

Problem Solving and Decision Making

- 7 Steps of Problem Solving
(First 5 steps are the process of decision making)
- Define the problem.
- Identify the set of alternative solutions.
- Determine the criteria for evaluating alternatives.
- Evaluate the alternatives.
- Choose an alternative (make a decision).
- Implement the chosen alternative.
- Evaluate the results.

Teknik Informatika - UTAMA

Introduction to Decision Analysis

- The field of decision analysis provides framework for making important decisions.
- Decision analysis allows us to select a decision from a set of possible decision alternatives when uncertainties regarding the future exist.
- The goal is to optimized the resulting payoff in terms of a decision criterion.
- Maximizing expected profit is a common criterion when probabilities can be assessed.
- When risk should be factored into the decision making process, Utility Theory provides a mechanism for analyzing decisions in light of risks.
- Decision theory and decision analysis help people (including business people) make better decisions.
- They identify the best decision to take.
- They assume an ideal decision maker:
- Fully informed about possible decisions and their consequences.
- Able to compute with perfect accuracy.
- Fully rational.
- Decisions can be difficult in two different ways:
- The need to use game theory to predict how other people will respond to your decisions.
- The consequence of decisions, good and bad, are stochastic.
- That is, consequences depend on decisions of nature.

Teknik Informatika - UTAMA

Decision Analysis Definitions

- Actions - alternative choices for a course of action
- Events -possible outcomes of chance happenings
- Payoffs - a value associated with the result of each event
- Decision criteria - rule for selecting an action

Decision Analysis Definitions

- Decision analysis = explicit, quantitative method to make (or think about) decisions in the face of uncertainty.
- Portray options and their consequences
- Quantify uncertainty using probabilities
- Quantify the desirability of outcomes using utilities
- Calculate the expected utility of each option (alternative course of action)
- Choose the option that on average leads to most desirable outcomes

Decision Analysis Definitions

- A set of alternative actions
- We may chose whichever we please
- A set of possible states of nature
- Only one will be correct, but we don't know in advance
- A set of outcomes and a value for each
- Each is a combination of an alternative action and a state of nature
- Value can be monetary or otherwise

Indications for Decision Analysis

- Uncertainty about outcomes of alternative courses of action.

1. Developing policies, treatment guidelines, etc.
. At the bedside (i.e. helping patients make decisions)
. Focus discussion and identify important research needs
. In your life outside of medicine
2. As teaching tool to discourage dogmatism and to demonstrate rigorously the need to involve patients in decisions

Decision Making Criteria

- Certainty
- Decision Maker knows with certainty what the state of nature will be - only one possible state of nature
- Ignorance
- Decision Maker knows all possible states of nature, but does not know probability of occurrence
- Risk
- Decision Maker knows all possible states of nature, and can assign probability of occurrence for each state

Criteria for decision making

- Maximize expected monetary value
- Minimize expected monetary opportunity loss
- Maximize return to risk ratio - E monetary V/ σ
- Maximize maximum monetary value (maximax) - best best case monetary value
- Maximize minimum monetary value (maximin) - best worst case monetary value
- Minimize maximum opportunity loss (minimax) - best worst case for opportunity loss

Problem Formulation

- A decision problem is characterized by decision alternatives, states of nature, and resulting payoffs.
- The decision alternatives are the different possible strategies the decision maker can employ.
- The states of nature refer to future events, not under the control of the decision maker, which will ultimately affect decision results. States of nature should be defined so that they are mutually exclusive and contain all possible future events that could affect the results of all potential decisions.

	Decision Theory Models
	- Decision theory problems are generally represented as one of the following: - Influence Diagram - Payoff Table/Decision Table - Decision Tree - Game Theory
	Teknik Informatika - UTAMA

Payoff Tables

- The consequence resulting from a specific combination of a decision alternative and a state of nature is a payoff.
- A table showing payoffs for all combinations of decision alternatives and states of nature is a payoff table.
- Payoffs can be expressed in terms of profit, cost, time, distance or any other appropriate measure.

