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Preface

Many of us fear mathematics. Sometimes we live with this fear all our lives.

We assume that math is not for us and believe that our next-door neighbor is a

genius just because he or she is a math major. When I was young, I trained

professionally as a musician. One day in the sixth grade after missing 2 weeks of

school and coming back from a national violin competition, I did not do well on a

plane geometry test because I could not understand how to do proofs. I received a

B� on the test—a great disappointment. I asked the teacher why. My math teacher

told me, in front of the class, that I had no talent for the subject and that I should

continue practicing the violin. Now, being a teacher myself, I understand that this

approach was not the best pedagogical “trick” that can be applied in a classroom.

However, it worked in my case and it motivated me. I went home and worked

until I could solve all the problems in the book. It is important to mention that

before I was publicly criticized by my math teacher I did not realize that my

understanding of the subject was not clear. I remember sitting in the back of the

class and watching how other students went to the board to perform proofs. I had no

idea how they did it.

I was always good in algebra but geometry was different. Geometry was not just

the calculation of something or the application of a formula. In geometry class we

had to do proofs using Euclidean postulates and axioms. I had never done such things

before. It was even more shocking for me since I missed the first two weeks of the

subject. I did not know how to even start a proof. I hated geometry as strongly as I

hated playing violin in the first grade when nothing was good enough for my teacher.

That teacher did not want to work with me anymore because she also believed that I

did not have talent for the violin and sent me home crying. I was seven years old and

did not like the violin until I got a new violin teacher, Mr. London. He was able to

give me hope and developed my skills so I became the best in my violin class. I did

not like geometry in the same way. I did not understand it and I did not like it. But,

when I made an effort and solved every problem in the book I started to love the

subject. We always like things that we are good at or the things that come easy. We

love something if we have visible, continuous success. Such success comes only

with hard work. I later went on to win various Math Olympiads and graduate from
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Lomonosov Moscow State University (MGU) summa cum laude, defend a Ph.D.

in Mathematical and Physical Sciences, and publish over 60 papers in the field of

differential equations, game theory, economics, and optimal control theory.

At Moscow State, at the end of each semester the students had to pass four oral

exams given by renowned professors. The professors could ask any tricky questions

on the topic of the examination ticket. When I was preparing for such exams and in

order to have an “A,” I did not try to memorize all the definitions and proofs, but

rather I tried to develop a “global” understanding of the subject. I thought of

possible questions that an examiner could ask me and tried to predict the type

of a problem that I could be asked to solve. I developed my own way of learning and

I want to share it with you. If you are struggling with math, this book is for you.

For over 30 years whenever I spotted an especially interesting or tricky problem,

I added it to my notebooks along with my original solutions. I’ve accumulated

thousands of these problems. I use them every day in my teaching and included

many of them in this book. Please look at one of my notebook pages from the ninth

grade in the Appendix. You will see how carefully and neatly each problem was

presented and solved. Please notice the importance of making an accurate sketch.

Many of the problems were created when I was an assistant professor and also

worked as a tutor to prepare high school students for the MGU entrance exams.

Before accepting an academic position at a university, I worked as a teacher at

Ursuline Academy of Dallas and used my problem-solving techniques in my

students’ college preparation. I was pleased to receive appreciation letters from

MIT and Harvard where some of my students were admitted.

If students see an elegant solution but do not apply the approach to other

problems, they will not remember it just as nobody remembers phone numbers

these days. However, if a teacher uses and reuses the same approach throughout the

entire curriculum, students will remember it and learn to value the beauty of the

method. Most math books start from theoretical facts, give one or two examples,

and then a set of problems. In this book almost every statement is followed by

problems. You are not just memorizing a theorem; you apply the knowledge

immediately. Upon seeing a similar problem in the homework section you will be

able to recognize and solve it.

Although each section of this book can be studied independently, this book is

constructed to reinforce patterns developed at stages throughout this book. This

helps you to see how math topics are connected. This book can be helpful for

self-education, for people who want to do well in math classes or to prepare

for competitions. This book is also meant for math teachers and college professors

who would like to use it as an extra resource in their classroom.
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What Is This Book About?

Geometry is a very important field of mathematics with applications in science,

architecture, and art. It is difficult to find a field of human activity where geometry

is not applied. People build houses and office buildings, roads, and airplanes.

Geometry is everywhere. Even if you are not going to become a scientist or

engineer and wish only to graduate from a university, without knowledge of

geometry you may not pass the SAT.

Geometry is probably the oldest part of mathematics. Ancient people wanted to

know how big their property was, its capacity for growing crops, and how much

fence was needed. Around that time simple geometric figures were introduced such

as triangles, squares, and circles. Problems solved by ancient Greeks and Egyptians

are very unusual and challenging and their different versions appear on some exams

and math contests. Reviewing overlooked problems and their solutions that I offer

in this book can prepare you for solving Math Olympiad problems. Few teachers

cover such problems. Some teachers do not have time to explain a strategy for

solving these problems; others do not have the background. This book is not a

textbook. This book does not cover every topic in geometry, but it will provide you

with a brief course in plane geometry and it will help you to develop problem-

solving skills. It will help you to improve your mathematical abilities.

This book is briefly divided into four chapters: Triangle, Quadrilaterals and

Polygons, Circles, and Problems on Construction. Each chapter has its own home-

work. However, there are overlaps between chapters, because, for example, a

problem on a triangle and a circle inscribed into it cannot be solved without

knowledge of the properties of each. Sometimes for the same reason, in a solution

or proof we will use a property (lemma or theorem) proven in a later section. So if

you know that property you can follow along right away and, if not, then you may

find it in the following sections or in the suggested references.

It is obvious that two distinct points form a unique line. How do you find out

whether or not three given points are on the same line (collinear)? It is well known

(but you will learn how to prove it) that three medians and three altitudes concur.

What if we take some pointsM, N, and K on the sides of a triangle and connect them

with the corresponding opposite vertex? Under what condition will such segments

(cevians) intersect at one point (concur)? The answer to these and many other

questions will be found in this book. This book contains important and sometimes

overlooked topics on triangles, quadrilaterals, and circles such as Menelaus-Ceva

theorems, Simson line, theorems of the three altitudes and medians, and Heron’s

formula along with their proofs. You will be able to dissect a segment in the Golden

ratio, construct an angle of 36�, and visualize Fibonacci numbers. You will prove

the inequality between geometric, arithmetic, and harmonic means in a purely

geometric way: the way it was done 1000 years ago by ancient Greeks, and prove

why not every angle can be trisected using modern methods. You will learn which

quadrilateral with diagonals d1 and d2 has the maximum area and solve unusual
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problems involving cyclic quadrilaterals and problems on location of circles and

polygons with respect to each other.

Problems in geometry can be roughly divided into three groups:

1. Problems on construction (inscribing a pentagon into a circle, trisecting an angle,

or construct a segment of certain length),

2. Problems on evaluation (numerical problems on finding something like

perimeters, lengths, or areas), and

3. Problems on proof where you must prove certain statements.

Many problems in geometry are a combination of all three types and involve

proof, construction, and evaluation together. So I do not separate problems by their

type, but rather put problems together because you need to learn how to recognize

and attack them.

Usually when you take geometry in high school, the problems are straightfor-

ward and clear, but would not prepare you well for solving Olympiad-type

problems. Many textbooks have a picture that goes together with the condition of

the problem, so much of the necessary thought is already done for you and your

space for creativity is limited. Therefore, now and forever, you will always read a

problem and then, without looking at anything this book provides, you will draw

your own picture. Sometimes you will have to go through several sketches until you

find a solution. My figures are prepared with software packages such as MAPLE

and Geometer’s Sketchpad. However, following the new rules of any mathematics

contest or Olympiad, I suggest that you prepare all sketches by hand with the use of

ruler and compass only. I also assume that you will not use any calculator or

computer when solving the problems.

How to Use This Book

Here are my suggestions about how to use this book. Read the corresponding

section and try to solve the problem without looking at my solution. If a problem

is not easy, then sometimes it is important to draw an auxiliary element that is not a

part of the problem’s condition, but that will help you to find a solution to the

problem in a couple of steps. In this book I will show simple and challenging

problems and will point out ideas we used in the auxiliary constructions so that

you can develop your own experience in such “business” and hopefully become

an expert soon. If you find any question or section too difficult, skip it and go

to another one. Later you may come back and try to understand it. Different

people respond differently to the same question and this response sometimes is

not related to intelligence or education. Return to difficult sections later and

then solve all the problems. Read my solution when you have found your own

solution or when you think you are just absolutely stuck. Think about similar

problems that you would solve using the same or similar approach. Find a similar

problem from the homework section. Create your own problem and write it down
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alone with your original solution. Now it is your powerful method. You will use it

when it is needed.

I promise that this book will make you successful in problem solving. If you do

not understand how a problem was solved or if you feel that you do not understand

my approach, please remember that there are always other ways to do the same

problem. Maybe your method is better than that one proposed in this book. If a

problem requires knowledge of trigonometry or number theory or another field of

mathematics that you have not learned yet, then skip it and do other problems that

you are able to understand and solve. This will give you a positive record of success

in problem solving and will help you to attack that “hard” problem later. Do not

ever give up! The great American inventor Thomas Edison once said, “Genius is

one percent inspiration and 99% perspiration.” Accordingly, a “genius” is often

merely a talented person who has done all of his or her homework. Remember that

it is never late to become an expert in any field. Archimedes, himself, became

a mathematician only at the age of 54.

I hope that upon finishing this book you will love math and its language as

I do. Good luck and my best wishes to you!

Denton, TX, USA Ellina Grigorieva
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Chapter 1

Problems Involving Triangles

If three points of a plane do not lie on the same line, the segments that connect these

points form a triangle. From school we know that there are different types of

triangles such as the right triangle (one angle is 90�), equilateral triangle (all sides
are equal), isosceles triangle (two sides of the same length), and scalene (a triangle

of a general type). Triangles are either acute if all angles are less than 90� or obtuse
if one of the angles is greater than 90�. Some facts listed below probably are known

to almost everyone:

A right triangle is a triangle with a 90� angle. The side that is opposite to the

right angle is called a hypotenuse.

A perimeter of a triangle is the sum of all sides of the triangle, P ¼ aþ bþ c.
Here and below a, b, and c are the lengths of sides of a triangle, and A, B, and C

are the corresponding opposite angles.

The area of a triangle is half of the product of its base and height.

To solve problems with triangles, we should know the following formulas

and theorems.

1.1 Conditions of the Existence of a Triangle

If three segments with lengths a, b, and c are given, then the triangle with sides a, b,
and c exists if and only if (iff) aþ b > c, aþ c > b, and bþ c > a. We call these

relations the triangle existence inequalities. Conversely, if a triangle with sides a,
b, and c exists, then each side is less than the sum of the other two sides.

Another fact is that the longest side is opposite the largest angle, i.e., if a triangle

has sides a, b, and c, then a � b � c iff ffA � ffB � ffC.

E. Grigorieva, Methods of Solving Complex Geometry Problems,
DOI 10.1007/978-3-319-00705-2_1, # Springer International Publishing Switzerland 2013
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Problem 1. One side of some triangle is 5.3, and the other is 0.7. Find the third

side of the triangle, if its length is a natural number.

Solution. Let us make a sketch. In geometry, an accurate picture is often 50 % of

work required towards the solution (Fig. 1.1).

Looking at the picture, we can write three inequalities:

x < 5:3þ 0:7

5:3 < xþ 0:7

0:7 < xþ 5:3

8>><
>>: ,

x < 6

x > 4:6

x > �4:6

8>><
>>: , x 2 ð4:6; 6Þ

There is only one natural number, 5, satisfying the conditions on the interval

(4.6, 6).

Answer. The length of the third side is 5.

The following problem was proposed by Professor Gregory Galperin. Despite its

apparent simplicity, many have found this problem difficult.

Problem 2. A point D is inside of the triangle ABC. Prove that AB þ BC > AD
þ DC

Solution. Let us draw a picture of a scalene triangle with point D inside. Connect

A to D and connect D to C. The triangle may be obtuse but our solution cannot

depend on the shape of the triangle (Fig. 1.2).

0.7
5.3

x
A

B

C

Fig. 1.1 Sketch for Problem 1
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If we connect point D to the vertex B and continue the line until it intersects the

opposite side at point D0, then it is obvious that ABþ BC > AD0 þ D0C ¼ AC by

the triangle sides inequality. Since by the triangle property AD + DC > AC, then it
is also clear that ADþ DC > AD0 þ D0C ¼ AC (by the same reason).

Can we state that the relationship is true for any point D between points

B and D0?

LetD be on the height dropped fromB to the opposite side as shown in Fig. 1.3. The

height subdivides the triangle ABC into two right triangles that share a common side.

By the Pythagorean Theorem it is obvious that the greater the height of these triangles,

the greater the length of each hypotenuse. Since (BD0 > DD0), it is true thatAB > AD
and BC > DC: Therefore, it follows that ABþ BCþ AD > DC.

Unfortunately, if D is not on the height, then AD is not always shorter that AB.
See the picture below (Fig. 1.4).

Di

D0

D

C

B

A

Fig. 1.3 Point D is on the height from B

Di

D0

D

C

B

A

Fig. 1.2 Point D is connected to vertices
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You can see that AD > AB and that DC < BC? How can we be sure that

AB + BC is always greater than AD + DC?
Maybe an additional (auxiliary) construction is needed here.
Let us continue the segment AD until it intersects BC at E (Fig. 1.5).

Using obvious inequalities for corresponding triangles we obtain:

ABþ BC ¼ ABþ BEþ EC

¼ ðABþ BEÞ þ EC > AEþ EC

AEþ EC ¼ ðADþ DEÞ þ EC

¼ ADþ ðDEþ ECÞ þ DC

The proof is complete. Moreover, the following statement is valid.

Lemma 1. Given a triangleABC and an arbitrary pointD inside the triangle. The

following is valid (a) perimeter of the triangle ADC and (b) its area is less than

the perimeter of triangle ABC and its area, respectively.

m AD = 7.45 cm

m AB = 7.05 cm

A

B

C

D

Fig. 1.4 D is not on the height

E

D

C

B

A

Fig. 1.5 Auxiliary construction for Problem 2
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Note. Above we actually proved part (a) of the Lemma 1. So,

PðABCÞ ¼ ABþ BCþ AC > ADþ DCþ AC > PðADCÞ

Here P denotes the perimeter. Try to prove part (b) yourself. The proof will be given

later in the corresponding section.

The Triangle Interior Angle Sum Theorem. The sum of the measures of the

interior angles of a triangle is 180�. If A, B, and C are angles of a triangle, then

mffAþ mffBþ mffC ¼ 180�.

Proof. The proof of this fact is easy. Just consider a triangle ABC and mark the

angles as ffA; ffB; ffC. Draw, for example, a line parallel to side AC through point B.
(This is our auxiliary construction!) Find angles that are congruent to ffA and ffC.
All three angles make 180� (Fig. 1.6).

Problem 3. In a triangleABC themedianAM is half of sideBC. The angle between
AM and height of the triangle, AH is 40�. Find all angles of triangle ABC.

Solution. This problem can be solved by the angle chasing method. First, we will

draw a triangle ABC and drop from vertex A the median (AM) with height (AH), and
mark angleMAH as 40�. Since the median, AM ¼ BC/2, it is clear that CM ¼ MA ¼
MR ¼ R, the radius of the circumscribed circle (shown in red) with CB as its

diameter. Obviously, ABC is a right triangle and CAB is a 90� angle (see Sect.

3.1.1.1 for a detailed coverage of the topic). Moreover, triangles CMA and AMB are

isosceles triangles, so their base angles shown by one and two arcs, respectively, are

1 3

3

2

1
A

B

C

D E

Fig. 1.6 The Triangle interior Angle Sum Theorem
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equal. Since triangle AHM is a right triangle, angle AMH ¼ 50�. Hence the base angle
in triangle CMA is 25�and the base angle, ABM is 65� (Fig. 1.7).

Answer. 90, 25, and 65� are the angles of the triangle.

What was the key part of our investigation that allowed us to solve this problem

quickly?

Probably, it was our conclusion that CB is the diameter of a circumscribed

circle and that the triangle ABC has angle CAB as the 90� angle. Additionally, it

was very important to learn that triangles AMC and AMB are isosceles and so each

of them have equal base angles. You will learn more about these topics in the

followings sections.

An exterior angle of a triangle is an angle formed between the extension of one

of the sides of the triangle and the outside of the triangle.

Exterior Angle Theorem. Themeasure of an exterior angle of a triangle equals

the sum of the two nonadjacent opposite interior angles.

The proof of this theorem is easy and you should do it yourself.

Now here is a problem for your consideration. The problem was stated and

solved by the Greek geometer Archimedes in his manuscript “Lemmas.” To many

modern students it has a very confusing condition.

Problem 4. From a point A outside of a circle, construct two secants such that

one goes through the center and the other is cut by the circle into two segments.

If the length of the exterior segment equals the radius of the circle, show that the

angle between the secants is one third the larger arc’s measure concluded

between sides of the angle.

Proof. Let us draw a picture first.

40

65
25 50

H B
M

C

A

Fig. 1.7 Sketch for Problem 3
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In Fig. 1.8, AC and AD are the two secants. AD goes through the center O.
The other, AC, is cut by the circle into two segments. Based on the condition of

the problem, AB ¼ FO ¼ BO ¼ r, the radius of the circle. Next, there is some

information about the arcs that are concluded between the sides of the angle CAD. In
our sketchwe have a small arcBF and big arcCD (shown in red).Wehave to prove that

the angle CAD is 1/3 of the measure of the arc CD (or 1/3 of the central angle COD).
Since now we understand the condition of the problem, we can add something to

our sketch so that our proof will be easier. For example, we can connect points B
and C with the center of the circle O (Fig. 1.9). Further we can rephrase “antique”

problems into modern language.

Rephrased Problem. Two secants are dropped to a circle from point A outside

the circle. As it is shown on the picture provided, AB ¼ OB ¼ r, the radius

of the circle. The angle between two secants equals α. Evaluate the measure of

angle COD and prove that COD ¼ 3α.

a

2a

2a

a 3a D

C

B

O
A

Fig. 1.9 Problem 4, second view

DF

C

OA

B

Fig. 1.8 Problem 4, first view
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Why is this problem on an application of the Exterior Angle Theorem?

SinceAB ¼ BO ¼ r, then triangle ABO is an isosceles andffBOA ¼ α. IfffCBO is

an exterior angle of triangle ABO, then ffCBO ¼ 2α ¼ ffBCO since BO ¼ OC ¼ r.
Finally, ifffCBO is an exterior angle of the triangleAOC, then it is equal to the sum of

ffBOA and ffACO, i.e., ffCOD ¼ αþ 2α ¼ 3α.

Note. It is interesting that this problem was proposed by Archimedes for trisecting

an angle. More about angle trisection and why Archimedes’ method has obvious

drawbacks will be discussed in Chapter 4 of the book.

1.2 Properties of Right Triangles

1.2.1 Pythagorean Theorem

For a right triangle the following theorem is valid.

Pythagorean Theorem. The square of the hypotenuse of a right triangle is equal

to the sum of the squares of the two legs.

This theorem was known to the Babylonians more than 1,000 years earlier, but

the first general proof of this theorem was given by Pythagoras. We believe that

Pythagoras gave a proof similar to one illustrated in the figure below (Fig. 1.10).

Proof 1. Let a, b, and c be the legs and the hypotenuse of the right triangle,

respectively. Consider two squares, each with sides (a + b). The second square is

divided into two squares with sides a, b and two congruent triangles with legs a, b.
The first square is divided into four congruent triangles and a square between them

4

2

-2

-4

-10 -5 5 10

b

1
2

a

b

a
x

c
c

a

a

ab

b
b

b

b

c

c

2

1

Fig. 1.10 Pythagorean Theorem
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with side c. You can easily see that after such dissection, the figure between

triangles must be a square. Since angles 1 and 2 add up to 90�, angle x (the angle

formed by the sides of the quadrilateral) must be a 90� angle as well. The area of

each big square is the same and can be written in two different ways as

4
ab

2
þ c2 ¼ 4

ab

2
þ a2 þ b2

Subtracting 2ab from each side, we obtain the required formula, c2 ¼ a2 þ b2.

Proof 2. This proof is based on relationship between similar triangles formed by

the height dropped from the vertex of the right angle in the right triangle as the

auxiliary construction. The proof will be given in the corresponding section.

Let us apply the Pythagorean Theorem by solving Problem 5.

Problem 5. Medians AD and BE of triangle ABC form a 90� angle. It is known
that AC ¼ 3 and BC ¼ 4. Find AB.

Solution. First, draw a picture by hand and include all known information.

Because BE and AD are medians, D is the midpoint of BC (i.e., BD ¼ 2) and E is

the midpoint of AC (i.e., AE ¼ 3/2 ¼ 1.5). In the picture below, O is the point of

intersection of medians (Fig. 1.11).

