 

 
Figure 1. The stage distribution of a population becomes stable when changes in numbers over 
time for each growth stage are parallel, regardless of the value of λ.  At this point the proportion 
of each stage in the population remains the same into the future. 
 
Thus, given a matrix, L, you can determine the stable stage distribution of individuals among the 
different classes, and the value of λ at this point.  The value of λ when the population has 
stabilized is called an eigenvalue of the matrix.  An eigenvalue is a number (numbers in matrix 
algebra are called scalars) that, when multiplied by a vector of abundances, yields the same result 
as the L matrix multiplied by the same vector of abundances.  For example, if λ is 1.15, the 
numbers of individuals in each class will increase by 15% from time step t to time step t + 1.  If λ 
instead is 0.97, the numbers of individuals in each class will decrease by 3% from time step t to 
time step t + 1. 
 
In order to conduct a sensitivity analysis on the parameters in the L matrix, we need to determine 
the stable-stage distribution of the population.  For sea turtles, this was 23.9% hatchlings, 64.8% 
small juveniles, 10.3% large juveniles, 0.7% subadults, and 0.3% adults.  We can convert these 
percentages into proportions: 0.239, 0.648, 0.103, 0.007, and 0.003, respectively.  This vector of 
proportions is called a right eigenvector of the L matrix.  The right eigenvector is represented 
by the symbol w.  The w vector for our loggerhead sea turtle population can be written as a 
column vector, where the first entry gives the proportion of the stabilized population that consists 
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of hatchlings, and the last entry gives the proportion of the stabilized population that consists of 
adults: 

 
Note that the values sum to 1. 
 
The final piece of information needed to compute sensitivities for the values of Fi and Pi in the 
matrix is the left eigenvector, represented by the symbol v.  The left eigenvector of the L matrix 
reveals the reproductive value for each class in the model.  Reproductive value computes the 
“worth” of individuals of different classes (age, stage, or size) in terms of future offspring it is 
destined to contribute to the next generation, adjusted for the growth rate of the population 
(Fisher 1930).  As Caswell (2001) states, “The amount of future reproduction, the probability of 
surviving to realize it, and the time required for the offspring to be produced all enter into the 
reproductive value of a given age or stage class.  Typical reproductive values are low at birth, 
increase to a peak near the age of first reproduction, and then decline.”  Individuals that are 
postreproductive have a value of 0, since their contribution to future population growth is 0.  
Loggerhead sea turtle newborns also may have low reproductive value because they probably 
have several years of living (and hence mortality risk) before they can start producing offspring. 
 
We need to compute the reproductive values for each class in order to conduct a sensitivity 
analysis of the Fi’s and Pi’s for the sea turtle population.  The simplest way to compute v for the 
L matrix is to transpose the L matrix, called L′, then run the model until the population reaches a 
stable distribution, and then to record the proportions of individuals that make up each class as 
with the w vector.  Transposing a matrix simply means switching the columns and rows around: 
make the rows columns and the columns rows, as shown in Figure 2. 
 

 
Figure 2.  Transposing a matrix. 
 
When λ is computed for the transposed matrix L′, the right eigenvector of L′ gives the 
reproductive values for each class. This same vector is called the left eigenvector for the original 
matrix, L. (Yes, it is confusing!)  The v vector for our loggerhead sea turtle population is written 
as a row vector: 

v = [.002 .003 .013 .207 .776] 
 
This vector gives, in order, the reproductive values of hatchlings, small juveniles, large juveniles, 
subadults, and adults.  In this population, adults have the greatest reproductive value (by far), 
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followed by subadults.  Large juveniles, small juveniles, and hatchlings have very small 
reproductive values.  Oftentimes the reproductive value is standardized so that the first stage or 
age class has a reproductive value of 1.  We can standardize the v vector above by dividing each 
entry by 0.002 (the reproductive value of hatchlings) to generate standardized reproductive 
values.  Our standardized vector would look like this: 
 

 
 
Thus, an adult individual is 434.4 times more “valuable” to the population in terms of future, 
adjusted offspring production than a hatchling. 
 