Payoff Table Analysis

- Payoff Tables
- Payoff Table analysis can be applied when -
- There is a finite set of discrete decision alternatives.
- The outcome of a decision is a function of a single future event.

> - In a Payoff Table -

- The rows correspond to the possible decision alternatives.
- The columns correspond to the possible future events.
- Events (States of Nature) are mutually exclusive and collectively exhaustive.
- The body of the table contains the payoffs.

Payoff Table

	States of Nature	
Alternatives	State 1	State 2
Alternative 1	Outcome 1	Outcome 2
Alternative 2	Outcome 3	Outcome 4

Event i	Market A1	Do not market A2
Success	$\$ 45.00$	$-\$ 3$
Failure	$-\$ 36$	$-\$ 3$

Teknik Informatika - UTAMA

Decision Making Model

The types of decision models:

- Decision making under certainty
- The future state of nature is assumed known
- Decision making under uncertainty (no probabilities)
- There is no knowledge about the probability of the states of nature occurring.
- Decision making under risk (with probabilities)
- There is (some) knowledge of the probability of the states of nature occurring.
- Decision making with perfect information
- The future state of nature is assumed known with certain probability.
- Decision making with imperfect information (Bayesian Theory)
- Decision making in light of competitive actions (Game theory)
- All the actors (players) are seeking to maximize their return.

Teknik Informatika - UTAMA

Decision Making Under Uncertainty

- Maximax - Choose the alternative that maximizes the maximum outcome for every alternative (Optimistic criterion)
- Maximin - Choose the alternative that maximizes the minimum outcome for every alternative (Pessimistic criterion)
- Equally likely - chose the alternative with the highest average outcome.

Ex: Decision Making Under Uncertainty

	States of Nature					
Alternatives	Favorable Market	Unfavorable Market	Maximum in Row	Minimum in Row	Row Average	
Construct large plant	200,000	$-180,000$	200,000	$-180,000$	10,000	
Construct small plant	100,000	$-20,000$	100,000	$-20,000$	40,000	
Do nothing	0	0	0		0	0
Maximax Maximin						Equally likely

Ex: SI KASEP INVESTMENT DECISION

- Si Kasep has inherited $\$ 1000$.
- He has decided to invest the money for one year.
- A broker has suggested five potential investments.
- Gold.
- Company A
- Company B
- Company C
- Company D
- Si Kasep has to decide how much to invest in each investment.

SOLUTION

- Construct a Payoff Table.
- Select a Decision Making Criterion.

Sistem Pendukung Keputusan

- Apply the Criterion to the Payoff table.
- Identify the Optimal Decision

Decision Making Under Uncertainty

- The decision criteria are based on the decision maker's attitude toward life.
- These include an individual being pessimistic or optimistic, conservative or aggressive.
- Criteria
- Maximin Criterion - pessimistic or conservative approach
- Minimax Regret Criterion - pessimistic or
conservative approach.
- Maximax criterion - optimistic or aggressive approach.
- Principle of Insufficient Reasoning.

The Maximin Criterion

- This criterion is based on the worst-case scenario.
- It fits both a pessimistic and a conservative decision maker.
- A pessimistic decision maker believes that the worst possible result will always occur.
- A conservative decision maker wishes to ensure a guaranteed minimum possible payoff.

The Payoff Table

States of Nature

Decision Alterr Large Rise	Small Rise	No Change	Small Fall	Large Fall	
Gold	-100	100	200	300	0
Bond	250	200	150	-100	-150
	500	250	100	-200	-600
60	60	60	6		

Decision Making Under Uncertainty

\square

	Uncertainty
	- The decision criteria are based on the decision maker's attitude toward life. - These include an individual being pessimistic or optimistic, conservative or aggressive. - Criteria - Maximin Criterion - pessimistic or conservative approach. - Minimax Regret Criterion - pessimistic or conservative approach. - Maximax criterion - optimistic or aggressive - Principle of Insufficient Reasoning.
	Teknik Informatika - UTAMA

The Maximin Criterion

- To find an optimal decision
- Record the minimum payoff across all states of nature for each decision.
- Identify the decision with the maximum "minimum payoff".

