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is defined as

belongs to (a set)

does not belong to (a set)

intersection of sets

union of sets

empty set

set of natural numbers

set of integers

set of rational numbers

set of real numbers

set of nonnegative real numbers

set of complex numbers

n-dimensional Euclidian space

space of column vectors with n real components
n-dimensional complex linear space
space of column vectors with n complex components
manifold

Hilbert space

V-1

real part of the complex number z
imaginary part of the complex number z
modulus of complex number z

(lz +iyl = (&> +y*)'/%, z,y e R
subset T of set S

the intersection of the sets S and T

the union of the sets S and T’

image of set S under mapping f
composition of two mappings (f o g)(z) = f(g(x))
column vector in C"

transpose of x (row vector)

zero (column) vector

norm

scalar product (inner product) in C”
vector product in R3

symmetric group

alternating group

n-th dihedral group
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m X n matrices

determinant of a square matrix A

trace of a square matrix A

rank of matrix A

transpose of matrix A

conjugate of matrix A

conjugate transpose of matrix A
conjugate transpose of matrix A
(notation used in physics)

inverse of square matrix A (if it exists)

n X n unit matrix

unit operator

n X n zero matrix

matrix product of m x n matrix A

and n X p matrix B

vector field

of m x n matrices A and B

commutator for square matrices A and B
anticommutator for square matrices A and B
tensor product

exterior product, Grassmann product, wedge product
Kronecker delta with d;, =1 for j =k
and 6, = 0 for j #k

eigenvalue

real parameter

time variable

Hamilton operator



Chapter 1

Curves, Surfaces and
Manifolds

Problem 1. Consider the compact differentiable manifold
S% = {(z1,29,23) : 27+ 25 +25 =1}
An element n € S? can be written as
n = (cos(¢) sin(f), sin(¢) sin(f), cos(d))
where ¢ € [0,27) and 0 € [0, 7]. The stereographic projection is a map
Im: S%\{(0,0,—1)} — R?
given by

~ 2sin(0) cos(¢)

2sin(0) sin(¢)
z1(6,9) = 1+ cos(6)

9 =
) zQ( 7¢) 1 +COS(9)
(i) Let = 0 and ¢ arbitrary. Find x1, 2. Give a geometric interpretation.
(ii) Find the inverse of the map, i.e., find

m':R?— 5%\ {(0,0,-1)}.

Problem 2. The parameter representation for the torus is given by

x1(u1,u2) = (R4 rcos(uy)) cos(usg)
xo(u1,ug) = (R4 rcos(uy)) sin(us)

x3(u1, ug) = rsin(uy)

1



2 Problems and Solutions

where uy € [0,27] and ug € [0,27] and R > r. Let

dx1/0uy 0x1/0ug
tl(ul,u2) = 8x2/8u1 s tg(ul,’LLQ) = a.’Ez/a’UQ
8$3/8U1 8x3/8u2

The surface element of the torus is given by
do = \/gduidus

where
g = 911922 — 912921

and
gik(ur, ug) = t;(ur, ug) - ty(ui, uz)

with - denoting the scalar product. Calculate the surface area of the torus.

Problem 3. Let z,y € R. Consider the map

x2+y2

o) =1 N =1 @Y=

S l4a? 4y T lvaZty?

1 2
&40+ <<2> :

Calculate

Problem 4. Consider the two-dimensional unit sphere
S?={xecR®: a3 4+a3+a5=1}

Show that S? is an orientable two-dimensional differentiable manifold. Use
the following orientation-preserving atlas

U1:{X€S2ISU3>O}, UQZ{X€S211’3<0},

UgZ{X652:$2>0}, U4:{X€SZZ$2<O},
U5:{XESQSCE1>0}, UﬁZ{X€S2Z$1<O}.

Problem 5. C" is an n-dimensional complex manifold. The complex
projective space P™(C) which is defined to be the set of lines through the
origin in C"*1, that is

P"(C) = (C™'\{0})/ ~
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for the equivalence relation
(uo, Uty .-y Up) ~ (V0,V1,...,0,) & FIAECT © Ay =0, V0<j<n

where C* := C\ {0}. Show that P!(C) is a one-dimensional complex
manifold.

Problem 6. Let
S™i={(z1,22, ..., Tpp1) BT A5+ =1}
(i) Show that S can be considered as a subset of C? (C2? = R*)
S3 ={(21,22) €C% : |21 + |z]* = 1}.
(ii) The Hopf map 7 : S® — S? is defined by
(21, 29) := (Z122 + Zaz1, —iZ122 + iZ221, |21|* — |22]?).

Find the parametrization of S3, i.e. find 21(0, ¢), 22(6,¢) and thus show
that indeed m maps S° onto S2.

(iii) Show that m(z1, 22) = 7 (2], 25) if and only if 2} = e’®z; (j = 1,2) and
o e R.

Problem 7. The n-dimensional complex projective space CP™ is the set
of all complex lines on C**! passing through the origin. Let f be the map
that takes nonzero vectors in C? to vectors in R? by

f(Zl»Zz)_<

2122 + 2122 Z1Z2 — 2122 2121 — Z222
— — ) . — — ) — —
2171 + Z222 1(21Z1 + Za22) 2121 + Za%2

The map f defines a bijection between CP' and the unit sphere in R3.
Consider the normalized vectors in C?

() () #0) H(4) &)
0/’ 1)” V2 \1)’ V2 \—-1)’ V2 \—i)’
Apply f to these vectors in C2.

Problem 8. The stereographic projection is the map ¢ : S? \ N — C
defined by

__* Y
(b(x?y?Z)_ 1_Z+Z1_Z

Show that the inverse of the stereographic projection takes a complex num-
ber u + v (u,v € R)

2u 2v 1—u? —v?
T+u2 402" 1T4+u?2 402" 14 u2 + 02



4 Problems and Solutions
to the unit sphere.
Problem 9. Show that the projective space P (C) is a compact manifold.

Problem 10. Consider the solid torus M = S' x D?, where D? is the
unit disk in R%. On it we define coordinates (¢, ,y) such that ¢ € S and
(x,y) € D2, that is, 22 + y? < 1. Using these coordinates we define the
map

1 1 1 1
‘M — M — (20, —x+ = —y+ =i .
f — M, fle,z,y) ( T cos(¢), AR Sln(w)>

(i) Show that this map is well-defined, that is, f(M) C M.
(ii) Show that f is injective.

Problem 11. Show that a parameter representation of the hyperboloid
x% - x% - sc?), =1
is given by

x1(t) = cosh(t), x2(t) =sinh(t)cos(d), x5(t) = sinh(t)sin(6)
where 0 <t < oo and 0 < 0 < 27.
Problem 12. Consider the upper sheet of the hyperboloid
H?> ={veR® : v =02 vl -0vi=1,v>0}
Find a parametrization for v.
Problem 13. Find the stereographic projection of the two-dimensional

sphere
S?={veR}:vi=02+ovito0i=1}.

Problem 14. Consider the curve

a(t) = <Cosi(t)), teR.

Show that the curvature is given by

1

K(t) = m.
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Problem 15. Consider the unit ball
(r,y,2) €R® - 2> + 2 +22 =1}
Let a(t) = (x(t),y(t), 2(
T

4
Show that the vector (z(
the point (z(£),y(t), (t))-

)) be a parametrized differentiable curve on S2.
t),y(t), 2(t)) (¢t fixed) is normal to the sphere at

Problem 16. A generic superquadric surface can be defined as a closed
surface in R?

x(n,w) ay cost (n) cos® (w)
r(n,w)= | y(n,w) | = | azcos*(n)sin?w) |, —-7/2<n<7n/2, —m<w<m.
2(n,w) azsin® (n)

There are five parameters €1, €, a1, as, az. Here €1 and €5 are the deforma-
tion parameters that control the shape with €1, es € (0,2). The parameter
a1, as, az define the size in z, y and z direction. Find the implicit repre-
sentation.

Problem 17. Let

x1(z, Z) = sech <Z i Z> cosh (2 — Z)
2 2
x9(z, Z) = isech Zrz sinh [ =~
2 2
z

x3(z,Z) = — tanh (

Find 27 + 2% + 23. Note that

2

SeCh(Z) = m

Problem 18. Let d = (do,d1,...,d,) be an (n + 1)-tuple of integers
d; > 1. We define

V(d) :={z=(20,21,-..,2n) €EC" . f(z) =200 + 20 +... 428 =0},
Let S?"*! denote the unit sphere in C**1, i.e.
2020 + 2121+ -+ zp2n = 2.

We define
¥(d) := V(d) n§*+L
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Show that ¥(d) is a smooth manifold of dimension 2n — 1. The manifolds
Y(d) are called Brieskorn manifolds.

Problem 19. Let w € C. Consider the stereographic projection

r(w) = ( 2R(w)  29(w) |wl* - 1>.

w]? + 17 [w]? + 17 [w]* + 1

(i) Let w = 1. Find r(w).
(ii) Let w = 4. Find r(w).
(iii) Let w = €**. Find r(w).
(iv) Let w = 1/2. Find r(w).

Problem 20. (i) Consider the rational curve in the plane
y? = 2 + 25,

Find the parameter representation z(t), y(t).
(ii) Consider the rational curve in the plane

2?47 =1.
Find the parameter representation x(t), y(t).

Problem 21. Let a > 0. Consider the transformation Minkowski coor-
dinates (t, z and Rindler coordinates (¢,n)

) = - explad)sinb(an),  =(¢.n) =+ exp(ac) cosh(an).
Find the inverse transformation.
Problem 22. Show that the helicoid
x(u,v) = (asinh(v) cos(u), asinh(v) sin(u), au)
is a minimal surface.

Problem 23. Let A be a symmetric n X n matrix over R. Let 0 # b € R.
Show that the surface

M={xecR": x"Ax =0}

is an (n — 1) dimensional submanifold of the manifold R™.



Curves, Surfaces and Manifolds 7

Problem 24. Let C be the topological space given by the boundary of
[0,1]" :=[0,1] x --- x [0, 1].

This means C' is the surface of the n-dimensional unit cube. Show that C
can be endowed with the structure of a differential manifold.

Problem 25. Find the Gaussian curvature for the torus given by the
parametrization

x(u,v) = ((a + rcos(u)) cos(v), (a + 7 cos(u)) sin(v), r sin(u))
where 0 < u < 27 and 0 < v < 27.
Problem 26. The Mdbius band can be parametrized as
x(u,v) = ((2 —vsin(u/2)) sin(u), (2 — vsin(u/2)) cos(u), v cos(u/2)) .

Show that the Gaussian curvature is given by

1

K) = o @ = vsin(w/2)2)”

Problem 27. Given the surface in R?

£(t,0) = ((1 +tsin Z) cos(), (1 +tcos Z) sin(@),tsin(g))

11
R
(i) Build three models of this surface using paper, glue and a scissors. Color
the first model with the South African flag. For the second model keep t
fixed (say t = 0) and cut the second model along the 6 parameter. For
the third model keep 6 fixed (say # = 0) and cut the model along the ¢
parameter. Submit all three models.
(ii) Describe the curves with respect to ¢ for 6 fixed. Describe the curve
with respect to @ for ¢ fixed.
(iii) The map given above can also be written in the form

where

(t,0) = (1 + tsin Z) cos(6)

000~ (1+ )ity
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z(t,0) = tsin(g).

For fixed ¢ the curve

((0),y(0), 2(0))
can be considered as a solution of a differential equation. Find this differ-
ential equation. Then ¢ plays the role of a bifurcation parameter.

Problem 28. Let M be a differentiable manifold. Suppose that f : M —
M is a diffeomorphism with N, (f) < oo, m =1,2,.... Here N,,(f) is the
number of fixed points of the m-th iterate of f, i.e. f(™). One defines the
zeta function of f as the formal power series

Cr(t) = exp (Z ;Nmmtm) ‘

(i) Show that (¢(t) is an invariant of the topological conjugacy class of f.
(ii) Find N,,(f) for the map f: R — R and f(z) = sinh(x).

Problem 29. Consider the curve given by

x1(t) = cos(t)(2cos(t) — 1)
x9(t) =sin(t)(2 cos(t) — 1)
where ¢ € [0,27]. Draw the curve with GNUPLOT. Find the longest dis-

tance between two points on the curve.

Problem 30. (i) Consider the transformation in R3

xo(a,61) = cosh(a)

z1(a, 1) = sinh(a) sin(6;)

x2(a,01) =sinh(a) cos(6;)
where a > 0 and 0 < 0; < 27. Find

2 2 2
Ty — T] — T

(ii) Consider the transformation in R*
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where a > 0,0 < 6; <27 and 0 < #, < 7. Find
S S e 3
Extend the transformation to R™.
Problem 31. A fixed charge @ is located on the z-axis with coordinates

r, = (0,0,d/2), where d is interfocal distance of the prolate spheroidal
coordinates

#(01,6,0) = 5d((1 — )€ — 1)/ cos(9)
(0.6 6) = (1~ 7)€ ~ 1) sin(5)
20,6, 6) = gant

where —1 < n < 41,1 < ¢ < o0, 0 < ¢ < 27. Express the Coulomb
potential
. Q

o |r — 1|

in prolate spheroidal coordinates.

Problem 32. Let a,6,¢,w € R. Consider the vector in R®

cosh(a) sin(0) cos(¢)
cosh(a) sin(6) sin(¢)
x(a, 0,9, w) = cosh(a) cos(6)
sinh(«) cos(w)
sinh(«) sin(w)
Find
x%—l—x%—l—x%—xi—x%.
This vector plays a role for the Lie group SO(3,2). The invariant measure
is

cosh? (@) sinh () sin(#)dodfdgdw.
Problem 33. Show that the surface OC of the unit cube

C={(z1,29,23) : 0<2; <1, 0<23<1,0<23<1}

can be made into a differentiable manifold.

Problem 34. The equation of the monkey saddle surface in R? is given
by
r3 =z (2? — 32)
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with the parameter representation
_,3 2
x1(u1, ug) = uq, xo(u1, ug) = ug, xs3(ur,us) = uy — 3uius.

Find the mean and Gaussian curvature.
Let
g=dr; ®dri + dre ® drs + drs ® drs.

Find g restricted to the monkey saddle surface. Find the curvature scalar.

Problem 35. Let a > 0 and consider the surface

(11,102) = a2 cos(un)

z1(ur,uz) =a cos(u

1(u1, uz T 1
1 — u3

xg(ul,uQ)—al " sin(uq)

( ) 2aus
z3(u, us) =
3(u1, ug Y

Find 2% + 23 + 23.

Problem 36. Show that an open disc
2i={(z,20) €R? : 23 423 < 1}

is homeomorphic to R2.

Problem 37. Let r > 0. The Klein bagel is a specific immersion of the
Klein bottle manifold into three dimensions with the parameter represen-
tation

x1(u1,u2) = (r 4 cos(uy/2) sin(usz) — sin(uq/2) sin(2us)) cos(uy)
xa(uy,ug) = (r + cos(uy /2) sin(usz) — sin(uy /2) sin(2us)) sin(uq)
x3(u1, ug) = sin(uqg /2) sin(ug) + cos(u1/2) sin(2us)

where 0 < u; < 27 and 0 < uy < 27w. Find the mean curvature and
Gaussian curvature.

Problem 38. Consider the circle
Sti={(z1,22) €ER* : zf + 25 =1}
and the square

I? = {(z1,22) €R ¢ (Joa| =1, |22 < 1), (Jaa| <1, |22 = 1) }.



Curves, Surfaces and Manifolds 11
Find a homeomorphism.

Problem 39. The transformation between the orthogonal ellipsoidal co-
ordinates (p, u,v) and the Cartesian coordinates (x1,xq, z3) is

s PV’

1T e

w2 PP =) = ) (2 —v?)
2 h2(k2 _ h2)

o (PP B — )k =)
3 k2(k2 _ h2)

where k? = a? — a%, h? = a} — a3 and a; > az > a3 denote the three semi-

axes of the ellipsoid. The three surfaces in R®, p = constant, (k < p < o0),
u = constant, (h < p < k) and v = constant, (0 < v < h, represent
ellipsoids and hyperboloids of one and two sheets, respectively. Find the
inverse transformation.

Problem 40. Let x1,29,23 € R and
2 a4 x% =1

Let w € C with _
T1 + 1T
1+ax3

Find x1, x2, x3 as functions of w and w*.

Problem 41. (i) Let M be a manifold and f: M — M, g: M — M.
Assume that f is invertible. Then we say that the map f is a symmetry of
the map g if

fogof =y
Let M =R and f(x) = sinh(x). Find all g such that fogo f~! =g.
(ii) Let f and g be invertible maps. We say that g has a reversing symmetry
fif
fogoft=g"
Let M =R and f(z) = sinh(z). Find all g that satisfy this equation.

Problem 42. Consider the map f : R — R? defined by

f(z) = (2cos(x — 7/2),sin(2(x — 7/2))).

Show that (f,R) is an immersed submanifold of the manifold R?, but not
an embedded submanifold.
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Problem 43. Use GNU-plot to plot the curve
x1(t) = cos(3t), xo(t) = sin(5t)
in the (z1, z2)-plane with ¢ € [0, 27].

