Problem Solving as State Space Search

Brian C.Williams
16.410-13
Sep 14 ${ }^{\text {th }}, 2004$

Slides adapted from:
6.034 Tomas Lozano Perez, Russell and Norvig AIMA

Assignments

- Remember:

Problem Set \#1: Simple Scheme and Search due Monday, September 20th, 2003.

- Reading:
- Solving problems by searching: AIMA Ch. 3

Complex missions must carefully:

- Plan complex sequences of actions
- Schedule actions
- Allocate tight resources
- Monitor and diagnose behavior
- Repair or reconfigure hardware.

\Rightarrow Most AI problems, like these, may be formulated as state space search.

Outline

- Problem Formulation
- Problem solving as state space search
- Mathematical Model
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Can the astronaut get its supplies safely across the Martian canal?

Astronaut
Goose
Grain
Fox

Rover

- Astronaut + 1 item allowed in the rover.
- Goose alone eats Grain
- Fox alone eats Goose

Early AI: What are the universal problem solving methods?
Simple \longrightarrow Trivial

Problem Solving as State Space Search

- Formulate Goal
- State
- Astronaut, Fox, Goose \& Grain across river
- Formulate Problem
- States
- Location of Astronaut, Fox, Goose \& Grain at top or bottom river bank
- Operators
- Astronaut drives rover and 1 or 0 items to other bank.
- Generate Solution
- Sequence of Operators (or States)
- Move(goose,astronaut), Move(astronaut), . . .

Example: 8-Puzzle

Start

Goal

- States:
- Operators:
- Goal Test:
integer location for each tile AND ...
move empty square up, down, left, right goal state as given

Example: Planning Discrete Actions

- Swaggert \& Lovell work on Apollo 13 emergency rig lithium hydroxide unit.
- Assembly
- Mattingly works in ground simulator to identify new sequence handling severe power limitations.
- Planning \& Resource Allocation
- Mattingly identifies novel reconfiguration, exploiting LEM batteries for power.
- Reconfiguration and Repair

Planning as State Space Search: STRIPS Operator Representation

Initial state:
Available actions Strips operators
(and (hose a)
(clamp b)
(hydroxide-unit c)
(on-table a)
(on-table b)
(clear a)
(clear b)
(clear c)
(arm-empty))
goal (partial state): (and (connected ab) (attached ba)))

```
precondition: (and (clear hose)
                                    (on-table hose)
            (empty arm))
                pickup hose
```

 effect: (and (not (clear hose))
 (not (on-table hose))
 (not (empty arm))
 (holding arm hose)))
 \Rightarrow Effects specify how to change the set of assertions.

STRIPS Action Assumptions

> precondition: (and (clear hose)
> (on-table hose) (empty arm))

- Atomic time.
- Agent is omniscient pickup hose
(no sensing necessary). effect: (and (not (clear hose)) (not (on-table hose))
- Agent is sole cause of change.
(not (empty arm))
(holding arm hose)))
- Actions have deterministic effects.
- No indirect effects.

STRIPS Action Schemata

- Instead of defining: pickup-hose and pickup-clamp and ...
- Define a schema (with variables ?v):
(:operator pick-up
:parameters ((hose ?ob1))
:precondition (and (clear ?ob1) (on-table ?ob1)
(empty arm))
:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (empty arm))
(holding arm ?ob1)))

Outline

- Problem Formulation
- Problem solving as state space search
- Mathematical Model
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Problem Formulation: A Graph

Operator

State

Directed Graph (one-way streets)

Incident to edge

Undirected Graph
(two-way streets)

Problem Formulation: A Graph

Directed
Graph
(one-way streets)
Undirected
Graph
(two-way streets)

Problem Formulation: A Graph

Strongly connected graph
Directed path between all vertices.

Connected graph
Path between all vertices.

Complete graph
All vertices are adjacent.

Sub graph
Subset of vertices
edges between vertices in Subset

Directed
Graph
(one-way streets)

Clique
A complete subgraph All vertices are adjacent.

Undirected
Graph
(two-way streets)

Examples of Graphs

Roadmap

Planning Actions
 (graph of possible states of the world)

A Graph

Airline Routes

A Graph G is represented as a pair $\langle\mathrm{V}, \mathrm{E}\rangle$, where:

- V is a set of vertices $\{\mathrm{v} 1 \ldots\}<$ (Bos, SFO, LA, Dallas, Wash DC $\}$
- E is a set of (directed) edges $\{\mathrm{e} 1, \ldots\}$

An edge is a pair <v1, v2> of vertices, where

- v2 is the head of the edge, -and $v 1$ is the tail of the edge
\{<SFO, Bos>,
<SFO, LA>
<LA, Dallas>
<Dallas, Wash DC>

A Solution is a State Sequence: Problem Solving Searches Paths

start

A path is a sequence of edges (or vertices)
<S, A, D, C>

Simple path has no repeated vertices.
For a cycle, start = end.

