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Assignments

• Remember: 
Problem Set #1: Simple Scheme and Search 
due Monday, September 20th, 2003.

• Reading: 
– Solving problems by searching: AIMA Ch. 3
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Complex missions must carefully:

• Plan complex sequences of actions

• Schedule actions

• Allocate tight resources

• Monitor and diagnose behavior

• Repair or reconfigure hardware.

Most AI problems, like these, may be formulated as 
state space search.



Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search
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Astronaut
Goose
Grain
Fox

Rover

Can the astronaut get its supplies 
safely across the Martian canal?

• Astronaut + 1 item 
allowed in the rover.

• Goose alone eats Grain
• Fox alone eats Goose

Early AI: What are the universal problem solving methods?

TrivialSimple
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Problem Solving as 
State Space Search

• Formulate Goal
– State

• Astronaut, Fox, Goose & Grain across river

• Formulate Problem
– States

• Location of Astronaut, Fox, Goose & Grain 
at top or bottom river bank

– Operators
• Astronaut drives rover and 1 or 0 items

to other bank.

• Generate Solution
– Sequence of Operators (or States)

• Move(goose,astronaut), Move(astronaut), . . .
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Example: 8-Puzzle

5 4

6 1

7 3

8

2

1 2

8

3

7 6

4

5

Start Goal

• States: 
• Operators: 
• Goal Test:

integer location for each tile AND …
move empty square up, down, left, right
goal state as given
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Example: Planning Discrete Actions

courtesy of NASA

• Swaggert & Lovell work on 
Apollo 13 emergency rig 
lithium hydroxide unit. 
– Assembly

• Mattingly works in ground 
simulator to identify new 
sequence handling severe 
power limitations.
– Planning & Resource Allocation

• Mattingly identifies novel 
reconfiguration, exploiting 
LEM batteries for power.
– Reconfiguration and Repair

Brian Williams, Spring 04 11



Planning as State Space Search:
STRIPS Operator Representation

Effects specify how to 
change the set of assertions.

Initial state:
(and (hose a)  

(clamp b)
(hydroxide-unit c)  
(on-table a) 
(on-table b) 
(clear a)  
(clear b) 
(clear c) 
(arm-empty))

goal (partial state):
(and (connected a b) 

(attached b a)))

precondition: (and (clear hose)
(on-table hose)

(empty arm))

effect: (and (not (clear hose))
(not (on-table hose))
(not (empty arm))

(holding arm hose)))

pickup hose

Note: strips doesn’t

allow derived effects; 

you must be complete!}

Available actions Strips operators
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STRIPS Action Assumptions

• Atomic time.

• Agent is omniscient 
(no sensing necessary). 

• Agent is sole cause of change.

• Actions have deterministic effects.

• No indirect effects.

precondition: (and (clear hose)
(on-table hose)

(empty arm))

effect: (and (not (clear hose))
(not (on-table hose))
(not (empty arm))

(holding arm hose)))

pickup hose
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STRIPS Action Schemata
• Instead of defining: 

pickup-hose and pickup-clamp and …

• Define a schema (with variables ?v):
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(:operator pick-up
:parameters ((hose ?ob1))
:precondition (and (clear ?ob1) 

(on-table ?ob1) 
(empty arm))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (empty arm))
(holding arm ?ob1)))



Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search
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Problem Formulation: A Graph
State

Node
(vertex)

Operator

Link
(edge)

d
e

Brian Williams, Spring 04 16

Directed
Graph
(one-way streets)

neighbors
(adjacent)

Incident to edge

Start Vertex 
of Edge

End Vertex 
of Edge

Undirected
Graph
(two-way streets)



Problem Formulation: A Graph

In Degree (2) Degree (1)

b
Out Degree (1)

b

Undirected
Graph
(two-way streets)

Directed
Graph
(one-way streets)
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Problem Formulation: A Graph
Strongly connected graph

Directed path between all vertices.
Connected graph

Path between all vertices.

Complete graph
All vertices are adjacent.

a
c

e
d

b

a
c

d
e

b

Undirected
Graph
(two-way streets)

Sub graph
Subset of vertices
edges between vertices in Subset

Clique
A complete subgraph
All vertices are adjacent.

