
Problem Solving as
State Space Search

Brian C.Williams
16.410-13
Sep 14th, 2004

Slides adapted from:
6.034 Tomas Lozano Perez,
Russell and Norvig AIMA Brian Williams, Spring 04 1

Assignments

• Remember:
Problem Set #1: Simple Scheme and Search
due Monday, September 20th, 2003.

• Reading:
– Solving problems by searching: AIMA Ch. 3

Brian Williams, Spring 04 2

Brian Williams, Spring 04 3

Complex missions must carefully:

• Plan complex sequences of actions

• Schedule actions

• Allocate tight resources

• Monitor and diagnose behavior

• Repair or reconfigure hardware.

Most AI problems, like these, may be formulated as
state space search.

Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search

Brian Williams, Spring 04 4

Astronaut
Goose
Grain
Fox

Rover

Can the astronaut get its supplies
safely across the Martian canal?

• Astronaut + 1 item
allowed in the rover.

• Goose alone eats Grain
• Fox alone eats Goose

Early AI: What are the universal problem solving methods?

TrivialSimple
Brian Williams, Spring 04 5

Problem Solving as
State Space Search

• Formulate Goal
– State

• Astronaut, Fox, Goose & Grain across river

• Formulate Problem
– States

• Location of Astronaut, Fox, Goose & Grain
at top or bottom river bank

– Operators
• Astronaut drives rover and 1 or 0 items

to other bank.

• Generate Solution
– Sequence of Operators (or States)

• Move(goose,astronaut), Move(astronaut), . . .
Brian Williams, Spring 04 6

Brian Williams, Spring 04 7

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Goose
Grain

Astronaut
Fox

Goose
Fox

Astronaut
Grain

Goose
Grain
Fox

Astronaut

Astronaut
Goose
Grain
Fox

Brian Williams, Spring 04 8

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Astronaut
Goose
Grain
Fox

Goose
Fox

Astronaut
Grain

Astronaut
Grain
Fox

Goose

Astronaut
Goose

Grain
Fox

Goose
Grain

Astronaut
Fox

Astronaut
Goose
Fox

Grain

Grain

Astronaut
Goose
Fox

Fox

Astronaut
Goose
Grain

Goose

Astronaut
Fox

Grain

Goose
Grain
Fox

Astronaut

Astronaut
Grain

Goose
Fox

Astronaut
Fox

Goose
Grain

Astronaut

Goose
Grain
Fox

Astronaut
Goose
Grain

Fox

Brian Williams, Spring 04 9

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Astronaut
Grain
Fox

Goose

Goose

Astronaut
Fox

Grain

Astronaut
Goose

Grain
Fox

Astronaut
Goose
Grain
Fox

Grain

Astronaut
Goose
Fox

Fox

Astronaut
Goose
Grain

Goose
Fox

Astronaut
Grain

Goose
Grain

Astronaut
Fox

Astronaut
Goose
Fox

Grain

Astronaut
Grain

Goose
Fox

Astronaut
Fox

Goose
Grain

Goose
Grain
Fox

Astronaut

Astronaut

Goose
Grain
Fox

Astronaut
Goose
Grain

Fox

Example: 8-Puzzle

5 4

6 1

7 3

8

2

1 2

8

3

7 6

4

5

Start Goal

• States:
• Operators:
• Goal Test:

integer location for each tile AND …
move empty square up, down, left, right
goal state as given

Brian Williams, Spring 04 10

Example: Planning Discrete Actions

courtesy of NASA

• Swaggert & Lovell work on
Apollo 13 emergency rig
lithium hydroxide unit.
– Assembly

• Mattingly works in ground
simulator to identify new
sequence handling severe
power limitations.
– Planning & Resource Allocation

• Mattingly identifies novel
reconfiguration, exploiting
LEM batteries for power.
– Reconfiguration and Repair

Brian Williams, Spring 04 11

Planning as State Space Search:
STRIPS Operator Representation

Effects specify how to
change the set of assertions.

Initial state:
(and (hose a)

(clamp b)
(hydroxide-unit c)
(on-table a)
(on-table b)
(clear a)
(clear b)
(clear c)
(arm-empty))

goal (partial state):
(and (connected a b)

(attached b a)))

precondition: (and (clear hose)
(on-table hose)

(empty arm))

effect: (and (not (clear hose))
(not (on-table hose))
(not (empty arm))

(holding arm hose)))

pickup hose

Note: strips doesn’t

allow derived effects;

you must be complete!}

Available actions Strips operators

Brian Williams, Spring 04 12

STRIPS Action Assumptions

• Atomic time.

• Agent is omniscient
(no sensing necessary).

• Agent is sole cause of change.

• Actions have deterministic effects.