	The Maximin Criterion					Minimum
Decisions	Large Rise	Small rise	No Change	Small fall	Large Fall	Payoff
Gold	-100	100	200	300	0	-100
Company A	250	200	150	-100	-150	-150
Company B	500	250	100	-200	. 600	. 600
Company C	60	60	60	60	60	. 60

Teknik Informatika - UTAMA

The Minimax Regret Criterion

- This criterion fits both a pessimistic and a conservative decision maker.
- The payoff table is based on "lost opportunity," or "regret".
- The decision maker incurs regret by failing to choose the "best" decision.
- To find an optimal decision
- For each state of nature.
- Determine the best payoff over all decisions.
- Calculate the regret for each decision alternative as the difference between its payoff value and this best payoff value.
- For each decision find the maximum regret over all states of nature.
- Select the decision alternative that has the minimum of these "maximum regrets".

The Minimax Regret Criterion

Decision	The Payoff Table				
	Large rise	Small rise	No change	Small fall	Large fall
Gold	F100]	100	200	300	0
Company A	250	200	150	-100	-150
Company B	500	250	100	-200	-600
Company C	60	60	60	60	60
Decision					
	The Regret Table				
	Large rise Small rise No change Small fall Large fall				
Gold	600	150	0	0	60
Company A	250	50	50	400	210
Company B	$\xrightarrow{ } 0$	0	100	500	660
Company C	440	190	140	240	0

Teknik Informatika - UTAMA

The Minimax Regret Criterion

Teknik Informatika - UTAMA

The Maximax Criterion

- This criterion is based on the best possible scenario.
- It fits both an optimistic and an aggressive decision maker.
- An optimistic decision maker believes that the best possible outcome will always take place regardless of the decision made.
- An aggressive decision maker looks for the decision with the highest payoff (when payoff is profit)
- To find an optimal decision.
- Find the maximum payoff for each decision alternative
- Select the decision alternative that has the maximum of the "maximum" payoff.

The Maximax Criterion

Decision	The Maximax Criterion					Large rise Small rise No change
Small fall	Large fall	Maximum Payoff				
Gold	-100	100	200	300	0	300
Company A	250	200	150	-100	-150	250
Company B	500	250	100	-200	-600	500
Company C	60	60	60	60	60	60

The Principle of Insufficient

 Reason- This criterion might appeal to a decision maker who is neither pessimistic nor optimistic.
- It assumes all the states of nature are equally likely to occur.
- The procedure to find an optimal decision.
- For each decision add all the payoffs.
- Select the decision with the largest sum (for profits).

The Principle of Insufficient Reason

- Sum of Payoffs
- Gold

500

- Company A 350
- Company B 50
- Company C 300
- Based on this criterion the optimal decision alternative is to invest in gold.

Teknik Informatika - UTAMA

The Principle of Insufficient Reason

Decision under uncertainty can present a problem if the attitude toward life (optimistic, pessimistic, or somewhere in between) change rapidly
Solution: obtain probability estimates for the states of nature and implement decision making under risk.

Decision Making Under Risk

Decision Making Under Risk

- Probabilistic decision situation
- States of nature have probabilities of occurrence
- The probability estimate for the occurrence of each state of nature (if available) can be incorporated in the search for the optimal decision.
- For each decision calculate its expected payoff.

```
Expected Payoff \(=\Sigma(\) Probability \()(\) Payoff \()\)
```

- Select the decision with the best expected payoff

The Expected Value Criterion

- The expected value criterion is useful generally in the case where the decision maker is risk neutral.
- This criterion does not take into account the decision maker's attitude toward possible losses. We will see that utility theory offers an alternative to the expected value approach.
- When to Use the Expected Value Approach
-The Expected Value Criterion is useful in cases where long run planning is appropriate, and decision situations repeat themselves.
-One problem with this criterion is that it does not consider attitude toward possible losses.

Expected Value of Perfect Information

- The Gain in Expected Return obtained from knowing with certainty the future state of nature is called:

Expected Value of Perfect Information
Therefore, the EVPI is the expected regret corresponding to the decision selected using the expected value criterion

- It is also the Smallest Expect Regret of any decision alternative.