Directed
Graph
(one-way streets)
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Examples of Graphs

San Fran

Boston

LA Dallas

Wash DC

Roadmap
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A B C

A B

C

A B

C

A

B

C

Put C on B

Put C on A

Put B on C

Put C on A

A

B

CPut A on C

Planning Actions

(graph of possible 
states of the world)



A Graph

SFO

Bos

LA Dallas

Wash DC

Airline Routes
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A Graph G is represented as a pair <V,E>, where:

• V is a set of vertices {v1 …}

• E is a set of (directed) edges {e1, …}

An edge is a pair <v1, v2> of vertices, where

• v2 is the head of the edge, 

•and v1 is the tail of the edge

< {Bos, SFO, LA, Dallas, Wash DC}

{<SFO, Bos>, 

<SFO, LA>

<LA, Dallas> 

<Dallas, Wash DC>

. . .} >



A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

A

C

C

S

B

G
A

D start

end

A path is a sequence of edges (or vertices)
<S, A, D, C>
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Simple path has no repeated vertices.

For a cycle, start = end.



A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

A

C G

C

S

B

G
A

D

Represent searched paths using a tree.
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A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Represent searched paths using a tree.
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Search Trees

Root

Branch
(Edge)

Node
(vertex)
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Search Trees

Parent
(Ancestor)

Child
(Descendant)

Siblings
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Search Trees

Ancestors

Descendants
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Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search
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Classes of Search
Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Heuristic Hill-Climbing Uses heuristic measure of goodness

(informed) Best-First of a node,e.g. estimated distance to.

Beam goal.

Optimal Branch&Bound Uses path “length” measure.  Finds

(informed) A* “shortest” path.  A* also uses heuristic
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Classes of Search
Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening
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Depth First Search (DFS)
Idea: After visiting node
•Visit children, then siblings
•Visit siblings left to right

S

D

BA

C G

C G

D

C G

1

2

3

5

6

7

8 11
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4 9 10

S

A

D

C G

C

B

D

C G

G



Breadth First Search (BFS)
Idea: After visiting node
• Visit siblings, then children
• Visit relatives left to right (top to bottom)

S

D

BA

C G

C G

D

C G

1

2

4

9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

8
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Elements of Algorithm Design
Description: (today)

– stylized pseudo code, sufficient to analyze and implement the algorithm 
(next Monday).

Analysis: (next Wednesday)
• Soundness: 

– when a solution is returned, is it guaranteed to be correct?
• Completeness: 

– is the algorithm guaranteed to find a solution when there is one?

• Time complexity: 
– how long does it take to find a solution?

• Space complexity: 
– how much memory does it need to perform search?
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Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Simple Search Algorithm
Going Meta: 
Search as State Space SearchHow do we maintain the search state?

• A set of partial paths explored thus far.

• An ordering on which partial path to expand next 
• called a queue Q.

How do we perform search? 
• Repeatedly:

• Select next partial path from Q. 
• Expand it.
• Add expansions to Q.

• Terminate when goal found.

State Space

S

D

BA

C G

C G

D

C G

Operator

Goal-Test
Brian Williams, Spring 04 34



Simple Search Algorithm
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• S denotes the start node
• G denotes the goal node.
• A partial path is a path from S to some node D, 

• e.g., (D A S) 

• The head of a partial path is the most recent node of the path, 
• e.g., D.

• The Q is a list of partial paths, 
• e.g. ((D A S) (C A S) …).

S

D

BA

C G

C G

D

C G



Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S)
2. If Q is empty, fail.  Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else: 

a) Remove N from Q
b) Find all children of head(N) and 

create all one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.



Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Depth First Search (DFS)
Idea: 
• Visit children, then siblings
• Visit siblings left to right, (top to bottom).

S

D

BA

C G

C G

D

C G

1

2

3

5

6

7

8 11
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4 9 10

S

A

D

C G

C

B

D

C G

G

Assuming that we pick the first element of Q,
Then where do we add path extensions to the Q?



Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S)
2. If Q is empty, fail.  Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else: 

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.



Depth-First
Pick first element of Q;  Add path extensions to front of Q
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C

S

B

G
A

D

Q

1 (S)
2
3
4
5

1



Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S)
2. If Q is empty, fail.  Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else: 

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.



Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

C

S

B

G
A

D1
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Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S)

C

S

B

G
A

D1

Added paths in blue
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Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

Added paths in blue
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Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S)
2. If Q is empty, fail.  Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else: 

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.



Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue
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Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

C

S

B

G
A

D
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1

2

Added paths in blue



Depth-First
Pick first element of Q;  Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue
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Depth-First
Pick first element of Q;  Add path extensions to front of Q
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C

S

B

G
A

D1

2

3
Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

Added paths in blue



Depth-First
Pick first element of Q;  Add path extensions to front of Q

Brian Williams, Spring 04 50

C

S

B

G
A

D1

2

3
Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)

Added paths in blue



C

S

B

G
A

D

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)

1

2

3

4

Depth-First
Pick first element of Q;  Add path extensions to front of Q

Added paths in blue
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C

S

B

G
A

D

Q

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q;  Add path extensions to front of Q
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Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S)
2. If Q is empty, fail.  Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else: 

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.



C

S

B

G
A

D

Q

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q;  Add path extensions to front of Q
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C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q;  Add path extensions to front of Q
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C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q;  Add path extensions to front of Q
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Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Issue: Starting at S and moving top to bottom, 
will depth-first search ever reach G?

C

S

B

G
A

D
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C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Effort can be wasted in more mild cases

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?
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How Do We Avoid Repeat Visits?
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Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a second 
time would be reachable from that node the first time.

Does it always improve efficiency?  

• Visits only a subset of the original paths, suc that
each node appears at most once at the head of a path in Q.



How Do We Modify
Simple Search Algorithm

Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; 
2. If Q is empty, fail.  Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths; 
d) Go to step 2.
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Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S) as only entry; set Visited = ( )
2. If Q is empty, fail.  Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) not in Visited and 

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths; 
d) Add children of head(N) to Visited
e) Go to step 2.



Testing for the Goal
• This algorithm stops (in step 3) when head(N) = G.

• We could have performed this test in step 6 as each extended path is 
added to Q.  This would catch termination earlier and be perfectly correct 
for all the searches we have covered so far.

• However, performing the test in step 6 will be incorrect for the optimal 
searches we look at later.  We have chosen to leave the test in step 3 to 
maintain uniformity with these future searches.
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Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Breadth First Search (BFS)
Idea: 
• Visit siblings before their children
• Visit relatives left to right

S

D

BA

C G

C G

D

C G

1

2

4

9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

8

Assuming that we pick the first element of Q,
Then where do we add path extensions to the Q?
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

C

S

B

G
A

D1
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

C

S

B

G
A

D1
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S

C

S

B

G
A

D1
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S

C

S

B

G
A

D1

2
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S

C

S

B

G
A

D1

2
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S

C

S

B

G
A

D1

2

3
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S

C

S

B

G
A

D1

2

3

* We could stop here, when the first path to the goal is generated.
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S

C

S

B

G
A

D1

2

3

4

* We could stop here, when the first path to the goal is generated.
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6 (G B S) G,C,D,B,A,S

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5

6
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6 (G B S) G,C,D,B,A,S

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5

6
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Depth-first with visited list
Pick first element of Q;  Add path extensions to front of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2
3
4
5

(A S) (B S) A, B, S
(C A S) (D A S) (B S) C,D,B,A,S
(D A S) (B S) C,D,B,A,S
(G D A S) (B S) G,C,D,B,A,S

1

2

3

4

5
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Depth First Search (DFS)
S

D

BA

C G

C G

D

C G

Depth-first:

Add path extensions to front of Q

Pick first element of Q

S

D

BA

C G

C G

D

C G

Breadth First Search (BFS)
Breadth-first:

Add path extensions to back of Q

Pick first element of Q

For each search type, where do we place the children on the queue?
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What You Should Know
• Most problem solving tasks may be 

formulated as state space search.
• Mathematical representations for search are 

graphs and search trees.
• Depth-first and breadth-first search may be 

framed, among others, as instances of a 
generic search strategy.

• Cycle detection is required to achieve 
efficiency and completeness.
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Appendix
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

C

S

B

G
A

D1
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)

C

S

B

G
A

D1

2

3

Added paths in blue
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*

C

S

B

G
A

D1

2

3

4

Added paths in blue
Revisited nodes in pink
* We could have stopped here, when the first path to the goal was generated.
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6 (D B S) (G B S) (C D A S) (G D A S)
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5
6
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Breadth-First (without Visited list)
Pick first element of Q;  Add path extensions to end of Q

Q

6 (D B S) (G B S) (C D A S) (G D A S)
7 (G B S) (C D A S) (G D A S)

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5
6

7
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