Computing Sensitivities 
 
Now we are ready to explore how the sensitivities of each Pi and Fi in the L matrix are 
computed.  Remember that sensitivity analyses reveal how very small changes in each Fi and Pi 
will affect λ when the other elements in the L matrix are held constant.  The steps for conducting 
a sensitivity analysis include: 
 
1. Running the projection model until the population reaches a stable distribution; 

 
2. Calculating the stable stage structure of the population, which is given by the vector w; and  

 
3. Calculating the reproductive values for the different stage classes, which is given by the 

vector v.  
 
The sensitivity, sij, of an element in the L matrix, aij, is given by 
 

 
Equation 2 

 
 
where vi is the ith element of the reproductive value vector, wj is the jth element of the stable 
stage vector, and <w,v> is the product of the w and v vectors, which is a single number (a 
scalar).  Thus, the sensitivity of λ to changes in aij is proportional to the product of the ith 
element of the reproductive value vector and the jth element of the stable stage vector (Caswell 
2001).  You’ll understand more about these calculations as you work through the exercise.  We 
can also write Equation 2 as a partial derivative, because all but 1 of the variables of which λ is a 
function are being held constant: 
 

Equation 3 
 
 
How are the sij’s to be interpreted?  A sensitivity analysis, for example, on the Pa,a and Fsa might 
yield values of 0.1499 and 0.2287, respectively.  These values answer the question, “If we 
change Paa by a small amount in the L matrix and hold the remaining matrix entries constant, 
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what is the corresponding change in λ?”  The sensitivity of the Paa matrix entry means, for 
example, that a small unit change in Paa results in a change in λ by a factor of 0.1499.  In other 
words, sensitivity is represented as a slope. 
 
The most sensitive matrix elements produce the largest slopes, or the largest changes in the 
asymptotic growth rate λ.  In our example above, where sensitivities were 0.1499 for the Paa 
entry and 0.2287 for the Fsa entry, small changes in adult survival will not have as large an effect 
as changes in subadult fertility in terms of increasing growth, so you would recommend 
management efforts that aim to increase subadult fertility values. 
 
Elasticity Analysis 
 
One challenge in interpreting sensitivities is that demographic variables are measured in different 
units.  Survival rates are probabilities and they can only take values between 0 and 1.  Fertility, 
on the other hand, has no such restrictions.  Therefore, the sensitivity of λ to changes in survival 
rates may be difficult to compare with the sensitivities of fertility rates.  This is where elasticity 
comes into play.  Elasticity analysis estimates the effect of a proportional change in the vital 
rates on population growth.  The elasticity of a matrix element, eij, is the product of the 
sensitivity of a matrix element (sij) and the matrix element itself (aij), divided by λ.  In essence, 
elasticities are proportional sensitivities, scaled so that they are dimensionless: 
 

 
Equation 4 

 
Thus, you can directly compare elasticities among all life history variables.  An elasticity 
analysis, for example, on the parameters hatchling survival and adult fecundity might yield 
values of 0.047 and 0.538, respectively.  This means that a 1% increase in hatchling survival will 
cause 0.047 % increase in λ, while a 1% increase in adult fecundity will cause a 0.538% increase 
in λ.  In this situation, you would recommend management efforts that aim to increase adult 
fecundity values. 
 
Procedures 
 
The goal of this exercise is to introduce you to matrix methods for computing sensitivities and 
elasticities for the vital population parameters, P and F, for a loggerhead sea turtle population 
with stage structure.  
 
Set up the spreadsheet 
 
1. Open the Microsoft Excel spreadsheet provided to you (“SensitivityElasticityAnalysis”) and 

add the headings seen in Figure 3.  
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Figure 3.  Sensitivity and elasticity analysis spreadsheet. 
 