By the Theorem of the Three Medians (see Sect. 5.2), BO:OE ¼ 2:1 and AO:
OD ¼ 2:1. Let us introduce three variables: the lengths of medians, n ¼ BE and

m ¼ AD, and the unknown side x ¼ AB. Now we can express the lengths of all

segments in terms of n and m: BE ¼ 2n/3, OE ¼ n/3, AO ¼ 2m/3, and OD ¼ m/3.
By the condition of the problem, BE?AD the triangles AOE, AOB, and BOD are

right triangles. Using the Pythagorean Theorem for each triangle, we obtain the

following system:

2

3/2

x

3/2

2

B

C

D

O
A

E

2m/3

2n/3

Fig. 1.11 Sketch for Problem 5
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2n

3

� �2

þ m

3

� �2
¼ 22

n

3

� �2
þ 2m

3

� �2

¼ 3

2

� �2

2n

3

� �2

þ 2m

3

� �2

¼ x2

8>>>>>>>>><
>>>>>>>>>:

)
4n2 þ m2 ¼ 36

4n2 þ 16m2 ¼ 81

4n2

9
þ 4m2

9
¼ x2

8>>><
>>>:

Subtracting the first equation from the second, we have 15m2 ¼ 45, m2 ¼ 3.

Replacing it back into the first, we obtain, n2 ¼ 33
4
. Using the last two results we can

evaluate x from the third equation of the system

x2 ¼ 4

9
� 33
4
þ 4 � 3

9

x2 ¼ 5

x ¼
ffiffiffi
5

p

Answer. x ¼ AB ¼ ffiffiffi
5

p
.

Note. When they see this problem, some students rush to give me a solution

without actually solving it. They say that 32 + 42 ¼ 52 so the answer is 5. However,

such a solution is wrong, and it would be true only if the triangle ABC was the right

triangle. You can apply the Pythagorean Theorem only in the case of right triangles.

Moreover, in general there are infinitely many possibilities for the length of side

AB if we apply the triangle existence inequality relationship between the sides.

Let x be the length of side AB then we would have the following system.

x < 4þ 3

4 < xþ 3

3 < xþ 4

8><
>: ,

x < 7

x > 1

x > �1

8><
>: , x 2 ð1; 7Þ

If we did not have an additional constraint on the type of the triangle given by the

condition about its medians, then the length of side AB would be given by an open

interval, 1 < x < 7, which would satisfy infinitely many cases including one of a

right triangle with hypotenuse of length five. In fact, our correct solution, x ¼ ffiffiffi
5

p
,

also satisfies the inequality because 1 <
ffiffiffi
5

p
< 7.

Problem 6. In a right triangle, all sides are relatively prime numbers. Prove that

if the length of the hypotenuse is an odd number and that the length of one leg is

odd, then the other is an even number.
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Solution. Let m and k be the legs of the triangle and let n be its hypotenuse.

Numbers m, k, n are relatively primes and satisfy the Pythagorean Theorem:

n2 ¼ m2 þ k2

Now suppose that the hypotenuse is an even number so that n ¼ 2l, then

m2 þ k2 ¼ 4l2

Since the right side is an even number, m and n are either both odd or even. The

latter case is not applicable because two even numbers cannot be relatively prime.

Therefore, m and n must be both odd and

m ¼ 2l1 þ 1; and k ¼ 2l2 þ 1; so

4l2 ¼ ð2l1 þ 1Þ2 þ ð2l2 þ 1Þ2 ¼ 4l1
2 þ 4l2

2 þ 4l1 þ 4l2 þ 2

It follows from the last formula that the left side is a multiple of 4, but the right

side is not (it is only divisible by 2) then such a relationship is not valid. Therefore,

the length of the hypotenuse must be only an odd number. Moreover, if the

hypotenuse is an odd number, then the length of one leg must be odd and the length

of the other leg must be even.

1.2.2 Trigonometric Relationships in a Right Triangle

Consider a right triangle ABC, such that AB ¼ c (hypotenuse), AC ¼ b, and

CB ¼ a with opposing angles C (right angle), B and A, respectively.

b

a

c

A

C B

Fig. 1.12 Right triangle
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Then the following statement is valid.

A length of a leg of a right triangle equals the length of the hypotenuse times

the sine of the opposite angle or the length of the hypotenuse times the cosine of

the adjacent angle.

Therefore, the relationships for the right triangle are:

a ¼ c � sinðffAÞ ¼ c � cosðffBÞ
b ¼ c � sinðffBÞ ¼ c � cosðffAÞ (1.1)

This statement can be easily proven. If we square the left and right sides of both

equations and then add them, we will obtain

a2 ¼ c2 � sin2ðffAÞ ¼ c2 � cos2ðffBÞ
b2 ¼ c2 � sin2ðffBÞ ¼ c2 � cos2ðffAÞ

Angles A and B are complimentary since ffAþ ffB ¼ 90� (i.e., sinðffAÞ ¼
cosðffBÞ and sinðffBÞ ¼ cosðffAÞ). Using the trigonometric identity, sin2xþ cos2x
¼ 1 we obtain the following correct statement:

a2 þ b2 ¼ c2

In the USA, students learn this formula in a different form so that the sine of an

angle is the ratio of the opposite side and a hypotenuse. Formulas (1.1), in my

opinion, have more sense and are easier to memorize. Additionally this form makes

clear that sine or cosine of any angle is always bounded by one. Otherwise, the legs

of a right triangle would be longer than hypotenuse! Second, if a student sketches a

right triangle like one in the Fig. 1.12 above, he or she can simply write the

relationships remembering that a leg of a triangle is a product of a hypotenuse

and the sine of the opposite angle. Clearly, if an opposite angle is 30�, then such a

leg is half of the hypotenuse, a ¼ c/2.
The only trigonometric formula involving sides of a right triangle that I believe

can be presented to a student as a ratio is the formula involving the tangent. This is

because as the student learns calculus, the derivative of a function at a point will be

defined as a limit of the slope of a secant line based on the ratio formula. Therefore,

the tangent of an opposite angle equals the ratio of the opposite leg to the adjacent

leg and the following is valid:

tanðffAÞ ¼ a

b

tanðffBÞ ¼ b

a

(1.2)
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Consider one of the formulas (1.2), for example, a=b ¼ tanðffAÞ . If the legs

of a triangle are equal, then a ¼ b and consequently a/b ¼ 1. So if tanðffAÞ ¼
tanðffBÞ ¼ 1, then A ¼ B ¼ 45�. We just gave a trigonometric proof to the well-

known fact: isosceles right triangles have base angles of 45�. You can easily

prove it by angle chasing and by using the Triangle Angles Theorem and the

property of the isosceles triangle.

Problem 7. In a triangleABCwith the right angleC, sideBC is divided by points

D and E into three equal parts. Find the sum of angles AEC, ADC, and ABC if it is

known that BC ¼ 3AC.

Solution 1. Consider a right triangle ABC and denote jACj ¼ b; ffAEC ¼ α;
ffABC ¼ β. Then CD ¼ DE ¼ EB ¼ b, and CB ¼ 3b (Fig. 1.13).

From the right triangles ADC, ACE, and ACB we have

tanðffADCÞ ¼ jCDj
jACj ¼

b

b
¼ 1

tan α ¼ jCEj
jACj ¼

b

2b
¼ 1

2

tan β ¼ jCBj
jACj ¼

b

3b
¼ 1

3

The sum of the angles is

45� þ arctan
1

2
þ arctan

1

3

� �

This could be the answer but it does not look pretty. Let us simplify the

expression inside the parentheses and denote it by γ, then

b

a b

A

C B
D E

Fig. 1.13 Problem 7, Solution 1
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arctan
1

2

� �
þ arctan

1

3

� �
¼ γ

or αþ β ¼ γ. Take the tangent of both sides so that tanðαþ βÞ ¼ tan γ.
Applying to the left side the formula of tangent of the sum of two angles

we obtain

tan αþ tan β

1� tan α � tan β ¼ tan γ

1
2
þ 1

3

1� 1
2
� 1
3

¼ 1 ¼ tan γ

αþ β ¼ 45� ¼ γ

Therefore, the sum of the three angles is 90�.
Would it be nice to solve this problem without any trigonometry, if possible?

One of the “pure geometric” solutions is given for your consideration. Be sure to

understand the importance of the auxiliary construction.

Solution 2. Construct point G such that the vectors AC and DG are equal. Let

α ¼ ffAEC, β ¼ ffABC. We will show next that AGB is an isosceles right triangle.

Indeed, ffDGA ¼ α since triangles ADG and ADE are congruent. Angle ffBGD ¼
90� � α since triangles BDG and ECA are congruent. Thus, ffBGA ¼ ffBGD
þffDGA ¼ 90� (Fig. 1.14).

Finally, BG ¼ AG since triangles ADG and GEB are congruent. Angle ffDBG ¼
α (BDG and ECA are congruent). So ffABG ¼ αþ β ¼ 45�.

Answer. ffADC þ ffAECþ ffABC ¼ 45� þ αþ β ¼ 90�:

b

a

a b

a

B
C

A

D E

G

Fig. 1.14 Problem 7, Solution 2
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1.3 Law of Cosines and Law of Sines

The Law of Cosines is the relationship between the sides and the angles of a

triangle: a2 ¼ b2 þ c2 � 2bc � cosðffAÞ , where ffA is opposite of side a. Students
usually learn this formula at the end of a geometry course but don’t understand how

to apply it until taking trigonometry. Nevertheless, this formula is very powerful.

In addition, the Pythagorean Theorem is a particular case of the Law of Cosines.

Let us now solve Problem 8:

Problem 8. A triangle with sides of length 5, 12, and 13 is given. Find the angle

that is opposite the biggest side.

Solution. First, we will draw an accurate picture and put all known information on

it so it will help us to calculate the measure of angle C (Fig. 1.15).

Let us apply the Law of Cosines to the triangle:

132 ¼ 52 þ 122 � 2 � 5 � 12 � cosðffCÞ
0 ¼ cosðffCÞ; then mffC ¼ 90�

We found that triangle ABC is a right triangle.

Let us prove that the Pythagorean Theorem is a particular case of the Law of

Cosines. For this purpose we will write the Law of Cosines for the cosine of angle C
using the same picture:

c2 ¼ a2 þ b2 � 2ab cosðffCÞ

cosðffCÞ ¼ a2 þ b2 � c2

2ab

(1.3)

13
5

12A

B

C

Fig. 1.15 Sketch for Problem 8
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The last formula can be used to evaluate angles in triangles, but because

cosðffCÞ is a fraction, it equals 0 iff the numerator of the fraction equals 0, i.e.,

a2 þ b2 � c2 ¼ 0 or a2 þ b2 ¼ c2 . Of course, we recognize the Pythagorean

Theorem.

Remark. Formula (1.3) can be used to evaluate angles in triangles and even to

predict the type of triangles. Suppose that the sides of a triangle satisfy the

inequality c > b > a. The following is true:

1. If the square of the biggest side is greater than the sum of the squares of two other

sides, i.e., c2 > b2 þ a2 , then the triangle is obtuse. (The proof is simple: if

ffC > 90� ) cos ffC < 0 ) a2 þ b2 � 2ab cos ffC > a2 þ b2.)
2. If the square of the biggest side is less than the sum of the squares of two

other sides, i.e., c2 < b2 þ a2, then the triangle is acute (all triangle angles are

less than 90�.)

Problem 9. Consider a scalene triangle, ABC, with sides BC ¼ 6, AC ¼ 5, and

angle ABC of 30�. Find the length of side AB, if the distance from the vertex A to

the line BC is less than 1ffiffi
2

p .

Solution. Let us construct triangle ABC satisfying the given conditions (Fig. 1.16):

1. Draw segment CB of length 6.

2. Draw a ray from vertex B that makes angle 30� with BC.
3. Draw a circle with center C and radius 5.

D1

A2

A1

CB
D2

Fig. 1.16 Sketch for Problem 9
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Such a circle will intersect the ray at two points: A1 and A2 such that jCA1j ¼
jCA2j ¼ 5 . Two different triangles can be constructed before the last condition

is satisfied.

Apply to it the Law of Cosines to find the length of side AB:

52 ¼ jABj2 þ jBCj2 � 2jABj � jBCj cos 30�

25 ¼ jABj2 þ 36� 2 � ffiffiffi
3

p

2
� jABj

jABj2 � 6
ffiffiffi
3

p
jABj þ 11 ¼ 0

jABj ¼ 3
ffiffiffi
3

p
� 4

After solving the quadratic equation we obtained two answers, hence either the

length of BA1 ¼ 3
ffiffiffi
3

p � 4 or the length of BA2 ¼ 3
ffiffiffi
3

p þ 4.

In order to select one out of two possible triangles, we will use the distance

condition.

Do you remember that the distance between a point and a line is the length of the

perpendicular dropped from the point to the line?

By dropping perpendiculars A1D1, A2D2 to the line BC from points A1A2 we will

obtain two right triangles, ΔBA1D1, ΔBA2D2 with hypotenuses CA1, CA2, respec-

tively, and angle ABC ¼ 30�. For such right triangles the leg opposite to 30� angle
(distance to the line BC) equals half of the hypotenuse. Thus, we finally have

A2D2 ¼ A2B sin 30� ¼ 3
ffiffiffi
3

p þ 4

2
>

1ffiffiffi
2

p

A1D1 ¼ A1B sin 30� ¼ 3
ffiffiffi
3

p � 4

2
<

1ffiffiffi
2

p

Since only the second inequality satisfies the condition of the problem, it follows

that jBAj ¼ 3
ffiffiffi
3

p � 4.

The Law of Sines is a relation between the length a side and the opposite

angles of a triangle. For any triangle ABC, the ratios between sides and sines of

opposite angles are the same and equal to double the radius of the circumscribing

circle:

a

sinA
¼ b

sinB
¼ c

sinC
¼ 2R (1.4)

Please remember that for any triangle the center of the circumscribing circle is at

the intersection of its perpendicular bisectors. Connecting the center of the circle with

each vertex of a triangle, we get three radii, R, of the circle as shown in Fig. 1.17.
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Now it is easy to prove the statement. Each of the triangles, AOC, COB and BOA
is an isosceles since CO ¼ OB ¼ OA ¼ R. Think of dropping a perpendicular from
O to side CB; then its foot, sayD, will be also the midpoint of the segment CB. From
the right triangle BDO we find that

a

2
¼ BD ¼ R sinðffBODÞ ¼ R sin

ffBOC
2

� �
¼ R sinðffBACÞ ¼ R sinA

From which we obtain that a ¼ 2RsinA, etc.
Here we used the relationship between central (COB) and inscribed (CAB)

angles. You will see more on this topic in Chap. 3.

Remark. Suppose that the sides of a triangle satisfya � b � c, then without loss of
generality it follows from (1.4) that sinA � sinB � sinC ) A � B � C.

Please practice in the Law of Sine by solving Problem 10.

Problem 10. Consider the right triangle KLM with ffKML ¼ 90�. Point D is on

the hypotenuse KL such that jDLj ¼ 1, jDMj ¼ ffiffiffi
2

p
, jDKj ¼ 2. Evaluate the

angle KMD.

Solution. First, we will draw a right triangle KML and place point D on segment

KL (Fig. 1.18).

c
a

b

R

R
R

O

B

C

A

Fig. 1.17 Circumradius and sine law
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Let the angle marked by one arc be ffKMD ¼ α and the angle marked by two arcs

be ffMKD ¼ β. Next, apply the Law of Sines to two triangles:

ΔKMD :
MD

sin β
¼ KD

sin α
or

ffiffiffi
2

p

sin β
¼ 2

sin α
;

ΔMDL :
DL

sinðffDMLÞ ¼
MD

sinðffMLDÞ or
1

sinð90� � αÞ ¼
ffiffiffi
2

p

sinð90� � βÞ

Using the relation between the sine and cosine of complimentary angles and

simplifying the proportions above, we have that

sin β ¼ sin αffiffiffi
2

p

cos β ¼
ffiffiffi
2

p
cos α

Squaring the left and the right sides of both relations and applying a trigonomet-

ric identity we will obtain an equation in terms of cos α from which the value of α
follows:

1 ¼ 3cos2α

cos α ¼ 1ffiffiffi
3

p

α ¼ arccos
1ffiffiffi
3

p
� �

Note. We selected only such cosines that may satisfy the given condition so that

the angle is less than 90�.

K

M
L

D

Fig. 1.18 Sketch for Problem 10
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1.4 Similar Triangles

Two triangles are called similar if their corresponding angles are equal and the ratio

of corresponding sides is the same. Similar triangles or, in general, any similar

figures have a similar shape. You probably remember that two triangles are similar

to each other by two angles (AA), by two sides and the included angle (SAS), and by
three sides (SSS). Especially important is the fact that in similar triangles the ratio of

corresponding sides, medians, heights, and bisectors equals k, the coefficient of

similitude. The ratio of the areas of similar triangles equals k2, the square of the

coefficient of similitude.

The following picture will illustrate one way of constructing similar triangles by

hand, with k > 1 (magnification) and k < 1 (making the image smaller). This is

based on Homothetic Transformation or such transformation at which any point

of the original (pre-image), its image and the center of homothety lie on the

same line. Using homothety, different similar figures can be constructed, so all

corresponding angles are equal.

In the figure above (Fig. 1.19), all triangles are similar and ΔABC 	 ΔA1B1C1

	 ΔA2B2C2. Let us consider the first situation where the red triangle, ABC, is the
pre-image (we will make it bigger or smaller),O is the center of transformation, and

the green triangle, A1B1C1 is the image of ABC. Then
jOAj1
jOAj ¼ jOB1j

jOBj ¼ jOC1j
jOCj ¼ 1

2
by

our construction with k ¼ ½,

jA1B1j
jABj ¼ jB1C1j

jBCj ¼ jC1A1j
jCAj ¼ k ¼ 1

2

A2

B2

C2

O

B

A

C

B1

C1

A1

Fig. 1.19 Triangle homothetic transformation
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so

Area of ΔA1B1C1

Area of ΔABC
¼ k2 ¼ 1

4
; k ¼ 1

2
< 1

and we can see that the image is smaller than the pre-image. For the second

situation, again the red triangle is the pre-image, but the blue triangle is the image.

In our diagram if

jOA2j
jOAj ¼ jOB2j

jOBj ¼
jOC2j
jOCj ¼ 2

then k ¼ 2 and

jA2B2j
jABj ¼ jB2C2j

jBCj ¼ jC2A2j
jCAj ¼ k ¼ 2 and

Area of ΔA2B2C2

Area of ΔABC
¼ k2 ¼ 4

Here k ¼ 2 > 1 and we notice that triangle A2B2C2 is larger that it’s pre-image,

triangle ABC.
Homothetic transformations have many applications, for example, in animation

or computer game development. Thus, you can think of taking the image of your

favorite cartoon character and using this technique to magnify it or make it smaller.

For your consideration in Chap. 4 I will offer you a problem on inscribing a polygon

into a given shape using homothety.

Below is a problem on similar triangles.

Problem 11. Given a right triangle ABC, let CD be the height dropped from the

90� angle. (1) Prove that the triangles ACD, CBD, and ABC are similar. (2) Find

the ratio of the corresponding sides in triangles ACD and BCD.

Proof. Since a good picture usually is 50 % of the successful solution, I advise you

to rotate a typical right triangle ABC so its hypotenuse would become its base.

In such setting you can find relationships between similar triangles better. The next

step is to mark angles of the same measure (Fig. 1.20).
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Let us have ffBAC ¼ α, ffCBA ¼ β. Then ffBCD ¼ α, ffACD ¼ β. Therefore,
ΔACD 	 ΔDCB 	 ΔABC by the two angles (AA) property. In Fig. 1.21, angle α is

shown by one arc and angle β by two arcs. Therefore, triangles DCB and CDB are

similar and the ratio of the corresponding sides is the same. Many students have

difficulties in writing these ratios. Remember that we need to consider the ratio of

only such sides that both are opposite to an angle of the same measure.

Thus, in triangle BDC, side CD is opposite to two arcs. In triangle CDA, side DA
is opposite to the same angle (marked by two arcs). The ratio between the sides is

jCDj=jDAj. On the other hand, in triangle BDC side BD is opposite to angle marked

by one arc as is side CD in triangle CDA. The ratio between these sides can be

written as BD/CD.
Since two ratios of the lengths of the sides are equal,

jCDj
jDAj ¼

jBDj
jCDj or jCDj2 ¼ jBDj � jDAj

D
D A

C

B
A

C B

Fig. 1.20 First sketch for Problem 11

B

D
A

C

Fig. 1.21 Second sketch for Problem 11
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From which we can conclude that CD is the geometric mean (the square root

of the product of the components) of the sides DA and BD. See more on this topic

in Sect. 4.1.

1.4.1 Thales’ Theorem

Similar triangles and their properties were known to Egyptians and Babylonians.

However, we need to give credit to the famous Greek geometer Thales who first

formulated the properties of similar triangles formed by two parallel lines and two

intersecting transversals. He is also the one who measured the height of the Great

Pyramid using shadows.