A Solution is a State Sequence: Problem Solving Searches Paths

Represent searched paths using a tree.

A Solution is a State Sequence: Problem Solving Searches Paths

Represent searched paths using a tree.

Search Trees

Search Trees

Search Trees

Outline

- Problem Formulation
- Problem solving as state space search
- Mathematical Model
- Graphs and search trees
- Reasoning Algorithms
- Depth and breadth-first search

Classes of Search

Blind (uninformed)	Depth-First Breadth-First Iterative-Deepening	Systematic exploration of whole tree until the goal is found.
Heuristic Hill-Climbing Uses heuristic measure of goodness (informed) Best-First of a node,e.g. estimated distance to. Beam goal. Optimal Branch\&Bound Uses path "length" measure. Finds (informed) A* "shortest" path. A* also uses heuristic		

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First Iterative-Deepening	

Depth First Search (DFS)

Idea: After visiting node

- Visit children, then siblings
- Visit siblings left to right

Breadth First Search (BFS)

Idea: After visiting node

- Visit siblings, then children
- Visit relatives left to right (top to bottom)

Elements of Algorithm Design

Description: (today)

- stylized pseudo code, sufficient to analyze and implement the algorithm (next Monday).

Analysis: (next Wednesday)

- Soundness:
- when a solution is returned, is it guaranteed to be correct?
- Completeness:
- is the algorithm guaranteed to find a solution when there is one?
- Time complexity:
- how long does it take to find a solution?
- Space complexity:
- how much memory does it need to perform search?

Outline

- Problem Formulation: State space search
- Model: Graphs and search trees
- Reasoning Algorithms: DFS and BFS
- A generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Simple Search Algorithm

Going Meta:
How do we maintain the search state?
Search as State Space Search

- A set of partial paths explored thus far.
| State Space
- An ordering on which partial path to expand next
- called a queue Q .

How do we perform search?

- Repeatedly:

- Select next partial path from Q.
- Expand it.
- Add expansions to Q.
- Terminate when goal found.

Simple Search Algorithm

- S denotes the start node
- G denotes the goal node.
- A partial path is a path from S to some node D,
- e.g., (D A S)

- The head of a partial path is the most recent node of the path,
- e.g., D.
- The Q is a list of partial paths,
- e.g. ((D A S) (C A S) ...).

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Outline

- Problem Formulation: State space search
- Model: Graphs and search trees
- Reasoning Algorithms: DFS and BFS
- A generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Depth First Search (DFS)

Idea:

- Visit children, then siblings
- Visit siblings left to right, (top to bottom).

Assuming that we pick the first element of Q, Then where do we add path extensions to the Q?

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2 .

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N
(goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2 .

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(A S)
3	
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(A S) (B S)
3	
4	
5	

Added paths in blue

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N
(goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head (N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(RS) (B S)
3	
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(AS) (B S)
3	(C A S) (D A S) (B S)
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(R S) (B S)
3	(C A S) (D A S) (B S)
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(B)
2	$(A S)(B S)$
3	$(C A S)(D A S)(B S)$
4	(D A S) (B S)
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(8)
2	(AS) (B S)
3	(CAS) (DAS) (BS)
4	(DAS) (BS)
5	(C D A S)(G D A S) (B S)

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N
(goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head (N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	$($ S $)$ (B S)
3	$(C A S)$ (D A S) (B S)
4	$(D A S)(B S)$
5	(CDA S)(G D A S) (B S)

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(AS) (B S)
3	$(\mathrm{CA}$ S) (D A S) (B S)
4	(DA S)(B S)
5	(CDA S)(G D A S) (B S)
6	(G D A S)(B S)

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(5)
2	(A S (B S)
3	(CAS) (DAS) (BS)
4	(DA S)(B S)
5	$\begin{aligned} & (C D A S)(G D A S) \\ & (B S) \end{aligned}$
6	(G D A S)(B S)

Outline

- Problem Formulation: State space search
- Model: Graphs and search trees
- Reasoning Algorithms: DFS and BFS
- A generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Issue: Starting at S and moving top to bottom, will depth-first search ever reach G?

Depth-First

Effort can be wasted in more mild cases

	\mathbf{Q}
1	(S)
2	(A S) (B S)
3	(C A S) (i) A S) (B S)
4	(D A S) (B S)
5	(C D A S) (\% D A S)
	(B S)
6	(G D A S)(B S)

- C visited multiple times
- Multiple paths to C, D \& G

How much wasted effort can be incurred in the worst case?