2. Enter the values shown in cells B4:F8 and in cells H4:H8. 
 
Calculate w, the stable-stage vector 
 
1. Set up new column headings in cells X3 and X4 as shown in Figure 4.  To highlight cells 

with a certain color, select the cells you would like to highlight, open Home | Font, click on 

the highlight submenu button , and choose a color.  To create a border around a group 
of cells, select the group of cells around which you would like to draw a border, open Home 

| Font, click on the borders submenu button , and select Outside Borders from the 
list.  The stable stage distribution vector, w, is simply the proportion of individuals in the 
population that is made up of the different stage classes. 

 
    Figure 4.   

 
 

The first entry, cell X5, is the proportion of the population that is made up of hatchlings 
(given that the population has reached a stable distribution).  The second entry, cell X6, is the 
proportion of the population that is made up of small juveniles.  Cells X7 and X8 will contain 
the proportions of large juveniles and subadults, and the last entry, cell X9, will contain the 
proportions of adults. 
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2. In cell X5, calculate the proportion of the total population in year 100 that consists of 
hatchlings.  Enter the formula =B111/$G$111 in cell X5. 
 
In the data provided in the spreadsheet, you should note the number of individuals in each 
class when the population stabilized (remains constant over time). You might notice that the 
population stabilized at λ = 0.95, and that the stable population consists of 16.2 hatchlings, 
44.0 small juveniles, 7.0 large juveniles, 0.5 subadults, and 0.2 adults.  To calculate the w 
vector, we need to present these numbers in terms of proportions of the total population size.  
Rather than entering these values by hand, the above formula references the proportion of 
hatchlings listed in the last year of the projection. 

 
3. In cells X6:X9, compute the proportions in the remaining classes.  Enter the following 

formulae: 
 
• X6 =C111/$G$111 
• X7 =D111/$G$111 
• X8 =E111/$G$111 
• X9 =F111/$G$111 

 
These equations assume the population has stabilized by year 100. 

 
4. Your spreadsheet should now resemble Figure 5. 
 

 
    Figure 5. 

 
 
Calculate v, the reproductive value vector 
 
The v vector gives the reproductive values for members in different stages of the population.  
The easiest way to do this is to transpose your original population matrix, and then run the same 
type of analysis you ran to determine the w vector.  Transposing a matrix simply means you 
interchange the rows and columns. 
 
1. Set up new column headings as shown in Figure 6.  
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                Figure 6. 
 
2. Use the TRANSPOSE function to transpose the original matrix, given in cells B4:F8, into 

cells K4:O8.  The TRANSPOSE function in Excel is an array function.  The mechanics of 
entering an array formula are a bit different than the typical (single cell) formula entry.  
Instead of selecting a single cell to enter a formula, you need to select a series of cells, then 
enter a formula, then press <Control>+<Shift>+<Enter> to enter the formula for all of the 

cells you have selected.  This function works best when you use the  key and follow the 
cues for entering a formula. 

 

Select cells K4:O8 with your mouse then use your  key to find and select the 
Transpose function.  A dialog box will appear asking you to define an array that you wish 
to transpose.  Use your mouse to highlight cells B4:F8, or enter this by hand (B4:F8).  
Instead of clicking OK, press <Control>+<Shift>+<Enter>, and the spreadsheet will 
return your transposed matrix.  After you’ve obtained your results, examine the formulae in 
cells K4:O8.  Your formula should look like this: {=TRANSPOSE(B4:F8)}.  The { } 
symbols indicate that the formula is part of an array.  If for some reason you get “stuck” in an 
array formula, press the Escape key and start over. 

 
Your spreadsheet should now resemble Figure 7. 
 
 



10 
 

 
 

 
Figure 7. 

 
 
3. Set up a linear series from 0 to 100 in cells I11:I111.  Enter 0 in cell I11.  Enter =1+I11 in 

cell I12.  Copy this formula down to cell I111. 
 
4. Link the starting number of individuals of each stage class in year 0 to the original vector of 

abundances in cells H4:H8.  You’ll need to stick with the same initial population vector of 
abundances you used earlier in the exercise.  We used the following formulae: 

 
• J11 =H4 
• K11 =H5 
• L11 =H6 
• M11 =H7 
• N11 =H8 

 
5. In cell O11, compute the total number of individuals in year 0.  Enter the formula 

=SUM(J11:N11) in cell O11. 
 