Thales’ Theorem. If two parallel transversals cut two equal segments on one side

of the angle, then on the other side of the angle they form two other segments of

equal length.

We can say that the Midline Segment Theorem follows from Thales’ Theorem.

The Midline Segment Theorem states that the segment containing two midpoints of

adjacent sides is both parallel and half the length of the respective side. Figure 1.22

illustrates the theorem.

nm

A

C

midpoint

C1

B

B1

AB = 1.21 inches

BC = 1.21 inches

m BB1A = 45°

m CC1A = 45°

AB1 = 1.61 inches

B1C1 = 1.61 inches

Fig. 1.22 Illustration for Thales’ Theorem
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We can see that B is the midpoint of AC because jABj ¼ jBCj ¼ 1:21. Lines m
and n are parallel to each other ðmjjnÞ because they form the same angles (in our

case of 45�) with side AC1. After this construction we obtain segments of equal

length, jAB1j ¼ jB1C1j ¼ 1:61 on the second side.

Proof. Since B is the midpoint of AC and BB1jjCC1 , then B1 is a midpoint of

segment AC1. The proof is completed.

Generalized Thales’ Theorem (The Split Converse Theorem). If on one side

of an angle we construct segments of length n, l, m, p, q,. . .etc., starting from the

vertex of the angle and draw parallel lines through the end points of each segment

until they intersect the other side of the angle, then segments of length n1, l1, m1,

p1, q1 are formed such that n : l : m : p : q ¼ n1 : l1 : m1 : p1 : q1.

The following example will illustrate how this theorem can be applied

(Fig. 1.23).

p

A

B

C

D

B1

C1
D1

AB = 0.21 inches

BC = 0.71 inches

CD = 1.12 inches

AB1 = 0.25 inches

B1C1 = 0.86 inches

AB
BC

= 0.29

AB 1

B1C1
= 0.29

CD = 1.12 inches

C1D1 = 1.36 inches

BC
CD

= 0.63

B1C1

C1D1
= 0.63

AB
CD

= 0.19

AB 1

C1D1
= 0.19

Fig. 1.23 Illustration for generalized Thales’ Theorem
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We measured the lengths of segments AB, BC, and CD on one side of the angle

that were 0.21, 0.71, and 1.12 respectively. Then we constructed parallel lines

through point B, C, and D, obtaining points of the intersection with the second

side of the angle, B1, C1, and D1. We measured distances jAB1j; jB1C1j; and jC1D1j
that were 0.25, 0.86, and 1.36 respectively. The theorem states that jABj : jBCj :
jCDj ¼ jAB1j : jB1C1j : jC1D1j.

This notation means that any corresponding ratios are the same:

jABj
jBCj ¼

jA1B1j
jB1C1j ¼ 0:29

jBCj
jCDj ¼

jB1C1j
jC1D1j ¼ 0:63

jABj
jCDj ¼

jA1B1j
jC1D1j ¼ 0:19

that we can see from Sketchpad measurements.

Proof of the Generalized Thales’ Theorem. Consider two parallel transversals

going through points B and C of the angle above. Assume that jABj : jBCj ¼ k. Let
us show that jAB1j : jB1C1j ¼ k. Since ΔABB1 	 ΔACC1 by the AA property, then

the ratios of the lengths of the corresponding sides are the same (Fig. 1.24)

jACj
jABj ¼

jAC1j
jAB1j ¼ m

C1
A

B

B1

C

Fig. 1.24 Proof of Thales’ Theorem
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From this we can state that

jACj ¼ m � jABj
jAC1j ¼ m � jAB1j
jBCj ¼ jACj � jABj ¼ ðm� 1Þ � jABj
jBC1j ¼ jAC1j � jAB1j ¼ ðm� 1Þ � jAB1j
jB1C1j
jBCj ¼ jAB1j

jABj , jABj
jBCj ¼

jAB1j
jB1C1j ¼ k

Note. If you have difficulties following this proof, please see Appendix A on

proportions and ratios for clarification. From this point forward, AB will be used

in place of |AB| when it is clear from the context that the length of AB is the object

of the reference.

Corollary to Thales’ Theorem. If lines containing segments AC and BD inter-

sect at a point E and E is either:

(1) Interior to both segments AC and BD, or
(2) exterior to both segments AC and BD

and lines ABjjCD, then the triangles AEB and CED are similar.

This is true because in case (1) the triangles share the angle AEB ¼ angle CED
and else in case (2) these two angles are vertical angles. Therefore,EC/EA ¼ ED/EB.

Case 1.

D B

C

A

E

Fig. 1.25 Thales’ Theorem, Case 1
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Case 2.

Several beautiful problems on the application of Thales’ Theorem will be

presented in the “Construction” section.

Problem 12. Prove the Pythagorean Theorem using relations between similar

triangles formed by the height dropped from the vertex of the right angle of the

right triangle.

Proof. Actually this height dropped from a 90� angle is a very important auxiliary

element! For example, as it is shown in Fig. 1.27, triangles DCB and ABC are

similar, then the following is true

x

h

a
b

y

OB D A

C

Fig. 1.27 Proof of Pythagorean Theorem using similar triangles

C

E

B

A

D

Fig. 1.26 Thales’ Theorem, Case 2
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a

x
¼ c

a
; or a2 ¼ x; c ¼ AB (1.5)

And triangles DCA and ABC are similar, then the following is valid

b

y
¼ c

b
; or b2 ¼ yc; xþ y ¼ AB ¼ c (1.6)

Adding (1.5) and (1.6) we obtain: a2 þ b2 ¼ xcþ yc ¼ ðxþ yÞc ¼ c2. The proof
is completed.

In the most of the previous problems sides or angles of triangles are given by

numbers. Try Problem 13 which at first glance has an unusual condition.

Problem 13. Consider a scalene triangleABCwith area S. PointP is in the interior

of ABC. Draw three lines through P parallel to each side of the triangle to form

three triangles with areas S1, S2, and S3. Find S.

Solution. In order to start thinking of this problem I recommend drawing a picture

(Fig. 1.28).

Having a picture, we notice that LEjjAC, MDjjAB, and FNjjBC, then we can

conclude that jLPj ¼ jAMj and jPEj ¼ jNCj. It seems to be reasonable to denote

three variables: a ¼ jAMj , b ¼ jMNj , and c ¼ jNCj . Besides, each of the small

triangles is similar to triangle ABC.

S2

S3

c

S1

a
A

B

C

P

A

B

C

P

F

L

D

E

M N

original triangle
with point P inside

lines parallel to sides
of the triangle pass
through point P

Fig. 1.28 Sketch for Problem 13
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How can we use this information?

Of course, you remember (if not then the proof will be provided in the following

sections) that the ratio of areas of similar triangles equals to the square of the

coefficient of similitude, k2.
However, how can we find these three coefficients?

Again we know the answer to this question: The coefficient of similitude, k, is
the ratio of the corresponding sides of similar triangles. Now we are ready to solve

the problem.

ΔFLP 	 ΔABC ) S1
S
¼ jLPj

jACj
� �2

ΔMPN 	 ΔABC ) S2
S
¼ jMNj

jACj
� �2

ΔPDE 	 ΔABC ) S3
S
¼ jPEj

jACj
� �2

Replacing AC ¼ a + b + c, LP ¼ a, MN ¼ b, and PE ¼ c and taking square

root from the left and the right sides of each equality, we haveffiffiffiffiffi
S1

p ffiffiffi
S

p ¼ a

aþ bþ cffiffiffiffiffi
S2

p ffiffiffi
S

p ¼ b

aþ bþ cffiffiffiffiffi
S3

p ffiffiffi
S

p ¼ c

aþ bþ c

Does it look too far from the answer?

Try to add the left and the right sides. Putting expressions over the common

denominator, we obtain: ffiffiffiffiffi
S1

p þ ffiffiffiffiffi
S2

p þ ffiffiffiffiffi
S3

pffiffiffi
S

p ¼ aþ bþ c

aþ bþ c
¼ 1

that is equivalent to
ffiffiffi
S

p ¼ ffiffiffiffiffi
S1

p þ ffiffiffiffiffi
S2

p þ ffiffiffiffiffi
S3

p
and squaring gives S:

Answer. S ¼ ffiffiffiffiffi
S1

p þ ffiffiffiffiffi
S2

p þ ffiffiffiffiffi
S3

p� �2
:

A similar approach can be used for Problem 14.

Problem 14 (Lidsky). Let P be a point inside an equilateral triangle ABC.Drop
three perpendiculars PD, PE and PF to the sides BC, CA, and AB, respectively.

Show that
jPDjþjPEjþjPFj
jBDjþjCEjþjAFj is a constant and find it.
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Solution. We will draw an equilateral triangle ABC with point P inside the

triangle. Then draw three lines parallel to the side of the triangle through P.
This auxiliary construction will make three other equilateral triangles (shown in

Fig. 1.29 in grayscale) and the sum of their sides equals the length of sides of the

original triangle. Let AB ¼ a. Then the sum of their heights equals the height of

triangle ABC, so that

jPDj þ jPEj þ jPFj ¼ a
ffiffiffi
3

p

2

The other sum jBDj þ jCEj þ jAFj equals the sum of the sides of the shaded

triangles plus half of this sum. Thus, jBDj þ jCEj þ jAFj ¼ 3a=2.

Finally,

jPDj þ jPEj þ jPFj
jBDj þ jCEj þ jAFj ¼

a
ffiffiffi
3

p

2

 3a

2
¼

ffiffiffi
3

p

3

Note that this ratio is a constant and it does not depend on the length of the sides

of the triangle.

The following problem was offered at the 2001 Entrance Exam to Moscow

Lomonosov State University and it requires knowledge of similar triangles.

Problem 15. A triangle ABC is given. Point D is on side AC, such that ffCBD
¼ 2ffABD . Radii of the circles inscribed into triangles BDC and ADB equal

8 and 4 cm, respectively. The distance between tangent points of these circles

with the line AC is
ffiffiffiffiffiffiffiffi
129

p
. Find BD exactly.

E
F

D

B

A C

P

Fig. 1.29 Sketch for Problem 14
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Solution. Let O1 be the center of the circle inscribed into triangle ADB; F and M
are points of tangency with lines DA and BD. Let O2 be the center of the circle

inscribed into triangle BCD; E and N are points of tangency with lines CD and BD
(see Fig. 1.30). Denote mffO2AD ¼ α . Since BO1 and BO2 are bisectors of

angles ABD and DBC, respectively, and using the condition of the problem we

get, mffO2BD ¼ 2α.
Consider triangles BO2N and BO1M. Using the double angle formula for tan 2α

we obtain:

BN ¼ 8

tan 2α
¼ 8ð1� tan2αÞ

2 tan2 α
<

4

tan α
¼ BM

and jDMj < jDNj. Since |DF| ¼ |DM| and |DN| ¼ |DE| (property of a tangent to a

circle), then jDMj þ jDNj ¼ jDEj þ jDFj ¼ jEFj ¼ ffiffiffiffiffiffiffiffi
129

p
.

Since O2D is the bisector of angle CDB, O1D is the bisector of angle ADB, and
angles ADM and NDE are supplementary, we have that mffO1DO2 ¼ 90�.

O1D?O2D and mffO1DM ¼ mffDO2N , then ΔO2ND and ΔDMO1 are similar

triangles by the two angles (AA) property. Also,

jO2Nj
jDMj ¼

jDNj
jO1Mj , jDMj � jDNj ¼ 4 � 8 ¼ 32

Since jDMj < jDNj , jDMj þ jDNj ¼ ffiffiffiffiffiffiffiffi
129

p
and jDMj � jDNj ¼ 32 , then we

obtain

jDMj ¼
ffiffiffiffiffiffiffiffi
129

p � 1

2
and jDNj ¼

ffiffiffiffiffiffiffiffi
129

p þ 1

2

jA

B

CD

O1

F

O2

E

M

N

Fig. 1.30 Sketch for Problem 15
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Let |AN| ¼ x, then |AM| ¼ x + |MN| ¼ x + 1, then tan 2α ¼ 8=x add tan α ¼
4=ðxþ 1Þ: Using the formula for the tangent of a double angle, we obtain the

following equation:

8

x
¼ 2 � 4

xþ 1

 1� 16

ð1þ xÞ2
 !

for which x ¼ 15. Therefore, jBDj ¼ xþ
ffiffiffiffiffiffi
129

p þ1
2

¼
ffiffiffiffiffiffi
129

p þ31
2

:

What was the most important step in solving this problem?

It was probably the fact that triangles ΔO2ND and ΔDMO1 are similar triangles

by the two angles (AA) property.

Answer. jBDj ¼
ffiffiffiffiffiffiffiffi
129

p þ 31

2
:

1.4.2 Menelaus’ Theorem

Menelaus of Alexandria (c. 70–140 AD) was a Greek mathematician who proved a

theorem on the collinearity of points on the edges of a triangle. The theorem has his

name and it is very useful in solving many geometry problems. For its proof, we

will use the properties of similar triangles.

Menelaus’ Theorem. LetABC (Fig. 1.31) be a triangle and let line l cut the sides
of the triangle (extended if necessary) at points D, E, and F. The ratios lengths of

segments are then
jADj
jBDj � jBFjjCFj � jCEjjAEj ¼ 1.

Proof. Let D ¼ AB \ m, E ¼ AC \ m, F ¼ BC \ m. From Fig. 1.31 we can see

that intersecting lines m and BA form two equal vertical angles, one of which is

m

F

E
D

B
C

A

Fig. 1.31 Line intersecting sides of a triangle
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ffBDE. Likewise, intersecting lines m and AC form another pair of vertical angles,

ffAED ¼ ffCEF.
Question. We have two pairs of vertical angles. What kind of construction will

give us two pairs of similar triangles?

Hint. Let us draw a line parallel to side BC and passing through vertex A. What

does it do for us? Figure 1.32 will help you get the answer and further ideas of

solving this problem.

LetGA be parallel toBC, thenΔAGD 	 ΔGFB. Nowwe have two pairs of similar

triangles: ΔGDA 	 ΔBDF and ΔGAE 	 ΔECF: Considering the corresponding

ratios of sides in the similar triangles we obtain:

jDAj
jBDj ¼

jGAj
jBFj ) jGAj ¼ jADj � jBFj

jBDj (1.7)

jAEj
jCEj ¼

jGAj
jCFj ) jGAj ¼ jAEj � jCFj

jCEj (1.8)

Dividing (1.7) by (1.8) and regrouping fractions we have the following:

jADj � jBFj
jBDj � jCEj

jAEj � jEFj ¼
jADj
jBDj �

jBFj
jCFj �

jCEj
jAEj ¼ 1

The proof is completed.

Problem 16. Given a triangle ABC and points K and M on sides AB and AC,
respectively. It is known that AK:KB ¼ 2:3 and AM:MC ¼ 4:5. Find the ratio

at which the point of the intersection of lines KC and BM divides segment BM.

1

1

m

3

3

2

2

G

F

ED

B
C

A

Fig. 1.32 Proof of Menelaus Theorem

1.4 Similar Triangles 33



Solution. First, we will draw a triangle ABC (Fig. 1.33).

LetO be the intersection of lines KC and BM. Let AK ¼ 2x, KB ¼ 3x, AM ¼ 4y,
MC ¼ 5y, so that AB ¼ 5x and AC ¼ 9y. Applying Menelaus’ Theorem to the

triangle ABM and transversal KO, we have

jAKj
jKBj �

jBOj
jOMj �

jMCj
jCAj ¼ 1 ) jBOj

jOMj ¼
9y

5y
� 3x
2x

¼ 27

10

Answer. jBOj:jOMj ¼ 27:10:

1.5 Cevians of a Triangle

A segment from one vertex of a triangle to a point on the opposite side is called a

cevian. Thus, medians, heights, bisectors are cevians of a triangle. A cevian is

named after Giovanni Ceva, an early seventeenth century Italian geometer.

1.5.1 Ceva’s Theorem

If you draw a cevian from each vertex of a triangle, in general, all three cevians will

not run through the same point, as for example in Fig. 1.34.

O

B

A

C

K M

Fig. 1.33 Sketch for Problem 16
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Ceva was very interested in finding the condition under which three lines would

concur and stated his theorem in his paper titled “De lineis rectis se invicem

secantibus, static constructione.” It is interesting that his original proof was based

on mechanical statics. The theorem was stated as:

Let point O be in the plane of a triangle ABC. If the lines connected each vertex with point

Omeet the sides AB, AC and BC in points, C1, B1, A1, respectively and cut on two segments

on each side, then the product of each three segments without common vertex are equal,

(i.e., jAC1j � jBA1j � jCB1j ¼ jAB1j � jCA1j � jBC1j).
I think that this theorem is easier to understand if we mark segments that do not

have a common vertex by different colors. As shown in Fig. 1.35, AC1, BA1, and

CB1, are shown in red, and the other triple remains black.

Below is the proof of the original Ceva’s Theorem (Fig. 1.36).

FB C

A

H

D

Fig. 1.34 Cevians do not concur

B1

C1

A1

A

B

C
O

Fig. 1.35 Original Ceva’s Thereom
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Consider two triangles AOB and AOC (shaded in our sketch) that share the same

side AO. Then the ratio of their areas equals the ratio of their heights BH and CD,
dropped from vertices B and C, respectively. This can be written as

½AOB�
½AOC� ¼

jBHj
jCDj (1.9)

On the other hand, we can recognize a pair of similar right triangles for which

ΔA1HB 	 ΔDCA1, and

jBHj
jCDj ¼

jBA1j
jCA1j (1.10)

Combining (1.9) and (1.10) we can state

AOB½ �
AOC½ � ¼

BA1j j
CA1j j

Without loss of generality we can state similar relationships for two other pairs

of triangles {BOC, BOA} and {COA, COB}. Thus,

½AOB�
½AOC� ¼

jBA1j
jCA1j

½BOC�
½BOA� ¼

jCB1j
jAB1j

½COA�
½COB� ¼

jAC1j
jBC1j

(1.11)

D

H

B1

C1

A1

A

B

C
O

ΔA1HB ∼ ΔDCA1
BH
CD CA1

BA1

Fig. 1.36 Proof of original Ceva’s Theorem
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Multiplying the left and right sides of (1.11) we obtain 1 on the left side:

1 ¼ jBA1j � jCB1j � jAC1j
jCA1j � jAB1j � jBC1j

or the required formula,

jAC1j � jBA1j � jCB1j ¼ jAB1j � jCA1j � jBC1j

Remark. Further in the text, in order to prove formulas (1.11), we instead

of consideration of similar triangles use an algebraic approach based on properties

of equal ratios.

1.5.1.1 Modern Formulation of Ceva’s Theorem

Theorem. Let ABF be any triangle and E be an interior point. If lines from

the vertices passing through E meet at C, D, and H, then it is true that
jBCj
jCFj �

jFHj
jHAj � jADjjDBj ¼ 1.

The theorem actually works in two directions: if the calculation holds, then the

segments concur and if the segments concur, then the calculation holds. Therefore,

three cevians of a triangle concur iff the ratios of the segment lengths they create

satisfy the main equation above.

Remark. In order to use this theorem correctly, one way to remember it is to think

about walking around the triangle. Pick any vertex to start (for example, B), and
walk around in either direction. Insert each segment into the ratios as you come to it

and then they’ll be in the right place.

Proof of Ceva’s Theorem Using Menelaus’ Theorem. Considering Fig. 1.37,

we will apply Menelaus’ Theorem twice. First, consider triangle ABC and let line

DEF be its transversal so that

jBFj
jFCj �

jCEj
jEAj �

jADj
jDBj ¼ 1

Next, applying the same theorem to triangleACF and its transversalBEH, we have

jCEj
jEAj �

jAHj
jHFj �

jFBj
jBCj ¼ 1
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Ceva’s Theorem follows by dividing these two equations

jADj
jDBj �

jBCj
jCFj �

jFHj
jAHj ¼ 1

1.5.1.2 Connection to Menelaus’ Theorem

Suppose we have a triangle ABC and line m is its transversal that crosses sides AB,
BC, and AC at points D, F and E, respectively (Fig. 1.38).

1. By Menelaus’ Theorem for triangle ABC we obtain:

jBFj
jFCj �

jCEj
jEAj �

jADj
jDBj ¼ 1 (1.12)

2. We can connect A and F and form a triangle ABF. Continue BE until its

intersection with AF at H. Then E is the point at which three cevians meet,

FD \ BH \ AC ¼ E (Fig. 1.39).

m

H

F

E

D

B C

A

Fig. 1.37 Proof of Ceva’s Theorem using Menelaus Theorem

m

F

E

D

B C

A

Fig. 1.38 Proof of Ceva’s Theorem, first sketch
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Then from Ceva’s Theorem the following must be also true:

jBCj
jFCj �

jADj
jDBj �

jFHj
jHAj ¼ 1 (1.13)

So if we take points D, C and H on sides AB, BC and FA respectively and (1.13)

is valid then AC, BH and DF intersect at the same point E, concurrent. Moreover,

(1.12) will hold since D, E and F are collinear.