Problem 44. A special set of coordinates on S™ called spheroconical (or
elliptic spherical) coordinates are defined as follows: For a given set of real

numbers o < ag < -+ < ap4+1 and nonzero xq, ..., 41 the coordinates
Aj (j =1,...,n) are the solutions of the equation
n+1 2
i
= A — Oéj

Find the solutions for n = 2.

Problem 45. Given the surface in R3
ft,0) = ((1 + tsin g) cos(6), (1 + tcos g) sin(6), t sin Z)

where ¢t € (=1/2,1/2) and 0 € R.

(i) Build three models of this using paper, glue and a scissor. Color the
first model with the South African flag. For the second model keep t fixed
(say t = 0) and cut the second model along the 6 parameter. For the third
model keep 6 fixed (say § = 0) and cut the model along the ¢ parameter.
Submit all three models.

(ii) Describe the curves with respect to ¢ for 6 fixed. Describe the curves
with respect to @ for ¢ fixed.

(iii) The map given above can also be written in the form

x(t,0) = <1 +tsin g) cos(6)
o)~ (1 10052 st

2(t,0) = tsin(g).

For fixed ¢ the curve (x2(0),y(0), 2(6)) can be considered as a solution of an
system of first order differential equations. Find this system, where ¢ plays
the role of a bifurcation parameter.

Problem 46. Let R™ be the n-dimensional Euclidean space and n > 2.
Let r € N or oo, I be a non-empty interval of real numbers and ¢ in I. A
vector-valued function

v:I—R"



Curves, Surfaces and Manifolds 13

of class C" (this means that + is r times continuously differentiable) is called
a parametric curve of class C” of the curve . t is called the parameter of
the curve v. The parameter ¢ may represent time and the curve ~(¢) as
the trajectory of a moving particle in space. If I is a closed interval [a, b],
then ~(a) the starting point and ~(b) is the endpoint of the curve . If
v : (a,b) — R™ is injective, we call the curve simple. If v is a parametric
curve which can be locally described as a power series, we call the curve
analytic or of class C*. A CF-curve

v :[a,b] — R
is called regular of order m if for any ¢ in interval I
{dn(8)dt, AP () /A2, ., ™ (1) Jde™) < K

are linearly independent in the vector space R™. A Frenet frame is a moving
reference frame of n orthonormal vectors e;(t) (j = 1,...,n) which are used
to describe a curve locally at each point (¢). Using the Frenet frame we
can describe local properties (e.g. curvature, torsion) in terms of a local
reference system than using a global one like the Euclidean coordinates.
Given a C"*t1-curve in R™ which is regular of order n the Frenet frame for
the curve is the set of orthonormal vectors

ei(t),...,en(t)

called Frenet vectors. They are constructed from the derivatives of (t) using
the GramSchmidt orthogonalization algorithm with

_ byt & O,
*O=fm@mar O mor I
where -
€j(t) ’Y(J Z )) e;i(t)

where v(9) denotes the j derivative with respect to ¢ and (, ) denotes the
scalar product in the Euclidean space R™. The Frenet frame is invariant
under reparametrization and are therefore differential geometric properties
of the curve. Find the Frenet frame for the curve (¢t € R)

cos(t)

V(t) = t
sin(t)

Problem 47. Show that the Lemniscate of Gerono x{ = z? — 23 can be

parametrized by

(z1(t), z2(t)) = (sin(¢), sin(t) cos(t))
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where 0 <t < 7.
Problem 48. Study the curve
C1 .
x1(t) = cos (cot + = sm(wt))
w
x2(t) = —sin (cot +4 sin(wt))
w

in the plane with cg,c1,w > 0, where cg,c1,w have the dimension of a
frequency and t is the time.

Problem 49. The Hammer projection is an equal-area cartographic pro-
jections that maps the entire surface of a sphere to the interior of an ellipse
of semiaxis v/8 and v/2. The Hammer projection is given by the transfor-
mation between (0, ¢) and (1, z2)

21(0,6) = V8sin(0) sin(¢/2) (6, 0) = V2 cos(8)

B /1 +sin() cos(4/2)’ B V/1 + sin(0) cos(¢/2)

where 0 < 6 <7 and 0 < ¢ < 27.
(i) Show that z%/8 + 23/2 < 1.
(ii) Find 6(z1, 22) and ¢(z1,z2).

Problem 50. Consider the surface in R3
- x% =1
Show that parametrization of this surface is given by
x1(u1,ug) = cosh(uy) cos(ug), xa(ui,us) = cosh(uy)sin(ug), x3(ui,us) = sinh(u;)
where —1 << 1 and —7m < wug <.

Problem 51. (i) Let R > 0. Study the manifold

2 2 2
T L T3

R2¢—¢ + R2e—¢ + R2¢e2¢ -

where € is a deformation parameter.

(ii) Show that the volume V of the spheroid is given by V = (47/3)R3.

Problem 52. Plot the graph

r(0) = 1+ 2cos(20).
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Problem 53. Let a > 0. Consider

1—v? Ll :
aTZQ cos(u), x2(u,v)= al—f—izz sin(u),  @3(u,v) = “q —|—vv2'

(i) Show that

xl(uvv) =
22 (u,v) + 25 (u,v) + 23 (u,v) = a*.

(i) Calculate
ox Ox

" v
where x denotes the vector product. Discuss.
Problem 54. Show that the helicoid
x(u,v) = (asinh(v) cos(u), asinh(v) sin(u), au)

is a minimal surface.

Problem 55. The Enneper surface is given by
o1 (ur, up) = Bug—3ulugtud, wo(ur,us) = 3us—3urui+ul, w3(ug,us) = —6uius.
Show that the affine invariants are given by
F(uy,ug) = k(1 4+uf +ud), A(ur,us) = 2kuy, Blug,us) = 2kuy
where k = 3v/6.

Problem 56. (i) Show that the map f : (7/4,77/4) — R?
_( sin(0) cos(26)
£(0) = (cos(ﬂ) cos(20)

is an injective immersion.
(ii) Show that the image of f is an injectively immersed submanifold.

Problem 57. Let ¢ € (0,1). Minimal Thomson surfaces are given by
21 (u1, ug) = —(1 — t2) Y2 (tuy + cos(uy) sinh(usy))
29 (u1, ug) = (1 — t2) 72 (uy + tsin(uy) cosh(uz))
x3(u1, ug) = sin(uy) sinh(ug).
Show that the corresponding affine invariants are
F(uy,ug) = (1 — t3)~Y%(cosh(usz) + t cos(uy))
Aluy,ug) = (1 — t2) "2 sinh(uy)
B(uy,ug) = —t(1 — t2)"?sin(uy).
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Problem 58. Let n be a positive integer. Consider the manifold

1\° 1
— 2. _ = 2
Cp .—{(:c,y)eR : (z n) +y n2}'

We have a circle in the plane with radius 1/n and centre (1/n,0). Find a
area of the circle.

Problem 59. Describe the set
S={(z,y) € R : sin(y)cosh(z) =1}.

Then study the complex numbers given by z = z + iy with z,y € S.

Problem 60. Consider the two manifolds
Btai=1, f+y=1

Show that
|z1y1 + T2y < 1.

Hint. Set

x1(t) = cos(t), x2(t) =sin(t), yi1(t) =cos(7), wya(t) =sin(7).

Problem 61. Consider the two-dimensional Euclidean space and the
metric tensor field in polar coordinates

g=dr®dr+r’df  db.
Let v € R and R > 0. Consider the transformation
(r,0) — (e“/£.9).
Find the metric tensor field.
Problem 62. Consider the analytic function f: R® — R
f(x1, 20, 23) = 327 + 4o + 23
and the smooth surface in R3
S ={(r1,22,23) : f(x1,22,23) = —2}.

(i) Show that p = (1,1, —9) € R3 satisfies f(z1,72,23) = —2,
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(ii) Find the normal vector n at p.
(iif) Let

Calculate vI'(V f)p. Find the conditions on vy, vg, v3 such that vI (Vf), =
0 and
Tp ={v: VT(Vf)p =0}

Problem 63. Consider the space cardioid

x1(t) (1 = cos(t)) cos(t)
x(t) = | x2(t) | = | (1 — cos(t))sin(t)
x3(t) sin(t)

Find the curvature and torsion.

Problem 64. Let
L3 = SU(2)\ SL(2,C)

be the homogeneous space of second order unimodular hermitian positive
definite matrices. This is model of the classical Lobachevsky space. Let
gk € C with 7,k = 1,2. We define

g= <g11 g12> ,  g11922 — g12921 = L.
g21 922

Now any x € L2 can be written as

z=g'g= 911911 + 921921  G11912 + G21922
911912 + 921922  g12g12 + g22922

Find det(z).

Problem 65. Let o € R. Consider the 2 x 2 matrix

rlo) = (i) £24))

with fjz : R — R be analytic functions. Let

_dF(a)

X = o _ (dfu(e)/da  dfiz(a)/da

a0 (dle(a)/da df22(04)/da>

a=0
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Find the conditions on the functions f;; such that
exp(aX) = F(a).

Apply the Cayley-Hamilton theorem. Set f},(0) = dfji(a)/da|,_, and

tr:= f11(0) + f2,(0), det := f11(0) f52(0) — f12(0) f2,(0).

Problem 66. Consider the differential equation

dy 8 dy
et =0
(dm) + Tar Y
with the solution y(x) = Cz + C3. The singular solution is given by 423 +
27y? = 0 as can be seen as follows. Differentiation of 423 + 27y* = 0 yields
ydy/dx +(2/9)x? = 0. Inserting this equation into the differential equation

provides

6
s 223y* — 9yt =0

which is satisfied with y? = —423/27. Draw the curve F(z,y) = 423427y
Find the equation of the tangent at o = —1, yo = 2/(3v/3).

Problem 67. A four-dimensional torus S® x S can be defined as

(\/x§+x%+x§+zifa)2+w2:1

where a > 1 is the constant radius of S3.
(i) Show that the four-dimensional torus can be parametrized as

z1(Y, p, $1, $2) = (a + cos(1)))p cos(¢1)
z2(Y, p, ¢1, 2) = (a + cos(¢))psin(¢1)

23(1, p. 61, 2) = (a + cos(¥)))/1 — p? cos(¢2)
z4(Y, p, @1, ¢2) = (a + cos(¢))\/1 — p? sin(¢2)
w(¥, p, p1, 2) =sin(y)

where (bl € [07271-}7 ¢2 € [0727T]a ¢ € [0727T]7 pE [Oa 1]
(ii) Find the metric tensor field ggs« g1 starting of with

g =dr; ®drs 4+ dre ® drs + drs ® drs + dry ® dry + dw @ dw.



Chapter 2

Vector Fields and Lie
Series

Problem 1. Consider the vector fields

0 0

0 0

Ox
defined on R2.
(i) Do the vector fields V, W form a basis of a Lie algebra? If so, what type
of Lie algebra do we have.
(ii) Express the two vector fields in polar coordinates z(r,8) = rcos(6),
y(r,0) = rsin(0).
(iii) Calculate the commutator of the two vector fields expressed in polar
coordinates. Compare with the result of (i).

Problem 2. Consider the vector fields

d d ,d
Vl—%, VQ—Z’%, ‘/z),—.fi

(i) Show that the vector fields form a basis of a Lie algebra under the
commutator.

(ii) Find the adjoint representation of this Lie algebra.
(iii) Find the Killing form.
(iv) Find the Casimir operator.

19
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Problem 3. Consider the vector fields

_ 0 siney 0
Vl—coszﬁ% Sn0 00 cotﬁsmz/J ¢
L 0 cosy O
Vo= smw% 7sin987¢ cot@cosdJaw
0
%*%~

Calculate the commutators and show that Vi, V5, V3 form a basis of a Lie
algebra.

Problem 4. Let X;,Xs5,..., X, be the basis of a Lie algebra with the
commutator

(X5, X;] Zcfjxk

where the CF. are the structure constants. The structure constants satisfy
(third fundamental theorem)

Cl=-C%
Z (CPCh+ CRCL, + CRCr ) =

m=1

We replace the X;’s by c-number differential operators (vector fields)

I i a
AR ) S T T T

=1 k=1
Let
sE 5
Show that
Vi, Vil = Z Cii Vi
where

n=1m=1

Problem 5. Consider the vector fields (differential operators)

3} 0 0 a
EFE=2x—, F=y—, H=
x(“)y’ Yor Yo yay
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Show that these vector fields form a basis of a Lie algebra, i.e. calculate
the commutators. Consider the basis for n € Z

{29y*  jkeZ j+k=n}.
Find E(z9y*), F(z7y*), H(x7y").

Problem 6. Show that the sets of vector fields

9o 9 20
ox’ ox’ Ox

9 x£+ 9 2£+2x —
oz’ “or  “ow T or  ““ou
9 0 o9 L0 0
oz " ou "oz “ouw oz " Bu

form each a basis of the Lie algebra s¢(2,C) under the commutator.

Problem 7. Consider the Lie algebra o(3,2). Show that the vector fields
form a basis of this Lie algebra

V1=%, szt%+%x%7 Vé:t2%+tx%+%$2%
Vi = %x{% +ua%, Vg = %xt% + (tu + ix%a% + %xu%
%:ixQ%—i—ux%—kuQ%, Vm:%x%—&—u%.

Show that the vector fields Vi, ..., V7 form a Lie subalgebra.

Problem 8. Let X;,Xs,..., X, be the basis of a Lie algebra with the
commutator

I
X5, X,] =) CEXi
k=1

where the C’fj are the structure constants. The structure constants satisfy
(third fundamental theorem)

k k
(CPCLy + CIRCL + CriCh ) =0.

m=1
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We replace the X;’s by c-number differential operators (linear vector fields)
T T a
X. V: = Cki’ ':1,2,...,.
iV ;%m 3 i r

which preserve the commutators.
Consider the Lie algebra with » = 3 and the generators X;, X5, X3 and
the commutators

(X1, X3] = X4, (X2, X3] = —Xo.

All other commutators are 0. The Lie algebra is solvable. Find the corre-
sponding linear vectors fields. Find the smooth functions f such that

Vif(x)=0 for all j =1,2,3.

Problem 9. Let V, W be two smooth vector fields

0 0 0
V*flaT“JeraTerf?)aT%
0 0 0
W—glaiul +9267u2 ‘|'9387u3

defined on R3. Let du/dt = f(u) and du/dt = g(u) be the corresponding
autonomous system of first order differential equations. The fixed points
of V are defined by the solutions of the equations f;(uf,us,us) =0 (j =
1,2, 3) and the fixed points of W are defined as the solutions of the equations
g;j(ui,us,ul) =0 (j = 1,2,3). What can be said about the fixed points of
[V, W]?

Problem 10. Consider the nonlinear differential equations

d d
d—?:uz—u, —u:—sin(u).

with the corresponding vector fields

d d
— (2 ) - el
V=(u"—u) T’ w sin(u) T
(i) Show that both differential equations admit the fixed point v* = 0.
(ii) Consider the vector field given by the commutator of the two vector
fields V and W, i.e. [V, W]. Show that the corresponding differential equa-
tion of this vector field also admits the fixed point u* = 0.



Vector Fields and Lie Series

Problem 11. Let z € C. Consider the vector field

d
Ln = Zn+1d77 nez
z

Calculate the commutator [Lyy,, Ly,].

Problem 12. Consider the vector fields
0 0 0 0

A UWimm > Ukm >  UjmUik
ank7 Jm 8Ujk7 8Ujk’ Jm 8ujk

23

where j =1,2,...,p;k=1,2,....n; m=1,2,...,n; £ =1,2,...,p. Find
the commutators. Do the vector fields form a basis of a Lie algebra. Discuss.

Problem 13. Consider the vector fields
0 10 1 0
i=5 VQ_?%’ V3_rsin(9) 0o’

or’
Find the commutators

Vi, Vo], [Vo, V3], [Va, VAl

Problem 14. Show that the differential operators (vector fields)

Oy 0z’ yay 0z’ Y or Y Oy S
generate a finite-dimensional Lie algebra.
Problem 15. Consider smooth vector fields in R3
0 0 0
V=W \% — + VA —
I(X)aiBl + 2(X) axg + 3<X) (9:173
0 0 0
W =W, %% — + W- —_—
! (X) 8331 + Z(X) 8582 + S(X) 83?3
Now
AV A% OW. OW-
Vl 896; - ij Wl 89623 - W;
curl | Vo | = g;/; — g—;/:l” , curl [ Wa | = %‘;V; — %—‘2/13
Vs oVy _ 0Vy W5 Wy _ W,
Oz Oxo Oz 0z

We consider now the smooth vector fields

Vs  0Va, 0O oV oVs, 0 oV oVi, 0

L= (G = ) (= ) (- )

a(L‘g 8133 8331 8303 6331 6.2?2 + 8.%‘1 81‘2 8.%‘3
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oW W, 0 ow,  oWs, 0 oW, OW;, 0

W, = (

61‘2 833‘3 67331 + ( 8333 - 8.131 81‘2 + 8.1‘1 81‘2 )8333
Note that if

a = Vi(x)dzy + Va(x)dze + V3(x)dzs
then
oV,  o0Vp oV, 0V oV 0V,
do=|—=— —|dz;Nd — — —2 ) dxsAd —2 — —Z ) daoAdzs .
« ((%1 8902) TN x2+<8x3 8561) T3\ x1+<6x2 8:33) To/NAT3

(i) Calculate the commutator [V, W]. Assume that [V,W] = 0. Can we
conclude [V, W.] =07
(ii) Assume that [V, W] = R. Can we conclude that [V.,W.] = R.?