How Do We Avoid Repeat Visits?

Idea:

- Keep track of nodes already visited.
- Do not place visited nodes on Q.

Does this maintain correctness?

- Any goal reachable from a node that was visited a second time would be reachable from that node the first time.

Does it always improve efficiency?

- Visits only a subset of the original paths, suc that each node appears at most once at the head of a path in Q.

How Do We Modify

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry;
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N
(goal reached!)
4. Else
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Go to step 2.

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize \mathbf{Q} with partial path (S) as only entry; set Visited = ()
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head $(N)=G$, return N
(goal reached!)
4. Else
a) Remove N from Q
b) Find all children of head(N) not in Visited and create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Add children of head(N) to Visited
e) Go to step 2 .

Testing for the Goal

- This algorithm stops (in step 3) when head(N) = G.
- We could have performed this test in step 6 as each extended path is added to Q . This would catch termination earlier and be perfectly correct for all the searches we have covered so far.
- However, performing the test in step 6 will be incorrect for the optimal searches we look at later. We have chosen to leave the test in step 3 to maintain uniformity with these future searches.

Outline

- Problem Formulation: State space search
- Model: Graphs and search trees
- Reasoning Algorithms: DFS and BFS
- A generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Breadth First Search (BFS)

Idea:

- Visit siblings before their children
- Visit relatives left to right

Assuming that we pick the first element of Q, Then where do we add path extensions to the Q ?

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2		
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2		
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2	(A S) (B S)	A,B,S
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A,B,S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(C A S) (D A S) (G B S)*	G,C,D,B,A,S
5		
6		

* We could stop here, when the first path to the goal is generated.

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(CA S) (D A S) (G B S)*	G, C, D, B, A, S
5		
6		

* We could stop here, when the first path to the goal is generated.

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4	(CA S) (D A S) (G B S)*	G,C,D,B,A,S
5	(D A S) (G B S)	G,C,D,B,A,S
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	$\mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{S}$
4	(CA S) (D A S) (G B S)*	G, C, D, B, A, S
5	(DA S) (G B S)	G, C, D, B, A, S
6	(G B S)	G, C, D, B, A, S

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	$\mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{S}$
4	(C A S) (D A S) (G B S)*	$\mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{S}$
5	(D A S) (G B S)	$\mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{S}$
6	(G B S)	$\mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{A}, \mathrm{S}$

Depth-first with visited list

Pick first element of Q ; Add path extensions to front of Q

	Q	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(C A S) (D A S) (B S)	C, D, B, A, S
4	(D A S) B S)	C, D, B, A, S
5	(G D A S) (B S)	G, C, D, B, A, S

Depth First Search (DFS)

Depth-first:
Add path extensions to front of Q
Pick first element of Q

Breadth First Search (BFS)

Breadth-first:
Add path extensions to back of Q
Pick first element of Q

For each search type, where do we place the children on the queue?

What You Should Know

- Most problem solving tasks may be formulated as state space search.
- Mathematical representations for search are graphs and search trees.
- Depth-first and breadth-first search may be framed, among others, as instances of a generic search strategy.
- Cycle detection is required to achieve efficiency and completeness.

Appendix

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	
3	
4	
5	
6	
7	

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	Q
1	(S)
2	(A S) (B S)
3	
4	
5	
6	
7	

Added paths in blue

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	Q
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	
5	
6	
7	

Added paths in blue

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	(A S) (BS)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	
6	
7	

Added paths in blue
Revisited nodes in pink

* We could have stopped here, when the first path to the goal was generated.

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}
1	(S)
2	(A S) (B S)
3	(B S) (C A S) (D A S)
4	(C A S) (D A S) (D B S) (G B S)*
5	(D A S) (D B S (G B S)
6	
7	

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	Q
1	(S)
2	(A S) (BS)
3	(BS) (CAS) (D A S
4	(CAS) (DAS) (D B S) (GBS)*
5	(DAS)(DBS$)(\mathrm{GBS})$
6	(D B S) (GBS) (CDAS) (GDAS)
7	

Breadth-First (without Visited list)

Pick first element of Q; Add path extensions to end of Q

	Q
1	(S)
2	(A S) (B S
3	(BS) (CAS) (D A S
4	(CAS) (DAS) (D B S) (GBS)*
5	(D A S) (DBS$)(\mathrm{GBS})$
6	(DBS) (GBS)(CDAS)(GDAS)
7	(GBS)(CDAS)(GDAS)