• No indirect effects.

precondition: (and (clear hose)
(on-table hose)

(empty arm))

effect: (and (not (clear hose))
(not (on-table hose))
(not (empty arm))

(holding arm hose)))

pickup hose

Brian Williams, Spring 04 13

STRIPS Action Schemata
• Instead of defining:

pickup-hose and pickup-clamp and …

• Define a schema (with variables ?v):

Brian Williams, Spring 04 14

(:operator pick-up
:parameters ((hose ?ob1))
:precondition (and (clear ?ob1)

(on-table ?ob1)
(empty arm))

:effect (and (not (clear ?ob1))
(not (on-table ?ob1))
(not (empty arm))
(holding arm ?ob1)))

Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search

Brian Williams, Spring 04 15

Problem Formulation: A Graph
State

Node
(vertex)

Operator

Link
(edge)

d
e

Brian Williams, Spring 04 16

Directed
Graph
(one-way streets)

neighbors
(adjacent)

Incident to edge

Start Vertex
of Edge

End Vertex
of Edge

Undirected
Graph
(two-way streets)

Problem Formulation: A Graph

In Degree (2) Degree (1)

b
Out Degree (1)

b

Undirected
Graph
(two-way streets)

Directed
Graph
(one-way streets)

Brian Williams, Spring 04 17

Problem Formulation: A Graph
Strongly connected graph

Directed path between all vertices.
Connected graph

Path between all vertices.

Complete graph
All vertices are adjacent.

a
c

e
d

b

a
c

d
e

b

Undirected
Graph
(two-way streets)

Sub graph
Subset of vertices
edges between vertices in Subset

Clique
A complete subgraph
All vertices are adjacent.

Directed
Graph
(one-way streets)

Brian Williams, Spring 04 18

Examples of Graphs

San Fran

Boston

LA Dallas

Wash DC

Roadmap

Brian Williams, Spring 04 19

A B C

A B

C

A B

C

A

B

C

Put C on B

Put C on A

Put B on C

Put C on A

A

B

CPut A on C

Planning Actions

(graph of possible
states of the world)

A Graph

SFO

Bos

LA Dallas

Wash DC

Airline Routes

Brian Williams, Spring 04 20

A Graph G is represented as a pair <V,E>, where:

• V is a set of vertices {v1 …}

• E is a set of (directed) edges {e1, …}

An edge is a pair <v1, v2> of vertices, where

• v2 is the head of the edge,

•and v1 is the tail of the edge

< {Bos, SFO, LA, Dallas, Wash DC}

{<SFO, Bos>,

<SFO, LA>

<LA, Dallas>

<Dallas, Wash DC>

. . .} >

A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

A

C

C

S

B

G
A

D start

end

A path is a sequence of edges (or vertices)
<S, A, D, C>

Brian Williams, Spring 04 21

Simple path has no repeated vertices.

For a cycle, start = end.

A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

A

C G

C

S

B

G
A

D

Represent searched paths using a tree.

Brian Williams, Spring 04 22

A Solution is a State Sequence:
Problem Solving Searches Paths

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Represent searched paths using a tree.

Brian Williams, Spring 04 23

Search Trees

Root

Branch
(Edge)

Node
(vertex)

Brian Williams, Spring 04 24

Search Trees

Parent
(Ancestor)

Child
(Descendant)

Siblings

Brian Williams, Spring 04 25

Search Trees

Ancestors

Descendants

Brian Williams, Spring 04 26

Outline

• Problem Formulation
– Problem solving as state space search

• Mathematical Model
– Graphs and search trees

• Reasoning Algorithms
– Depth and breadth-first search

Brian Williams, Spring 04 27

Classes of Search
Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Heuristic Hill-Climbing Uses heuristic measure of goodness

(informed) Best-First of a node,e.g. estimated distance to.

Beam goal.

Optimal Branch&Bound Uses path “length” measure. Finds

(informed) A* “shortest” path. A* also uses heuristic

Brian Williams, Spring 04 28

Classes of Search
Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Brian Williams, Spring 04 29

Depth First Search (DFS)
Idea: After visiting node
•Visit children, then siblings
•Visit siblings left to right

S

D

BA

C G

C G

D

C G

1

2

3

5

6

7

8 11

Brian Williams, Spring 04 30

4 9 10

S

A

D

C G

C

B

D

C G

G

Breadth First Search (BFS)
Idea: After visiting node
• Visit siblings, then children
• Visit relatives left to right (top to bottom)

S

D

BA

C G

C G

D

C G

1

2

4

9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

8

Brian Williams, Spring 04 31

Elements of Algorithm Design
Description: (today)

– stylized pseudo code, sufficient to analyze and implement the algorithm
(next Monday).

Analysis: (next Wednesday)
• Soundness:

– when a solution is returned, is it guaranteed to be correct?
• Completeness:

– is the algorithm guaranteed to find a solution when there is one?

• Time complexity:
– how long does it take to find a solution?