Problem 16. Consider the first order ordinary differential equation

du
= = 1
T u +
with the corresponding vector field
d
V= 1)—.
(w+1)—

Calculate the map
u — exp(tV)u.

Solve the inital value problem of the differential equation and compare.
Problem 17. Consider the vector fields

0 0 0
Vi = (ug + uyuz) = + (—ug + ugug) = + (1 +u3)

aul au2 aiu?)
0 0 0
Vo = (1 + u%)aiu1 + (U1UQ + U3)87u2 + (_UQ + u1’l,63)87u3
0 0 0
Vs = (ujug — u:a)aTLl +(1+ u%)a—u2 + (ug + ugug)a—ug.

Find the commutators [V7, Va], [Va, V3], [V, V1] and thus show that we have
a basis if the Lie algebra so(3,R).

Problem 18. Let {, } denote the Poisson bracket. Consider the functions

1 1
Sp = 1(3:? +pi — a3 —p3), So= 5(1’1]92 + 122, S3= 5(331172 — Zop1).

Calculate {S1, S2}, {S2, S5}, {S5, S1} so thus estabilish that we have a basis
of a Lie algebra. Classify the Lie algebra.
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Problem 19. Consider the vector fields in R2
0 0 0

o d
2 2

Vie—, Vomao—+y—. Va= — )= 4+ 2py—.
LS9 2T e TV e (@ y)8x+my8y

Find the fixed points of the corresponding autonomous systems of first order
differential equations. Study their stability.

Problem 20. Consider in R3 the vector fields
0

Vas =a35— —ao5—, Vai=a15— —235—

‘/‘12 BT 6$2 81‘3 6.133 38l‘1

81‘1 187332’
with the commutators
Vig, Vas] = Va1,  [Vas, Va1] = Via,  [Vs1, Vig] = Vas.

Thus we have a basis of the simple Lie algebra so(3,R).
(i) Find the curl of these vector fields.
(ii) Let
w =dx1 Ndxy N\ dxs
be the volume form in R3. Find the differential two-forms
VizJw, Vazlw, Vaiw.
(iii) Let * be the Hodge star operator. Find the one forms

*(VigJw),  #(VasJw),  #(Var]w).

Problem 21. The Kustaanheimo-Stiefel transformation is defined by the
map from R* (coordinates w1, uz, us, us) to R? (coordinates 1, zs, x3)

x1 (U1, ug, uz, ug) = 2(uru3 — UsUsg)

@ (U1, U2, U3, Us) = 2(urtg + usug)

2., .2 2 2
x3(u1, ug, us, ug) = uj + uz — uz — uj

together with the constraint
uoduq — uidus — ugdus + usduy = 0.
(i) Show that
r? :x%—i—mg—i—xg :u%—l—u%—i—ug—i—ui.

(ii) Show that
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where
82 82 82 82 82 62 62
A = — - —_— = —_— _— _— —_—
57 a2 + 3 + ar2’ T ol + Ou3 + Ou? + ou?
and V is the vector field
0 0
V=u— —u— — —
2 8’&1 “ aUQ b ou +us 8U4

(iii) Consider the differential one form
o = usduy — urdug — ugdus + usduy.

Find da. Find Ly a, where Ly (.) denotes the Lie derivative.
(iv) Let g(x1(u1, ug, us, ug), x2(uy, us, us, uyg), x3(u1, us, us, ug)) be a smooth
function. Show that Ly g = 0.

Problem 22. Give four different representations of the simple Lie algebra
s0(2,R) using vector fields V1, Vs, V3 which have to satisfy

Vi,Va] = Vi, [Vo, V3] = V3, [V4, V5] =2Va.

Problem 23. (i) Let n > 1. The Heisenberg group H™ can be considered
as C x R endowed with a polynomial group law - : H” x H" — H". Its
Lie algebra identifies with the tangent space ToH" at the identity 0 € H”.
Consider the tangent bundle TH"™, where

=2 WOy 9 w0 _9
YO =g s =g s a TWE g

and p € H". Find the commutators of the vector fields
[vayk]a [Xj7TL [YVJ7T]

(ii) Consider the differential one-form

n

1
a=di+ > (yidr; — wjdy;)

j=1

which is the contact form of H". Find the Lie derivatives
LXj a, Lyj «, LTa.

Find do and the Lie derivatives

LXj da, Lyj da, LTdOé.
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Problem 24. Consider the smooth vector fields in R"
n n
0 0
7,k=1 7,k,4=1

where a;i, cjre € R. Find the conditions on a;; and ¢k such that [V, W] =
0.

Problem 25. Find two smooth vector fields V and W in R"™ such that
(W.V.VI=0 but [W,V]#0.
Find two n x n matrices A and B such that

[B,A,A]=0 but [B,A]#0.

Problem 26. Let f: R — R be an analytic function. Calculate
mo - ma) a2, exp (i) f(o)
exp | ima—— Ja, exp|ima-—)a’, exp|ima_— ).

Problem 27. Do the vector fields

9 8 ,0_ .9
oz ot’ ox ot

form a basis of a Lie algebra under the commutator?

Problem 28. Give a vector field V in R? such that
V x curlV # 0.

Give a vector field V in R3 such that

V x curlV = 0.

Problem 29. Let f; : R? — R, f» : R2 — R be analytic function.
Consider the analytic vector fields

0 0
V= f1($17932)

0 0
8Tcl+87132’ W*TxlefQ(xl,mQ)i

89(:2

in R2,
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(i) Find the conditions on f; and f2 such that [V, W] =0.
(i) Find the conditions on f; and f; such that [V, W] =V + W.

Problem 30. Show that the vector fields

0 3] 0 0 0
Vi=—, Vo=o— —, Vi=(y®—2®)=— — 2zy—

1= 5 2 x8x+y8y 5=y —=x )833 xy@y

form a basis for the Lie algebra sf(2,R). Solve the initial value problem for
the autonomous system

dzx 9 9 dy
— =P - — = —2xy.
a4 dt e

Problem 31. Consider the vector fields

o0 020 0D

L7 92 2_360(%0 3 xlaxl 3325‘;@ x?’axg

0 0 0 0 0 0
‘/:3—33367@—35287:53, W—xlaim—xsaixl’ ‘/5—952%—%187552-

Find the commutators and thus show we have a basis of a Lie algebra.

Problem 32. Let £&,n7 > 0. Consider the transformation to three-
dimensional parabolic coordinates

P (€0,6) = Encos(9),  wa(Em, ) = Ensin(6), w5(6,m,0) = 2 (7 — €.

Let
g=dr; ®dry + dre ® drs + drs ® drs.

Show that under this transformation

g=m*+&)dn@dn+ (n* + £)dé @ d§ + n*Ede @ do.

Problem 33. Counsider the Darboux-Halphen system

dxl dwg d$3

— = T2X3—X1T2—X3T1 — = T3X1—X1T2—X2T3 — = T1X2—X3X1—X2T3
dt Toodt Toodt

with the corresponding vector field

V’::(x2x34—x1x24—x3x1)444~+(x3x14—x1x24—x2x3)444~+($1x24—x3x14—x2x3)

8w1 8x2 5;5.
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(1) Is the autonomous system of differential equations invariant under the
transformation (ad — v # 0)

(t,xj)H(at+ﬂ2 vt +o +(7t+5)2x4>

yt+ 3§’ ’Yaé—’yﬁ ad —~p "7

with j = 1,2, 3.
(ii) Consider the vector fields
0 0 0 0 0 0
U =221 — + 29— + 23— w="2 4+ 2 4+ 2
(331 3:171 + 2 3952 + mSang)’ (91’1 + 6:62 + 8;1:3

Find the commutators [U, V], U, W], [V,W]. Do we have basis of a Lie
algebra? Discuss.

Problem 34. (i) Consider the vector field Vi(z1,x2) = xza%l with the
corresponding autonmous system of differential equations

dr 0 92
ar % e

Find the solution of the initial value problem. Discuss.

2
(ii) Consider the vector field Va(x1,z2) = %18%2 with the corresponding

autonmous system of differential equations

d.fCl dSCQ )
dr =0 dr

Find the solution of the intial value problem. Discuss.

(iii) Find the vector field V5 = [V4, V2], where [, | denotes the commutator.
Write down the corresponding autonmous system of differential equations
and solve the initial value problem. Discuss.

(iv) Find the vector field V4 = V; + V5 and write down the correspond-
ing autonmous system of differential equations and solve the initial value
problem. Discuss.

Problem 35. (i) Find the Lie algebra generated by

0
1= xzaixg’ Vo = —$2Tm~

(ii) Let ¢ be a constant. Find the Lie algebra generated by

Vi=axo— +cxs—, Vo=—-—a29—, V3=—crs—.
! 28&1)‘2 38333 2 283’51’ 3 38.’171
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Problem 36. Consider the autonomous system of first order ordinary
differential equations

dw e dus
dt* 143, dt723’ dtfl 2
with the vector field
0 0
V= —U1U387 +U2U387u2 + (U% — U;%)TUS

Show that )
I, = §(u1 +us +uz), Iz =uius

are first integrals.

Problem 37. Let o« € R. Let f : R — R be an analytic function.

Calculate
cosh (a;i) fa), sinh <ajx> f(x).



Chapter 3

Metric Tensor Fields

Problem 1. Let a > b > 0 and define f : R> — R3 by
f(8,¢0) = ((a+bcos¢)cosb, (a+bcosp)sinb, bsin ¢).

The function f is a parametrized torus 72 in R®. Consider the metric tensor
field

g =dr; ®dris + dre ® drs 4+ drs ® dzs.
(i) Calculate g|p2.
(ii) Calculate the Christoffel symbols I'7} from g|p.
(iii) Calculate the curvature.
(iv) Give the differential equations for the geodesics.
Problem 2. The two-dimensional de Sitter space V with the topology
R x S may be visualized as a one-sheet hyperboloid H,, embedded in 3-
dimensional Minkowski space M i.e.

Hy, = {0y y*) eM : (v*) + (¥")* = °)* =5, 10>0}

where rg is the parameter of the one-sheet hyperboloid H,,. The induced
metric, g, (1, v =0,1), on H,, is the de Sitter metric.

(i) Show that we can parametrize (parameters p and 6) the hyperboloid as
follows

rocos(p/ro) 1 rocos(8/r9) 9 rosin(6/rg))
_~77 b 0 - .77 b 0 = - . 7 7 N
sno/re) L= TG V0= Tt/
where 0 < p < mrg and 0 < 0 < 27rg.

¥ (p,0) =

31
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(ii) Using this parametrization find the metric tensor field induced on H,, .

Problem 3. Consider the metric tensor field
g=—-dZ®dZ —dT ®@dT +dW & dW.

Consider the parametrization

(i) Find 22 + T% — W2
(ii) Express g using this parametrization.

Problem 4. The anti-de Sitter space is defined as the surface
XP+Y*4+ 22 -U?-V?=-1
embedded in a five-dimensional flat space with the metric tensor field
g=dX®dX +dY ®dY +dZ®dZ —dU ® dU — dV @ dV.
This is a solution of Einstein’s equations with the cosmological constant

A = —3. Its intrinsic curvature is constant and negative. Find the metric
tensor field in terms of the intrinsic coordinates (p, 8, ¢,t) where

2
X(p,0,0,t)= T p 5 sinf cos ¢

—p
Y(p.0,6,t)= 5 ip/ﬂ sin 0 sin ¢
Z(p,0,0,t) = 1 3/)/)2 cos
Ulp,0,0,t)= 1jzz cost
Vip,0,¢,t) = itzz sint

where 0 < p<1,0< ¢ <2, 0<0< 7, -7 <t <.

Problem 5. Consider the Poincaré upper half-plane

H? = {(v,y) eR? : y >0}
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with metric tensor field
1 1 1 1
g=—dr® —dr+ —dy ® —dy
Yy Yy Yy Yy

which is conformal with the standard inner product. Find the curvature
forms.

Problem 6. Consider the manifold M of the upper space zo > 0 of R?
endowed with the metric tensor field

g = dr1 @ dry + dre @ ds

2
)

Show that the metric tensor field admits the symmetry (z1,22) — (—x1,22)
and the transformation (z = x1 + ix3)
b
Zﬂzlzﬂ, a,bc,deR, ad—bc=1
cz+d
preserve the metric tensor field. Find the Gaussian curvature of g.

Problem 7. Consider the manifold M of the upper space z,, > 0 of R”
endowed with the metric tensor field
= dri @ dry + -+ dr, ® dz,
= 2 .

Find the Gaussian curvature.

Problem 8. The Klein bagel (figure 8 immersion) is a specific immersion
of the Klein bootle manifold into three dimensions. The figure 8 immersion
has the parametrization

x(u,v) = (r + cos(u/2) sin(v) — sin(u/2) sin(2v)) cos(u)
y(u,v) = (r + cos(u/2) sin(v) — sin(u/2) sin(2v)) sin(u)
z(u,v) = sin(u/2) sin(v) + cos(u/2) sin(2v)

where r is a positive constant and 0 < u < 27w, 0 < v < 27w. Find the
Riemann curvature of the Klein bagel.

Problem 9. Consider the compact differentiable manifold S3
8% = {(x1, 29, w3,24) ¢ 2] + a3+ a3 +af=1}
and the metric tensor field

g=dr; ®dri + dre ® drs + drs ® drs + dry ® dxy.



34  Problems and Solutions

(i) Express g using the following parametrization

x1(a, B3, 6) = cos(a) cos()
zo(a, 3,0) = sin(«) cos(#)
z3(a, 6 0) = cos(p) sin(0)
z4(a, 8, 0) =sin(f) sin(6)

where 0 <0 <7/2,0< «, 8 < 2.
(ii) Now S2 is the manifold of the compact Lie group SU(2). Thus we can
define the vector fields (angular momentum operators)

1 0 0
L= 5 cos(a + ) (tan 0% — cot 9%) —sin(a + ﬁ)

Ly = sin(a+ §)(tan 05— cotf ) +COS<04+@£

0 op
ae-(33)

Find the commutation relation [L;, L] for j,k =1,2,3.
(iii) Find the dual basis of Ly, Lo, Ls.

Problem 10. Consider the metric tensor field
g =dr1 ® dry + dre ® dre + drs ® dxs.

The parabolic set of unit-less coordinates (u,v,#) is defined by a transfor-
mation of Cartesian coordinates (0 < u < 00,0 < v < 0o and 0 < 0 < 27)

1
z1(u,v,0) = auvcosl, x(u,v,0) =auvsing, xz3(u,v,0) = §a(u2 —2?).
Express g using this parabolic coordinates.

Problem 11. Consider the metric tensor field
g = Cdto & Cdto — dl’o ® dxo — dy() ® dyo - dZo & dZO
and the transformation

to=1t
xg =1 cos(¢ + wt)
Yo = rsin(¢ + wt)
20 = 2.
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Express g in the new coordinates t, r, z, ¢.

Problem 12. Consider the upper half-plane {(z1,x2) : 2 > 0} endowed
with the metric tensor field

g= %(dwl ® dxy + dry ® das)
2
defines a two-dimensional Riemann manifold.
(i) Show that the Gaussian curvature is given by R = —1.
(ii) Find the surface element dS and the Laplace operater A.
(iii) Consider the conformal mapping from the upper half-plane {z = z; +
iy : w3 > 0} to the unit disk {w = re® : r <1}

1z+1
241

w(z) =

Express g in r and 6.

Problem 13. (i) Consider the metric tensor field
g(u1,uz) = duy @ duy + e**“*duy ® dug, —00 < ug,us < 400.

Show that Gaussian curvature K (u,us) has the value —1.
(ii) Consider the transformation

xq(u1, uz) = ug, zo(u1,ug) = e "2,

Express g using the coordinates =1, x5.
(iii) Consider the transformation

z1(p, #) = w10 + peos(@),  w2(p, @) = psin(¢)

where x1¢ is a constant. Express g in p and ¢

Problem 14. Let N > 2 and a > 0. An N-dimensional Riemann man-
ifold of constant negative Gaussian curvature K = —1/a? is described by
the metric tensor field

g=dr®dr+ a? sinh (C) don_1 Qdon_1
a
where r € [0, 00) measures the distance to the origin and doy_1 ® don_1
denotes the metric tensor field of the unit sphere Sy_1.
(i) Show that volume element dV is covariantly defined as

dVy = (a sinh (g))Nfl drdQy 4
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where d€QQ_1 is the surface element of the unit-sphere Sy_.
(ii) Show that the radial part A, of the Laplace operator for the metric
tensor field given above is

-1 9 sin 7”aN713
Br = (sinh(r/a))N-1 Or <( h(r/a)) 87“)'

Problem 15. The Poincaré upper half-plane is defined as
H={C¢(=x2+iy: 2R, y>0}

together with the metric tensor field
1
g= ?(dz ® dx + dy ® dy).