Problem 17. PointsM,N,K belong to sides AB,BC andCA, respectively. jAMj :
jMBj ¼ 1 : 4jBNj : jNCj ¼ 2 : 3, It is known that the cevians AN, BK andCM are

concurrent. What is the ratio jCKj : jKAj?

Solution. First, let us sketch the triangle with intersecting cevians (Fig. 1.40).

m

H

F

E

D

B C

A

Fig. 1.39 Proof of Ceva’s Thereom, auxiliary construction

K

C

E

M

B

N

A

Fig. 1.40 Sketch for Problem 17
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Since the cevians are concurrent then by Ceva’s Theorem the following is valid:

jAMj
jMBj �

jBNj
jNCj �

jCKj
jKAj ¼ 1

Substituting here given ratios we have

1

4
� 2
3
� jCKjjKAj ¼ 1

From which we obtain that |CK|:|KA| ¼ 6:1. Otherwise, the cevians will not

concur (intersect at one point).

Answer. 6:1.

1.5.2 The Median and its Properties

A median of a triangle is a line segment from a vertex to the midpoint of the

opposite side. Three medians of a triangle concur.

Can you prove this now? If not, the answer follows.

Theorem of the Three Medians. (a) All medians of a triangle intersect at one

point (concur), the center of gravity of the triangle. (b) This point divides each

median in the ratio 2:1 starting from a vertex.

Proof. Part (a) can be easily proved using Ceva’s Theorem. Try it yourself

knowing that each median goes through a midpoint of a corresponding segment.

Proof of Part (b). Consider a triangle ABC. The two medians BD and AE have D
and E as midpoints of AC and BC, respectively as shown in Fig. 1.41.

O

FA C

B

D

E

Fig. 1.41 Theorem of Three Medians
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Let AE \ BD ¼ O . Draw a line through midpoint E of segment BC parallel

to BD so that F is the midpoint of segment DC, i.e., jDFj ¼ 1=2 jDCj and also

jDCj ¼ jADj. Note that triangles AOD and AEF are similar. Therefore, it follows

from Thales’ Theorem that jAOj : jOEj ¼ jADj : jDFj ¼ 2 : 1.

The Length of the Median Theorem. Let ma;mb;mc be the medians dropped

to sides a, b, and c, respectively of a triangle. Then (1.14) express the median

lengths in terms of the lengths of the sides.

4ma
2 ¼ 2b2 þ 2c2 � a2

4mb
2 ¼ 2a2 þ 2c2 � b2

4mc
2 ¼ 2a2 þ 2b2 � c2

(1.14)

Proof. Consider Fig. 1.41 and let

AB ¼ c

BC ¼ a

AC ¼ b

AD ¼ b

2

ffBDA ¼ α

ffBDC ¼ π � α

Applying the Law of Cosines to triangles ABD and BDC we obtain

AB2 ¼ AD2 þ BD2 � 2 � AD � BD � cos α;
BC2 ¼ BD2 þ DC2 � 2 � BD � DC � cosðπ � αÞ

or

c2 ¼ b2

4
þ m2

b � b � mb � cos α;

a2 ¼ b2

4
þ m2

b � b � mb � cosðπ � αÞ

Adding the left and the right sides of the expressions and remembering that

cosðπ � αÞ ¼ � cos α , we obtain the desired formula: 4mb
2 ¼ 2a2 þ 2c2 � b2:

The proof is completed.

1.5 Cevians of a Triangle 41



Fact. Each median divides a triangle into two triangles of the same area.

This fact becomes almost obvious if we draw a picture and drop the median and

height from the same vertex of a triangle. In Fig. 1.42, median BD divides triangle

ABC into two triangles, ABD and BDC. If segment BE is perpendicular to AC, then
BE is the height of triangles ABC, ABD, and BDC.

Denoting jBEj ¼ h; jACj ¼ b , and assuming that jADj ¼ jDCj ¼ b=2 (D is a

midpoint by the definition of a median), we can express the areas of all the triangles

in terms of h and b. We will sometimes denote the area of triangle ABC as [ABC] for
simplicity:

½ABD� ¼ 1

2
� jADj � jBEj ¼ 1

2
� b
2
� h; ½BDC� ¼ 1

2
jDCj � jBEj ¼ 1

2
� b
2
� h

Knowing that the area of ½ABC� ¼ 1
2
� b � h, we can see that the area of each small

triangle is exactly one-half of the area of the big triangle ABC. Moreover, we can

state that areas of triangles with the same height are proportional to their bases.

1.5.3 Altitude of a Triangle

A segment from a vertex of a triangle perpendicular to the opposite side is an

altitude (height) of the triangle. The three altitudes of a triangle concur. Can you

prove this?

b/2

m h

A

B

C
D E

b

b/2

Fig. 1.42 Property of a median
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Theorem of the Three Perpendicular Bisectors of a Triangle. The perpen-

dicular bisectors of the sides of a triangle intersect at a single point. This point is

the center of a circumscribed circle. For a right triangle inscribed into a circle,

the center of the circle is the midpoint of the hypotenuse. Thus, the radius of a

circumscribed circle is one-half the hypotenuse and equals the length of the

median dropped from the vertex of the right angle.

Proof. Consider a triangle EFD of Fig. 1.43. The perpendicular bisector of ED is

the set of all points that are equidistant from both E and D. So for any point on the

perpendicular bisector, e.g., point Q, we have EQ ¼ QD. Similarly, since

the perpendicular bisector of segment EF is the set of all points equidistant from

E and F, then for any point on the bisector, e.g., point P, we have (the lengths of)
EP ¼ PF. Next, the point of the intersection of two perpendicular bisectors, O, is
such that it is equidistant from points on D and E and also from points E and F
so that (the lengths of) the segments EO ¼ OD ¼ OF. Finally, if O is equidistant

from D and F, then it lies on the perpendicular bisector of DF. Therefore, the
perpendicular bisectors concur.

Theorem of Three Altitudes of a Triangle. All altitudes of a triangle concur.

Such a point is called the orthocenter of the triangle.

Proof. Let ABC be a given triangle and let us drop perpendiculars from each vertex

to the opposite sides (Fig. 1.43). Next we will draw parallel lines to all sides of the

triangle. Their intersection will form a new triangle DEF. Since AB||DF, AC||EF,
and BC||ED, then ABFC is a parallelogram with AC ¼ BF. On the other hand EBAC
is also parallelogram with sides AC ¼ EB, so that B is a midpoint of EF and BG is

perpendicular to EF. It also follows that BG is the perpendicular bisector of EF.
Using similar arguments we can easily show that C is the midpoint of DF and that

HC is the perpendicular bisector of side DF. Finally line AN is the perpendicular

bisector of ED. However, we know that three perpendicular bisectors of the same

triangle intersect at the same point, its circumcenter. Thus, point O in Fig. 1.43 is

both the circumcenter of triangle EDF and orthocenter of triangle ABC. Therefore,
the three altitudes of a triangle concur.
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Problem 18. If the lengths of two altitudes of a triangle ABC are greater than

1, prove that the area of ABC must be greater than 1/2.

Proof. Let us draw a triangle and drop two altitudes in it (Fig. 1.44).

If ha > 1 and hb > 1 are perpendicular to sides BC and CA, respectively,
then c > ha > 1 and a > hb > 1 since they are hypotenuses of right triangles.

Evaluating the area of triangle ABC yields

½ABC� ¼ ha � a
2

>
1 � a
2

>
1 � 1
2

¼ 1=2

We proved it with elegance.

Some interesting problems on construction including the orthocenter of a trian-

gle are presented in Chapter 4 of the book.

G

N

H

FE

D

O

A

B

C

Fig. 1.43 Theorem of Three Altitudes

c

a

bhb ha

B

C

A

Fig. 1.44 Sketch for Problem 18

44 1 Problems Involving Triangles

http://dx.doi.org/10.1007/978-3-319-00705-2_4


1.5.4 Angle Bisector and its Properties

Theorem of the Three Angle Bisectors. In a triangle all angle bisectors inter-

sect at one point. This point is the center of the circle inscribed into the triangle.

One of the proofs of this statement can be done easily with the use of Ceva’s

Theorem and knowledge of some properties of angle bisectors that are given below.

However, just for demonstration, we sketch

Figure 1.45 with the use of Geometry Sketch Pad and obtain the following:

Triangle Angle Bisector Theorem. A bisector of an angle of a triangle divides

the opposite side of the triangle into segments, which are proportional to the

adjacent sides of the triangle.

The following formulas are valid.

b

c
¼ ab

ac
;

a

b
¼ ca

cb
;

c

a
¼ bc

ba
(1.15)

C

B

A

O

F

E

D
JG

H

AD is the bisector of angle BAC, BE is the bisector
of angle ABC, and CF is the bisector of BCA.

m ACB = 36°

m BAC = 54°

m DAC = 27°m BAD = 27°

m FCA = 18°

m BCF = 18°

m EBC = 45°

m ABE = 45°

OH = 0.62 inches

OJ = 0.62 inches

GO = 0.62 inches

m AGO = 90°m OHA = 90°m BJO = 90°

r=OJ=OH=OG=0.62 is the radius of the inscribed
circle

Fig. 1.45 Three angle bisectors
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For example, in Fig. 1.46, the bisector of ffBAC of triangle ABC divides

the opposite side into segments ab and ac adjacent to sides b and c, respectively,

so that
ab
ac

¼ b

c
.

Proof. Since AD is the bisector of ffBAC, then ffBAD ¼ ffDAC ¼ α. Next, we will
write the areas of triangles BAD and DAC in two different ways: (1) using the half

base and height formula and (2) using a half product of two sides and the angle

between them. Then we have

½DAC�
½BAD� ¼

0:5h � ab
0:5h � ac ¼

0:5b � AD � sin α
0:5c � AD � sin α

Canceling common factors, we obtain the required relation.

Problem 19. Given that the bisector of a right angle of a triangle, ABC, divides
the opposite side into segments of lengths 1 and 2, find [ABC].

Solution. Denote by x and y the legs of the triangle as shown in Fig. 1.47 where the
right angle is ffBAC. From the angle bisector theorem, it follows that if x/y ¼ 1/2,

then y ¼ 2x and y > x.

ac

c
b

ab

h

CB
D

A

Fig. 1.46 Angle bisector
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From the Pythagorean Theorem, x2 þ y2 ¼ ð1þ 2Þ2 ¼ 9. So 5x2 ¼ 9.

At last, the area of the right triangle is 1
2
xy ¼ x�2x

2
¼ x2 ¼ 9

5
¼ 1:8.

Answer. 1.8.

1.5.4.1 Median, Bisector and Height from a Vertex

Here are formulas for the bisector, la, median, ma, and height, ha dropped from the

same vertex to the opposite side, a, of triangle ABC (Fig. 1.48):

la ¼
2bc � cos ffA

2

� �
bþ c

la
2 ¼ bc� ab � ac

ma ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 þ 2c2 � a2

p
ha ¼ bc

a
� sinðffAÞ

Note. By analogy, you can rewrite these with respect to other sides.

1

x
y

2 CB

D

A

Fig. 1.47 Sketch for Problem 19
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Consider further the triangle ABC of Fig. 1.48 where AB ¼ c, CB ¼ a, and
AC ¼ b.M is the midpoint of BC and ma ¼ AM is a median. IfmffBAD ¼ mffDAC,
then la ¼ AD is the bisector of ffBAC . Let BD ¼ ac, DC ¼ ab, AG?BC and

ha ¼ AG is the height of triangle ABC.
The length of the angle bisector can be evaluated in two different ways:

1. The length of the angle bisector dropped to a side of a triangle equals twice the

product of the two other sides of the triangle and the cosine of the half angle

between them divided by the sum of these sides.

la ¼
2bc � cos A

2

bþ c
; lb ¼

2ac � cos B
2

aþ c
; lc ¼

2ab � cos C
2

aþ b
(1.16)

Proof. In order to prove these formulas we will find the areas of triangles ABC,
AMC and BMC (see Fig. 1.49).

a b

b
c la

ha
ma

C

A

B
D GM

a

Fig. 1.48 Median, bisector and height dropped from the same vertex

ac

ba

cb

bc

ca

ab

p -qq

/2

/2

/2/2

/2

/2

L

B

C

A

P

M

b

b

a

a

gg

Fig. 1.49 Length of angle bisector
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½ABC� ¼ 1

2
ACj j � BCj j � sin ffACBð Þ ¼ 1

2
ab sin γ

½AMC� ¼ 1

2
ACj j � MCj j � sin ffACMð Þ ¼ 1

2
alc sin

γ

2

½BMC� ¼ 1

2
BCj j � MCj j � sin ffBCMð Þ ¼ 1

2
blc sin

γ

2

8>>>>>><
>>>>>>:

It is clear that if [ABC] ¼ [AMC] + [BMC], then

1

2
ab sin γ ¼ 1

2
alc sin

γ

2
þ 1

2
blc sin

γ

2

Cancelling common factors and using the formula for the sine of a double angle,

sin γ ¼ 2 sin γ
2
� cos γ

2
, we obtain the equation:

lc ¼
2ab � cos γ

2

aþ b
¼ 2ab � cos C

2

aþ b

2. The square of the angle bisector dropped to a side of a triangle equals the

difference of the product of the lengths of the two other and the product of the

lengths of the segments on which the bisector cuts the side of the triangle, i.e.,

la
2 ¼ bc� abac; lb

2 ¼ ac� babc; lc
2 ¼ ab� cacb (1.17)

Let us use Fig. 1.49 and prove this formula for the length of bisector CN.

Proof. Consider the Cosine Theorem for triangles AMC and BMC.

ACj j2 ¼ AMj j2 þ CMj j2 � 2 AMj j � CMj j � cos ffAMCð Þ
BCj j2 ¼ BMj j2 þ CMj j2 � 2 BMj j � CMj j � cos ffBMCð Þ

(

Angles AMC and BMC are supplementary so cos π � θð Þ ¼ � cos θ where θ ¼
ffBMC. Using the notation of Fig. 1.49, we can rewrite the system as

b2 ¼ c2b þ l2c þ 2cblc cos θ

a2 ¼ c2a þ l2c � 2calc cos θ

(

In order to solve this system we will multiply the top equation by ca
and the bottom by cb and add in order to cancel the 2cbcalc � cos θ term. Now

we have
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a2cb þ b2ca ¼ ca
2cb þ lc

2cb þ cb
2ca þ lc

2ca (1.18)

Is this too far from the formula that we are trying to prove?

Not really if we remember another property of the angle bisector, that is

a

ca
¼ b

cb

acb ¼ bca

(1.19)

We will now rewrite each term in (1.18) in a different form and substitute (1.19)

into it. First, for the left side:

a2cb þ b2cb ¼ a � acb þ b � bca ¼ a � bca þ b � acb ¼ abðca þ cbÞ (1.20)

Now for the right hand side:

cacacb þ cbcbca þ l2c � ðcb þ caÞ ¼ ðcacb þ l2cÞ � ðcb þ caÞ (1.21)

By equating (1.20) to (1.21) and dividing both sides by ðcb þ caÞ, we obtain the

relations for the length of the bisector CM

ab ¼ lc
2 þ ca � cb

lc
2 ¼ ab� ca � cb

The proof is completed. Using arguments similar to these leads us to the proof of

the other two formulas.

Problem 20. Consider triangle ABC with length of AB ¼ 21, BD a bisector of

angle ABC, BD ¼ 8
ffiffiffi
7

p
, and DC ¼ 5. Evaluate the perimeter of the

triangle ABC.

Solution. Let us draw a triangle and mark all known information on it (Fig. 1.50).

In order to evaluate the perimeter we need to find the lengths of sides AD and BC.
Let AD ¼ x and BC ¼ y.
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Using the property of the angle bisector (1.15) and the second formula for its

length (1.17), we obtain the following

AB

BC
¼ AD

DC
) 21

y
¼ x

8

xy ¼ 168 (1.22)

BD2 ¼ AB � BC� AD � DC
8
ffiffiffi
7

p� �2
¼ 21y� 8x

448 ¼ 21y� 8x (1.23)

Next, we will solve the system of (1.22) and (1.23). Remembering the

inequalities x > 0 and y > 0, we obtain the answer

xy ¼ 168

21y ¼ 8xþ 448

(
) xð8xþ 448Þ ¼ 168 � 21

21y ¼ 8xþ 448

(
) x ¼ 7; y ¼ 24

Finally, the perimeter is the sum of sides AB, AD, DC and BC, i.e., P ¼ 60.

Answer. P ¼ 60.

Problem 21 brings together facts on bisectors, medians, and heights.

Problem 21. Consider a right non-isosceles triangle, CAN. A bisector, a median,

and a height are dropped from the vertex of the right angle. Prove that this bisector

is also bisects the angle between the median and height.

21

x

y

8

8 7

B

A

C

D

Fig. 1.50 Sketch for Problem 20
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Solution. Let us draw a picture. Triangle CAN is a right triangle with mffC ¼ 90�.
Segments CB, CM, and CH are the bisector, median, and height, respectively

dropped from the vertex C to side AN.

CB is a bisector, it divides the right angle, ffCAN , into two equal angles, then

mffACB ¼ mffBCN ¼ 45� . We need to prove that mffHCB ¼ mffMCB. Assuming

that mffA ¼ α, we can express other angles in terms of α. In Fig. 1.51, mffN ¼ 90�

� α. Because CH?AN, then we can conclude that mffHCN ¼ α. Now by the angle

additional property we can evaluate the mffHCB in terms of α,

mffHCB ¼ α� 45� (1.24)

How can we show that mffHCB ¼ mffBCM?

Let us recall some properties of right triangles. Let CM be the median dropped

from the 90� angle.
What does this give us?

AM ¼ MN. Yes, but what is else?
IfM is the midpoint of the hypotenuse and the center of the circle circumscribed

over the triangle CAN, then MC ¼ MA ¼ MN!

Fact. Any median dropped from the vertex of a right triangle divides such a

triangle into two isosceles triangles.

Now we can find everything we need. In triangle AMC, if AM ¼ MC, then
mffAMC ¼ mffMCA ¼ α. In the picture, we show all angles equal to α with blue

arcs, angles of 45� with red arcs, and angles of (90� � α) with a double black arc.

Now we can easily determine mffBCM,

a

a

a

90-a

45

N

C

A

M
B

H

Fig. 1.51 Sketch for Problem 21
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mffBCM ¼ mffNCH � mffNCB ¼ α� 45� (1.25)

If the right sides of (1.24) and (1.25) are equal, then the left sides must be equal

and mffHCB ¼ mffMCB.

Fact. A bisectorof the 90�angle of a right triangle also bisects the angle formed

by the height and median dropped from the same vertex as the bisector.

1.6 Area of a Triangle

1.6.1 Five Important Formulas

There are five formulas for calculation of an area of a triangle that are worth being

able to derive and remember:

S ¼ 1

2
a � ha (1.26)

S ¼ 1

2
a � b � sinðffCÞ (1.27)

S ¼ p � r (1.28)

S ¼ abc

4R
(1.29)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞðp� bÞðp� cÞ

p
(1.30)

Here and below a, b, and c are sides of a triangle; A, B, C are the corresponding

opposite angles; ha, hb, and hc are heights dropped to sides a, b, and c, respectively;
p is a semiperimeter of a triangle; r is the radius of the circle inscribed into a triangle
(inradius); R is the radius of the circle circumscribed about a triangle

(circumradius). If the first two formulas are well known, the last three are not.

Nevertheless, formulas (1.26)–(1.30) are very useful.

Let us show how each formula can be derived. The proofs can vary so I

encourage you to find your own proof.

Problem 22. Prove that the area of a triangle equals half the product of its base

and corresponding height: S ¼ 1
2
a � ha.
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Proof. Draw a triangle ABC and fill it up to the rectangle as it is shown in Fig. 1.52

below.

We can see that the area of triangle ABC is exactly the sum of the areas of two

yellow triangles, that is half of the rectangle area, that is S ¼ ½ABC� ¼ 1
2
a � ha.

Problem 23. Prove that the area of a triangle is half of the product of two sides

and the sine of the angle between them, i.e., S ¼ 1
2
a � b � sinðffCÞ.

Proof. Let us sketch a scalene triangle ABC and mark its height and vertices

(Fig. 1.53).

On one hand, its area is S ¼ ½ABC� ¼ 1
2
a � h. On the other hand, from the right

triangle ADB, its leg (AD ¼ h) can be written as a product of the hypotenuse

(AC ¼ b) and the sine of the opposite angle (ffC). After substitution we have

C a

h

B

A

D

Fig. 1.52 Sketch for Problem 22 (proof of formula (1.26))

a

b h

C
B

A

D

Fig. 1.53 Sketch for Problem 23 (proof of formula (1.27))
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S ¼ ½ABC� ¼ 1

2
a � h ¼ 1

2
a � b sinðffCÞ

Problem 24. Find the formula for calculation of the area of a triangle if its sides

a, b, c and the radius of the inscribed circle, r, are given.