6. In cell P11, enter a formula to compute λt for year 0.  Enter the formula =O12/O11 in cell 
P11. 

 
7. Project the population over time as you did in your turtle matrix model, using the values from 

the transposed matrix for your calculations.  I used the following formulae: 
 

• J12 =$K$4*J11+$L$4*K11+$M$4*L11+$N$4*M11+$O$4*N11 
• K12 =$K$5*J11+$L$5*K11+$M$5*L11+$N$5*M11+$O$5*N11 
• L12 =$K$6*J11+$L$6*K11+$M$6*L11+$N$6*M11+$O$6*N11 
• M12 =$K$7*J11+$L$7*K11+$M$7*L11+$N$7*M11+$O$7*N11 
• N12 =$K$8*J11+$L$8*K11+$M$8*L11+$N$8*M11+$O$8*N11 
• O12 =SUM(J12:N12) 
• P12 =O13/O12 

 
8. Compute λt for Year 1.  Copy cells J12:P12 down to row 111 to complete the projection.  

You should see that λt stabilizes at the same value it did for your original projections. 
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9. Set up new column headings as shown in Figure 8. 

 
     Figure 8. 
 
 
10. In cell S5 enter the formula =J111/$O$111 to compute the reproductive value of the 

hatchling stage.  
 
11. In cells T5:W5, enter formulae to compute the reproductive value of the remaining stages: 
 

• T5 =K111/$O$111 
• U5 =L111/$O$111 
• V5 =M111/$O$111 
• W5 =N111/$O$111 

 
12. Double-check your work.  Cells S5:W5 should sum to 1. 

 
13. In cells S6:W6, calculate the standardized reproductive value for each stage class.  

Reproductive values are often standardized such that the reproductive value of the first class 
(hatchlings) is 1.  To standardize the reproductive values, divide each value by the value 
obtained for hatchlings.  Enter the formula =S5/$S$5 in cell S6.  Copy this formula across to 
cell W6.  Your spreadsheet should now resemble Figure 9. 

 
 
 
 
 

 
 
 Figure 9. 
 
Calculate sensitivities of matrix parameters 
 
Now that you have calculated the w and v vectors, you are ready to perform a sensitivity 
analysis. 
 
1.  Set up new column headings as shown in Figure 10.  Enter only the headings (literals) for 

now. 
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                    Figure 10. 
 
2. In cell S8, use the MMULT (matrix multiplication) function to multiply the v vector by the 

w vector.  Enter the formula =MMULT(S5:W5,X5:X9) in cell S8.  The MMULT function 
returns the matrix product of 2 arrays.  The result is an array with the same number of rows 
as array 1 and the same number of columns as array 2.  This value is the denominator <w,v> 
of the formula for calculating sensitivity values (Equation 3).  This result is called a scalar; 
for purposes of the spreadsheet, we will call this value X. 
 
Now you are ready to calculate the numerator of the sensitivities, and compute the sensitivity 
values for each entry in your matrix.  Note that sensitivities are computed for all matrix 
entries, even those that are 0 in the original L matrix.  For example, you will compute the 
sensitivity of subadult fertility (Fsa,h) even though subadults cannot reproduce.  This 
sensitivity value will allow you to answer the question: “If I could make subadults reproduce, 
it would increase λ at this rate.  You may wish to shade the L matrix entries that have 
original cell entries that are equal to 0 a different color (as shown in Step 1). 
 

3. In cell S12:W12, enter formulae to compute the sensitivity of fertility rates for each stage 
over time.  Sensitivity of a population growth rate to changes in the aij element is simply the 
ith entry of v times the jth entry of w, divided by X.  For example, to calculate the sensitivity 
of fertility rate of subadults (row 1, column 4), we would multiply the first element in the v 
vector by the fourth element in the w vector, and then divide that number by X.  The formula 
in cell V12 would be =(X8*S5)/S8.  Enter formula in the remainder of the sensitivity matrix.  
Below are the formulae I used (note that I used absolute references for some cell addresses). 
 