(i) Show that under the Cayley transfom

¢ —iz 41 w —C+1
= Z =X 1o —
211 ! 2T+

the Poincaré upper half-plane is mapped onto the Poincaré disc with metric

2
gik = mdiag(l,ﬂ), r? =23 + 3.
(ii) Show that under the transformation

n=X+i¥ = —In(—i¢) = 2tan"'(2)

the Poincaré upper half-plane is mapped onto the hyperbolic strip with
metric

ik = cos2(Y) k-

Problem 16. Let R > 0 and fixed. The oblate spheroidal coordinates are
given by

z1(n,§,¢) = R/ (1 —n?)(§2 + 1) cos(¢)
z2(n,§,¢) = R/ (1 —n?) (€2 + 1) sin(¢)
x3(n, &, ¢) = Rng

where —1 <n <1,0< € < o0, 0< ¢ <271 with the z3 axis as the axis of
revolution. Express the metric tensor field

g=dr; ®dri + dre ® drs + drs ® drs
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in oblate spheroidal coordinates.

Problem 17. Consider the manifold R3. Let a,b,c > 0 and a # b, a # c,
b #£ c. The sphero-conical coordinates so, s3 are defined to be the roots of
the quadratic equation

2 2 2
1 Z3 T3 _

a+s b+s c+s

The first sphero-conical coordinate s; is given as the sum of the squares
2 2 2
S1 = o] + x5 + 3.

The formula that expresses the Cartesian coordinates x1, x2, 3 through
S1, S2, S3 are

2 s1(a+ s2)(a+ s3)
' (a—b)(a—c)
2 s1(b+ s2)(b+ s3)
2 (b-a)(b-o)
g2 silet s2)(c+ s3)
P (e—a)(c—b)

Given the metric tensor field
g = dl‘l ® d$1 -+ dl’g (024] dlL‘Q -+ d$3 ® dl’g.

Express this metric tensor field using sphero-conical coordinates.

Problem 18. Consider the metric tensor field
g=—dT'dT +dX ®dX +dY ®dY +dZ ® dZ

and the invertible coordinates transformation (b > 0)

1
T(t,x,y,2)= g(ebz cosh(bt) — 1)
X(t’ x’ y’ Z) =T
Y(t,2,y,2) =y
1
Z(t,z,y,2)= gebz sinh(bt).

Express the metric tensor field in the new coordinates. Given the inverse
transformation.
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Problem 19. Consider the metric tensor field
g=dI'®dT —dX ® dX
where 0 < X < oo and —oo < T < oo. Show that under the transformation
T(r,n) = rsinh(n), X (r,n) = rcosh(n)

(0 <7 < 00,—00 <1 < oo) the metric tensor field takes the form (Rindler
chart)
g =ridn®dny—dr @ dr.

Problem 20. Consider the metric tensor field

g=—e*@dt @ dt + dz ® dz.

The proper acceleration of a test particle at rest with respect to this metric
tensor field is given by 0®/0z. Hence if the gravitational potential has
the form ®(z) = az (a > 0) then all the test particles at rest have the
same acceleration of magnitude a in the positive z-direction. Show that
the metric tensor takes the form

1
g = —(ap)?dt ® dt + aT)2dp ®dp

under the transformation

Problem 21. Show that the Killing vector fields of the metric tensor
field
g =a(t)dr @ dz + b(t)e** (dy @ dy + dz @ dz) + dt @ dt

are given by

0 o0
Ny T
0 0 0 0 0
Va=—gp Ty TPas VaT g, TV

Problem 22. Show that the de Sitter space is an exact solution of the
vacuum Finstein equation with a positive cosmological constant A

1
R, — iRgW + Ag, = 0.
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Problem 23. The cosmological constant A is a dimensionful parameter
with unit of 1/(length)?. Show that the metric tensor field

g = —cdr @ cdr + >/ *dx @ dx + a*(df @ df + sin®(0)d¢p @ dg)

where a > 0 has the dimension of a length. Show that this metric tensor
field satisfies the vacuum Finstein equation with a positive cosmological
constant A

1
Ruu - §Rgul/ + Aguu =0
where a = 1/,/(A).

Problem 24. The metric tensor field g of a weak, planeelliptically po-
larized gravitional wave propagating in the z-direction can be written as

g=cdt® cdt — dr @ de — (1 — hag(z,1))dy @ dy — (1 + haa(z,t))dz @ dz
+hos(z,t)dy @ dz + hos(z,t)dz @ dy

where
hoa(z,t) = hsin(k(ct — ) + @),  has(z,t) = hsin(k(ct — z) + ¢)

with k& the wave vector, h, h the amplitudes and ¢, 5 the initial phase.
They completely determine the state of the polarization of the gravitional
wave. Show that in terms of the retarded and advanced coordinates

u(zx,t) = %(ct —x), v(z,t) = %(ct + )
the coordinates y, z and v can be omitted.
Problem 25. Consider the Poincaré metric tensor field
g= %(dm@dw—&-dy@dy)

Find the geodesic equations and solve them.
Problem 26. Consider the metric tensor field

g =cdt ® cdt — dx ® dx
Express the metric in the coordinates u, v with

ct = asinh(u) cosh(v), « = acosh(u)sinh(v)

with a > 0 and dimension meter.
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Problem 27. Consider the metric tensor field
g=—dT'RdT+dX ®dX +dY ®dY +dZ ® dZ

and the invertible coordinates transformation (b > 0)

1
T(t,z,y,2) = g(ebz cosh(bt) — 1), X(t,z,y,2) ==z,

1
Y(t,z,y,2) =y, Z(t,x,y,z)= gebz sinh(bt).

Express the metric tensor field in the new coordinates. Given the inverse
transformation.

Problem 28. Show that the metric tensor field
g=c*(1—2a/r)dt ®dt —dr @ dr — r?d¢ ® dp — dz @ dz

is not a solution of Einstein’s equation.

Problem 29. Consider the Euclidean space R? with there metric tensor
field
g =dr; ®dri + dre ® dre + drs ® drs.

Let ¢1,co,c3 > 0. The hyperboloid

can be written in parameter form as

x1(0, ) = c1 cos(8) sec()
x2(0, ) = co sin(6) sec(¢)
x3(0, ) = c3 tan(¢)

where sec(¢) = 1/ cos(¢). Find the metric tensor field for the hyperbolid.
Problem 30. Consider the K”ahler potential
K= 1ln 1+ z": 20z
=3 20| -
=1
Let

O’K
ik = ks = 8zj82k ’




Metric Tensor Fields

Find the metric tensor field.

Problem 31. Consider the metric tensor field

g=dzry® dry — drs ® dr, — dre ® drg — dry ® dxs
(z1dx1 + xodrs 4+ x3dx3) @ (w1d21 + TodXe + T3dX3)
R? — (23 + 23 + 23)

where R is a positive constant and xy = ct. Apply the transfomation

x1(r, o, B, u) = Rsin(r/R) sin(«) cos(8)
x2(r, o, B,u) = Rsin(r/R) sin(a) sin(B)
x3(r, a, B,u) = Rsin(r/R) cos(«)
xo(rya, Byu) =u+r.

41



Chapter 4

Differential Forms and
Applications

We denote by A the exterior product. It is also called the wedge product or
Grassmann product. The exterior product is associative. We denote by d
the exterior derivative. The exterior derivative d is linear.

Problem 1. Let f, g be two smooth functions defined on R?. Find the
differential two-form df A dg.

Problem 2. Consider the analytic functions f; : R? = R, fo: R?2 — R

fi(z1, z2) = 1 + 2, f2($17I2):$%+x§*1-

(i) Find df1 and dfs. Then calculate dfi A dfs.
(ii) Solve the system of equations

dfl/\de:O, JZ%—FJJ%—IZO.

Problem 3. Consider the complex number z = re*®. Calculate

dz Ndz

z

42
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Problem 4. (i) Consider the differential one form
a = x1dre — Todxy
on R2. Show that « is invariant under the transformation
(mﬁ) _ (cosa —sina) (x1>
xzh ) \sina cosa T2 )"

Show that w = dx; A dxs is invariant under this transformation.
(ii) Let « be the (n — 1) differential form on R™ given by

n
o= Z(—l)jflxjdxl Ao ANdzj N --- Ndzy,
j=1

where ~ indicates omission. Show that « is invariant under the orthogonal
group of R™. Show that w = dx; A dxa A --- A dx, is invariant under the
orthogonal group.

Problem 5. Let f: R2 — R? be a smooth planar mapping with constant
Jacobian determinant J = 1, written as

Q=Qq), P=Ppaq.
For coordinates in R? the (area) differential two-form is given as
w=dpANdg.
(i) Find f*w.
(ii) Show that pdq — f*(pdq) = dF for some smooth function F : R? — R.
Problem 6. Consider the differential one-form in R?
a = x1dxry + rodxs + x3dry.

Find a A da. Find the solutions of the equation a A da = 0.

Problem 7. Consider the differential one-form in R?
a =drs — xodr; — dxs.

Show that oo A dev # 0.

Problem 8. Let j,k,¢ € {1,2,...,n}. Consider the differential one-

forms
dzy —dzg
o = ———.
Zj — 2k
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Calculate
Ak N\ Qe + Qe N\ gy + Qupj A Q.

Problem 9. Consider all 2 x 2 matrices with UU* = I, detU =1 i.e.,
U € SU(2). Then U can be written as

U:< @ b*>, a,beC
—b* «a

with the constraint aa* + bb* = 1. Let
2\_( a b 21
zh —b* a* 29 )"
(21)(21)" + (25)(2)" = 2127 + 2225,

(4)-(5 ) ()

Show that dz] A dzh = dzy A dzs.

Show that

(ii) Consider

Problem 10. A transformation (q,p) — (Q,P) is called symplectic if it
preserves the differential two-form

w = quj Adp;.

j=1
Consider the Hamilton function
lpl*>  uM dq
H(q,p)=-—— 7, pi=[—
(@.p) 2u q dt

where y and M are positive constants and p = (p1,p2)%, @ = (q1,¢2)7

The phase space is R? \ {0} x R%. The parameter y is the reduced mass
mymsg /M. The symplectic two-form is

w = dg1 A\ dp1 + dga N dpa.

Show that w is invariant under the transformation

f: ((Ta ¢)a (Rv Q))) - (Q1,Q27p17102)
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with
q1 (’I", ¢7 Ra (I')) =Tcos ¢
Q2(r7 ¢7 R7 (I)) =rsin ¢
P
pl(ra ¢, Ra(I)) :RCOSQS - ? Sin¢

d
p2(7’7 ¢7 Ra (I)) = RSIH¢+ ? COS ¢

Find the Hamilton function in this new symplectic variables.

Problem 11. Consider the differential one-form
Z. n
a = 1 jZO(Zjdzj — Zjdzj).

Let z; = z; 4+ iy;. Find a. Find da.

Problem 12. Consider the vector space R? and the smooth vector field

0 0 0

Given the differential two forms
w1 = l’ldl’g AN dl’g, Wo = l‘gdl‘g AN dJEh w3 = .’,Egd.fCl A dIQ.

Find the conditions on Vi, Vs, V3 such that the following three conditions
are satisfied

Lywi =V |dwi + d(V]wr)
Lyws =V |dws + d(V]ws)
Lyws =V |dws + d(V]ws)

0
0
0.

Then solve the initial value problem of the autonomous system of first order
differential equations corresponding to the vector field V.

Problem 13. Let z =2+ iy (x,y € R). Find dz ® dZ and dz A dZ.

Problem 14. Consider the vector space R?. Find a differential one-form
« such that da # 0 but a A da = 0.

Problem 15. In vector analysis in R? we have the identity

V(A x B) = BeurlA — AcurlB.
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Express this identity using differential forms, the exterior derivative and
the exterior product.

Problem 16. Consider the differential n + 1 form

o = df Aw+dtAdfAY (=17 (x, t)dai A - Adaj A - -Ada+H(divV) fdtAw

Jj=1

where the circumflex indicates omission and w = dxi A --- A dx,. Here
f:R"1 — R is a smooth function of x, ¢ and V is a smooth vector field.
(1) Show that the sectioned form

G=df(x,t) Aw+dt Adf(x,t) A | D (=17 Wi (x,t)day A+ Aday A Ady,
=1

+(divV (x,t)) f(x, t)dt A w

where we distinguish between the independent variables x1,...,z,, t and
the dependent variable f leads using the requirement that & = 0 to the
generalized Liouville equation.

(ii) Show that the differential form « is closed, i.e. da = 0.

Problem 17. Let M =R"™ and p € R". Let T,(R") be the tangent space
at p. A differential one-form at p is a linear map ¢ from 7, (R"™) into R.
This map satisfies the following properties

o(Vp) €R, for allV, € R"
d(aVp + 0Wp) =ad(Vp) + bp(Wp) for alla,b e R, V,, W, € Tp(R™).

A differential one-form is a smooth choice of a linear map ¢ defined above
for each point p in the vector space R™. Let f : R — R be a real-valued
C*(R™) function. One defines the df of the function f as the differential
one-form such that

df (V) =V (f)
for every smooth vector field V in R™. Thus at any point p, the differential
df of a smooth function f is an operator that assigns to a tangent vector Vj,
the directional derivative of the function f in the direction of this vector,
i.e.

df(V)(p) = Vo (f) = Vf(p) - V(p).

If we apply the differential of the coordinate functions z; (j =1,...,n) we

obtain 5 5 5
B I _ 9% 5
dz; (8%) - 8xjjdmk Oy, Oik-
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(i) Let f:R? — R be
[y, m0) = 2] + 23
and 5 5
V=x— e
xlaxl +x281’2

Find df (V).
(i) Let f : R? - R be
fxy,x0) = 2% + 22

and

Find df (V).

Problem 18. Consider the manifold M = R* and the differential two-
form
Q= dql A dp1 + dQQ AN dp2

Let
a = (a® + pi)dqy A dps — p1pa(dqy A dpy — dga A dps) — (b% + p3)dgs A dps

where a and b are constants. Find da. Can da be written in the form
da = B N, where (3 is a differential one-form?

Problem 19. A necessary and sufficient condition for the Pfaffian system
of equations

to be completely integrable is
dw; =0 mod (w1,...,w,), j=1,...,7r

Let
w = Py(x)dz1 + Po(x)dzy + P3(x)dzs =0 (1)

be a total differential equation in R3, where P;, P, Ps are analytic functions
on R3. Complete integrabilty of w means that in every sufficiently small
neighbourhood there exists a smooth function f such that

f(z1, 2, x3) = const

is a first integral of (1). A necessary and sufficient condition for (1) to be
completely integrable is
dw ANw = 0.
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Problem 20. Consider the differential one-form in space-time
a = a1 (x)dzy + az(x)dry + az(x)drs + ag(x)dzy

with x = (21, z2.x3,24) (x4 = ct).

(i) Find the conditions on the a;’s such that da = 0.

(ii) Find the conditions on the a;’s such that da # 0 and a A da = 0.

(iii) Find the conditions on the a;’s such that a A da # 0 and da A da = 0.
(iv) Find the conditions on the a;’s such that da A da # 0.

(v) Consider the metric tensor field

g =dr1 ®dry + dre @ drg + dxrs ® drs — dry Q dry.

Find the condition such that d(xa) = 0, where * denotes the Hodge star
operator.

Problem 21. Let z =z + iy, x,y € R. Calculate

—idz N dZ.

Problem 22. Consider the manifold M = R? and the metric tensor field
g =dr; ® dry + dxy @ drs. Let

w = wy(x)dr1 + wa(x)dzo

be a differential one-form in Mwith wy,ws € C*°(R?). Show that w can be
written as
w=da+ 0+~

where « is a C°°(R?) function, 3 is a two-form given by 3 = b(x)dx; A dxo
(b(x) € C*°(R?)) and v = 1 (x)dx1 + v2(x)dz> is a harmonic one-form, i.e.
(dd + 0d)y = 0. We define

00 = (—1)xdx*g.

Problem 23. Given a Lagrange function L. Show that the Cartan form
for a Lagrange function is given by

a = L(x,v,t)dt + Z (gvl;(d:vj - vjdt)) . (1)

Let
" IL oL
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Find the Cartan form for the Hamilton function.

Problem 24. Let xq, 29, ..., 2, be the independent variables. Let u;(x),
uz(X), ... Um(x) be the dependent variables. There are m X n derivatives
Ou,;(x)/0z;. We introduce the coordinates

(iL’i,Uj,u]‘i) = ($1,£L'27 ey T, UL, Uy e v oy Yy UL, ULy e - - ,’U,mn).

Consider the n-differential form (called the Cartan form ) can be written
as

8 Uj i Ox;
i=1 j= 1 =1 j=1 ’
where
Q:=dry Ndxo A ... Ndz,.
Let
"L OL » oL
H:= —u;; | = L, = .
;; 8Uj,i b p anJ‘

Show that we find the Cartan form for the Hamilton
©:=—Hdxi Ndxs...dx,—1 Ndz,
n m . ) P
+ Z Zpida:ﬂ N dl‘l VAN dxi_l A dJUZ A d$1'+1 RAVAN dxn
i=1 j=1

where the hat indicates that this term is omitted.

Problem 25. Consider the differential 2-form

4dz N dZ

P= T ey

and the linear fractional transformations

Z:aw+b7 ad — bc=1.
cw~+d

What is the conditions on a, b, ¢, d such that 3 is invariant under the trans-
formation?