Expected Value of Perfect Information

Decision	The Expected Value of Perfect Information				Large fall
	Large rise	Small rise	No change	Small fall	
Gold	-100	100	200	$\times 300$	-
Company A	250	200	150	-180	-150
Company B	500	2501	100	-200	-600
Company C	60	- 60	60	60	-60
Prob.	0.2	0.3	0.3	0.1	
If we know with certainty that the market were going to "Large Rise" (resp. small fall) the optimal decision would be to invest in Company B (Gold).					
$\begin{aligned} & \text { Expected }) \\ & =(\text { Probabi } \\ & +\ldots+(\operatorname{Pr} \\ & =0.2(500) \end{aligned}$	eturn with P ity of $1^{\text {st }}$ stat bability of 5 $0.3(250)+0.3($	erfect inform of nature)* ${ }^{\text {h }}$ state of nat $(200)+0.1(300)$	nation ERPI (best outcon ture)*(best $\text { 0) }+0.1(60)=2$	ne of $1^{\text {st }}$ state utcome of 5 71	of nature) state of nature

$$
\text { EVPI }=\text { ERPI }- \text { EREV }=271-130=141
$$

Teknik Informatika - UTAMA

Expected Value of Perfect Information

If Kasep knew in advance the Market would undergo	His optimal decision	With a gain of Payoff (with respect to risk case) of
a large rise	Company B	$50-250=250$
a small rise	Company B	$250-200=50$
no c hange	Gold	$200-150=50$
a small fall	Gold	$300-(-100)=400$
a large fall	Company C	$60-(-150)=210$

EVPI $=.2(250)+.3(50)+.3(50)+.1(400)+.1(210)=141$

Teknik Informatika - UTAMA

Decision Making With Perfect Imperfect Information

Decision Making with Imperfect Information (Bayesian Analysis)

- Some statisticians argue that is unnecessary to practice decision making under uncertainty coz one always has at least some probabilistic info related to the states of nature.
- Bayesian Statistics play a role in assessing additional information obtained from various sources.
- This additional information may assist in refining original probability estimates, and help improve decision making.

Ex: SI KASEP INVESTMENT

 DECISION (continued)Should Kasep purchase the Forecast?

- Kasep can purchase econometric forecast results for $\$ 50$.
- The forecast predicts "negative" or "positive" econometric growth.
- Statistics regarding the forecast.

When the Company B showed a large rise the
Forecast predicted a "positive growth" 80% of the time.
$\mathrm{P}($ forecast predicts "positive" \mid small rise in market) $=.7$ $\mathrm{P}($ forecast predicts "negative" \mid small rise in market $)=.3$

Teknik Informatika - UTAMA

Solution

- Kasep should determine his optimal decisions when the forecast is "positive" and "negative".
- If his decisions change because of the forecast, he should compare the expected payoff with and without the forecast.
- If the expected gain resulting from the decisions made with the forecast exceeds $\$ 50$, he should purchase the forecast.

Kasep needs to know the following probabilities

- P(Large rise I The forecast predicted "Positive")
- P(Small rise I The forecast predicted "Positive")
- P(No change I The forecast predicted "Positive ")
- P(Small fall I The forecast predicted "Positive")
- P(Large Fall I The forecast predicted "Positive")
- P(Large rise I The forecast predicted "Negative")
- P(Small rise I The forecast predicted "Negative")
- P(No change I The forecast predicted "Negative")
- P(Small fall I The forecast predicted "Negative")
- P(Large Fall) | The forecast predicted "Negative")

Bayes' Theorem provides a procedure to calculate these probabilities

Bayes Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Proof: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{A})$
$\rightarrow P(A$ and $B)=P(B \mid A)^{*} P(A)$
(1) $\rightarrow P(A \mid B)=P(B \mid A)^{*} P(A) / P(B)$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the
Royal Society of London, 53:370-418

Bayes Theorem

- Often we begin probability analysis with initial or prior probabilities.
- Then, from a sample, special report, or a product test we obtain some additional information.
- Given this information, we calculate revised or posterior probabilities.
- Bayes' theorem provides the means for revising the prior probabilities.