• Space complexity:
– how much memory does it need to perform search?

Brian Williams, Spring 04 32

Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Spring 04 33

Simple Search Algorithm
Going Meta:
Search as State Space SearchHow do we maintain the search state?

• A set of partial paths explored thus far.

• An ordering on which partial path to expand next
• called a queue Q.

How do we perform search?
• Repeatedly:

• Select next partial path from Q.
• Expand it.
• Add expansions to Q.

• Terminate when goal found.

State Space

S

D

BA

C G

C G

D

C G

Operator

Goal-Test
Brian Williams, Spring 04 34

Simple Search Algorithm

Brian Williams, Spring 04 35

• S denotes the start node
• G denotes the goal node.
• A partial path is a path from S to some node D,

• e.g., (D A S)

• The head of a partial path is the most recent node of the path,
• e.g., D.

• The Q is a list of partial paths,
• e.g. ((D A S) (C A S) …).

S

D

BA

C G

C G

D

C G

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 36

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:

a) Remove N from Q
b) Find all children of head(N) and

create all one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Spring 04 37

Depth First Search (DFS)
Idea:
• Visit children, then siblings
• Visit siblings left to right, (top to bottom).

S

D

BA

C G

C G

D

C G

1

2

3

5

6

7

8 11

Brian Williams, Spring 04 38

4 9 10

S

A

D

C G

C

B

D

C G

G

Assuming that we pick the first element of Q,
Then where do we add path extensions to the Q?

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 39

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 40

C

S

B

G
A

D

Q

1 (S)
2
3
4
5

1

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 41

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

C

S

B

G
A

D1

Brian Williams, Spring 04 42

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S)

C

S

B

G
A

D1

Added paths in blue

Brian Williams, Spring 04 43

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

Added paths in blue

Brian Williams, Spring 04 44

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 45

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue

Brian Williams, Spring 04 46

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

C

S

B

G
A

D

Brian Williams, Spring 04 47

1

2

Added paths in blue

Depth-First
Pick first element of Q; Add path extensions to front of Q

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue

Brian Williams, Spring 04 48

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 49

C

S

B

G
A

D1

2

3
Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)

Added paths in blue

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 50

C

S

B

G
A

D1

2

3
Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)

Added paths in blue

C

S

B

G
A

D

Q

1 (S)
2
3
4
5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Added paths in blue

Brian Williams, Spring 04 51

C

S

B

G
A

D

Q

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 52

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 53

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

C

S

B

G
A

D

Q

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 54

C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 55

C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Pick first element of Q; Add path extensions to front of Q

Brian Williams, Spring 04 56

Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Spring 04 57

Issue: Starting at S and moving top to bottom,
will depth-first search ever reach G?

C

S

B

G
A

D

Brian Williams, Spring 04 58

C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Effort can be wasted in more mild cases

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?
Brian Williams, Spring 04 59

How Do We Avoid Repeat Visits?

Brian Williams, Spring 04 60

Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a second
time would be reachable from that node the first time.

Does it always improve efficiency?

• Visits only a subset of the original paths, suc that
each node appears at most once at the head of a path in Q.

How Do We Modify
Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry;
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Go to step 2.

Brian Williams, Spring 04 61

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Spring 04 62

1. Initialize Q with partial path (S) as only entry; set Visited = ()
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) not in Visited and

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Add children of head(N) to Visited
e) Go to step 2.

Testing for the Goal
• This algorithm stops (in step 3) when head(N) = G.

• We could have performed this test in step 6 as each extended path is
added to Q. This would catch termination earlier and be perfectly correct
for all the searches we have covered so far.

• However, performing the test in step 6 will be incorrect for the optimal
searches we look at later. We have chosen to leave the test in step 3 to
maintain uniformity with these future searches.

Brian Williams, Spring 04 63

Outline

• Problem Formulation: State space search
• Model: Graphs and search trees
• Reasoning Algorithms: DFS and BFS

– A generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Brian Williams, Spring 04 64

Breadth First Search (BFS)
Idea:
• Visit siblings before their children
• Visit relatives left to right

S

D

BA

C G

C G

D

C G

1

2

4

9

5

3

6

10 11

7

S

A

D

C G

C

B

D

C G

G

8

Assuming that we pick the first element of Q,
Then where do we add path extensions to the Q?