Problem 26. Consider the two-dimensional sphere

S? 4+ 83 4+ 53 = §2
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where S > 0 is the radius of the sphere. Consider the symplectic structure
on this sphere with the symplectic differential two form

3
1
wi= ooy Y €reSidSy A dSe
jke=1

(€123 = 1) and the Hamilton vector fields

2 ]
VSJ. = Z EjkgSkaiS’z.

kl=1

The Poisson bracket is defined by
[Sj,Sk]PB = —Vstk.

(i) Calculate [S;, Sk]pB-

(ii) Calculate Vs, w.

(iii) Calculate Vs, | Vs, |w.

(iv) Calculate the Lie derivative Ly, w.

Problem 27. Consider the system of partial differential equations (con-
tinuity and Euler equation of hydrodynamics in one space dimension)

ou ou Jdc OH dc dc 1 Ou

E—I—u%—l—%%—%, E—Fu%—&-ica—x—o
where u and c¢ are the velocities of the fluid and of the disturbance with
respect to the fluid, respectively. H the depth is a given function of . Show
that the partial differential equations can be written in the forms da = 0
and dw = 0, where a and 3 are differntial one-forms. Owing to da = 0 and
dw = 0 one can find locally (Poincaré lemma) zero-forms (functions) (also
called potentials) such that

a=dd, B=dv.

Problem 28. Let a > 0. Toroidal coordinates are given by

asinh p cos ¢ asinh psin ¢ asin @

xl(ﬂ,9,¢) = xg(,u,e,qﬁ) = xB(/‘aaagb) =

cosh yt — cos§’ cosh y — cos 6’ cosh 1 — cos

where
O<pu<oo, —m<l<m 0<¢<2m.

Express the volume element dxy A dxs A dxs using toroidal coordinates.
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Problem 29. Let «, 8 be smooth differential one-forms. The linear
operator d(.) is defined by

da(B) == dB +a A B.

Let
a = x1drs + xodrs + x3dry, 8 = x122dx3.

Find d,(5). Solve d,(8) = 0.
Problem 30. Consider the differential two-form in R3

a = x1drg A drs + xodrs A dry + x3dxy A dxo
and the vector field

V=2 i+f£ i+x -
o 181’2 28373 38$1.

Find
Vla, V]da, Lya, Lyda.
Problem 31. Let n > 2 and w be the volume form in R™
w=dx1 Ndxo N\ -+ ANdx,.
(i) Find the condition on the smooth vector V' in R™ such
V]w=0.

(ii) Let V, W be two smooth vector fields in R™. Find the conditions on
V', W such that
W1(V]w) =0.

Problem 32. Consider the manifold R™. Calculate
0

— |(dx, N d

oz | (dax A dzx)

where j, k,{=1,...,n.

Problem 33. Consider the vector fields

Vig=22— -7

15— V=r37——225—, Vai=21-— —T3-—
8m1 8302 X3

8.%‘2 8373
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in R? and the volume form w = dzy A dzs A dxs.
(i) Find the commutators

[Vig, Vas],  [Vasz, Vai],  [Vai, Vial.
Discuss.
(i) Find
VigJw, Vaszlw, Vipw.
(iii) Let * be the Hodge star operator in R® with metric tensor field
g =dr1 ® dry + dre ® dxre + dxs ® dxs.

Find #(Via|w), *(Vas |w), *(V31 |w).
(iv) Find
d(x(Vig]w)), d(x(Vaz]w)),  d(x(Va1]w)).

Problem 34. (i) Let V, W be smooth vector fields in R” (n > 2) and «,
(3 be differential one-forms. Calculate

Liy,wi(a A B).

(ii) Assume that Ly o = 0 and Ly 8 = 0. Simplify the result from (i).

(iii) Assume that Lya = fa and Lwf = g8, where f, g are smooth
functions. Simplify the result from (i).

(iv) Let Lya =  and Ly 8 = a. Simplify the result from (i).

Problem 35. A symplectic structure on a 2n-dimensional manifold M
is a closed non-degenerate differential two-form w such that dw = 0 and
w™ does not vanish. Every symplectic form is locally diffeomorphic to the
standard differential form

wo = dxl A diCQ + d.’Eg AN d.’E4 + -+ d.’EQn,l A d.’ﬂgn

on R2". Consider the vector field

V==2x i—‘r.’lﬁ i‘i‘ + 9, ——
o 131’1 23%2 2"8x2n

in R?". Find V |wp and Lywg.
Problem 36. Let a > b > 0. Consider the transformation
z1(0,¢) = (a + beos @) cos b, 22(0,¢) = (a+ bcos @) sin 6.

Find dx1 A dxs and dzy ® dxy + das @ dxs.
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Problem 37. Consider the differential one-form

a = (2zy — 2¥)dx + (x + y?)dy.

?{ o
with the closed path C; —Cs starting from (0, 0) moving along via the curve
Ci : y = 22 to (1,1) and back to (0,0) via the curve Cy : y = /. Let D

be the (convex) domain enclosed by the two curves C; and Cs.
(iii) Calculate the double integral

Rz

where D is the domain given in (i), i.e. C; —Cs is the boundary of D. Thus
verify the theorem of Gauss-Green.

(i) Calculate da.
(ii) Calculate

Problem 38. Consider the differential one form in the plane

o = zide, + 23dxy

fa

where C is the closed curve which the boundary of a triangle with ver-
tices (0,0), (1,1), (1,0) and counterclockwise orientation. Apply Green’s
theorem

0 0
7{Cf(3317$2)d$1 + g(x1, x2)dy = //D ((%gl - 8xfg) dxidzs.

Problem 39. (i) The lemniscate of Gerono is described by the equation

Calculate the integral

zt = 2% — g2
Show that a parametrization is given by
x(t) = sin(t), y(t) = sin(t) cos(t)

with ¢t € [0, 7].
(ii) Consider the differential one-form

a = xdy



54  Problems and Solutions

in the plane R2. Let x(t) = sin(t), y(t) = sin(t) cos(t). Find ().
(iii) Calculate

—/ 2(®)dy(t).
0
Disucss.
Problem 40. (i) Consider the smooth differential one form
a= fi(z1,72,23)dr1 + fo(w1, T2, v3)drs + f3(71, 22, 73)dT3

in R3. Find the differential equations from

2
a/\da—l—ga/\a/\a:O.

(i) Consider the smooth differential one form
a = fi(x1, x2, 3, xa)dz1+ f2(21, 2, T3, T4)dXo+ f3(21, T2, T3, T4 )dT3+ fa (21, T2, T3, T4)dT4

in R*. Find the differential equations from

2
oz/\daJrgozAa/\a:O.

Problem 41. Consider the differentiable manifold
S% = { (w1, 19,73, 04) : 22+ 23+ 22 +ai=1})
(i) Show that the matrix

3ty T —1To
U(Z‘laan‘r?nxﬁl) =1 (

T1 +1irey —x3+1x3

is unitary. Show that the matrix is an element of SU(2).
(ii) Cousider the parameters (6,1, ¢) with0 < <7, 0<¢ <4mr, 0< ¢ <
2m. Show that

21(0,,¢) + iws (6,9, ¢) = cos(6/2)e’ VT2

z3(0,%, ) + iza (0,1, ¢) = sin(0/2)e' V=2

is a parametrization. Thus the matrix given in (i) takes the form

L ((sin(0/2)e V92 cos(0/2)e (V)2
cos(0/2)eWH9)/2 _gin(g/2)e "t ¥=9)/2 |
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(iil) Let (£1,&2,&3) = (6,¢,¢) with 0 <0 <7, 0 < ¢ <4m, 0 < ¢ < 27.
Show that

1 /" 4m 2m 3 oU . oU ., U
— de/ d / d Cptr(U ' —U ' —U"1=—=)=1
st ], ), ) 0 2 U Ge Y o)

where €123 = €321 = €132 — +1, €213 = €321 = €132 = —1 and 0 otherwise.
(iv) Consider the metric tensor field

g =dr; ®dri + dre ® drs + drs ® drs + dry ® dry.
Using the parametrization show that

s = i(d& @ df + dp @ dip + d @ dos + cos(8)d) ® de + cos(6)d @ dub).

(v) Cousider the differential one forms e;, ez, e3 defined by

d(El
€1 —T4 —X3 T2 T dzo
€2 | = x3 —T4 —T1 T2 dzs
€3 —I2 Z1 —T4 T3 dzy

Show that
gs3s = d€1 & d€1 —+ d€2 &® d62 —+ deg X deg.

(vi) Show that
3
dej = Z €ikeer N\ €g
k=1

i.e. dep = 2eq9 Aeg, deg = 2e3 N ey, deg = 2e1 N es.

Problem 42. Let V, W be two smooth vector fields defined on R3. We
write

0 0 0
V= Vl(x)(’)ixl + VQ(X)aT:z + V:s(x)aimg
0 0 0

Let
w = driwegdedzrs N dxs

be the volume form in R3. Then Lyw = (=(V))w, where Ly (.) denotes the
Lie derivative and =+ denotes the diveregence of the vector field. Find the
divergence of the vector field given by the commutator [V, W]. Apply it
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to the vector fields asscociated with the autonomous systems of first order
differential equations

dml dCL'Q dl‘g
g T2 T, g SOImnIn, s = 1l — bxs
and
dzy dxo dxs
ﬁ =1y, W = T1T1T121, ﬁ = 111271

The first system is the Lorenz model and the second system is Chen’s model.

Problem 43. Let A be a differential one-form in space-time with the
metric tensor field

g=dr; ®drs+ dre ® drs + drs ® drs — dry ® dry
with x4 = ct. Let F' = dA. Find FAxF, where « is the Hodge star operator.

Problem 44. Let f: R? — R? be a two-dimensional analytic map.

(i) Find the condition on f such that dx; A dxs is invariant, i.e. f should
be area preserving.

(ii) Find the condition on f such that xzidxzq + xadxs is invariant.

(iii) Find the condition on f such that z1dx; — xodzs is invariant.

(iv) Find the condition on f such that z1dxs + zadxy is invariant.

(v) Find the condition on f such that x1dxs — xodz is invariant.

Problem 45. Consider the smooth one-form in R3
a = fi(x)dz1+ f2(x)dze+ f3(x)dz3, B = g1(x)dr1+g2(x)dz2+g3(x)dzs.
Find the differential equation from the condition

dlanp)=0

and provide solution of it.

Problem 46. Let ¢ > 0. Consider the elliptical coordinates
x1(a, B) = ccosh(a) cos(B), w2(a, f) = esinh(a)sin(f).

Find the differential two-form w = d; A dxo in this coordinate system.

Problem 47. Let 6, ¢, be the Euler angles and consider the differential
one-forms

01 = cos ¥df + sin 1 sin Od¢

09 = —sindf + cos 1) sin Od¢

o3 = dy + cos 0do.
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Find
o1 A\ sigmag + 09 N o3+ o3 ANoy, o1 ANog Aos.
Problem 48. Let B be a vector field in R3. Calculate
(V x B) x B.

Formulate the problem with differential forms.

Problem 49. Let if(z) be a C*° function on a closed disc B C C. Show
that the differential equation

has a C* solution w(z) in the interior of B with

w(z) = %/B Cf(C)Zd§/\d<.

Problem 50. Let
a =dry + x1dxrs + x122d23.

Find o A dao.

Problem 51. Let z = re®. Find dz A dz.

Problem 52. Let z1, 2, € C. Consider the differential one-form

- 1 le*dZQ
_27Ti Z1 — 22 )

Find dw and w A w.
Problem 53. Let z € C and z = = + iy with z,y € R. Find

o = 2%dz — zdz*.

Problem 54. Consider the manifold M = R? and the differential one
form

1
a= i(xdy — ydz).

(i) Find the differential two form dw.



58  Problems and Solutions

(ii) Consider the domains in R?
D={(x,y) : a®+y* <1}, D ={(x,y) : z* +y* =1}

i.e. 0D is the boundaary of D. Show that (Stokes theorem)

/da:/ Q.
D oD

Apply polar coordinates, i.e. z(r, @) = rcos(¢), y(r, @) = rsin(e).

Problem 55. Let M = R? and a = z1dxo—z2dz,. Then da = 2dzi Adxs.
Now let M = R?\ {(0,0)}. Consider the differential one form

6=

1
m(%ldiﬁQ — CCdel)

(i) Find dg.
(ii) Show that

d(arctan(y/z)) = (r1dxe — xodxy).

x? + 23
Problem 56. Let M = R2. Consider the differential one-form
a = (223 + 3xp)dxy + (321 + 19 — 1)dxs.

(1) Find dav.
(ii) Can one find a function f: R? — R such that df = a.

Problem 57. Consider the differential one-form
a = zxdy — ydx
in M = R2.

(i) Find da.
ii) Let ¢ € R. Show that y — cx = 0 satisfies o = 0.
Yy

Problem 58. (i) Consider the differential one-forms in R*

a1 = —x1drg + Todr1 — v3dxs + rodas
g = —Todxg + x3dr| + Todre — T1dX3

a3 — 71’3d1’0 — ZL’QdiL’l + l’ldl’g + iL’()dl’g.
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Find daq, das, das and as A ag, as A ay, a1 A as and thus show that
dOél = 20[2 AN as, dOéQ = 20(3 AN aq, dOé3 = 20&1 A Q.
(ii) Consider the vector fields in R*

V1:—x1i+x 0 0 7]

drg om0y ows
Vo= *Izi +I3i Jrfl?oi - 2131i
6370 8:51 63?2 81’3
Va = —$3i - $2i 4-9171i +$oi-
Oxg or1 Oxa 0x3

Find the commutators [Vi, V3], [Va, V3], [V3, V1].
(iii) Find the interior product (contraction)

Vilag, Valan, Vilas.

Problem 59. Consider the manifold M = R?, the differential two form
w = dx A dy and the smooth vector field

0 0

Find the condition on a smooth function f : R — R such that

V]w=df.

Problem 60. Consider the analytic function f : R? — R given by
f(x1, 20, 23) = 2% + 22 + 22
and the analytic function ¢ : R> — R given by
g(w1, 2, 73) = T1T273.
Find df, dg and then df A dg. Solve df A dg = 0.
Problem 61. Let R > 0. The anti-de Sitter metric tensor field g is given
g=—w QW +wr Qwr +wy ®wy + wy @ wy
with the spherical orthonormal coframe (differential one forms)

wy = ePMdt,  w, =e ®Mdr,  wp = rdb, wg = rsin(f)d¢
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with €20(") =1 4 (r/R)? and r, 0, ¢ are spherical coordinates. Show that
the Riemannian curvature two-form

1
Qavﬁz_ﬁwﬁ/\wfw a?ﬁe{tara9a¢}

is that of a constant negative curvature space with radius of curvature R.

Problem 62. Let k£ € R and k # 0. Consider the three differential
one-forms
wi = e Midyy,  wo = drs,wy = dxy.

(i) Find dw1, dws, dws.

(ii) Find w1 A wy, wa A wa, ws A ws.

(iii) Find wy A w2, wowi, wo A ws, w3 A ws, wg Awi, wi A ws.

(iv) Find the expansion coefficients CY , (j, k,¢ = 1,2, 3) such that

3
1 )
o Jj
dw] =3 k% 1C'Mw;~C A wy.

(v) Counsider the vector fields

Vot g

0
8.1?2 ’ ‘/2 - 67333’ ‘/3 61‘1 ’
Find the commutators [Vi, V3], [Va, V3], [Va, V1]

Problem 63. Consider the differential two-form in R*

B=a12(x)dx1 A dxs + ar3(x)dxy Adrs + a14(x)dzy A dxy
+ags(x)dxa A dxs + age(x)dxo A dxg + age(x)das A dxy

where a;, : R* — R are smooth functions. Find d and the conditions from
dpg = 0.
Problem 64. Let fi(x1,22) = x1 + 22 and fo(21,72) = 27 + 23. Solve

the system of equations

dfi Ndfs = 0, 22 4al=1.

Problem 65. Consider the differential two forms in R3
B1 =x1dxo N dxg + xodxs A dry + x3dri A des

1
62_1+$%+:L‘§+$§61'
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Find dﬁl and dﬁg
Problem 66. Consider the differential one forms in R"

n
a1 = E l‘jdl’j
j=1

g = xodxy + x3dw9 + - - + TpdTy_1 + 1dT,,.

(i) Find the two forms da; and das.
(ii) Find a1 A as and then d(ay A das).

Problem 67. Consider the differential two forms dzi Adzs in R? and the
transformation

1\ _ [ cosh(a) sinh(«a) x

xh ) \sinh(a) cosh(a) x2 )"
Find dz) A dab,.

Problem 68. Let 3 be the differential two form in R3
/6 = (EldCEQ A dxg + Z'Qdiﬂg A dl’l + l’gdlL’l A dl’g.

Find dg.
Problem 69. Consider the differential two-form dz; A dzy in R? and the
transformation
21\ _ (cosh(a) sinh(a) 1
xh sinh(a) cosh(«) o )"
Find dz} A dxb.

Problem 70. (i) Find smooth maps f : R — R such that
f*(d.lh/\dl‘g) = droNdzx3, f* (d.%‘Q/\dJ)?,) = driN\dxs, f* (dl‘3/\d$1) = dz1A\dxs.
(ii) Find smooth vector fields V' in R3 such that

Lv(dxl/\dajg) = dxoNdxs, Lv(d.’lﬁg/\da'}g) = dx1N\dxs, Lv(d$3/\d$€1) = dr1A\dxs.