Solution. Hence we need to prove that S ¼ p ∙ r. First, we’ll draw a nice picture

(Fig. 1.54).

In this sketch, the circle with centerO is tangent to sides a, b, and c at points J,H,
and G, respectively and has radius r ¼ OH ¼ OJ ¼ OG.

How can we use these data in order to find the area?

Everyone remembers that the area of a triangle equals one-half base times

height. But we are not given a height and it would be difficult to find it.

Remember that if we cut some figure into parts, the sum of the areas of all parts

equals the area of the original figure. Much like assembling a puzzle, we put the

pieces together. Let us divide the triangle into pieces with areas we can calculate.

The inscribed circle is tangent to each side of the triangle. What does it mean?

It means that the radius of the circle is perpendicular to each side of the triangle.

c

b

a

A

B

C

O

H

G J

Fig. 1.54 Problem 24
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Let us add the radius to our sketch (Fig. 1.55). Three radii are shown in red

connecting the center of the circle, O, with each vertex of the triangle, A, B, and C.
We have divided the big triangle ABC into three small triangles: AOB, BOC, and
AOC. They have the same height, r, and known bases, a, b, and c. We can find the

area of each small triangle and in turn the area of the big triangle, S.

S4ABC ¼ S4AOB þ S4BOC þ S4AOC

¼ 1

2
c � r þ 1

2
b � r þ 1

2
a � r

¼ 1

2
rðcþ bþ aÞ ¼ r � p

Constructing an auxiliary element and a good, accurate sketch allowed us not

only to solve this problem in one step but simultaneously to prove formula (1.28).

I personally never tried to memorize formula (1.28), but once I proved it I always

could derive it.

Now I want to offer the following problem.

Problem 25. A right triangle with legs of length 3 and 4 in. is given. Find the

radius of the inscribed circle.

Solution. We have to calculate the radius of the inscribed circle so we can again

use formula (1.28) or the idea of how we proved it. Let us draw a picture.

c

b

ar
r

r

A

B

C

O

H

G J

Fig. 1.55 Axillary construction for Problem 24 (proof of formula (1.28))
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Knowing two legs, we always can find the hypotenuse using the Pythagorean

Theorem. It is 5 in. Dividing the triangle into three triangles (Fig. 1.56b), and

assuming that r is the radius of the circle, we can express the area as

S4ABC ¼ 1

2
� 4 � r þ 1

2
� 3 � r þ 1

2
� 5 � r ¼ 1

2
r � 12 ¼ 6r (1.31)

On the other hand, because ABC is a right triangle, its area can be found

differently as

S4ABC ¼ 1

2
AC � BC ¼ 1

2
� 4 � 3 ¼ 6 (1.32)

Since expressions (1.31) and (1.32) have the same left sides, their right sides

must be equal as well so that 6r ¼ 6 and r ¼ 1.

Answer. The radius of the inscribed circle is 1 in.

Problem 26. Prove that the area of a triangle can be evaluated asS ¼ abc
4R , where

a, b, and c are the sides of a triangle and R is the radius of the circumscribed

circle.

Proof. Sometimes students are afraid to prove this formula thinking that it is too

difficult. However, those who try always prove it right away. We will sketch a

triangle inscribed into a circle of radius R (Fig. 1.57).

3

4

5

r

3

4 5

r

r
r

C B

A

C B

A
a b

Fig. 1.56 Sketch for Problem 25
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Next, we will use the formula for its area proven previously

S ¼ 1

2
a � b � sinðffCÞ

Angle C is marked on our sketch by a red arc and is shorthand for the angle ACB.
Since triangle ABC is inscribed in the circle, the following relation between its

inscribed (ACB) and central (AOB) angles is true:

ffC ¼ ffACB ¼ 1

2
ffAOB

On the other hand, triangle AOB is an isosceles triangle with vertex angle AOB.
If D is the midpoint of AB, then

ffDOB ¼ 1

2
ffAOB ¼ ffC

From the right triangle ODB we have

DB ¼ OB � sinðffACBÞ
c

2
¼ R sinðffCÞ

The last formula can be solved as

sinðffCÞ ¼ c

2R

b

a

OA=OB=OC=R
AB=c

D

C

A

B
O

Fig. 1.57 Sketch for Problem 26 (proof of formula (1.29))
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After substituting this formula into the original area formula we finally get

S ¼ ½ABC� ¼ 1

2
a � b � c

2R
¼ abc

4R

The proof is completed.

Problem 27. Given a triangle ABC with circumradius R ¼ ffiffiffi
3

p � 1 and side AB

¼ ffiffiffi
2

p
. It is given that pointsE andD are on sidesAB andBC, respectively such that

ffBAD ¼ 2ffDAC, ffBCE ¼ 2ffECA, and AB � CE ¼ BC � AD. Find the area of

triangle ABC.

Solution. Let ffDAC ¼ α; ffECA ¼ β ) ffBAD ¼ 2α; ffBCE ¼ 2β (Fig. 1.58).

Using the Triangle Angle Theorem we now know that ffB ¼ 180� � 3ðαþ βÞ;
ffADC ¼ 180� � ðαþ 3βÞ ) ffADB ¼ αþ 3β.

Applying the Law of Sines for triangles ABD and CEB, respectively, we obtain

AB

AD
¼ sin ffADB

sin ffABD ¼ sinðαþ 3βÞ
sinð3ðαþ βÞÞ

BC

CE
¼ sin ffBEC

sin ffCBE ¼ sinð3αþ βÞ
sinð3ðαþ βÞÞ

We simplified our formulas above with sinð180� � γÞ ¼ sin γ.

ba
A C

B

E

D

Fig. 1.58 Sketch for Problem 27
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Since we can rewrite the condition of the problem AB ∙ CE ¼ BC ∙ AD in a

different form as

AB

AD
¼ BC

CE

then from the previous equalities it follows that

sinðαþ 3βÞ ¼ sinð3αþ βÞ

Many students at this pointmake amistake by equating the arguments of the sines!

Instead we need to apply standard trigonometric formulas for the difference of

sine functions:

sin x� sin y ¼ 2 sin
x� y

2
� cos xþ y

2

and obtain

sin 3αþ βð Þ � sin αþ 3βð Þ ¼ 0

2 sin α� βð Þ � cos 2 αþ βð Þð Þ ¼ 0

By the zero product property, we equate each factor individually to zero.

Case 1. sin α� βð Þ ¼ 0

Case 2. cos 2αþ 2βð Þ ¼ 0

Since for any triangle the sum of any two angles is less than 180�, from the two

cases we know that 3αþ 3β < 180� , αþ β < 60� or αþ β < π
3
.

Do you remember how to solve trigonometric equations?

If you have completely forgotten trigonometry, let’s recall the definitions of sine

and cosine using the unit circle idea (Fig. 1.59).

1

0.5

-0.5

-1

-2 -1 1 2 3 4

A(x,y)

O B

Fig. 1.59 Point A on the unit circle
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Sine is the y-coordinate of a point on the unit circle (of radius 1).

Cosine is the x-coordinate of a point on the unit circle.

Thus, any point on the unit circle can have coordinates only within the interval

[�1, 1]. Let us assume that the point (say A in the graph above) corresponds to

the angle t. (∡BOA). We can conclude that functions sine and cosine have the same

range [�1, 1] and can be written as

� 1 � sin t � 1 and� 1 � cos t � 1 (1.33)

From the same picture we can see that sin t ¼ 0 would correspond to two points

on the horizontal diameter of the unit circle for angle t ¼ 0 and t ¼ π within each

revolution, then in general t ¼ π � n; n ¼ 0;�1;�2 . . .
On the other hand, cost ¼ 0 (the first coordinate equals zero) corresponds to two

points on the vertical diameter of the unit circle for the angle t ¼ π
2
; 3π
2
, which in

general can be written as t ¼ π
2
þ πn; n ¼ 0;�1;�2 . . .

Next, we can solve our equations for cases 1 and 2:

Case 1

sinðα� βÞ ¼ 0; αþ β <
π

3

α� β ¼ π � n; n 2 Z

α ¼ β

Case 2

cosð2αþ 2βÞ ¼ 0; αþ β <
π

3

2αþ 2β ¼ π

2
þ π � n

αþ β ¼ π

4
þ π

2
� n

αþ β ¼ π

4

We can see that our problem will have different answers determined by the two

cases:

Case1. α ¼ β.

The triangle ABC is an isosceles and AB ¼ BC ¼ ffiffiffi
2

p
. Its area can be found as

half the product of the sides and the sine of the included angle.

[ABC] ¼ 1
2
� AB � BC � sin ffBð Þ ¼ sin ffBð Þ ¼ sin 180� � 3αþ 3βð Þð Þ ¼ sin 6α:

Hence, we need to evaluate sin 6α and this will complete Case 1.

How can we find it? What do we have for that? What condition of the problem

has not been used?

It is the radius of the circumscribed circle!

Using this formula we can write

sin ffBACð Þ ¼ sin 3α ¼ BD

2R
¼

ffiffiffi
2

p

2
ffiffiffi
3

p � 1
� � ¼ ffiffiffi

2
p ffiffiffi

3
p þ 1
� �

4
:
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Can we evaluate sin 6α using the value of sin 3α?
Yes we can if we recall the formula of the sine of double angle

sin 6α ¼ 2 sin 3α � cos 3α and then replace

cos 3α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin23α

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
3

p þ 1
� �2

8

s
¼

ffiffiffi
3

p � 1

2
ffiffiffi
2

p :

Therefore, in Case 1, the area of triangle ABC,

ABC½ � ¼ 2 sin 3α cos 3α ¼ ð1þ ffiffiffi
3

p Þð1� ffiffiffi
3

p Þ
4

¼ 1

2
:

Case 2. αþ β ¼ π
4

By the Law of Sines we have,

BC

sin 3α
¼ AB

sin 3β

BC ¼ AB sin 3α

sin 3β
¼

ffiffiffi
2

p � sin 3π
4
� 3β

� �
sin 3β

¼ cot 3β þ 1

You probably noticed that our plane geometry problem became mostly a trigo-

nometric problem. Without knowledge of trigonometry, many relations would not

be found. The problem can serve as a short review of trig. For example, let’s see

how the last formula can be obtained:

sinðx� yÞ ¼ sin x cos y� sin y cos x

sin
3π

4
� 3β

� �
¼ sin

3π

4
cos 3β � sin 3β cos

3π

4

¼
ffiffiffi
2

p

2
cos 3β � �

ffiffiffi
2

p

2

� �
sin 3β

¼
ffiffiffi
2

p

2
cos 3β þ sin 3βð Þ

Multiplying by
ffiffi
2

p
sin 3β and after simplification we get. BC ¼ cot 3β þ 1.

We want to evaluate cot3β using the value of sin3β. If we again use the unit

circle idea then we will see that for any value of sin3β there will be two possible

values of cot3β (one positive and the other negative). We will consider two cases

again:

A. If cot 3β > 0, then BC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
sin2 3β

� 1
q

þ 1 ¼ 3� ffiffiffiffi
3:

p

B. If cot 3β < 0, then BC ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
sin2 3β

� 1
q

þ 1 ¼ ffiffiffi
3

p � 1:
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The area may be one of two other values depending on Cases A and B.

Case A. cot 3β > 0

ABC½ � ¼ 1

2
� AB � BC � sin ffBð Þ

¼ 1

2
�
ffiffiffi
2

p
� 3�

ffiffiffi
3

p� �
sin 180� � 3αþ 3βð Þð Þ

¼ 3� ffiffiffi
3

p� �ffiffiffi
2

p � sin 3 αþ βð Þð Þ

¼ 3� ffiffiffi
3

p� �ffiffiffi
2

p sin
3π

4

¼ 3� ffiffiffi
3

p� �ffiffiffi
2

p � 1ffiffiffi
2

p ¼ 3� ffiffiffi
3

p� �
2

:

Case B. cot 3β < 0

ABC½ � ¼ 1

2
� AB � BC � sin ffB

¼ 1

2
�
ffiffiffi
2

p
�

ffiffiffi
3

p
� 1

� �
sin 3 αþ βð Þð Þ

¼
ffiffiffi
3

p � 1
� �ffiffiffi

2
p sin

3π

4
¼

ffiffiffi
3

p � 1
� �

2
:

Answer. Depending on the considered cases, there are three total possible values

of the area of triangle ABC: 1
2
,

3� ffiffi
3

pð Þ
2

, and

ffiffi
3

p �1ð Þ
2

.

Note. When I gave this problem to my graduate students in a History of Math class

as homework, all of them tried to solve it but nobody got all three cases. Remember

that in order to do well in problem solving, we always have to consider the most

general case.

1.6.1.1 Heron’s Formula

In this section we will show some proofs of Heron’s Formula:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞðp� bÞðp� cÞ

p
Heron of Alexandriawas a mathematician who lived from 10 to 75 AD, taught at

the Museum of Alexandria, and wrote his famous proofs in notebooks. Although the

authorship of some of the works attributed to Heron are disputed, it is believed that
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Heron derived his famous formula himself by considering cyclic quadrilaterals.

Later many famous mathematicians tried to prove the formula because it looks

quite unusual. For example, Euler proved it using relations between similar

triangles. Some modern proofs include the use of cosine and sine formulae for a

triangle (e.g., see Gardner’s book by Cambridge University Press). It is interesting

that mathematicians are still trying to find new proofs for this formula. In fact, in

January 2012, a review of different proofs was presented by Professor Dunham at

his plenary talk of the annual AMS meeting.

By Heron’s formula, we can evaluate an area of any triangle if we are given the

lengths of all sides. Here I will go over two proofs of the formula: one algebraic and

one geometric. Heron’s and Euler’s Proofs can be found in (Dunham 1991).

Raifaizen’s Algebraic Proof. Claude Raifaizen created a proof that primarily

relied on algebra. The first step was to construct △ABC. Denote CP, is the height
and AB as the base (Fig. 1.60).

Let CD ¼ h, then by the Pythagorean formula,

AD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � h2

p

DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p

;c ¼ AB ¼ ADþ DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p

Observing that, c∙h ¼ 2A where A is the area, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � h2

p
¼ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � h2

p

a2 � h2 ¼ c2 � 2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � h2

p
þ b2 � h2

a2 � b2 � c2
� �2 ¼ 4c2 b2 � h2

� � ¼ 4b2c2 � 4c2h2

a2 � b2 � c2
� �2 ¼ 4c2 b2 � h2

� � ¼ 4b2c2 � 4c2h2

a2 � b2 � c2
� �2 ¼ 4b2c2 � 16A2

A

BC=a

CD=h

AC=b

D
B

C

Fig. 1.60 Raifaizen Proof of Heron’s Formula
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then

16A2 ¼ 4b2c2 � a2 � b2 � c2
� �2

¼ 2bc� a2 þ b2 þ c2
� �

2bcþ a2 � b2 � c2
� �

¼
h
b2 þ 2bcþ c2
� �� a2

i
a2 � b� cð Þ2
h i

¼ bþ cð Þ2 � a2
h i

a2 � b� cð Þ2
h i

¼ bþ cþ að Þ bþ c� að Þ a� bþ cð Þ aþ b� cð Þ
¼ aþ bþ cð Þ aþ bþ c� 2að Þ aþ bþ c� 2bð Þ aþ bþ c� 2cð Þ

Letting a + b + c ¼ 2p, we get

16A2 ¼ 2pð Þ 2p� 2að Þ 2p� 2bð Þ 2p� 2cð Þ
A2 ¼ p p� að Þ p� bð Þ p� cð Þ
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þ p� bð Þ p� cð Þ

p
Raifaizen’s algebraic approach with its single construction stands in contrast to

the geometric proofs of Heron and Euler with their multitude of constructions

(Raifaizen 1971). The Pythagorean Theorem is used at the beginning of this

theorem to define the side lengths which is incorporated into the area formula.

After several steps of algebraic simplification, the formula is solved for area. This is

an excellent proof for those who know only basic algebra and substitution, or who

have trouble with geometric theorems. However, it also a very abstract proof with

little to aid visualization.

Nelsen’s Geometric Proof. Roger Nelsen stated two lemmas (we actually proved

one of them earlier in the chapter) as well as constructed several figures to prove

Heron’s formula in his “proof without words.” ConsiderΔABCwith side lengths of

a, b, c and bisected angles that locate the center of the incircle. Extending the

inradius to each side of the triangle creates six smaller triangles, as seen in Fig. 1.61.

CAO= OAB= a
ACO= OCB= g
CBO=–OBA=b

r

r
r

y

y

z
z

x

x

D
E

F

O

A B

C

–
–

–
–

–

Fig. 1.61 Nelsen’s Geometric Proof
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Here we note that the semiperimeter, p, can be defined as one-half the

perimeter,

p ¼ xþ yþ z ¼ xþ a ¼ yþ b ¼ zþ c

So far, Nelsen has done little different from Heron, however the next step is to

prove two lemmas from which “Heron’s formula readily follows.”

Lemma 2. The area A of a triangle is equal to the product of its inradius and

semiperimeter.

Proof. Figure 1.62 shows ΔABC with two of the inside triangles shaded and the

height of the triangles labeled as r.

Then the area of the triangle can be written as

A ¼ r xþ yþ zð Þ ¼ rp

Lemma 3. If α, β, and γ are positive angles such that αþ β þ γ ¼ π
2
, then tan α�

tan β þ tan β � tan γ þ tan γ � tan α ¼ 1 (Nelsen 2001).

Proof. Knowing that α, β, and γ are half of the sum of the angles of the original

triangle, it follows that their sum is half of 180� or π/2 in radians. Figure 1.63 proves
this relation.

r

r
r

y

y

z
z

x

x

D
E

F

O

A B

C

Fig. 1.62 Evaluating the area of a triangle
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Let us explain his construction step by step. First, the angles were combined in

the bottom left of a rectangle with the side length of 1. With this we are able to

discern that the opposite side of the large triangle with angle α is going to equal

tan α and the hypotenuse would equal sec α. Secondly, looking at the triangle with

angle β and side length of sec α, we find that the other side length is sec α tan β.
Thirdly, we look at the small triangle with angle α and hypotenuse of sec α tan β.
Observe that the adjacent side is tan β and the opposite side is tan α tan β. Finally,
from the last triangle with angle γ, we observe that the adjacent length is equal to

the top length of the rectangle which is tan αþ tan β . We can therefore find the

length of the side opposite of angle γ as tan γðtan αþ tan βÞ. This side length can be
expanded to tan α tan γ þ tan β tan γ which is added to the remaining portion of the

rectangle’s side length of tan α tan β, giving us tan α tan β þ tan α tan γ þ tan β tan γ.
This is the opposite side of the rectangle, 1. Therefore the lemma has been proved.

Using Lemma 2 and Lemma 3 stated by Nelsen we can finish the proof of the

Heron’s formula. Consider Lemma 3,

1 ¼ tan α tan β þ tan β tan γ þ tan γ tan α

and replace the tangents of all angles by the ratios from the original picture of the

triangle ABD:

1 ¼ r

x
� r
y
þ r

y
� r
z
þ r

z
� r
x
¼ r2ðxþ yþ zÞ

xyz
¼ r2p

xyz
¼ r2p2

pxyz
¼ A2

pxyz

Now, we will apply Lemma 2, A ¼ rðxþ yþ zÞ. After algebraic manipulations

we obtain

sec tan
sec

tan +tan

tan (tan +tanb )

tan tan

tantan

1

ba

ag

a b
a

a b

ba
a

g
ba

Fig. 1.63 Illustration of Lemma 3
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A2 ¼ pxyzð Þ2
pxyz

¼ pxyz ¼ p p� að Þ p� bð Þ p� cð Þ

Taking the square root of both sides we conclude the proof (Nelsen 2001).

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þ p� bð Þ p� cð Þ

p
Remark. Of course, this proof is not purely geometric. Nelsen used trigonometry

and algebraic manipulations as well as descriptions of the steps of the proof.

There is no proof without words.

The following problems will demonstrate how important it is to know Heron’s

formula.

Problem 28. Peter has drawn a triangle with sides 11, 13 and 6. Can you help

him to evaluate the area of the triangle?

Solution. Using Heron’s Formula, we can help Peter right away. First, we will

calculate half the perimeter, p ¼ 1
2
11þ 13þ 6ð Þ ¼ 15. Replacing p, a, b, and c into

(1.30) we obtain the area of the triangle:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞðp� bÞðp� cÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ð15� 11Þð15� 13Þð15� 6Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 � 4 � 2 � 9

p

¼ 6
ffiffiffiffiffi
30

p
� 32:86 in:2

Answer. Area of triangle is 6
ffiffiffiffiffi
30

p
in:2.

Are you ready for another proof?

Problem 29. Prove that for any triangle, the inequalityha �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þp

is valid.

Here ha is the height dropped to side a and p is the semiperimeter.