• S12 =($X$5*S5)/$S$8 
• T12 =($X$6*S5)/$S$8 
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• U12 =($X$7*S5)/$S$8 
• V12 =($X$8*S5)/$S$8 
• W12 =($X$9*S5)/$S$8 

 
4. Copy cells S12:W12 down to cells S16:W16.  Adjust your formulae in the formula bar to 

reference the appropriate cells in the v and w vectors.  For example, in row 13, replace the 
reference to cell S6 with T5.  In row 14, replace the reference to cell S7 with U5. In row 15, 
replace the reference to cell S8 with V5.  In row 16, replace the reference to cell S9 with W5.       
This completes the sensitivity analysis. 
 
With the exception of the elasticity matrix (we haven’t completed those calculations yet), 
your spreadsheet should now look like Figure 11  

 
Figure 11. 

 
 Calculate elasticities of matrix parameters 
 
1. In cell S21:W21, enter formulae to calculate the elasticity values for fertility at each stage for 

year 0.  Enter the formula =(B4*S12)/$H$110 in cell S21.  Copy this formula across to cell 
W21.  The elasticity of aij is the sensitivity of aij times the value of aij in the original matrix, 
divided by λ when λt has stabilized.  For example, the elasticity calculation of fecundities of 
the subadults would be =(E4*V12)/$H$110.  If the original matrix element was a 0 (such as 
the fecundities of the hatchling stage), the elasticity should be 0. 
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2. Copy the formulae in cells S21:W21 down to cells S25:W25.  This will complete the 
elasticity analysis.  The sum of the elasticities should add to be 1, since each elasticity value 
measures the proportional contribution of each element to λ (yours might be off by a bit due 
to rounding error). 

 
Create graphs 
 
1. Graph the elasticity values for fertility at each stage for year 0.  Highlight cells S21:W21 and 

the open Insert | Charts | Column | Clustered Column.  Label your axes, add a chart 
title, and remove horizontal bars.  Your graph should resemble Figure 12. 

 

 
                 Figure 12. 
 
2. Graph the elasticity values for the survival values, Pi,i and Pi,i+1 for each stage class.  

Highlight cells S22:S25, T22:T25, U22:U25, V22:V25, and W22:W25.  Open Insert | 
Charts | Column | Clustered Column.  Label your axes, add a chart title, and remove 
horizontal bars.  You will also have to manually select bars within the graph and color-code 
them (Black or Gray) to reflect within-stage survival (Pi,i) or survival to the next stage (Pi,i+1).  
Your graph should resemble Figure 13. 
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 Figure 13. 

 
Questions 
 
1. Fully interpret the meaning of your sensitivity analysis.  What management 

recommendations can you make for loggerhead sea turtle conservation given your analysis? 
 

2. Fully interpret the meaning of your elasticity analysis.  What management recommendations 
can you make for loggerhead sea turtle conservation given your elasticity analysis?  Would 
your recommendations be different if you simply examined the sensitivies, and ignored 
elasticities?  Which do you think is more appropriate for guiding management decisions? 

 
3. As with all models in ecology and evolution, elasticity and sensitivity analyses have their 

assumptions (and weaknesses).  Let’s say you make some recommendations for loggerhead 
sea turtle conservation based on the matrix parameters provided in the exercise.  What kinds 
of assumptions are implicit in the model parameters?  That is, what do you need to know 
about how the data were collected and the environmental and biological conditions in which 
the data were collected? 

 
Literature Cited 
 
Caswell, H. 2001. Matrix Population Models, 2nd Ed. Sinauer Associates, Sunderland, MA. 
 
Crowder, L.B., D.T. Crouse, S.S. Heppell and T.H. Martin. 1994. Predicting the impact of turtle 

excluder devices on loggerhead sea turtle populations. Ecological Applications 4: 437–445. 
 
Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. 

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5

El
as
ti
ci
ty

Stage Class

Elasticity values for remaining in a class (Pi,i, black 
bars) and graduating to next class (Pi, i+1, yellow 

bars)