Problem 71. Consider the smooth map f : R? — R3?

fi(zy, w0, 23) = mywo — 23, fo(r1,22,23) =21,  f3(x1, 22, 23) = T2.
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(1) Show that the map is invertible and find the inverse.
(ii) Find
f* (d:z:l A\ d,Tg), f* (dl‘z A\ dl‘g), f* (d$3 A\ d$1)

Disuss.
(iii) Consider the metric tensor field

g =dr1 ® dr1 + dre ® dxre + dxs ® dxs.

Find f*(g). Discuss.

Problem 72. Consider the differential one-forms in R3

. drs — xr1dxe + xodx

ar= l—l-x%—&—xg—&—xg
. dry — xrodxs + x3dxs
@2 1+a23 + 23+ 23
dro + x1dxs — x3dx
a3 =

1+a2? + 23+ 23

Find the dual basis of the vector fields Vi, V5, V.

Problem 73. (i) Find smooth maps f : R — R? such that

f*(dxl/\dmg) = dxoNdxs, f* (dl‘g/\dl‘g,) = dx1Adxy, f* (dl‘3/\dl‘1) = dxiN\dxs.
(ii) Find smooth vector fields V in R? such that

Ly (dml /\dajg) = dxoNdxs3, Ly (d.’l?g/\da'}g) = dxiNdxo, Ly (d$3/\d$€1) = dr1Adxs.

Problem 74. (i) Consider the smooth differential one-form in R3
a = —e"xsdry + sin(zs)dry + (x4 cos(zs) — et )dxs.

Find do. Can one find a smooth function f : R? — R such that df = a.
(ii) Consider the smooth differential one-form in R3

a = (3z123 + 229)dxy + x1dx + l’%dl‘g.

Find da. Can one find a smooth function f : R?> — R such that df = «a.
Discuss.
(iii) Consider the smooth differential one-form in R?

a = xodx1 + drg + drs.
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Find da. Can one find a smooth function f : R? — R such that df = «a.
Discuss. Consider the differential one-form a = x;a.

Problem 75. Let aq, as, as be real constants. Consider the differential
one-form

a = (az cos(xz)+as sin(xz))dr1+(ay sin(zq)+as cos(xs))dra+(ay cos(xy)+az sin(xz))dxs.

Find da and solve the equation da = 0 and the equation da = a A a.



Chapter 5

Lie Derivative and
Applications

Problem 1. Let V be a smooth vector field defined on R™

Let T be a (1,1) smooth tensor field defined on R™
T= izn:ai»(x)i ®dx;.
i=1 j=1 T 0wy ’

Let Ly T be the Lie derivative of T' with respect to the vector field V. Show
that if LT = 0 then
Lytr(a(x)) =0

where a(x) is the n x n matrix (a;;(x)) and tr denotes the trace.

Problem 2. Let V, W be vector fields. Let f, g be C*° functions and «
be a differential form. Assume that

Lya= fa, Lwa = ga.

Show that
Lyywia = (Lv f — Lwg)a. (1)

64
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Problem 3. Let f and V be smooth function and smooth vector field in
R™. Find
V|df.

Problem 4. LetV; (j =1,...,n) be smooth vector fields and « a smooth
differential one-form. Assume that

Ly,a = dg;, i=1L2....n
where ¢; are smooth functions.
(i) Find
L[VJ,Vk]a

(ii) Assume that the vector fields V; (j = 1,...,n) form basis of a Lie
algebra, i.e.

Vi, Vie] = Z CﬁkVé
=1

where cﬁ i are the structure constants. Find the conditions on the functions

oF

Problem 5. Find the first integrals of the autonomous system of ordinary
first order differential equations

d.’ﬂl +

— =172 Tr1Ts3
dt

d.’£2

5, = 223 — T1T2
dt

d.rg

— = —X1X3 — T2X3.
dt

Problem 6. (i) Consider the smoth vector fields

o 0
X =Xq(z1,22) =— + Xo(z1,22) =—

ory Oz
and the two differential form
w = dx1 Ndxs.
Find the equation
d(X]w)=0

where | denotes the contraction (inner product). One also writes

d(w(X)) = 0.
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Calculate the Lie derivative Lxw.
(ii) Consider the smoth vector fields

: d
X = Z X (X)(?Tj
Jj=1
and the differential two form

w =dx1 Ndxe + drs N dey.

Find the equation
d(X|w)=0
where | denotes the contraction (inner product). One also writes d(w(X)) =

0. Calculate Lxw.

Problem 7. Let a be a smooth differential one-form and V be a smooth
vector field. Assume that
Lya= fa

where f is a smooth function. Define the function F' as
F:=V]a
where | denotes the contraction. Show that

dF = fa —V|]da.

Problem 8. Let V, W be two smooth vector fields defined on R3. We
write

0 0 0]
0 0 0
W= WI(X)TQH + WQ(X)% + W3(X)87x3 .

Let
W = diL’l /\dxg /\dl‘g

be the volume form in R3. Then Lyw = (div(V))w, where Ly (.) denotes
the Lie derivative and divl” denotes the diveregence of the vector field V.
Find the divergence of the vector field given by the commutator [V, W].
Apply it to the vector fields asscociated with the autonomous systems of
first order differential equations

dIQ dZEg

=o(ze — 11), Ezaxl—xg—xlxg,, e

dl‘l

o = —fr3 + T122
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and
d d dx
% = a(ry — 1), % = (c—a)xy + cxy — 123, 73 = —bxs + T 1T9.

The first system is the Lorenz model and the second system is Chen’s model.

Problem 9. Consider the smooth vector field
- 0
V= Z Vj(“)aTj

=1

defined on R™. Consider the smooth differential one-form
o= Z fr(u)duy, .
k=1
Find the Lie derivative Ly . What is the condition such that Ly a = 0.

Problem 10. Consider the smooth vector fields V' and W defined on R".
Let f and g be smooth functions. Assume that

Lyf=0, Lwg=0.

Find
Liy,w(f + 9), Liy,wi(fg) -

Problem 11. Let V, W be two smooth vector fields defined on R™. Let
f, g be smooth function defined on R™. Assume that

Vf=0, Wg=0

i.e. f, g are first integrals of the dynamical system given by the vector
fields V and W.
(i) Calculate

V.Wi(fe),  [ViWIl(gf)

where [, | denotes the commutator.
(ii) Calculate

[V.WI](f(9))

where f(g) denotes function composition.

Problem 12. Consider the manifold M = R%. Let V be a smooth vector
field in M. Let (z,y) be the local coordinate system. Assume that

Lydx = dy, Lydy = dx
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where Ly (.) denotes the Lie derivative. Find

Ly (dz A dy).

Problem 13. Let V, W be two smooth vector fields

“ 0 - 0
V:ZVJ‘(X)aTjja W= : Wj(x)%j
7j=1 Jj=1
defined on R™. Assume that
[V, W] = FG)W.

Let
Q=dxi N Ndzx,

be the volume form and a := W Q. Find the Lie derivative
Lva.

Discuss.

Problem 14. Let M = R? and let z,y denote the Euclidean coordinates
on R?. Consider the differential one-form

1
o= i(xdy — ydz).

Consider the vector field defined on R?\ {0}
1 0 0
V= a? +y? (xé’x _yay) '

V|da

Find
and the Lie derivative Ly a.

Problem 15. Consider the two smooth vector fields in R?

0 0 d
V—Vl(x)a—xl—&—‘/g(x)a—mz, W—Wl(x)a—ml—I—Wg(x)a—IQ.

Assume that [W, V] = 0. Find the Lie derivatives

Ly (ViWs — VaWn), Ly (ViWa — VaWn).
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Discuss.

Problem 16. Consider the smooth manifold M = R? with coordintes
(z,p, z) and the differential one form

a=dz — pdz.

(i) Show that a A daw # 0. Consider the vector fields
0 0 0
T ow=4pl,
op’ Ox + Pa.

Find
V]a, Wa.

(ii) Consider the smooth manifold M = R® with coordinates (1, z2, p1, p2, 2)
and the differential one-form

2
a=dz— ijdzj.

j=1
Show that a A daA # 0. Consider the vector fields
0 0 0 0 0 0
L= 0 2T Bpy L= ey + D1 P 2= 9 + P2 B

Find
Vila, Vala, Wila, Wsija.

Problem 17. Let V be a smooth vector field in R3. Find the condition
on V such that
Lv($1dl‘2 + zodxs + l‘gdwl) =0.

Problem 18. Let M = R2. Consider
0
V = _— _
1 (91’2 2 (9171 ’

Calculate the Lie derivative Ly w.

w=dx1 Ndzs.

Problem 19. Let duy/dt = Vi(u), ..., du,/dt = V,(u) be an au-
tonomous system of ordinary differential equations, where V;(u) € C*(R")
for all j =1,...,n. A function ¢ € C°(R") is called conformal invariant

with respect to the vector field

0
ouy,

0]
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if
Ly = po
where p € C°(R"™). Let n = 2 and consider the vector fields

0 0
V= — ug o W = —— + ug——.
“ 3U2 2 8U1 ’ “ 8u1 + 2 a’u,z

Show that ¢(u) = u? + u3 is conformal invariant under V and W. Find the
commutator [V, W].

Problem 20. Consider the mainfold R? and the smooth vector field

0 0
V = Vl(xl’xQ)Tm + ‘/2(331,%‘2)871'2.

Find Vi, V5 such that

Lv(d.lil Q dx1 + dxs ® d.ﬁg) =0

0 0
LV ((%1®dz1+8$2®dm2) =0

(09 0 9
v 8.131 8321 (9l‘2 8.1‘2 e

Problem 21. Let M be differentiable manifold and ¢ : M — R be a
smooth function. Let o be a smooth diferential one form defined on M.
Show that if V' is a vector field defined on M such that d¢ = V]da, then

Lya=d(V]a+¢).

Problem 22. Consider the manifold M = R" and the volume form
Q=dxi N Ndxy,.

Consider the analytic vector field

(i) Find w =V |Q.
(i) Find Ly Q.
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Problem 23. Consider the autonomous system of first order ordinary
differential equations

du;

dt :‘/j(u)v j:172a"'an

where the V}’s are polynomials. The corresponding vector field is

Let f be an analytic function. The Lie derivative of f is

oy OF

Lvf=) Viz—.
= 67,‘]‘

A Darboux polynomial is a polynomial g such that there is another polyno-
mial p satisfying
Lvg = pg.

The couple is called a Darboux element. If m is the greatest of degV;
(j=1,...,n), then degp < m — 1. All the irreducible factors of a Darboux
polynomial are Darboux. The search for Darboux polynomials can be re-
stricted to irreducible g. If the autonomous system of first order differential
equations is homogeneous of degree m, i.e. all V; are homgeneous of degree
m, then p is homogeneous of degree m — 1 and all homgeneous components
of g are Darboux. The search can be restricted to homgeneous g.

(i) Show that the product of two Darboux polynomials is a Darboux poly-
nomial.

(ii) Consider the Lotka-Volterra model for three species

d
% =uy(caug + us)
d
% =ug(crus + u1)
d
% = ug(cour + u2)

where ¢, co, c3 are real parameters. Find the determining equation for the
Darboux element.

Problem 24. Consider a smooth vector field in R3

0 0 0
V= Vl(x)@Tcl +V2(X)87x2 +V3(X)aTU3
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and the differential two-form
ﬂ = dlL’l A dil?Q + dSﬂQ A dCEg + dSCg A d.%l.

Find V]a and d(V]a). Thus find Lya. Find solutions of the partial
differential equations given by Ly a = 0.

Problem 25. Consider the unit ball
2?4yt 422 =1

and the vector field

0
V= (a0 + a1 + axy + asz + x(e1x + eay + 632’))%

+(bo + b1z + boy + b3z + y(e1x + exy + e32))

9
dy
0
+(co + 1 + coy + c3z + z(erx + eay + 632’))%

Find the coefficients from the conditions

Ly(z® +y* +2%) =0, 2yt 42t =1

Problem 26. Some quantities in physics owing to the transformation
laws have to be considered as currents instead of differential forms. Let
M be an orientable n-dimensional differentiable manifold of class C'°>°. We
denote by @4 (M) the set of all differential forms of degree k with compact
support. Let ¢ € @4 (M) and let a be an exterior differential form of degree
n — k with locally integrable coefficients. Then, as an example of a current,
we have

To () = a(6) = /M ang.

Define the Lie derivative for this current.

Problem 27. Let H : R?” — R be a smooth Hamilton function with the
corresponding vector field

VH:Z(aHa 8H8>.

= 9p; 0q;  dg; Op;

Let
- 0 0
W = (p,a)=— +g:(p,q)=—
211 (f] (p,q) 0, gi(p,q) apj)

J
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be another smooth vector field. Assume that
Vi, W] =AW (1)
where A is a smooth function of p and q. Let
w=dg N---Ndgy, Ndpy N\ --- Ndpy,
be the standard volume differential form. Let
a=Wlw.
Show that (1) can be written as

Ly, o =)o

Problem 28. Consider the vector field V associated with the Lorenz
model

% =o(uy —uy)

dUQ

ar = —ujuz + ru; — ug
dU3

q = ujug — bus.

Let
o = urdug + usdus + usdu.

Calculate the Lie derivative
Lva

Discuss.
Problem 29. Consider the metric tensor field
g = —cdt @ cdt + dr @ dr + r2df ® df + r? sin”® 0dé ® do

and the vector field

)
\/1 — w2r2sin? 0 /c? ot 0¢

where c is the speed of light and w a fixed frequency. Find the Lie derivative
ng.
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Problem 30. Consider the 2n + 1 dimensional anti-de Sitter space
AdSs, 1. This is a hypersurface in the vector space R*"*2 defined by
the equation R(x) = —1, where

R(x) = —(w0)* = (21)* + (22)* + -+ + (22041)°.

One introduces the even coordinates p and odd coordinates q. Then we
can write

R(p,a)=—pf —ai +P5+ a5+ +Dhp1 +aosy-

We consider R?"+2 as a symplectic manifold with the canonical symplectic

differential form
n+1

w = Z dpi A dgg.
k=1

Let
1 n+1

a=g ;(pkd(ﬂc — qrdpy).

Consider the vector field V' in R?"*+2 given by
n+1
1 0 0
vl 9 ) |
23 (a0 3

Find the Lie derivative Ly R and V' |w.

Problem 31. Consider the Lotka-Volterra equation

duz
dt

du1

vy = (cu; — d)ug

= (a — bug)uy,
where a, b, ¢, d are constants and u; > 0 and us > 0. The corresponding
vector field V is

1o}

0
V= (a — b’U,Q)’I.Llaiu1 + (Cul - d)u287u2

Let
w = f(uy,uz)duy A dus

where f is a smooth nonzero function. Find a smooth function H (Hamilton
function) such that
w|V =dH.

Note that from this condition since ddH = 0 we obtain

d(w|V) =0.
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Problem 32. Let I, f be analytic functions of u;, us. Consider the
autonomous system of differential equations

duy/dt 0 f(u) oI /Ouy

dug/dt ] — \ —f(u) 0 OI/Ousy |-
Show that I is a first integral of this autonomous system of differential
equations.

Problem 33. Consider the smooth vector field

0 0
V= Vl(u)aiul +V2(u)87u2

in R2. Let f1(u1), f2(uz) be smooth functions.
(i) Calculate the Lie derivative

0 0
Ly (fl(ul)dul ® P + fo(uz)dus ® 8u2> .

Find the condition arising from setting the Lie derivative equal to 0.
(ii) Calculate the Lie derivative

Ly (fi(u1)du; @ duy + fa(us)dus @ dus) .

Find the conditions arising from setting the Lie derivative equal to 0. Com-
pare the conditions to the conditions from (i).

Problem 34. Let V, W be smooth vector fields defined in R™. Let
fyg : R™ — R be smooth functions. Consider now the pairs (V, f), (W, g).
One defines a commutator of such pairs as

[(V7 f)v (W7 g)} = ([‘/7 W]7LV9 - LWf) .

et 9 9 0 0
V:UQTM—Ulaiq‘LQ, WZU167’LL1+U¢287@L1

and f(u1,us) = g(u1,uz) = u? + u3. Calculate the commutator.
Problem 35. Consider the two differential form in R3
B = x3dxy ANdre + x1dxs A drs + xodrs A dxy .

Find dB. Find the Lie dervivative Ly (3. Find the condition on the vector
field V' such that Ly 3 = 0.
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Problem 36. Let V be the vector field for the Lorenz model

0 0 0
V=0c(-ui + ug)a—1 + (—uyuz + rug; — ug)a—u2 + (urug — bU3)au3

Find the Lie derivative Ly (duy A dug), Ly (duz A dug), Ly (dug A duy).
Discuss.

Problem 37. (i) Consider the tensor fields in R?

Z tjk dl‘j®dl’k, Z tjk d.”L']® Z tjk

7,k=1 7,k=1 7,k=1

Find the condition on the vector field

2
v=>" V()2
=1

such that
LyT, =0, LyTy,=0, LyT3=0.

(ii) Simplify for the case t;i(x) =1 for all j,k =1,2.

Problem 38. Let n > 2. Consider the smooth vector field in R™

V= ZVJ 81‘]

j=1
Find the Lie derivative of the tensor fields

7] 0

ij © 8xk’ i ©

0
aixk’ d.fJ ®d$k

with j,k = 1,...,n. Set the Lie derivative to 0 and study the partial
differential equations of V;.