Proof. We will equate the area of a triangle written in terms of ha with that of

Heron’s Formula,

S ¼ aha
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞðp� bÞðp� cÞ

p
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and obtain formula for ha:

ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞ

p
� 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� bÞðp� cÞp
a

Let us prove that

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� bÞðp� cÞp
a

< 1; i:e:; that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� bÞðp� cÞ

p
� a

2

First, we substitute the formula for the semiperimeter, p ¼ aþbþc
2

and use

the relationship between the arithmetic and geometric meanffiffiffiffiffi
xy

p � xþy
2
; x > 0; y > 0

� �
to give

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� bÞðp� cÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ c� b

2
� aþ b� c

2

r
�

aþc�b
2

þ aþb�c
2

2
¼ a

2

Since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� bÞðp� cÞ

p
� a

2
) 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp� bÞðp� cÞp

a
� 2

a
� a
2
¼ 1

we have that

ha �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p� að Þ

p
Remark. Formulas similar to Heron’s Formula can be used for finding the areas

of other geometric figures, such as the cyclic quadrilaterals which are discussed

in Chapter 3.

1.6.2 Important Lemmas on the Area of a Triangle

Now we will see how algebra can help us obtain some interesting relationships

between the sides of a triangle and its heights. For this purpose, we are going to use

only the well-known formula (1.26) written in three different ways:

S ¼ 1

2
a � ha (1.34)

S ¼ 1

2
b � hb (1.35)
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S ¼ 1

2
c � hc (1.36)

Of course, you understand that because any triangle has three sides, we can drop

three different heights to those sides and calculate the area of the triangle three

different ways. Dividing the left hand sides and the right hand sides of (1.34) and

(1.35) by each other we obtain:

1 ¼ a � ha
b � hb

or in a different form:

a

b
¼ hb

ha

Applying the same procedure with (1.34) and (1.36) as well as with (1.35) and

(1.36), we can get the following three equations:

a

b
¼ hb

ha
;

a

c
¼ hc

ha
;

c

b
¼ hb

hc
(1.37)

Formulas (1.37) give us new information which we state in Lemma 4.

Lemma 4. The lengths of the sides of a triangle are inversely proportional to the

corresponding heights.

Problem 30. Consider a scalene triangle in which two sides equal 10 and 15 in.

A height dropped to the side of 15 in. has length 6 in. Find the height to side of

10 in.

Solution. Because sides are inversely proportional to their heights, we obtain
10
15
¼ 6

x , where x the unknown second height. Solving the proportion we have

x ¼ 9 in. You do not have to memorize all formulas. What is more important is

to remember some ideas we used to prove such formulas. Solving the problem, you

can think of what relations connect the lengths of the sides to the heights of a

triangle. It is a formula of an area! Writing this formula in two different ways as
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S ¼ 1

2
� 15 � 6

S ¼ 1

2
� 10 � x

we can see that if the left sides are equal, then the right sides are equal. So

90 ¼ 10x.

Answer. 9 in.

Lemma 5. If two triangles are similar with the coefficient of similitude k then
the ratio of their areas equals k2.

Prove this statement by writing the areas of each triangle in terms of half of the

product of the adjacent sides and the concluded angle.

Hint. The corresponding angles of similar triangles are the same and that the ratio

of the corresponding sides equals k.
What if the heights of two triangles are the same, but the lengths of their bases is

not? What can we say about the relationship between their areas?

Lemma 6. If two triangles have a common vertex and their sides that are opposite

to this vertex lie on the same line, then the ratio of the areas of the triangles equals

the ratio of the corresponding bases.

Proof. Triangles ABC and BDE have common vertex B and because their bases,

AC and DE lie on the same line (AE) then they also have the same height (BH).

H
A E

B

C D

Fig. 1.64 Lemma 6
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The height is the length of the perpendicular from vertex B to AE. Expressing the

area of each triangle in terms of that height and corresponding base and taking the

ratio of the areas we have that (Fig. 1.64):

½ABC�
½DBE� ¼

1
2
� ACj j � BHj j

1
2
� DEj j � BHj j ¼

ACj j
DEj j (1.38)

What if two triangles have a common side?

In that case we have the following relations which we state as a Corollary to

Lemma 6.

Corollary. When a cevian divides a triangle, the areas of the two resulting triangles

are in the same ratio as the two parts of the side to which the cevian is drawn.

Prove this Corollary by solving Problem 31.

Problem 31. A cevian BD dropped from the vertex B divides a triangle ABC

into two triangles, ABD and BDC. Prove that the following is true:
½ABD�
½BDC� ¼ ADj j

DCj j .

Hint. Write down both areas in terms of the half product of the corresponding

height and base. Both triangles have the same height.

If the heights of triangles are equivalent, the areas are related by the proportions

of the lengths of their bases. Lemma 7 gives us a way to visualize this algebraic

relationship (Fig. 1.65).

H
A C

B

D

Fig. 1.65 Sketch for Problem 31
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Lemma 7. Consider two parallel lines, n and m, such that line n is above m and

place points A andC on linem and the set of pointsB1;B2;B3; . . .Bi; . . . on line n.
Then all triangles with base AC and a vertex on line n will have the same

area. ½AB1C� ¼ ½AB2C� ¼ � � � ¼ ½ABiC� ¼ S.

Alternatively, we can hold the lengths of the bases as a constant while we vary

the proportion of the heights (Fig. 1.66).

Lemma 8. If two triangles have a side of the same length, then the ratio of their

areas equal the ratio of their altitudes dropped to that side.

Proof. Consider two triangles ACB and ADB with the same base AB and altitudes

CE ¼ h1 and DF ¼ h2 respectively. If we write the area of each triangle with

respect to the base AB and evaluate the ratio, the proof will be complete.

½ABC�
½ABD� ¼

1
2
ACj j � CEj j

1
2
ACj j � DFj j ¼

CEj j
DFj j ¼ h1 : h2

Let’s test our understanding of the invariance of areas of triangles by solving

Problems 32 and 33 (Fig. 1.67).

j
DA C

B2B1 Bi F

Fig. 1.66 Lemma 7
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Problem 32. If ha, hb, and hc are the corresponding altitudes of the triangle ABC
and r is the radius of its inscribed circle, prove that r

ha
þ r

hb
þ r

hc
¼ 1.

Proof. Consider a triangle ABC (Fig. 1.68) with an inscribed circle of radius

r ¼ OF ¼ OE ¼ OD.

Note that the triangles AOB and ACB have a common base, AB, so that by

Lemma 8,

AOB½ �
ACB½ � ¼

OFj j
CHj j ¼

r

hc

Similarly, for pairs of the triangles (AOC, ABC) and (COB, ABC) we have AOC½ �
ACB½ �

¼ r
hb
. If we add all three formulas and use the fact that the small triangles compose

triangle ABC, we will obtain the desired equality:

FE
A B

C

D

Fig. 1.67 Lemma 8

r

HF

D

E

O

A

C

B

Fig. 1.68 Sketch for Problem 32
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r

ha
þ r

hb
þ r

hc
¼ COB½ �

ACB½ � þ
COA½ �
ACB½ � þ

AOB½ �
ACB½ �

¼ COB½ � þ COA½ � þ AOB½ �
ACB½ �

¼ ACB½ �
ACB½ � ¼ 1

Problem 33. Points N and M of the cevian BX are located so that the area of

triangle MNC is 2/7 of the area of triangle ABC. Find the area of triangle ANM
if |AX|:|XC| ¼ 3:5 and [ABC] ¼ S.

Solution. Using Fig. 1.69 we can write the following relationships for the areas of

the shaded triangles

½AMX�
½XMC� ¼

3

5
¼ k ¼ ½ANX�

½XNC� ¼
½ANX� � ½AMX�
½XNC� � ½XMC� ¼

½ANM�
½NMC�

Here we used the following property about ratios: (See more about properties of

ratios in Appendix A)

k ¼ a

b
¼ c

d
) c� a

d � b
¼ k Since c ¼ d � k; a ¼ b � k; c� a ¼ kðd � bÞð Þ

so ANM½ � ¼ 3
5
� 2
7
S ¼ 6S

35
.

A

B

C
X

N

M

Fig. 1.69 Problem 33
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1.6.3 Proof of Ceva’s Theorem by Ratio of the Areas

Assume that all three cevians intersect at a single point P as shown in Fig. 1.70.We

need to prove that

AZj j
ZBj j �

BXj j
XCj j �

CYj j
YAj j ¼ 1

The idea is to find each ratio separately and then multiply them together.

Notice that segments BX and XC are bases for the pairs of triangles (BAX, BPX)
and (XAC, XPC), respectively. Thus,

BXj j
XCj j ¼

BXP½ �
CXP½ � ¼

BXA½ �
CXA½ �

These ratios can be rewritten in a different form as in Problem 33.

Therefore,

BXj j
XCj j ¼

BXA½ � � BXP½ �
CXA½ � � CXP½ � ¼

BPA½ �
APB½ � (1.39)

By exactly the same reasoning, with the use of triangle-pairs (PAY, BAY) and
(YPC, BYC) we get similar ratios:

CYj j
YAj j ¼

PYC½ �
APY½ � ¼

BYC½ �
ABY½ � ¼

BPC½ �
BAP½ � (1.40)

AZj j
ZBj j ¼

ACP½ �
BPC½ � (1.41)

Fig. 1.70 Ratio of the areas
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Multiplying the ratios (1.39)–(1.41) together we prove the forward implication

of Ceva’s Theorem.

AZj j
ZBj j �

BXj j
XCj j �

CYj j
YAj j ¼ 1

We must prove the reverse implication of the equivalence in order to prove the

theorem completely.

Assume that the given segments BY and CZ in Fig. 1.70 intersect at point P and

that a cevian from A intersects segment BC at point M. Suppose also that the

product using that cevian is also 1, but that the fact that the cevian passes through

P is unknown. That is, suppose

AZj j
ZBj j �

BMj j
MCj j �

CYj j
YAj j ¼ 1

Since the cevian that goes through P clearly ends at X, by the first part of Ceva’s
Theorem, we can compare the two equations and obtain that the following ratios are

equal: |BX|/|XC| and |BM|/|MC|. However, this occurs if and only if points X and M
are the same points, i.e., segment AM equals AX and the cevian from A passes

through P. Therefore, if the product of the corresponding ratios equals 1, then all

three cevians concur. That’s what we wanted to prove for the backwards

implications so the proof is complete.

1.6.4 Vector Form of Menelaus’ Theorem

Theorem. Given a triangle ABC let points C1, B1, and A1 be on sides AB, AC,
and BC, respectively. Points C1, B1, and A1 are collinear (lie on the same line) iff

AC1
		!
C1B
		! � BA1

		!
A1C
		! � CB1

		!
B1A
		! ¼ �1

For the collinear vectors AC1
		!

and C1B
		!

; we have that AC1
		!
C1B
		! ¼ �AC1

C1B
.

The sign depends on whether the two vectors have the same (+) or opposite (�)

direction. This form of Menelaus’ Theorem is useful when the position of the points

with respect to each other can change (see Appendix A for the proof of this

statement).

Please try to solve Problem 34 offered at the USAMO 2012 as the fifth problem

by yourself before looking at the solutions given.
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Problem 34. Let P be a point in the plane of triangle ABC, and m is a line

passing through P. Let A1, B1, and C1 be the points where the reflections of

lines PA, PB, PC with respect to m intersect the lines BC, AC, AB, respec-
tively. Prove that A1, B1, and C1 are collinear (Fig. 1.71).

Solution. Let us first draw a triangle and make the required constructions for the

problem. Remember that it usually takes three or four sketches in order to make a

good one. Clearly when a problem is understood, some lines can be erased in order

not to work with a messy picture.

After constructing all reflections about line m and marking their intersections

with the corresponding sides, we can draw a dashed line through points A1, B1 and

C1 (if you used a ruler then you probably would have three points on that line).

Next, let us assume that three points were collinear so that we can rename the line

that passes through as n. Since the line usually will not be parallel to any side of the
triangle (particular cases can be considered separately) then such a line must divide

sides of the triangle ABC in the ratios satisfying Menelaus’ Theorem.

Without loss of generality can we prove that BA1
		!
A1C
		! � CB1

		!
B1A
		! � AC1

		!
C1B
		! ¼ �1 and then

conclude that A1, B1, and C1 are on the same line, i.e., collinear?

nm

C1

B1

A1
B

C

A P

Fig. 1.71 Sketch 1 for Problem 34
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We will emphasize only such elements that we will use in our proof and make

invisible everything that makes our drawing messy. First, consider triangles BPA1

andA1PC (we show their sides in purple in Fig. 1.72). They have a common vertexP.
The sides opposite to P both lie on the same line (BC). Therefore, the triangles have
the same height! It means that the ratio of their areas equals the ratio of their bases.

On the other hand, each area can be written using the formulas on two sides and the

sine of the angle between them (Fig. 1.72).

Next, we can write down the relation:

BA1
		!
A1C
		! ¼ BPA1½ �

A1PC½ � ¼
1
2
� PB � PA1 sin ffBPA1

1
2
� PC � PA1 sin ffA1PC

¼ PB

PC

sin ffBPA1

sin ffA1PC
(1.42)

m

C1

B1

A1
B

C

A P

X

Fig. 1.72 Sketch 2 for Problem 35
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Likewise, for the triangles shown partially in blue, APB1 and PB1C we obtain:

CB1
		!
B1A
		! ¼ CPB1½ �

A1PA½ � ¼
PC

PA

sin ffCPB1

sin ffB1PA
(1.43)

Considering triangles BC1P and AC1P, we have

AC1
		!
C1B
		! ¼ APC1½ �

C1PB½ � ¼
PA

PB

sin ffAPC1

sin ffC1PB
(1.44)

Let X be a point of line m. Then by reflection properties and construction it is

obvious that

ffBPX ¼ �ffB1PX; ffAPX ¼ �ffA1PX; ffCPX ¼ �ffC1PX (1.45)

Additionally,

ffBPA1 ¼ ffBPX þ ffXPA1 ¼ �ðffB1PX þ ffXPAÞ ¼ �ffB1PA (1.46)

Similarly,

ffCPB1 ¼ �ffC1PB; ffAPC1 ¼ �ffA1PC (1.47)

Multiplying (1.42), (1.43), and (1.44) while using (1.45)–(1.47) as well as the

property of the Sine function that sinð�xÞ ¼ � sin x, we have the following chain of
the equations:

BA1
		!
A1C
		! CB1

		!
B1A
		! AC1

		!
C1B
		! ¼ PB

PC

sin ffBPA1

sin ffA1PC

PC

PA

sin ffCPB1

sin ffB1PA

PA

PB

sin ffAPC1

sin ffC1PB

¼ sin ffBPA1

sin ffA1PC

sin ffCPB1

sin ffB1PA

sin ffAPC1

sin ffC1PB

¼ sin ffBPA1

sin ffB1PA
� sin ffCPB1

sin ffC1PB
� sin ffAPC1

sin ffA1PC

¼ ð�1Þð�1Þð�1Þ ¼ �1

This proves that points A1, B1, and C1 are on the same line.

1.7 Homework on Triangles

1. Find an acute angle between the medians of an isosceles right triangle dropped

from vertices of its acute angles.

Answer. arccos(4/5).

80 1 Problems Involving Triangles



Hint. Use the property of the medians and the Law of Cosines.

Solution. Consider a right triangle ABC with the right angle C and legs of

length a ¼ BC ¼ AC and the medians AD and BE (Fig. 1.73).

Applying the Pythagorean Theorem to the right triangle ACD we obtain that

AD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a

2

� �2q
¼ a

ffiffi
5

p
2

¼ BE.

The medians are cut by the point of intersection O in the ratio 2:1 starting

from the vertex. Thus, OD ¼ 1
3
AD ¼ a

ffiffi
5

p
6
;BO ¼ 2

3
BE ¼ a

ffiffi
5

p
3
;BD ¼ a

2

Denote angle DOB by α and consider the Law of Cosines for triangle BDO,
in which we know the length of all sides:

a

2

� �2
¼ a

ffiffiffi
5

p

6

 !2

þ a
ffiffiffi
5

p

3

 !2

� 2 � a
ffiffiffi
5

p

6

 !
a
ffiffiffi
5

p

3

 !
cos α

cos α ¼ 4

5
; α ¼ arccos

4

5

� �

2. Find the angles of a right triangle such that its hypotenuse is twice longer than

one of its legs.

Answer. 30, 60, and 90�.

3. The sides of a right triangle are integers less than or equal to 10 and form an

arithmetic progression. Find the perimeter of such triangle.

Answer. 12 or 24.

Solution. Let a, b, and c be sides of a triangle, such that a < b < c. Using that

fact that a, b, and c are terms of arithmetic progression and assuming that its

common difference equals d, we can write Pythagorean theorem for the right

triangle:

aþ dð Þ2 þ a2 ¼ aþ 2dð Þ2
a2 � 2ad � 3d2 ¼ 0

α
O

ED

B

C

A

Fig. 1.73 Acute angle between the medians
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Factoring the last quadratic expression yields

aþ dð Þ a� 3dð Þ ¼ 0;

that gives us two options for a: a ¼ �d and a ¼ 3d. We choose a ¼ 3d because
a > 0 and natural number. Now we can evaluate possible values of d.
Number c ¼ a + 2d ¼ 5d � 10, then d � 2, d ¼ 1 or d ¼ 2 only.

(a) If d ¼ 1, then a ¼ 3, b ¼ 3 + 1 ¼ 4, c ¼ 4 + 1 ¼ 5. In a triple (3, 4, 5) all

numbers less than 10. The perimeter of such a triangle, P, is given as

P ¼ 3 + 4 + 5 ¼ 12.

(b) If d ¼ 2, then a ¼ 6, b ¼ 6 + 2 ¼ 8, and c ¼ 8 + 2 ¼ 10. In a triple (6, 8,

10) all sides again less than or equal to 10. Perimeter of the second triangle

equals P ¼ 6 + 8 + 10 ¼ 24.

4. The base angles of some isosceles triangle are 80�. Point D is on segment AC
and point E is on AB such that mffDBC ¼ 60� and mffECB ¼ 50� . Find the

angle EDB.

Answer. 30�.

5. Point D is in the interior of triangle ABC. Lines AD, BD, and CD intersect the

sides of the triangle at points E, F, and G, respectively. Find the ratio CF: FA if

it is known that AG
GB ¼ p and BE

EC ¼ q.

Answer.
1

pq
.

Hint. Draw a triangle ABC and three cevians AE, BF and CG though point D

in the interior of the triangle. Apply Ceva’s Theorem, CF
FA � AGGB � BEEC ¼ 1 and solve

for CF
FA

6. AC ¼ b and AB ¼ c are two sides of a scalene triangle ABC. Angle A is twice

angle B. Find the length of side a.

Answer. a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ bc

p
:

Hint. Use trigonometric relations of a right triangle; the Law of Sines, and the

trigonometric formulas for sine and cosine of a double angle.

Solution. In the triangle ABC of Fig. 1.74, AC ¼ b, CB ¼ a (it needs to be

found), AB ¼ c. Denote α ¼ ffCBA; 2α ¼ ffCAB. Let CD be the height of the

triangle.

c

b
a

α2α

DA
B

C

Fig. 1.74 Finding the length of side a
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(a) AB ¼ AD + DB ¼ c ¼ b cos 2αþ a cos α. Using the trigonometric identity

cos 2α ¼ 2cos2α� 1 and solving the first equation for a: a ¼ c�bð2cos2α�1Þ
cos α

that is

a cos α ¼ c� 2bcos2αþ b (1.48)

(b) Applying the Law of Sines to triangle ABC and the formula for the sine of

the double angle (sin2x ¼ 2sinx ∙ cosx):

a

sin 2α
¼ b

sin α
a

2 cos α
¼ b

so

a ¼ 2b cos α (1.49)

(c) Multiplying (1.48) by 2b and substituting into (1.49) we finally have

a � 2b � cos α ¼ 2bc� 4b2cos2αþ 2b2

a2 ¼ 2bc� a2 þ 2b2

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ bc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ cÞ

p
7. Triangle ABC is inscribed in a circle. A median AM is drawn so that it intersects

the circle at point D. It is known that AB ¼ 1 and BD ¼ 1. Find BC.

Answer.
ffiffiffi
2

p

8. Find the area of a triangle with sides of lengths 6,
ffiffiffiffi
2;

p
and

ffiffiffiffiffi
50

p
.

Answer. 3.

Hint. Use Heron’s formula.

Solution. If p is the semiperimeter, then p ¼ 6þ ffiffi
2

p þ5
ffiffi
2

p
2

¼ 3þ 3
ffiffiffi
2

p
.

Area ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ 3

ffiffiffi
2

p
Þð3

ffiffiffi
2

p
� 3Þð3þ 2

ffiffiffi
2

p
Þð3� 2

ffiffiffi
2

pq
Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9 � 2� 9Þð9� 4 � 2Þ

p
¼

ffiffiffi
9

p
¼ 3

9. Find all angles of a triangle in which the centers of inscribed and circumscribed

circles are symmetric with respect to one side.