Brian Williams, Spring 04 65

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

C

S

B

G
A

D1

Brian Williams, Spring 04 66

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

C

S

B

G
A

D1

Brian Williams, Spring 04 67

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S

C

S

B

G
A

D1

Brian Williams, Spring 04 68

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S

C

S

B

G
A

D1

2

Brian Williams, Spring 04 69

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S

C

S

B

G
A

D1

2

Brian Williams, Spring 04 70

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S

C

S

B

G
A

D1

2

3

Brian Williams, Spring 04 71

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S

C

S

B

G
A

D1

2

3

* We could stop here, when the first path to the goal is generated.
Brian Williams, Spring 04 72

Breadth-First
Pick first element of Q; Add path extensions to end of Q

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S

C

S

B

G
A

D1

2

3

4

* We could stop here, when the first path to the goal is generated.
Brian Williams, Spring 04 73

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5

Brian Williams, Spring 04 74

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6 (G B S) G,C,D,B,A,S

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5

6

Brian Williams, Spring 04 75

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

Q Visited

6 (G B S) G,C,D,B,A,S

1 (S) S
2
3
4
5

(A S) (B S) A,B,S
(B S) (C A S) (D A S) C,D,B,A,S
(C A S) (D A S) (G B S)* G,C,D,B,A,S
(D A S) (G B S) G,C,D,B,A,S

1

2

3

4

5

6

Brian Williams, Spring 04 76

Depth-first with visited list
Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q Visited

1 (S) S
2
3
4
5

(A S) (B S) A, B, S
(C A S) (D A S) (B S) C,D,B,A,S
(D A S) (B S) C,D,B,A,S
(G D A S) (B S) G,C,D,B,A,S

1

2

3

4

5

Brian Williams, Spring 04 77

Depth First Search (DFS)
S

D

BA

C G

C G

D

C G

Depth-first:

Add path extensions to front of Q

Pick first element of Q

S

D

BA

C G

C G

D

C G

Breadth First Search (BFS)
Breadth-first:

Add path extensions to back of Q

Pick first element of Q

For each search type, where do we place the children on the queue?
Brian Williams, Spring 04 78

What You Should Know
• Most problem solving tasks may be

formulated as state space search.
• Mathematical representations for search are

graphs and search trees.
• Depth-first and breadth-first search may be

framed, among others, as instances of a
generic search strategy.

• Cycle detection is required to achieve
efficiency and completeness.

Brian Williams, Spring 04 79

Appendix

Brian Williams, Spring 04 80

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

C

S

B

G
A

D1

Brian Williams, Spring 04 81

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)

C

S

B

G
A

D1

2

Added paths in blue

Brian Williams, Spring 04 82

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)

C

S

B

G
A

D1

2

3

Added paths in blue

Brian Williams, Spring 04 83

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*

C

S

B

G
A

D1

2

3

4

Added paths in blue
Revisited nodes in pink
* We could have stopped here, when the first path to the goal was generated.

Brian Williams, Spring 04 84

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5

Brian Williams, Spring 04 85

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6 (D B S) (G B S) (C D A S) (G D A S)
7

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5
6

Brian Williams, Spring 04 86

Breadth-First (without Visited list)
Pick first element of Q; Add path extensions to end of Q

Q

6 (D B S) (G B S) (C D A S) (G D A S)
7 (G B S) (C D A S) (G D A S)

1 (S)
2
3
4
5

(A S) (B S)
(B S) (C A S) (D A S)
(C A S) (D A S) (D B S) (G B S)*
(D A S) (D B S) (G B S)

C

S

B

G
A

D1

2

3

4

5
6

7

Brian Williams, Spring 04 87

	Assignments
	Outline
	Early AI: What are the universal problem solving methods?
	Problem Solving as State Space Search
	Example: 8-Puzzle
	Example: Planning Discrete Actions
	Planning as State Space Search:STRIPS Operator Representation
	STRIPS Action Assumptions
	STRIPS Action Schemata
	Outline
	Problem Formulation: A Graph
	Problem Formulation: A Graph
	Problem Formulation: A Graph
	Examples of Graphs
	A Graph
	A Solution is a State Sequence:Problem Solving Searches Paths
	A Solution is a State Sequence:Problem Solving Searches Paths
	A Solution is a State Sequence:Problem Solving Searches Paths
	Search Trees
	Search Trees
	Search Trees
	Outline
	Classes of Search
	Classes of Search
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Elements of Algorithm Design
	Outline
	Simple Search Algorithm
	Simple Search Algorithm
	Simple Search Algorithm
	Outline
	Depth First Search (DFS)
	Simple Search Algorithm
	Depth-First
	Simple Search Algorithm
	Depth-First
	Depth-First
	Depth-First
	Simple Search Algorithm
	Depth-First
	Depth-First
	Depth-First
	Depth-First
	Depth-First
	Depth-First
	Depth-First
	Simple Search Algorithm
	Depth-First
	Depth-First
	Depth-First
	Outline
	Depth-First
	How Do We Avoid Repeat Visits?
	How Do We ModifySimple Search Algorithm
	Simple Search Algorithm
	Testing for the Goal
	Outline
	Breadth First Search (BFS)
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Breadth-First
	Depth-first with visited list
	Depth First Search (DFS)
	What You Should Know
	Appendix
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)
	Breadth-First (without Visited list)