Problem 39. V, W be smooth vector fields in R3. Let

Ly (dxyNdzoNdxs) = (div(V))dxi AdzeAdxs, Ly (dzy AdxoAdxs) = (div(W

Calculate
L[V,W] dry A dxo N dxs.

Problem 40. Let V be a smooth vector field in R2. Assume that

7] 0 0 8)20.

L = L R T
V(dl‘l QR dx1 + dxa ® dl‘g) 0, v (a$1 & o7, + o7s ® O7s

0
al'k.

))dlj/\dl‘g/\dl‘:g.
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Can we conclude that

0 0
— — | =07
Ly (d:cl ® Y + dxo ® 3332) 07

Problem 41. The Heisenberg group H is a non-commutative Lie group
which is diffeomorphic to R3 and the group operation is defined by

(r,y,2)0 (2,9, 2)) = (x+ 2",y +9, 2+ 2 — 2’y + 2v/)).

(i) Find the idenity element. Find the inverse element.
(i) Consider the metric tensor

g=—de®@dr+dy®dy+ 2>dy @ dy + zdy @ dz + zdz @ dy + dz @ dz

and the vector fields

0 L, _0_,0 9

Vl:@’ oy Oz V}’:%'

Show that the vector fields form a basis of a Lie algebra. Classify the Lie
algebra. Calculate the Lie derivatives

LV197 LV2g’ LV3g'

Discuss.

Problem 42. Consider the 2n + 1 smooth vector fields

0 y; 0 0 x; 0 0
X =— _HB - YV =_— 4+ T=_
T8, 200 9 g, 200 ot
(j =1,...,n) and the differential one form

n

1

j=1
(i) Find the commutators
X5, Y], X511 [Y5,T]
(ii) Find
exp(aX;)z;, exp(BY;)y;, exp(yT)t.
(iii) Find the Lie derivatives

Lx,0, Ly, Lrb.
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Problem 43. Let V, W be vector fields and « be a differential form.
Find the Lie derivative
Lv(W ® Oé).

Problem 44. Consider the manifold M = R2. Let V be a smooth vector
field in M. Let (z,y) be the local coordinate system. Assume that

Lydx = dy, Lydy = dx.
Find

Ly (dx A dy).

Problem 45. Consider the metric tensor field
g = dt@dt—dv@dv—krdt@dy—krdy@dt+ (k*z? — ) dy@dy—e " de@dx
the differential two-form

1 ]
F = —ke* (dv A dt + kady A dv + idx A dy)

V2
and the vector fields
V1:%, ng(%, ngky%Jr%, V4:%+%kx(,% %ky%
Show that
Lv,g = Lv,9g = Lvyg = Ly,g = 0.
and

Ly,F =Ly, F =Ly,F =Ly,F =0.



Chapter 6

Killing Vector Fields and
Lie Algebras

Let g be a metric tensor field and V be a vector field. Then V is called a
Killing vector field if
ng =0

i.e. the Lie derivative of g with respect to V' vanishes. The Killing vector
fields provide a basis of a Lie algebra.

Problem 1. Consider the two-dimensional Euclidean space with the
metric tensor field
g=dr; ®dri + dre ® drs.

Find the Killing vector fields, i.e. the analytic vector fields V' such that
Lyg=0

where Ly denotes the Lie derivative. Show that the set of Killing vector
fields form a Lie algebra under the commutator.

Problem 2. Consider the metric tensor field
1
g = —(dz®dr +dy ® dy), —co<r<oo, 0<y<oo.
Y
Find the Killing vector fields.

79
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Problem 3. A standard model of the complex hyperbolic space is the
complex unit ball
B":={zeC:|z|<1}

with the Bergman metric
n
g = Z gj’k(Z)de ® dzy,
J k=1

where R
= ——1In(1—12|?).
g]7k 8Zj aik Il( |Z‘ )
Find the Killing vector fields of g.
Problem 4. Consider the metric tensor field

g =df @ df + sin® 0do @ do.

Show that g admits the Killing vector fields

., 0 0
= bmqﬁ% + cos¢cot98—¢
0 . 0
Vo = cosqb% — sin ¢ cot 0%
0
Vg — %

Is the Lie algebra given by the vector fields semisimple?

Problem 5. A de Sitter universe may be represented by the hypersurface
o2 fad 42t ol -2l = R?

where R is a real constant. This hypersurface is embedded in a five dimen-
sional flat space whose metric tensor field is

g =dxg®drg —dr; @ dr) — dre @ dre — drs ® drg — dry ® day.
Find the Killing vector fields V' of g, i.e. the solutions of Ly g = 0.
Problem 6. For the Poincaré upper half plane

H={z=z1+ixe : y>0}
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the metric tensor field is given by

1
qg= ?(dml ® dxy + dzg ® dxs).
2

Find the Killing vector fields for g, i.e.

0 0
V= Vl(thfz)aixl ‘f“/v2(331»e752)87$2

where Ly g = 0.
Problem 7. Consider the metric tensor field
g=dt®dt — ey @ do — ePQ(t)dy QR dy — eP3Wdz @ dz

where P; (j = 1,2,3) are smooth functions of ¢. Find the Killing vector
fields.



Chapter 7

Lie-Algebra Valued
Differential Forms

Problem 1. Let A be an n X n matrix. Assume that the entries are
analytic functions of x. Assume that A is invertible for all z. Let d be the
exterior derivative. We have the identity

d(det(A)) = det(A)tr(A~1dA).
Let
_( cos(z) sin(x)
A= (— sin(z) cos(x)) '

Calculate the left-hand side and right hand side of the identity.

Problem 2. Let
R— cosf sinf
~ \ —sinf cosf )’
Obviously, R € SO(2). Calculate R~!, dR, R"'dR and dR(R™!), where

R7dR is the left-invariant matrix differential one-form and dR(R™1) is the
right-invariant matrix differential one-form.

Problem 3. Let G be a Lie group with Lie algebra L. A differential form
w on G is called left invariant if

fl@)w=w (1)

82
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for all z € G, f(x) denoting the left translation ¢ — x2g on G. Let X7, ...,
X, be a basis of L and wy, ...w, the one-forms on G determined by

wi(X;) = 0y (2)

where X; are the corresponding left invariant vector fields on G and &;; is
the Kronecker delta. Show that

n

1

dwizfgzq-vkwj/\wk, 1=1,2,...,n (3)
k=1

where the structural constants cé- , are given by
n
(X5, Xi] = > cip X (4)
i=1
System (3) is known as the Maurer-Cartan equations.

Problem 4. Let G be a Lie group whose Lie algebra is L. L is identified
with the left invariant vector fields on G. Now suppose that Xy, ..., X,, is
a basis of L and that wy, ... w, is a dual basis of left invariant one-forms.
There is a natural Lie algebra valued one-form @ on G which can be written
as

=1

where
(Xi,wj) = bij. (2)
Show that 1
dw + 5[&,&} =0 (3)
where

@,@] =Y (wi Awj) ® [X;, X;]. (4)
i=1 j=1

Obviously, (3) are the Maurer-Cartan equations.

Problem 5. Consider the Lie algebra

G:z{(e; f):aeR,ﬂeR}. (1)

w5 ) o

Let
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and
Q= XtdX. (3)

Show that
dQ+QAQ =0. 4)

Problem 6. Let
X — <$11 3512) (1)
To1 T22
T11%22 — T12%21 = 1

so that X is a general element of the Lie group SL(2,R). Then X 'dX,
considered as a matrix of one-forms, takes its value in the Lie algebra
sl(2,R), the Lie algebra of SL(2,R). If

XX = (“’1 wa ) (2)

w3 —wi

where

then {w’ } are the left-invariant forms of SL(2,R).
(i) Show that there is a (local) SL(2, R)-valued function A on R? such that

_ o' e?
A7 dA = (@3 _@1> =0. (3)

Write © for this si(2, R)-valued one-form on R2.
(ii) Show that then dG = GO and that each row (r,s) of the matrix G
satisfies

dr = rfy + s0s, ds = rfy — s0;. (4)

Note that Maurer-Cartan equations for the forms {6, 03, 03} may be written

d0 +O N0 = 0. (5)

(iii) Show that any element of SL(2,R) can be expressed uniquely as the
product of an upper triangular matrix and a rotation matrix (the Iwasawa
decomposition). Define an upper-triangular-matrix-valued function 7" and
a rotation-matrix-valued function R on R? by A = TR~!. Thus show that

T 4T = R~'dR+ R™'OR.

Problem 7. Let
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be the group of all (2 x 2)-real unimodular matrices. Its right-invariant
Maurer-Cartan form is

w=dXX ' = (“’“ ”12> (2)
w21 W2
where
w11 + woa = 0. (3)

Show that w satisfies the structure equation of SL(2,R), (also called the
Maurer-Cartan equation)
dw=wAw

or, written explicitly,

dwi1 = w12 A war, dwiz = 2wy A wia, dwar = 2w Awrr.

Problem 8. Let

SL(2,R) := {X = (Z Z)

be the group of all (2 x 2)-real unimodular matrices. Its right-invariant
Maurer-Cartan form is

ad—bc:l} (1)

w=dXXt= (¥ e (2)
w21 W22
where
w11 + wa = 0. (3)

Then w satisfies (see previous problem) the structure equation of SL(2,R),
(also called the Maurer-Cartan equation)

dw=wAw
or, written explicitly,
dwi1 = w1z A wor, dwis = 2w11 A wio, dway = 2w Awir.  (4)
(ii) Let U be a neighbourhood in the (z,t)-plane and consider the smooth

mapping
f:U— SL(2,R). (5)

The pull-backs of the Maurer-Cartan forms can be written

w11 = Nz, t)de+A(z, t)dt, wis = q(z,t)de+B(z,t)dt, weo; =r(x,t)dx+C(z,t)dt
(6)
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where the coefficients are functions of x,t. Show that

on 0A
—or T g, ~CHTB=0 (Ta)
dq OB
~5 F g~ 2B +2A=0 (7b)
or o0C
—oy g — 2 A+ 290 =0. (Tc)

(ii) Consider the special case that » = +1 and 7 is a real parameter inde-
pendent of x,t. Writing

q = u(z,t), (8)
show that
10C aCc  19%*C
Show that substitution into the second equation of (7) gives
Ju  Ou oCc . ,0C 193C
o =9 o =M o T 2o (10)
(iii) Let
C=n*— %u (11)
Show that (10) becomes
ou 10 3 du
o~ 10 200 12)

which is the well-known Korteweg-de Vries equation.

Problem 9. We consider the case where M = R? and L = sl(2,R). In
local coordinates (x,t) a Lie algebra-valued one-differential-form is given
by

3
F=Y oo, 1)
i=1
where
a; = a;(x, t)de + A;(z,t)dt (2)

and {Ty,T>,T3} is a basis of the semi-simple Lie algebra sf(2,R). A con-
venient choice is

ne(y 8) me(d) m=(20)
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(1) Show that the condition that the covariant derivative vanishes
D =0 (4)

leads to the following systems of partial differential equations of first order

da 0A
~Gi * 5y T oA m =0 ()
da 0A
~S2 4+ S22 4 2w — azy) = (55)
da 0A
S+ 5~ 2w ds — azdy) = 0. (5¢)

(ii) Show that the sine Gordon equation
Pu o
otz dx2

can be represented as follows

+sinu =0 (6)

1 1
as = —Z(cosu +1) Al = i(cosu -1 (7a)

1 /0u ou 1 /0u Ou
a2:4(8x+8t—smu>, Ag = 4(8'1'84—51““) (7b)

a3 =—7 <au+au+smu> A4=—i (8u+3u_sinu) (7c)

9] ot or Ot
(iii) Prove the following. Let

= fi(u), A1 = fo(u) (8a)

ou ou ou
02_018 +628 + f3(u), Az—Csa -|-C4a + fa(u) (80)

ou ou ou
a3_058 teegy + f5(u), A3_07a tespy + fo(u) (8¢c)
where fi,..., fe are smooth functions and ci,...,cg € R. Then the Lie

algebra-valued differential from « satisfies the condition (4) if

€1 = Cy = C3 =y, 5 =Cg = C7 =g (9a)
Ja=—1s, Joe=—1I5 (9b)
fs =cfs (ce{+1,-1}) (9¢)

2 2,
Clw—kqa 2+2f3( fi—f2)=0 (9d)
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and for c=1

d d d?

% = _4clf3a % = 461f37 dtJ;B = _160%-](.3 (96)
where ¢ = —cs5.
For c = —1

dfi dfa d2f3

E = 4clf3’ E = —461f3, a2 = 16C%f3 (Qf)

where ¢, = cs.

(iv) Show that the solutions to these differential equations lead to the non-
linear wave equations

2 2
% - % = (C} coshu + Cysinhu (10)
x
and
2 2
%—%:Clsinu—&—Cgcosu (11)
x

(C1, Cy € R) can be written as the covariant exterior derivative of a Lie
algebra-valued one-form, where the underlying Lie algebra is si(2,R).

Problem 10. Let (M, g) be a Riemann manifold with dim(M) = m. Let
s be an orthonormal local frame on U with dual coframe o and let V be
the Levi-Civita covariant derivative. Then we have

Wglv=> o'®d
=1

(2) Vs = s.w, wi=—w!, so we QYU,so(m))

J i

(3)do+wAo=0, dai—i—Zw,iAok:O
k=1

(4) Rs = 5.0, Q=dw+wAwe (U, s0(m)), Q; = dwj- + sz /\w;-C
k=1
(5) QAo =0, Y Q) Ac¥ =0, first Bianchi identity

k=1
6)dY+wAQ—QAw=dQ+ [w, Qs =0, second Bianchi identity
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If (M, g) is a pseudo Riemann manifold,

nij = g(sq,85) = diag(l,...,1,—-1,...,—1)

the standard inner product matrix of the same signature (p,q) (p+q = m),
then we have instead

1) g=> nuo'@d’
i=1

(2') njw! = —muw} thus w = (w)) € QY(U, so(p, q))

%

(3) nijg = —771‘1‘9; thus Q = (QZ) € Q*(U, so(p, q)).

Consider the manifold S? C R3. Calculate the quantities given above.
Consider the parametrization (leaving out one longitude)

cos(¢) cos(6)
f:(0,2m) x (=7, 7m) — R3, f(o,0) = sin(@ (c‘;))s(ﬁ)

Problem 11. Show that the Korteweg-de Vries and nonlinear Schrodinger
equations are reductions of the self-dual Yang-Mills equations. We work on
R* with coordinates % = (z,y, u,t) and metric tensor field

g=dr®dr—dyRdy+du®dt —dt @ du

of signature (2,2) and a totally skew orientation tensor €spea = €[aped)- We
consider a Yang-Mills connection D, := 9, — A, where the A, where the
A, are, for the moment, elements of the Lie algebra of SL(2,C). The A,
are defined up to gauge transformations

Ay — hAh™Y — (9,h)h 1

where h(z,) € SL(2,C). The connection is said to be self-dual when (sum-
mation convention)

1
Eegg[DC’Dd] = [Daan]~ (3)

Problem 12. With the notation given above the self-dual Yang-Mills
equations are given by
xDga = Dy« (1)

Find the components of the self-dual Yang Mills equation.



90 Problems and Solutions

Problem 13. Consider the non-compact Lie group SU(1,1) and the
compact Lie group U(1). Let z € C and |z| < 1. Consider the coset space
SU(1,1)/U(1) with the element (o € R)

U(Z’O‘):\/liizp<—lz _1Z> (e: e—OiO‘)'

Consequently the coset space SU(1,1)/U(1) can be viewed as an open unit
disc in the complex plane. Consider the Cartan differential one-forms forms

Zdz — zdz idz idz

P17 Y71 T T

Show that (Cartan-Mauer equations)
dp=2iw_ Nwy, dwy=ipAwy, dw_ =—ipAw_.

Show that

1
wy Nw_ = sdz A dz.

(1—=12%)



Chapter 8

Lie Symmetries and
Differential Equations

Problem 1. Show that the second order ordinary linear differential equa-

tion
d?u

dt?
admits the eight Lie symmetries

0 0 0 0
. t—, t—

ot Ou ot ou
2 g tg—i- QE tﬁ_i_t?g
You Yo “ar T ow “ou ' ar

Find the commutators. Classify the Lie algebra.
Problem 2. Show that the third order ordinary linear differential equa-

tion

admits the seven Lie symmetries

0 0 0 0

o ou or 'ou
t22 ﬁ fg-Flsz
ow "ouw “ou 2 Bt

91
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Find the commutators.

Problem 3. Consider the nonlinear partial differential equation

Pu (o o\
8x3u C:E_

where c¢ is a constant. Show that the partial differential equation admits
the Lie symmetry vector fields

0 0 0 0 0

Problem 4. Consider the stationary incompressible Prandtl boundary
layer equation

Pu  Ou 0°u  Ou Hu

o3 OnondE  O& OoE’

Using the classical Lie method we obtain the similarity reduction

w(n) =&y(x), ="+ f(©

where f is an arbitrary differentiable function of £. Find the ordinary
differential equation for y.