Bayes Theorem

- Knowledge of sample (survey) information can be used to revise the probability estimates for the states of nature.
- Prior to obtaining this information, the probability estimates for the states of nature are called prior probabilities.
- With knowledge of conditional probabilities for the indicators of the sample or survey information, these prior probabilities can be revised by employing Bayes' Theorem.
- The outcomes of this analysis are called posterior probabilities or branch probabilities for decision trees.

Teknik Informatika - UTAMA

Bayes Theorem

$\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are mutually exclusive and collectively exhaustive (e.g., events)

Ex:

- The tabular approach to calculating posterior probabilities for "positive" economical forecast

Ex:

- The tabular approach to calculating posterior probabilities for "positive" economical forecast

Probability $($ Forecast $=$ positive $)=.16+.21+.15+.04+.0=.56$

Teknik Informatika - UTAMA

Decision	The revised probabilities payoff table				
			Nochange	Smalifall	Large fall
Gold	-100	100	200	300	0
Company A	250	200	150	-100	-150
Company B	500	250	100	-200	-600
Company C	60	60	60	60	60
P(State\|Positive)	0.286	0.375	0.268	0.071	0
P(State Negative)	0.091	0.205	0.341	0.136	0.227
1					
Revision of state of nature probability					

Expected Value of Sample Information

- The expected gain from making decisions based on Sample Information.
- With the forecast available, the Expected Value of Return is revised.
- Calculate Revised Expected Values for a given forecast as follows.
EV (Invest in Comp A "Positive" forecast) =
$\mathrm{EV}($ Invest in Comp A |"Negative" forecast) $=$ $=.091(250)+.205(200)+.341(150)+.136(-100)+.227(-150$ $=\$ 65$
knik Informatika - UTAMA

The Reversed Expected Value

Positive forecast
$\mathrm{EV}($ Gold \mid Positive $)=84$ $\mathrm{EV}(\mathrm{C} \mathrm{A} \mid$ Positive $)=180$
$\mathrm{EV}(\mathrm{C} \mathrm{B} \mid$ Positive $)=250$
$\operatorname{EV}(\mathrm{CC} \mid$ Positive $)=60$
If the forecast is "Positive"
Invest in Company B.

Negative forecast

$\mathrm{EV}($ Gold \mid Negative $)=120$ $\operatorname{EV}(\mathrm{C} \mathrm{A} \mid$ Negative $)=65$ $\operatorname{EV}(C B \mid$ Negative $)=-37$ $\operatorname{EV}(C C \mid$ Negative $)=60$

If the forecast is "Negative" Invest in Gold.

- EVSI $=$ Expected Value of Sampling Information

$$
=\text { ERSI }- \text { EREV }=193-130=\$ 63 .
$$

Yes, Kasep should purchase the Forecast.

His expected return is greater than the
Forecast cost. $(\$ 63>\$ 50)$

- Efficiency $=$ EVSI $/$ EVPI $=63 / 141=0.45$

Teknik Informatika - UTAMA

$\begin{aligned} & \mathrm{EVPI}=\mathrm{ERPI}-\mathrm{EREV} \\ & \mathrm{EVSI}=\mathrm{ERSI}-\mathrm{EREV} \\ & \text { Efficiency }=\text { EVSI } / \mathrm{EVPI} \end{aligned}$

Decision Tree

Decision Trees

- The Payoff Table (Decision Table) approach is useful for a non-sequential or single stage.
- Decision Tree is useful in analyzing multi-stage decision problems consisting of a sequence of dependent decisions.
- A Decision Tree is a chronological representation of the decision process.

Teknik Informatika - UTAMA

Decision Trees

- A decision tree is a chronological representation of the decision problem.
- Each decision tree has two types of nodes; round nodes correspond to the states of nature while square nodes correspond to the decision alternatives.
- The branches leaving each round node represent the different states of nature while the branches leaving each square node represent the different decision alternatives.