Answer. 36, 36, and 108�.
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10. A height and a bisector of a right triangle dropped from the vertex of the right

angle equals 3 and 4 respectively. Find the area of a triangle.

Answer. 72.

11. An acute triangle has two sides of lengths 4 and 6. The area of the triangle is

6
ffiffiffi
3

p
. Find the length of the third side.

Answer. 2
ffiffiffi
7

p
.

12. Is there a triangle such that

(a) All its heights are less than 1, but its area is greater than 100?

(b) Two heights are greater than 100, but its area is less than 1?

Answer. (a) Such a triangle exists. (b) No.

Hint. See Problem 18.

Solution to (b). If ha > 100 and hb > 100 are perpendicular to sides BC and

CA, respectively, then c > ha > 100 and a > hb > 100 since they are

hypotenuses of right triangles.

Evaluating the area of triangle ABC yields ABC½ � ¼ ha�a
2

> 100�100
2

> 5; 000,

which cannot be less than 1.

13. The area of an isosceles triangle equals 1/3 of the area of the square shown in

Fig. 1.75. The leg of the triangle is 1 in. shorter than its base. Find the lengths of

the sides of the triangle and its altitude.

Answer. AB ¼ 6, BC ¼ 5, and AH ¼ 4.

Solution.

(a) BC2 ¼ 3 � 1
3
BC � AH ) AH ¼ 2

3
BC.

(b) AH2 ¼ AB2 � ð0:5BCÞ2, this yields 4
9
BC2 ¼ AB2 � 1

4
BC2, orAB2 ¼ 25

36
BC2

so AB ¼ 5
6
BC.

(c) Noticing that BC is 1 in. longer than AB, we obtain AB ¼ 5
6
ðABþ 1Þ )

AB ¼ 5, BC ¼ 6, and AH ¼ 4.

B CH

A

Fig. 1.75 Triangle inside a square
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14. Height CH is dropped from the vertex of the 90� angle of a right triangle ABC.
Where on the segment BH do we need to place a point M such that segments

AH, AM, and CM would form a right triangle?

Solution. Denote AH ¼ d, CH ¼ h, and HM ¼ x. Then AM2 ¼ d þ xð Þ2 and

CM2 ¼ h2 þ x2 . We have to find x. By the Pythagorean Theorem applied to

triangle formed by sides AH, AM, and CM, we have that

AM2 ¼ AH2 þ CM2

d þ xð Þ2 ¼ d2 þ h2 þ x2

h2 ¼ 2dx (1.50)

On the other hand, CH is the geometric mean of AH and HB, then

h2 ¼ d � HB (1.51)

Combining (1.50) and (1.51) we will find that x ¼ HB/2. So M must be the

midpoint of segment HB.
15. Prove that for any triangle that the sum of the medians is

(a) Less than P (perimeter)

(b) Greater than (3/4)P.

Proof of (a). Consider a triangle ABC andCD ¼ mc, its median. Draw line AC0

parallel to side CB and line BC0 parallel to AC. Assume that the two lines

intersect at point C0. Therefore ACBC0 is a parallelogram such that AC ¼ C0B;
AC0 ¼ CB; CC0 ¼ 2mc. Next, we can use the triangle existence inequality for

triangle ACC0 : CC0 < AC0 þ AC
or

2mc < aþ b (1.52)

Using two other mediansma;mb and making similar parallelogram construc-

tion for each median, we will obtain additionally the following

2ma < bþ c (1.53)

2mb < aþ c (1.54)

Adding the left the right sides of all inequalities we obtain

2ma þ 2mb þ 2mc < bþ cþ aþ cþ aþ b ¼ 2P

Dividing the both sides by 2, we finally can state the desired fact:

ma þ mb þ mc < P:
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Proof of (b). Again consider triangle ABC with sides a, b, and c such that its

medians ma, mb, and mc concur at point O. Using the triangle inequality we find
that for triangle ACO

AC < COþ AO:

Because the medians are divided by the point of their intersection in the

ration 2:1 then the inequality above can be rewritten as

b <
2

3
mc þ mað Þ:

Similarly for triangles AOB and COB, respectively we can write

c <
2

3
mb þ mað Þ

a <
2

3
mc þ mbð Þ

If we add the inequalities for a, b, and c above, we have that the perimeter

(P ¼ a + b + c) of the triangle satisfies,

P ¼ aþ bþ c <
4

3
ma þ mb þ mcð Þ:

Finally, ma þ mb þ mc >
3
4
P. The proof is complete.

16. Consider triangle ABC with sides a and b. Prove that its area satisfies:

S ¼ ½ABC� � a2 þ b2

4

Under what condition does this inequality become an equality?

Proof. First, use (1.27) for the area of a triangle, ABC. Secondly, by the

application of the boundedness of sine by 1 together with the inequality

between the arithmetic and geometric means, we have that

S ¼ ABC½ � ¼ 1

2
� ab sin ffCð Þ � ab

2
� a2 þ b2

4

Under what condition does this inequality becomes an equality? The geo-

metric and arithmetic means above satisfy the inequality: a2þb2

4
¼ 1

2

a2þb2ð Þ
2

� 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

¼ ab
2
. The equal sign occurs iff a ¼ b. Moreover, such a triangle

would be an isosceles and right triangle.
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17. A triangle has heights 3, 4, and 5. What is the type of the triangle? (Scalene,

obtuse, equilateral, etc.).

Hint. Express the sides of the triangle in terms of its area and then compare the

square of one side with the sum of the squares of two other sides.

Solution. Rewrite formula (1.26) in three different ways as S ¼ ABC½ � ¼ aha
2
¼

bhb
2
¼ chc

2

Substituting the values of the heightsha ¼ 3; hb ¼ 2; hc ¼ 5 into this formula

we have the length of each side in terms of S: a ¼ 2S
3
; b ¼ S

2
; c ¼ 2S

5
. The largest

side here is a. Let us compare the square of this side with the sum of the squares

of two other sides.

a2 ¼ 4S2

9
; b2 ¼ S2

4
; c ¼ 4S2

25

4S2

9
>

S2

4
þ 4S2

25
¼ 41S2

100
, a2 > b2 þ c2

Therefore the triangle is obtuse.

18. Find the type of a triangle with the following length of the medians: 3, 4, and 5.

Hint. Evaluate the sides of the triangle using formulas (1.14) for the length of a

median. Then compare the square of the longest side with the sum of the

squares of two other sides.

Answer. All angles are less than 90�. (Acute triangle).

19. In a triangle ABC there are two points P and Q on side AC, such that AP > AQ.
The lines BP and BQ divide the median AM into three equal parts. It is known

that PQ ¼ 3. Find the length of side AC.

Solution. Consider a triangle ABC. Since AM is the median and BQ and BP
divides it into three equal parts that is AR ¼ RS ¼ SM, then

jASj:jSMj ¼ 2:1.

By the property of the three medians, point S is the point at which all three

medians concur. Therefore, BP is a median of triangle ABC and AP ¼ PC
(Fig. 1.76).
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Denote the length of AQ as x. Since P is the midpoint of AC and since

QP ¼ 3, by the condition of the problem we have that

PC ¼ AP ¼ AQ + QP ¼ x + 3 and AC ¼ 2x + 6.

We need to find x.
Consider a triangle AMC with RQ as a transversal. From the Menelaus’

Theorem we have

MRj j
RAj j �

AQj j
QCj j �

CBj j
BMj j ¼ 1

Each ratio of the formula above can be found separately. Thus,

MRj j
RAj j ¼

2

1

AQj j
ACj j ¼

x

xþ 3þ 3
¼ x

xþ 6

CBj j
BMj j ¼

2

1

Multiplying the left and right hand sides each of the above three equations

together we obtain

4x

xþ 6
¼ 1

x ¼ 2

ACj j ¼ 2 � 2þ 6 ¼ 10

Answer. |AC| ¼ 10.

20. (Lidsky) The medians dropped to sides a and b of a triangle are perpendicular.

Find the third side of a triangle. Under what condition such a triangle exists?

M

x

R

S

A

B

C
PQ

Fig. 1.76 The median divided into three equal parts
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Solution Part 1. We need to find the length of the unknown side.

Recall what we remember about medians: (a) a median cuts the opposite side

into two equal parts. (b) Three medians concur, and (c) each median is divided

by the point of their intersection in the ratio 2:1 starting from the vertex.

Denote DO ¼ x and OF ¼ y. From Fig. 1.77 we have the that CB ¼ a,

DB ¼ a
2
, AC ¼ b, and FA ¼ b

2

From the right triangles DOB, FOA, and DOF we have the system

x2 þ 2yð Þ2 ¼ a

2

� �2
y2 þ 2xð Þ2 ¼ b

2

� �2

x2 þ y2 ¼ c

2

� �2

8>>>>>>><
>>>>>>>:

If we add the first two equations together and substitute the result into the

third one as it is shown below, we obtain

20 x2 þ y2
� � ¼ 5 � 4 x2 þ y2

� � ¼ a2 þ b2

4 x2 þ y2
� � ¼ c2

5c2 ¼ a2 þ b2

c2 ¼ a2 þ b2

5

a

c

b

y

x

c

2

O

C

B

A

F

D

Fig. 1.77 Problem on two perpendicular medians
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AB ¼ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

5

r

Part 2. Under what condition does a triangle with sides a; b; c ¼
ffiffiffiffiffiffiffiffiffi
a2þb2

5

q
exist?

We have to understand that the answer is valid only when we define the value

of the parameters a and b so that we can make a triangle with the given sides.

For example, assume that a ¼ 1, b ¼ 2, then c ¼ 1 (calculated by formula).

However, such a triangle does not exist because it does not satisfy the side

triangle inequality condition, i.e., each side must be shorter than the sum of two

other sides (2 ¼ 1 + 1).

Consider all three triangle existence inequalities

c < aþ b

a < bþ c

b < aþ c

8><
>:

We can also to rewrite it as

c < aþ b

a� b < c

b� a < c

8><
>: , c2 < aþ bð Þ2

c2 > ða� bÞ2
(

Next, we will substitute the value of c2 into each inequality and solve it.

c2 ¼ a2 þ b2

5
< aþ bð Þ2 is always true

c2 ¼ a2 þ b2

5
> aþ bð Þ2: This will need to solved

5 a� bð Þ2 < a2 þ b2

5a2 � 10abþ 5b2 � a2 � b2 < 0

4a2 � 10abþ 4b2 < 0

In order to simplify this inequality we will divide both sides by 2b2 and then
consider a quadratic inequality for new variable z ¼ a/b (Fig. 1.78):

2
a

b

� �2
� 5

a

b
þ 2 < 0; z ¼ a

b

2z2 � 5zþ 2 < 0

z1 ¼ 5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 � 4 � 2 � 2

p

2 � 2 ¼ 2

z2 ¼ 1

2
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Since a parabola with a positive leading coefficient takes a negative value

only between its two real zeros, the answer would be 1
2
< z < 2, which can be

rewritten as

1

2
<

a

b
< 2

This is why such a triangle can have sides a ¼ b ¼ 1. The inequality is

satisfied 1
2
< 1 < 2but cannot have sidesa ¼ 1; b ¼ 2 or a

b ¼ 1
2

� �
because then

1
2
< 1

2
< 2 is false.

8

6

4

2

-2

-10 -5 5 10

q x( ) = g x( )

g x( ) = 2⋅x2-5⋅x( )+2

Fig. 1.78 Parabola
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Chapter 2

Quadrilaterals and Other Polygons

2.1 Convex and Nonconvex Polygons

A convex polygon is one in which no part of a line segment connecting any two

parts of the polygon is outside the polygon. So certainly the polygon below is

nonconvex because it does not obey the definition of convexity (part of the line

segment FG is outside of the polygon’s interior) (Fig. 2.1).

E

D

C
B

A

F

G

Fig. 2.1 Nonconvex polygon

E. Grigorieva, Methods of Solving Complex Geometry Problems,
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2.1.1 Properties of Convex Polygons

Sum of the Interior Angles. For any convex polygon the sum of all interior angles

is n� 2ð Þ � 180� , where n is the number of sides of the polygon. Thus, for

a quadrilateral, n ¼ 4, and the sum of all interior angles is 360�. As we know,

the sum of all interior angles in a triangle is 180�.
How can we use this fact?

Maybe we can divide a given convex polygon into nonoverlapping triangles by

connecting some of its vertices. For example, let us draw a pentagon and connect its

vertices in such a way that only nonoverlapping triangles will be formed as shown

in Fig. 2.2.

We will get the sum of all interior angles of the pentagon if we add together

angles 1, 2, 3, 4, 5, 6, 7, 8, and 9. However, each triple of angles (1–2–3), (4–8–9),

and (5–6–7) will give us 180� for a total of 180� ∙ 3 ¼ 540�. Thus, for any n-gon,
there are exactly (n � 2) nonoverlapping triangles, each of which have angles that

sum to 180�. Therefore, the sum of all interior angles in a convex polygon is

(n � 2) ∙ 180�.
An exterior angle of a polygon is an angle between the extension of one of the

sides of the polygon and the outside of the polygon. Each such angle is a supple-

ment of an adjacent interior angle, so the interior plus exterior angle equals 180�

(Fig. 2.3).

1

C

F n

2

9

8

7

65

4

3

D C

B

A

Fig. 2.2 Sum of the interior angles
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For example, for the interior angle 1 (DFA) there is exterior angle HFA.
Together they make a supplemental couple.

Exterior Angles Polygon Sum Theorem. The sum of the measures of the

exterior angles, one at each vertex of any convex polygon is 360�.

Any convex polygon with four sides is a convex quadrilateral. Squares,

rectangles, parallelograms, rhombuses, trapezoids, and kites are examples of con-

vex quadrilaterals and most problems given in this book are related to them.

2.2 Parallelograms

• Opposite sides of any parallelogram are equal, opposite angles are equal, and

a sum of adjacent angles equals 180�, or π.
• If opposite sides of a quadrilateral are equal or two opposite sides are equal and

parallel to each other, then such a quadrilateral is a parallelogram.

• A quadrilateral is a parallelogram if and only if its diagonals bisect each other.

(It means that the point of intersection of the diagonals is the midpoint of each

diagonal.)

• There is an equality for any parallelogram: d21 þ d22 ¼ 2 a2 þ b2ð Þ, where a and b
are sides and d1 and d2 are the diagonals.

1

Cm∠HFA = 58.37°

m∠DFA = 121.63°

F

D

C

B

A

H

Fig. 2.3 Exterior angles of a polygon
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• A rhombus is a particular case of a parallelogram such that its diagonals bisect

corresponding angles, bisect each other, and are perpendicular to each other.

• A rectangle is a parallelogram such that adjacent sides are perpendicular to each

other. The diagonals of each rectangle are equal.

• The diagonals of a square are perpendicular to each other and equal. Of course,

each square is a particular case of a rectangle.

2.2.1 Varignon’s Theorem

Varignon’s Theorem is a statement in Euclidean geometry by Pierre Varignon

that was first published in 1731. It deals with the construction of a particular

parallelogram (Varignon parallelogram) from an arbitrary quadrangle (another

name for a quadrilateral).

Themidpoints of the sides of an arbitrary quadrangle form a parallelogram. If the quadrangle

is convex, then the area of the parallelogram is half as large as the area of the quadrangle.

You will prove the first part of the theorem by solving Problem 35

Problem 35. Prove that if consecutive midpoints of all sides of a quadrilateral

are connected, that they form a parallelogram.

Solution. I have watched many students trying to solve this problem. Many of

them draw a nice, accurate picture of the problem. From the picture, they make a

conclusion: “It is always a parallelogram.” Yes, an accurate picture is 50 % of a

successful solution in geometry, but it is not the solution itself.

M

L

K

N

M

L

K

N

B

C

DA

B

C

A D

a b

Fig. 2.4 Varignon’ Theorem
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My students showed me a picture like Fig. 2.4a. ABCD is a general quadrilateral

andM, N, K, and L are midpoints. We connect them and getMNKL shown in red that

looks like a rectangle. We must show that the opposite sides of MNKL are parallel.

Do you remember that in any triangle a midpoint line is parallel to the base of a

triangle? In the original sketch we can see four triangles but none of them contains

its midsegment.

Can we construct such a triangle?

Yes. First we will connect vertices A and C. To distinguish our additional

construction from the original we will show this segment, AC, in green. Now let

us look at the triangle ABC. You can see that MN is parallel to AC. Further, in
triangle ACD, KL is a midpoint segment and KL is parallel to AC. We know that if

two different lines are parallel to the third line, then they are parallel to each other.

Moreover, since triangles ABC and ACD have the same base, AC, it follows that
their midpoint segments are equal. This can be written as

MN k AC

KL k AC

MN ¼ 1

2
AC

KL ¼ 1

2
AC

9>>>>>>>=
>>>>>>>;

) MN k KL;MN ¼ KL (2.1)

Now construct the second segment, BD shown in blue in Fig. 2.4b. Considering

triangles BDC and ABD we conclude that

ML k BD

NK k BD

ML ¼ 1

2
BD

NK ¼ 1

2
BD

9>>>>>>>=
>>>>>>>;

) ML k NK;ML ¼ NK (2.2)

Combining (2.1) and (2.2) we obtained a sufficient property of a parallelogram.

Yes, MNKL is always a parallelogram.

Problem 36. Prove the second part of the Varignon’s Theorem that “If the

quadrangle is convex, then the area of the parallelogram is half as big as the

area of the quadrangle.”
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Proof. Consider the second picture of the previous problem. Let the area of the

original convex quadrilateral be S. We can see that the area of the parallelogram

MNKL can be written as

Area MNKLð Þ ¼ S� ½AML� þ ½NCK� þ ½BNM� þ ½LKD�ð Þ

Using relations between similar triangles we obtain

AML½ � ¼ 1

4
ABD½ �; ΔAML � ΔABD

NCK½ � ¼ 1

4
BCD½ �; ΔNCK � ΔBCD

BNM½ � ¼ 1

4
ABC½ �; ΔBNM � ΔABC

LKD½ � ¼ 1

4
ACD½ �; ΔLKD � ΔACD

If we add the left and the right sides of these relationships we obtain the following:

½AML� þ ½NCK� þ ½BNM� þ ½LKD� ¼ 1

4
½ABD� þ ½BCD� þ ½ABC� þ ½ACD�ð Þ

On the other hand, pairs of the triangles (ABD, BCD) and (ABC, ACD) make the

original quadrilateral that can be written in terms of areas as

ABD½ � þ BCD½ � ¼ ABC½ � þ ACD½ � ¼ S

then

ABD½ � þ BCD½ � þ ABC½ � þ ACD½ � ¼ 2S

Therefore,

AreaðMNKLÞ ¼ S� 1

4
� 2S ¼ S

2

The proof is completed.

After solving Problem 36, Problem 37 will look familiar to you.

Problem 37. A quadrilateral with diagonals d1 and d2 is given. Prove that the
parallelogram obtained by connecting the midpoints of the original quadrilat-

eral has a perimeter of d1 + d2.
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Proof. Let us again use Fig. 2.4b from the previous problem. The perimeter of

MNKL can be calculated as MN + NK + KL + LM. We have that MN ¼ LK ¼
½AC and NK ¼ LM ¼ ½BD, so with AC ¼ d1 and BD ¼ d2, we have

P ¼ 1

2
d1 þ 1

2
d2 þ 1

2
d1 þ 1

2
d2 ¼ d1 þ d2

This completed our proof.

Use a ruler for Problem 38 so the constructions will be as neat as required.

Problem 38 (Lidsky). A parallelogram with area S is given. Each vertex of the
parallelogram is connected by a line segment to the midpoints of the two

opposite sides. Find the area of the polygon that is formed by the intersection

of the all line segments.

Solution. Construct a parallelogram and connect each of its vertices with the

midpoints of two opposite sides. As a result we obtain a polygon with eight sides

as shown in Fig. 2.5.

In order to evaluate its area, we will need an additional (auxiliary) construction,

i.e., we will need to connect the midpoints of the adjacent sides.

Connect the midpoints of opposite sides (e.g., E to D and G to H ) as shown in

Fig. 2.6. Additionally, connect points A and M of the parallelogram. From the

figure, we can see that the entire parallelogram consists of eight equal area triangles

(e.g., triangle AOE). On the other hand, the 8-gon also consists of eight triangles

with areas equal the area of triangle POQ.
We have to find the relation between the area of the small triangle, POQ, shown

in red and the area of the large triangle, AOE. Since P is the point of intersections of

Q

P

D

EA

Fig. 2.5 First sketch for Problem 38
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the medians in triangle DAE, then PO ¼ 1/3 OA and OQ ¼ 1/2 OE, then ½POQ�
¼ ⅙ � [AOE]. Therefore, the area of the green 8-gon is S/6.

Students may think that a square is the simplest geometric figure imaginable;

nonetheless there are many good problems concerning squares.

Problem 39. The areas of a square and a circle are equal. Which is bigger: the

circumference of the circle or the perimeter of the square?

Solution. Let us assume that the square has side a and the circle has radius R.