Problem 5. Show that the Chazy equation
d3 > dy\ >
Py _, Py g (dy
da3 dx? dx
admits the vector fields

0 d 0 5 0 0
s x%_y@’ z %_(21@"‘6)@

as symmetry vector fields. Show that the first two symmetry vector fields
can be used to reduce the Chazy equation to a first order equation.

Problem 6. Show that the Laplace equation

02 02 0?
(8x2+6y2+8z2>u20
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admits the Lie symmetries

0 0 0
B=a DT e

0 0 0 0 0 7]

Mie =z =Ty Mo =09 2o Mo =25, V5

0 0
K,=-22D—r*—~, K,=-2yD—r*— =
o "o Y Y " oy’ 0z

where r? := 22 4+ 2 + 22

Problem 7. Consider the nonlinear one-dimensional diffusion equation

Ou _ 9 ( n0u\ _,
ot oz \" z) "~

where n = 1,2,.... An equivalent set of differential forms is given by

a=du — udt — uydx
B = (ur — nu""tu?)dx A dt — u™du, A dt

with the coordinates ¢, x, u, us, u, The exterior derivative of « is given
da = —duy N\ dt — dug A dx.

Consider the vector field

0 0 0 0 0
VaVi—+Vo—4+Vur—+Vo,— + Vo, —.
R P P T T
Then the symmetry vector fields of the partial differential equation are
determined by

Lya=ga

LyfB=hp+wa+rda
where Ly (.) denotes the Lie derivative, g, h, r are smooth functions de-
pending on ¢, x, u, u¢, u, and w is a differential one-form also depending on

t, x, u, us, ug. Find the symmetry vector fields from these two conditions.
Note that we have

Ly (da) = d(Lya) = d(ga) = (dg) A a + gda.
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Problem 8. The Harry Dym equation is given by

Ou 30 _
ot or3

Show that it admits the Lie symmetry vector fields

0 0
e P
N N B SR R

Is the Lie algebra spanned by these generators semi-simple?

Problem 9. Given the partial differential equation

0%
oxOt

= f(u)

where f: R — R is a smooth function. Find the condition that

0 0 0

V =a(z, t,u)— + b(x, t,u)— tu)—

st ) oo+ b )+ el ) o

is a symmetry vector field of the partial differential equation. Start with
the corresponding vertical vector field

0
Vv = (7&(1, tv u)uz - b(xa t7 U)Ut + C(l’, ta u))ai
U
and calculate first the prolongation. Utilize the differential consequencies
which follow from the partial differential equations
df

Uyt — f(u) = 0, Ugprt — %Ux = O, Ugptt — — U = 0

du

Problem 10. Consider the n-dimensional smooth manifold M = R" with
coordinates (z1,...,z,) and an arbitrary smooth first order differential
equaion on M

F(x1,...,2n,0u/0x,...,0u/0x,,u) = 0.

Find the symmetry vector fields (sometimes called the infinitesimal sym-
metries) of this first order partial differential equation. Consider the cotan-
genet bundle T*(M) over the manifold M with coordinates

(xlw"axnapla"'?pn)
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and construct the product manifold 7% (M) x R. Then T*(M) has a canon-
ical differential one-form N

D _pyde;

j=1

which provides the contact differential one-form

o =du— Xn:pjdxj

j=1

on T*(M) xR. The solutions of the partial differential equation are surfaces
in T*(M) x R

F(zi,...,Zn,D1,. .., Pn,u) =0
which annul the differential one-form «. We construct the closed ideal I
defined by

F(:Z::l?'"7I7l7p1""7pn7u)

a=du— ipjdmj

j=1
OF oF oF
d (8% dx; + op; dp]> + 7 du

j=1
da = Zda:j Adp;.
j=1

The surfaces in T*(M) x R which annul I will be the solutions of the first
order partial differential equation. Let

0
V(xlv"'7xn,7pla"'7pna Zvr]a +Z pjai+V7’U,

be a smooth vector field. Let Ly denote the Lie derivative. Then the
conditions for V' to be a symmetry vector field are

LyF=gF

Lya=Aa+ ndF + Z (Ajdx; + Bjdp;) | F.
j=1

Here A, n, A;, B; are smooth functions of z1,...,2p,p1,...,pr and u on
T*(R™) x R, where g, A;, B; must be nonsingular in a neighbourhood of
F=0. Find V.
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Integration

Problem 2. Any SU(2) matrix A can be written as (xg,z1, 22,3 € R)

Ty —1r3 —IiT1 — X
A:<O 3 1 2

2, .2, .2, . 2_
Ty — 0T xo—l—im)’ To Tty tas=1 (1)

i.e., det A = 1. Using FEuler angles «, 3, the matrix can also be written as

~( cos(B/2)el et N/2 _gin(3/2)eil@)/2 )
= SiH(ﬂ/Q)e*i(a*’Y)/Q cos(ﬂ/2)e*i(0‘+7)/2 . (2)

(i) Show that the invariant measure dg of SU(2) can be written as

1
dg = 725(%3 + 23 + 23 + 23 — 1)dzodrydrodrs
™

where ¢ is the Dirac delta function.
(ii) Show that dg is normalized, i.e.

/dgzl.
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(iii) Using (1) and (2) find z1(«, 8,7), x2(a, B,7), z3(a, 8,7). Find the
Jacobian determinant.

(iv) Using the results from (iii) show that the invariant measure can be
written as

1
162 Sin Bdadpdy .

Problem 3. Let M be a smooth, compact, and oriented n-manifold. Let
f:M — R\ {0} be a smooth map. The Kronecker characteristic is
given by the following integral

K() = o1y [ 17601 der (700, 2L 00, 700 ) ax

where (x = (21,2, ..., ,)) are local coordinates of M and dx = dx1dxs - - - dzy,.
Express this integral in terms of differential forms.
Problem 4. Let C be the unit circle centered at the orign (0, 0). Calculate
1 PdQ — QdP
27'(' C P2 + Q2
where P(I7y) =Y Q(IE,y) =Z.

Problem 5. Let S™ C R"™! be given by
S™i={ (@1, Tpp) s 2t ah, =1
Show that the invariant normalized n-differential form on S™ is given by

w %w’”/QF (n) dzy A--- Ndzy

2 ‘xn+1|

where I' denotes the gamma function.

Problem 6. A volume differential form on a manifold M of dimension n
is an n-form w such that w(p) # 0 at each point p € M. Consider M = R?
(or an open set here) with coordiante system (x1, z x3) with respect to the
usual right-handed orthonormal frame. Then the volume differential form
is defined as

w=dx1 Ndzxs Adzs

and hence any differential three-form can be written as

n= f(xlva,l'S)dl'l AN dxg A dl’g
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for some function f. The integral of n is (if it exists)
/ n= [ f(z1,r2,73)dx1dr2dT3.
R3 R3

(i) Express w in terms of spherical coordinates (r,6, ¢) with r > 0,0 < ¢ <
2, 0< 0 <~

x1(r,0,¢) = rsinfcos ¢, xa(r,0,¢) =rsinbfsing, x3(r,0,¢)=rcosb.
(ii) Express w in terms of prolate spherical coordinates (£,1,¢) (a > 0)

x1(&,n, ¢) = asinh £ sinn cos ¢
x2(&,n,¢) = asinh £ sin 7y sin ¢
25(€,m, 6) = acosh € cos .

Problem 7. Consider the differential 1-form

$2d$1 — lfldflfg
x? + 23

defined on
U=R*\{(0,0)}.

fa

(i) Calculate dao.
(i) Calculate

using polar coordinates.
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Lie Groups and Lie
Algebras

Problem 1. Let R;; denote the generators of an SO(n) rotation in the
x; — ; plane of the n-dimensional Euclidean space. Give an n-dimensional
matrix representation of these generators and use it to derive the Lie algebra
so(n) of the compact Lie group SO(n).

Problem 2. The Lie group SL(2,C) consists all 2 x 2 matrices over C
with determinant equal to 1. The group is not compact. The maximal
compact subgroup of SL(2,C) is SU(2). Give a 2 x 2 matrix A which is an
element of SL(2,C), but not an element of SU(2).

Problem 3. Consider the Lie group G = O(2,1) and its Lie algebra
0(2,1) = {K1, K3, L3}, where K;, K> are Lorentz boosts and L and in-
finitesimal rotation. The maximal subalgebras of 0(2, 1) are represented by
{K;,Ks+ L3} and {L3}, nonmaximal subalgebras by { K3} and {K5+ L3}.
The two-dimensional subalgebra corresponds to the projective group of a
real line. The one-dimensional subalgebras correspond to the groups O(2),
O(1,1) and the translations T'(1), respectively. Find the o(2, 1) infinitesimal
generators.
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Problem 4. The group generator of the compact Lie group SU(2) can

be written as

1 0 0 i 0 0 1
J1 =3 (213,22+22(3,21>7 J2—§ <Z2821_Z1322>7 J3 = ) (2’1

(i) Find
J+=J1 + iJs, J_=J1 —1Jsy.

(ii) Let  =0,1,2,...and m = —j,—j + 1,...,0,...,j. We define

. 1 . .
el (z1,22) = _ _ Z{erz%*m.
V3G +m)l(j—m)!

Find ' . .

Jyel (z1,22), J_e€l (21,22), Jsel (z1,22)
(ii) Let

1

=+ I3+ ;= ST+ T J4) + JZ.

Find

Jzein(zl,zg).

Problem 5. Show that the operators

_ 0 0
Ly=z L-="55%
1 o _0 1 o _0
Ls=—3 (zf)z+za§+1)’ Lo=—3 (zé)z_zaz+1

form a basis for the Lie algebra su(1,1) under the commutator.

Problem 6. Consider the semi-simple Lie algebra s¢(3,R). The dimen-

sion of sf(3,R) is 8. Show that the 8 differential operators

I3} 3, 0
J?}:yQa—y—l-xya—x—ny, J%:xz%—l—xya—y—nx,
13} 0 0 . 0
2 _ 0 2_ _ 0 3__0 3__ 0
Ts = Yor i ox’ g oy’ T2 x@y’

0 0 ~ 0 0
Jd—ya—y+2x%fn, deZya—erx%fn

where z,y € R and n is a real number. Find all the Lie subalgebras.

0

dz1

— 29

9
822

).
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Miscellaneous

Problem 1. Show that the Burgers equation

ou ou 0%u

ot - U twa, T oz

can be derived from the metric tensor field
2 2 2
(e nuu (e Ou
g—<4+n>dm®d$+(2 +4(2+8x>)dx®dt
2 2 2 2 2
nu u (e Ou ut  LounNT
+<2 +4<2+8m>>dt®dx+<<4+25$>+4u>dt®dt

by setting the curvature R of g equal to 1. Here 7 is a real parameter.

Problem 2. Two systems of nonlinear differential equations that are
integrable by the inverse scattering method are said to be gauge equivalent
if the corresponding flat connections U;, V;, j = 1,2, are defined in the
same fibre bundle and obtained from each other by a A-independent gauge
transformation, i.e. if

_ dg _ _ dg _
Uy = gUsg 1+87g69 L Vi=gWy 1+5§g ! (1)

where g(z,t) € GL(n,R). We have

U, oW B
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Show that oU oV
2 2 _
W—%‘F[Um‘/ﬂ*& (3)

Problem 3. Consider the nonlinear Schrédinger equation in one space

dimension 5 52
O ¥ 2
— + =—=+2 =0 1
A R L 1)
and the Heisenberg ferromagnet equation in one space dimension
S %S
— =Sx — S?2=1 2
ot~ ° " o @

where S = (S1,92,53)7. Both equations are integrable by the inverse
scattering method. Both arise as the consistency condition of a system of
linear differential equations

0 06
S =U@tNe, =Vt e (3)

where )\ is a complex parameter. The consistency conditions have the form

ou oV
E*%JF[UvV]*O (4)

(i) Show that ¢1 = goo.
(ii) Show that (1) and (2) are gauge equivalent.

Problem 4. The study of certain questions in the theory of SU(2) gauge
fields reduced to the construction of exact solutions of the following non-
linear system of partial differential equations

" 82u+82u _@@_@@ Ovov Ovov
oyody 020z

dydy 020z  ayoy 020z
S P PN (ou dwou
0ydy 020z oyoy 020z)
0*v 0% ov Ou  9v du
1L(ayay4azaz> (ayay*azaz) 0, (1)
where u is a real function and v and ¥ are complex unknown functions of

the real variables x1,...,x4. The quantities y and z are complex variables
expressed in terms of x1, ..., x4 by the formulas

V2y = 1 + iz, V22 =15 —ixy (2)
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and the bar over letters indicates the operation of complex conjugations.
(i) Show that a class of exact solutions of the system (1) can be constructed,
namely solutions for the linear system

ov  Ou ov  Ou

where we assume that u, v, and v are functions of the variables
rim (2u)' = (@ + a2 (@

and z3, i.e., for the stationary, axially symmetric case. (ii) Show that a
class of exact solutions of (1) can be given, where

u = u(w), v =v(w), v = o(w) (5)

where w is a solution of the Laplace equation in complex notation

0%u 0%u
=0 6
oyoy | 0z07 (©)
and u, v and U satisfy
Pu (du\®  dv do v _dv du
— [ — —_——= — —2——=0.
Y aw? (dw) dw dw 0 Y aw? dw dw 0 @

Hint. Let z = x + 1y, where z,y € R. Then
o (o ey 0 _1(0 0 .
9. 2\ar ‘oy) 9z 2\ozr oy

Problem 5. The spherically symmetric SU(2) Yang-Mills equations can
be written as

0 0
F R R (o)
0 0
% + # = —A1p2 + Aopr (10)
0A 0A
2 (Y41 Y80 4 2 2
(G -Gt =1- e (10

where r is the spatial radius-vector and t is the time. To find partial
solutions of these equations, two methods can be used. The first method is
the inverse scattering theory technique, where the [L, A]-pair is found, and
the second method is based on Bécklund transformations.

(i) Show that system (1) can be reduced to the classical Liouville equation,
and its general solution can be obtained for any gauge condition.
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Problem 6. We consider the Georgi-Glashow model with gauge group
SU(2) broken down to U(1) by Higgs triplets. The Lagrangian of the model
is

1 1

Lim —GFR, P + 50,0 D 6"~ V(9) (1)
where
F, = 0,A% — 0,A% + geapc AL AS (2)
Du¢a = 8p¢a + geabcAZ¢c (3)
and )
A m?
vior=-3 (- %) - (@)

(i) Show that the equations of motion are
DuF'uya - _geabc(D#¢)b)¢C7 DuDﬂgba = (m2 - /\¢2)¢a~ (5)

(ii) Show that the vacuum expectation value of the scalar field and Higgs

boson mass are )

(6 = F2 =T (6)

and
My = V2\F,
respectively. Mass of the gauge boson is M,, = gF.
(iii) Using the time-dependent t’ Hooft-Polyakov ansatz
1—-K(rt) 1 H(rt)

Al t)=0 A? t) = —€ain™n———5—, a7t:70«
0(r7 ) ’ 2(7‘7 ) € T 72 qb (T ) gr r

where r, = z,, and r is the radial variable. Show that the equations of
motion (5) can be written as

2 (02 O 2 2
2 2 2
r? (aaﬂ — aaﬂ) H=H (2[(2 —m*r? + Lﬁ ) : (8b)
(iv) Show that with
g A M
-9 MG

and introducing the variables & := M,,r and 7 := M, t, system (8) becomes

0? 0? K(K?>+H?-1
(56 o) 5= g o
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P9\, HOK U - ¢)
0¢?  or? N &2
(v) The total energy of the system F is given by

2
_9gE
C(ﬁ)_élﬂMw_
T H2 1/0H H\? 1 K2H?
2, T 2, (2 2 2 12
/<K7+2+K5+2<8£ g) oK =17+ T
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p

4¢2
(10)

(H? - 52)2> dg.

As time-independent version of the ansatz (3) gives the 't Hooft-Polyakov
monopole solution with winding number 1. Show that for finiteness of

energy the field variables should satisfy the following conditions
H—0, K—1 a ¢—0

and
H — ¢, K—0 as ¢ — oo.

(11)

(12)

The 't Hooft-Polyakov monopole is more realistic than the Wu-Yang monopole;

it is non-singular and has finite energy.

(vi) Show that in the limit 8 — 0, known as the Prasad-Somerfeld limit,

we have the static solutions,

£
sinh ¢’

K(§) = H(¢) = Ecothé — 1.

Problem 7. Consider the Lorenz model

dx

% =—0or+oy= V1($>y72)

d

Y e trr—y=Va(a,y,2)
dz

& oy b2 = Va0, 2)

with the vector field

0 0 0
V= Vl(%%@% + VVQ(‘T):%Z)aiy +Vv3<xay7z)$

(i) Find curlV.
(ii) Show that curl(curlV) = 0.

(13)
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(iii) Since curl(curl(V)) = 0 we can find a smooth function ¢ such that
curlV = grad(¢) .

Find ¢.

Problem 8. Consider the linear operators L and M defined by

Lip(x,t, \) = <z§; +U(z,t, A)) (z,t, )

My(x,t,\) = (Zaat + Vx,t, A)) (x,t, N).

Find the condition on L and M such that [L, M| = 0, where [, | denotes the
commutator. The potentials U(z,t, A) and V(x,t,\) are typicaly chosen as
elements of some semisimple Lie algebra.
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