- At the end of each limb of a tree are the payoffs attained from the series of branches making up that limb.

Teknik Informatika - UTAMA

Decision Tree

- The tree is composed of nodes and branches.

Motivating Case:

Ms. Brooks is a 50 year old woman with an incidental cerebral aneurysm. She presented with new vertigo 3 weeks ago and her primary MD ordered a head MRI. Her vertigo has subsequently resolved and has been attributed to labyrinthitis.

Her MRI suggested a left posterior communicating artery aneurysm, and a catheter angiogran confirmed a 6 mm berry aneurysm.

Alternative ways of dealing with

 uncertainty- Dogmatism. All aneurysms should be surgically clipped.
- Policy. Af UCSF we clip all aneurysms.
- Experience. I'vORed a number of aneurysm patients for surgery and they have done well.
- Whin Décision Annalysis
- Defer to experts. Vascular neurosurgeons say clip.
- Defer to patients. Would you rather have surgery or live with your aneurysm untreated?

Overview of DA Steps

1. Formulate an explicit question
2. Make a decision tree.
(squares $=$ decision nodes, circles $=$ chance nodes)
a) Alternative actions = branches of the decision node.
b) Possible outcomes of each = branches of chance nodes.
3. Estimate probabilities of outcomes at each chance node.
4. Estimate utilities $=$ numerical preference for outcomes.
5. Compute the expected utility of each possible action
6. Perform sensitivity analysis

1. FORMULATE AN EXPLICIT QUESTION

- Formulate explicit, answerable question.
- May require modification as analysis progresses.
- The simpler the question, without losing important detail, the easier and better the decision analysis.

```
In the aneurysm example, our interest is in determining what's best for Ms. Brooks so we'll take her perspective. We will begin with the following question:
Which treatment strategy, surgical clipping or no treatment, is better for Ms. Brooks considering her primary concern about living a normal life span?

\section*{2. MAKE A DECISION TREE}
- Creating a decision tree = structuring the problem
- Provide a reasonably complete depiction of the problem.
- Best is one decision node (on the left, at the beginning of the tree).
- Branches of each chance node -- exhaustive and mutually exclusive.
- Proceed incrementally. Begin simple.

Decision Trees: Simple to ...



\section*{3. ESTIMATE PROBABILITIES}
- From the most reliable results applicable to the patient or scenario of interest.
- Standard hierarchies of data quality

Definitive trials \(\rightarrow\) Meta-analysis of trials \(\rightarrow\) Systematic review \(\rightarrow\) Smaller trials \(\rightarrow\) Large cohort studies \(\rightarrow\) Small cohort studies \(\rightarrow\) Case-control studies \(\rightarrow\) Case series \(\rightarrow\) Expert opinion

\section*{3. Fill in the probabilities: No treatment node}
- Prob rupture =exp life span x rupture/yr - Expected life span:
- From US mortality figures: 35 years
- Probability of untreated aneurysm rupture.
- Cohort study
- \(0.05 \% / \mathrm{yr}\) for \(<10 \mathrm{~mm}\)
- Lifetime prob rupture \(=0.05 \% / \mathrm{y} \times 35 \mathrm{y}=1.75 \%\)
- Case fatality of rupture
- Meta-analysis: \(45 \%\)

\section*{3. Fill in the probabilities}


\section*{3. Fill in the probabilities: Surgery node}
- Probability of treated aneurysm
- rupture.
- No data: probably very small \(\sim 0\) (Opinion)
- Surgical mortality. Options:
- Meta-analysis of case series: \(2.6 \%\)
- Clinical databases: \(2.3 \%\)

The numbers at UCSF: \(2.3 \%\)

\section*{3. Fill in the probabilities}


\section*{4. Estimate utilities}
- Valuation of an outcome (more restrictive use in the next lecture).
- Best = 1
- Worst \(=0\)
- In this case, she wants to avoid early death:
- Normal survival =1
- Early death \(=0\)

Teknik Informatika - UTAMA


\section*{5. COMPUTE THE EXPECTED UTILITY OF EACH BRANCH}

Called "folding back" the tree.
Expected utility of action \(=\) each possible outcome weighted by its probability.
Simple arithmetic calculations
5. Compute expected utility of each branch

5. Compute expected utility of each branch


\section*{6. Perform sensitivity analysis}
- How certain are we of our recommendation?
- Change the input parameters to see how they affect the final result.
- What if her life expectancy were shorter?
- What if the rupture rate of untreated aneurysms were higher?
- How good a neurosurgeon is required for a toss up?



\section*{STEP BACK AND REVIEW THE ANALYSIS}

As each iteration is completed, step back ...
Have we answered the question?
Did we ask the right question?
Are there other details that might be important?
Consider adding complexity to improve accuracy.

\section*{Improve the Analysis}

Add layers of complexity to produce a more realistic analysis.


\section*{Game Theory}
- Game theory can be used to determine optimal decision in face of other decision making players.
- All the players are seeking to maximize their return.
- The payoff is based on the actions taken by all the decision making players.

Teknik Informatika - UTAMA
\begin{tabular}{|c|c|}
\hline 砝 & \begin{tabular}{l}
Classification of Games \\
- Number of Players \\
- Two players - Chess \\
- Multiplayer - More than two competitors (Poker) \\
- Total return \\
- Zero Sum - The amount won and amount lost by all competitors are equal (Poker among friends) \\
- Nonzero Sum -The amount won and the amount lost by all competitors are not equal (Poker In A Casino) \\
- Sequence of Moves \\
- Sequential - Each player gets a play in a given sequence. \\
- Simultaneous - All players play simultaneously.
\end{tabular} \\
\hline
\end{tabular}

\section*{IGA SUPERMARKET}
- The town of Gold Beach is served by two supermarkets: IGA and Sentry.
- Market share can be influenced by their advertising policies.
- The manager of each supermarket must decide weekly which area of operations to discount and emphasize in the store's newspaper flyer.

\section*{Data}
- The weekly percentage gain in market share for IGA, as a function of advertising emphasis.
\begin{tabular}{l|lcccc|}
\hline & & \multicolumn{4}{c|}{\begin{tabular}{c} 
Sentry's Emphasis
\end{tabular}} \\
& & Meat \\
Produce & Grocery & Bakery \\
\hline IGA's & Meat & 2 & 2 & -8 & 6 \\
Emphasis & Produce & -2 & 0 & 6 & -4 \\
& Grocery & 2 & -7 & 1 & -3 \\
\hline
\end{tabular}
- A gain in market share to IGA results in equivalent loss for Sentry, and vice versa (i.e. a zero sum game)


\section*{SOLUTION}
- IGA's Perspective - A Linear Programming model
- Decision variables
- X1 = the probability IGA's advertising focus is on meat.
- \(\mathrm{X} 2=\) the probability IGA's advertising focus is on produce.
- \(\mathrm{X} 3=\) the probability IGA's advertising focus is on groceries.
- Objective Function For IGA
- Maximize expected market change (in its own favor) regardless of Sentry's advertising policy.
- Define the actual change in market share as V.

Teknik Informatika - UTAMA


\section*{Optimal Solution}
- For IGA
\(-\mathrm{X} 1=0.3889 ; ~ \mathrm{X} 2=0.5 ; \mathrm{X} 3=0.111\)
- For Sentry
\(-\mathrm{Y} 1=0.6 ; \quad \mathrm{Y} 2=0.2 ; \quad \mathrm{Y} 3=0.2 ; \quad \mathrm{Y} 4=0\)
- For both players \(\mathrm{V}=0\) (a fair game).

\section*{Referensi}
1. Dr. Mourad YKHLEF,2009,Decision Support System, King Saud University
2. James G. Kahn, MD, MPH,2010, Decision Analysis, UCSF Department of Epidemiology and Biostatistics
3. Roberta Russell \& Bernard W. Taylor, III,2006, Decision Analysis, Operations Management - 5th Editionm John Wiley \& Son
4. Dr. C. Lightner,2010,Decision Theory, Fayetteville State University
5. Zvi Goldstein,2010,Chapter 8-Decision Analysis,-```