Using the condition of the problem, we can write the equation: πR2 ¼ a2 and

a ¼ ffiffiffi
π

p
R. Let us express the circumference and perimeter in terms of R and then

compare the expressions:

P of square ¼ 4
ffiffiffi
π

p
R

P of circle ¼ 2πR

In order to compare the formulas, we can the divide the perimeter of the circle by

that of the square giving
ffiffi
π

p
2
. Now compare

ffiffi
π

p
2
to 1. Pretending that we don’t have a

calculator, let us do it mentally. What is
ffiffiffi
π

p
? It is some irrational number. But how

big is it? π � 3:14 < 4, then
ffiffiffi
π

p
<

ffiffiffi
4

p
, and

ffiffi
π

p
2
<

ffiffi
4

p
2
¼ 2

2
¼ 1. Because the ratio is

less than 1, the circumference is less than the perimeter of the square.

Problem 40. A side of a square is a. The midpoints of its sides are joined to

form an inscribed square. This process is continued as shown in the diagram.

Find the sum of the perimeters of the squares if the process is continued without

end (Fig. 2.7).

O

Q

P

D

G
H

E

M

A

Fig. 2.6 Second sketch for Problem 38
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Solution. From the diagram we can see that sides of the black squares form a

geometric progression with the first term of a and common ratio
1

2
:

a;
a

2
;
a

4
;
a

8
; . . . ;

a

2n�1

All red squares, in turn, form a geometric progression with the same common

ratio but the first term a
ffiffi
2

p
2

(half of the diagonal of the original square):

a
ffiffiffi
2

p

2
;
a

ffiffiffi
2

p

4
;
a

ffiffiffi
2

p

8
; . . .

Because the perimeter of a square with side b is 4b, we obtain the following

expression for the sum of the perimeters of black and red squares:

P ¼ 4 aþ a
ffiffiffi
2

p

2
þ a=2þ a

ffiffiffi
2

p

4
þ a=4þ a

ffiffiffi
2

p

8
þ a=8þ � � � þ a

2n�1
þ a

ffiffiffi
2

p

2n�1
þ � � �

� �

¼ 4a 1þ 1=2þ 1=4þ � � �ð Þ þ 4a �
ffiffiffi
2

p

2
1þ 1=2þ 1=4þ � � �ð Þ

¼ 4a 2þ
ffiffiffi
2

p� �
1� 1

2n

� �
¼ 4a 2þ

ffiffiffi
2

p� �

Answer. P ¼ 4að2þ ffiffiffi
2

p Þ:

2.3 Trapezoids

A trapezoid is a convex quadrilateral with at least one pair of parallel sides. Any

pair of angles adjacent to a parallel side sums to 180� since they are supplementary.

The parallel sides are bases of the trapezoid. A midline segment (midsegment) of a

trapezoid connects the midpoints of nonparallel sides and is parallel to the bases.

Fig. 2.7 Sketch for Problem 40
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TrapezoidMidsegment Length Theorem. The length of amidsegment is equal

to 1
2
ðaþ bÞ, where a and b are the bases of a trapezoid.

So, for a trapezoid with bases 4 and 10, irrespective of the lengths of other sides,

the midline segment equals (4 + 10)/2 ¼ 7.

We will give the proof of the Trapezoid Midsegment Length Theorem in

Problem 41.

Problem 41. A trapezoid ABCD with bases AD ¼ a and BC ¼ b is given.M is

the midpoint of AB, N is the midpoint of CD. Prove that MN ¼ (a + b)/2.

Proof. First, we will sketch a trapezoid and with all known information.

From Fig. 2.8 we cannot find MN right away, but drawing diagonals of ABCD
(Fig. 2.9) gets us closer. In our picture, segments AC and MN intersect at point K,
diagonal BD intersects with MN at point L and the two diagonals intersect at O.
SegmentMN can be thought of as the sum ofML and LN. Our purpose is to findML
and LN. Let us translate all this into mathematical language. Here and below,

symbol \ means intersection.

a

b

A D

B C

M
N

Fig. 2.8 First sketch for Problem 41
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AC \MN ¼ K

BD \MN ¼ L

BD \ AC ¼ O

MN ¼ MLþ LN

In a triangle ABD, if ML is a midline segment, then

ML ¼ 1

2
AD ¼ a

2
(2.3)

In a triangle BCD, LN is a midline segment, then

LN ¼ 1

2
BC ¼ b

2
(2.4)

Combining (2.3) and (2.4) we find the unknown MN:

MN ¼ a

2
þ b

2
¼ ðaþ bÞ

2

It follows from this formula that the length of a midsegment of a trapezoid is the

arithmetic mean of its bases.

The reason I encourage you to do proofs is that you have to remember the ideas

behind the proofs in order to gain experience.

Problem 42. Trapezoid ABCD with bases AD ¼ a and BC ¼ b is given. A line

segment, KL, is drawn parallel to the bases and through the point of intersection
of the diagonals. Find the length of KL.

b

a

CB

DA

O

N
M

K L

Fig. 2.9 Second sketch for Problem 41
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Solution. Again we start from a picture (Fig. 2.10).

AC \ BD ¼ O and KL k BC k AD. We must find the length of KL. This picture
looks very similar to a picture from Problem 41: three parallel segments,

intersecting diagonals, but K and L are not midpoints of segments AB and CD so

we have to come up with a new idea.

BC k AD ðgivenÞ
mffBOC ¼ mffDOA ðas vertical anglesÞ

)
) ΔAOD � ΔCOB ðAAÞ

For similar triangles we can write ratios of corresponding sides:

AD

BC
¼ AO

OC
¼ OD

OB
¼ a

b
)

AO

AC
¼ a

aþ b
and

OD

BD
¼ a

aþ b

(2.5)

Likewise, triangles AKO and ABC are similar too:

ΔAKO � ΔABC ) AO

AC
¼ KO

BC

Replacing BC by b and using ratio (2.5) we obtain:

a

aþ b
¼ KO

b
(2.6)

From (2.6) we find KO,

KO ¼ ab

aþ b
(2.7)

Our unknown, KL, is the sum of KO and OL. We know KO. Let us find OL using

the similarity of triangles OLD and BCD:

b

a

CB

DA

OK L

Fig. 2.10 Sketch for Problem 42
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OL

BC
¼ OD

BD

Replacing BC by b and using ratio (2.5) we can find OL:

OL ¼ ba

aþ b
(2.8)

Adding (2.7) and (2.8), we calculate KL:

KL ¼ 2ab

aþ b

Moreover, the length of segmentKL is the harmonic mean of the trapezoid bases.

Answer. 2ab/(a + b).

If you enjoyed solving Problem 42, I think you will like the following one even

better.

Problem 43. Numbers a and b are bases of a trapezoid. Find the length of a

segment connecting the midpoints of its diagonals.

Solution. Again, let us draw a trapezoid showing all known information. Please do

not forget to use a ruler (Fig. 2.11).

BD \ AC ¼ O

AM ¼ MC

BN ¼ ND

KL k BC k AD

b

a

CB

DA

O
M NK L

Fig. 2.11 Sketch for Problem 43
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So we have to find the length of MN. We have that MN ¼ KN � KM, but how

about KN and KM? From triangle ABD, KN is a midline segment, then

KN ¼ 1

2
AD ¼ a

2
(2.9)

From triangle BCA, KM is a midline segment, then

KM ¼ 1

2
BC ¼ b

2
(2.10)

Subtracting (2.10) from (2.9), we find our unknown MN:

MN ¼ a� b

2

Answer. (a � b)/2.

2.4 Formulas for the Areas of Quadrilaterals

Area of any convex quadrilateral:

S ¼ 1

2
d1 � d2 � sinϕ (2.11)

where d1 and d2 are the diagonals of a quadrilateral andϕ is the angle between them.

Of course, this formula will work for any quadrilateral. I ask you to prove this as a

homework exercise.

Area of a Parallelogram: There are two common formulas for evaluating areas of

parallelograms:

1. The area of a parallelogram is the product of a base and height dropped to this

base and can be written as

S ¼ a � ha ¼ b � hb (2.12)

2. The area of a parallelogram is the product of its sides and the sine of the included

angle:

S ¼ a � b � sin γ (2.13)
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Note. These are not independent formulas, i.e., ha ¼ b � sin γ and hb ¼ a � sin γ.
Sometimes it is not enough to know these formulas by memorization. Experi-

ence will help you to visualize the idea of the formula in its application to a

particular problem. Let us try Problem 44.

Problem 44. ABCD is a parallelogram. AB ¼ 2 and BC ¼ 3. Find the area of

ABCD, if its diagonal AC is perpendicular to segment BE which connects vertex

B with the midpoint of segment AD.

Solution. As usual, we are going to draw a parallelogram and put in the figure all

known information. E is the midpoint of AD, BE?AC, and AC \ BE ¼ M (segment

AC intersects BE at pointM ). If in Fig. 2.12, BM is perpendicular to AC, then BM is

the height of triangle ABC dropped to side AC. Having experience solving different
problems, you might want to find the area of ABCD as a sum of the areas of the two

triangles, ABC and ACD. Let us drop a perpendicular to side AC from vertex D.
DN is the height of triangle ACD andBM k ND as they are two perpendiculars to the

same line.

Let us introduce two variables: AC ¼ x and BE ¼ y. Triangle AME is similar to

triangle CMB by the AA property because mffAME ¼ mffCMB (since they are

vertical angles) and mffMAD ¼ mffBCM (since they are alternate interior angles

(AIA)).

Note. If two angles of similar triangles are equal, then the third is equal as well, i.e.,

mffAEM ¼ mffMBC since they also are AIA.

We are going to write a ratio of corresponding sides and express some important

segments in terms of x and y.

ΔBMC � ΔEMA ) BM

ME
¼ CM

MA
¼ 3

1:5
¼ 2

1

1. 5

2

3

M

A D

B
C

E

N

Fig. 2.12 Sketch for Problem 44
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The ratio tells us that point M divides segment BE in ratio of 2:1, but divides

segment AC in a ratio 1:2. This gives us the following relations:

BM ¼ 2

3
y; ME ¼ 1

3
y

AM ¼ 1

3
x; MC ¼ 2

3
x

In order to find x and y we can apply the Pythagorean Theorem to the right

triangles AMB and BMC. Now we must solve the system:

2y

3

� �2

þ x

3

� �2

¼ 4

2y

3

� �2

þ 2x

3

� �2

¼ 9

8>>><
>>>: , 4y2 þ x2 ¼ 36

4y2 þ 4x2 ¼ 81

(

Solving for x by subtraction of the equations on the right, we have that x2 ¼ 15,

x ¼ ffiffiffiffiffi
15

p
which can be substituted to give y2 ¼ 21

4
, y ¼

ffiffiffiffi
21

p
2
.

Knowing x and y we can easily evaluate the area of triangle ABC. There is only
one thing we don’t know: the length of segment ND. This will be our next step.

We see that ΔAME � ΔAND (AA) and E is the midpoint of AD. Then, we have

ND ¼ 2ME ¼ 2

3
BE ¼ BM

Finally,

Area of ABCD ¼ Area of ABCþ Area of ACD

¼ 1

2
BM � ACþ 1

2
BM � AC

¼ BM � AC
¼ 2

3
y � x

¼ 2

3
�

ffiffiffiffiffi
21

p

2
�

ffiffiffiffiffi
15

p

¼
ffiffiffiffiffiffiffiffiffi
3 � 7p � ffiffiffiffiffiffiffiffiffi

3 � 5p

3
¼

ffiffiffiffiffi
35

p

Answer. The area of parallelogram equals
ffiffiffiffiffi
35

p
.

Having solved the problem above, you have proven again that there is no one

recipe or standard approach of solving a problem. Thus, we could not apply the
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formula for the area of a parallelogram right away because we didn’t know the

height. However, by dividing the parallelogram into two triangles and using

algebra, we were able to get the right answer.

Area of a Trapezoid: For any trapezoid with bases a and b and height h, the area
can be calculated as

S ¼ 1

2
ðaþ bÞ � h (2.14)

Problem 45. Which quadrilateral with diagonals d1, d2 has the maximum area?

Solution. Let us imagine a couple quadrilaterals with diagonals d1 and d2. In
Fig. 2.13, even diagonals of the same length form absolutely different quadrilaterals

and of course they will have different areas.

Recall the formula of the area of a quadrilateral. Looking at (2.11) again we

understand that S is maximal if sin γ ¼ 1, i.e., the angle between the diagonals is 90�.

Answer. Among all quadrilaterals with diagonals of the same length, the quadri-

lateral with two perpendicular diagonals has the maximum area.

Recalling the previous problem, we can think of quadrilaterals with perpendicu-

lar diagonals: kites, rhombuses, and squares. A square has diagonals of the same

length and is a particular case of a rhombus. A kite is a quadrilateral, such that its

diagonals are perpendicular to each other and one of them is also the line of

symmetry. Kites have perpendicular diagonals. The diagonals of a rhombus are

not only perpendicular, but also bisect each other making the rhombus a parallelo-

gram. There are many quadrilaterals with perpendicular diagonals and with no

symmetry at all. For example, in the Fig. 1.77 you can see that quadrilateral DBAF
has perpendicular diagonals, but is not symmetric along either diagonal.

d1

d2

d1 d2

A

C

B

D
A

C
B

D

Fig. 2.13 Sketch for Problem 45
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Let us solve a problem on the properties of a rhombus.

Problem 46. The perimeter of a rhombus is 20 and the sum of its diagonals is 14.

Find its area.

Solution. We start from drawing a picture (Fig. 2.14).

Let us introduce three variables: a ¼ AB ¼ BC ¼ CD ¼ AD is the length of the

sides of the rhombus, d1 ¼ AC and d2 ¼ BD are the diagonals. At this point we are

analyzing the problem and trying to get the idea of the solution. Translating our

conditions into mathematical language we obtain:

4a ¼ 20 ðperimeter of a rhombusÞ
d1 þ d2 ¼ 14

(
, a ¼ 5

d1 þ d2 ¼ 14

�
(2.15)

The area of the rhombus is our unknown. We can try to find it as

S ¼ 1

2
d1 � d2 (2.16)

From (2.16) we notice that if we know the product of diagonals, d1 � d2, we know
the area. Squaring both sides of the second equation of system (2.15) and expanding

the left side we have

a
a

aa

A CO

B

D

Fig. 2.14 Sketch for Problem 46
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d1 þ d2ð Þ2 ¼ 142 or d21 þ d22 þ 2 � d1d2|ffl{zffl} ¼ 196 (2.17)

from which we can find the product of diagonals if we are able to evaluate d21 þ d22.
Are we getting closer?

I encourage you to look at the rhombus again and especially at the right triangle

AOB. Applying the Pythagorean Theorem to it we can relate the sum of squares of

diagonals and the side, a, of the rhombus:

d1
2

� �2

þ d2
2

� �2

¼ a2

d21 þ d22 ¼ 4 � 25 ¼ 100

(2.18)

Replacing (2.18) into (2.17) we obtain

100þ 2d1d2 ¼ 196

d1d2 ¼ 48

S ¼ 1

2
� 48 ¼ 24

Answer. The area of the rhombus equals 24 units2.

Problem 46 shows us how algebra can help us to solve geometric problems. Do

not be afraid to introduce variables. As you may recall, we originally introduced

three (!) variables. By nicely manipulating them with algebraic expressions, we

never needed to find the particular values of d1 and d2 to successfully find their

product!

Problem 47 will help us to understand more about the rhombus.

Problem 47. Find the angles of the rhombus if its area equals 8 and the area of

the inscribed circle equals π.

Solution. First, we will draw a rhombus and inscribe into it a circle of radius, r
(Fig. 2.15).
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Let us introduce three variables: a side of the rhombus, a ¼ BC ¼ CD ¼ DA ¼
AB, the radius of the inscribed circle, r ¼ OM (OM is tangent to BC), and the angle
OBM, α. Because the area of the circle is given, we can find its radius right away as
πr2 ¼ π. Dividing both sides byπ, we have r ¼ 1. (Naturally, r cannot be negative.)

Now we have to find a way of using the second part of the condition: that the area

equals 8. From Fig. 2.15 we can see that the diagonals divide the rhombus into four

equal right triangles, so the area of the rhombus equals 4 times the area of triangle

BOC. The area of the triangle can be found in different ways, but it seems

reasonable to find it as half of a product of r (the height) and a (the base). From

the condition of the problem, the area of the rhombus equals 8. This we can write as

ABCD½ � ¼ 4 � 1
2
� r � a ¼ 2a ¼ 8 ) a ¼ 4.

Now it is the time to find α. For this purpose we introduce additional variables
x and y such that x ¼ BM and y ¼ MC. From Fig. 2.15 we notice that BM + MC ¼
BC and

xþ y ¼ 4 (2.19)

Values of y and x we can find from triangles OMC and OBM respectively.

ΔOBM : x � tan α ¼ OM; OM ¼ 1; then x ¼ 1

tan α
(2.20)

ΔOMC : y ¼ OM � tan α; y ¼ tan α (2.21)

Now, substituting (2.20) and (2.21) into equation (2.19) we come up with

a trigonometric equation of a quadratic type:

a
a

aa

r

A CO

B

D

M

Fig. 2.15 Sketch for Problem 47
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tan αþ 1

tan α
¼ 4

tan2 α� 4 tan αþ 1 ¼ 0

tan α ¼ 2	
ffiffiffi
3

p

mffOBC ¼ α ¼ 15�

Knowing angle OBC we can find its complementary angle, OCB ¼ 75�.
The angles of the rhombus are twice the angles, 15� and 75�, respectively.

2.5 Regular Polygons

A regular polygon is a polygon that is equiangular (all angles are equal in

measure) and equilateral (all sides have the same length). Regular polygons may

be convex or star (nonconvex). In the limit, a sequence of regular polygons with an

increasing number of sides becomes a circle. In this text we will consider problems

regarding convex regular polygons such as equilateral triangle, square, pentagon,

hexagon, etc. Constructions of a regular polygon will be discussed in detail in

Sect. 4.4.2. Some images of well-known regular polygons are given in Fig. 2.16.

Fig. 2.16 Images of some regular polygons
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2.5.1 Properties of Regular Polygons

Every regular polygon is cyclic, i.e., it can be inscribed into a circle. In order to

construct a regular n-polygon, we need to construct a circle of radius R and a

central angle of the circle of 360�
n . Thus, for construction of a square we can create a

circle with two perpendicular diameters. In order to construct a regular hexagon, we

can use the fact that the side equals the radius of the circle and then make the entire

construction with compass as shown in Fig. 2.17. Here OB ¼ OA ¼ R, ffAOB ¼
360�
6

¼ 60�.

Let’s consider some important definitions and properties of a regular polygon

using the constructed hexagon as an example.

The center of a regular polygon is a point on its interior that is equidistant from

its vertices. Moreover, the center of a regular polygon is the common center of its

O

R B

A

Fig. 2.17 Regular hexagon
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inscribed and circumscribed circles as shown Fig. 2.18 in blue and green color,

respectively.

The apothem of a regular polygon is a segment extended from its center

perpendicular to one of its sides. The apothem is also the radius of an inscribed

circle. It bisects the sides to which it is drawn. Thus, OC ¼ r is the apothem of the

hexagon.

Segments OA ¼ OB ¼ R, the radii of the circumscribed circle.

The central angle for a regular polygon is an angle between two radii drawn to

two consecutive vertices. In our hexagon, the central angle is AOB. There are

precisely n central angles, in each regular polygon, then its measure is 360�
n or 2π

n ,

and for a hexagon it is 60�. In Fig. 2.18 we can see that for any regular polygon, a

triangle AOB is isosceles with AC as the height, the median, and the bisector

dropped from O to the base AB. Therefore, the side of a regular polygon, a ¼ AB,

can be found from the right triangle AOC with angle ffAOC ¼ ffAOB
2

¼ 2π
2n ¼ π

n and

written in terms of either the circumscribed radius, R ¼ AO (hypotenuse) or the

inscribed radius, r ¼ OC (leg) as follows

a ¼ 2R � sin π

n

� �
¼ 2r � tan π

n

� �
(2.22)

Since we can divide any arc into two equal parts (by dividing into two parts the

corresponding chord), then it is easy to construct a regular 8-gon, 16-gon or

12-gon, etc.

Therefore, construction of regular polygons with n sides with the use of compass

and ruler is closely deals with the construction of angles with given measure

because such construction can be considered as construction of the central angle

of a circle with radius R with the degree measure 360�
n . For example, as you have

R
r

C

B

O

A

Fig. 2.18 Inscribed and circumscribed regular polygon
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seen, if we able to construct angle of 60� then we can easily construct a regular

hexagon, and if we have an angle of 36� then we can construct a regular 10-gon,

and if we can construct an angle of 72� then we can construct a regular pentagon,

etc. Problems on construction of such angles and polygons are given in the

corresponding section of the book.

This way we can construct regular n-gons with the following sides: n ¼ m � 2k�1

and m ¼ 3; 4; 5; k 2 N.
Not all regular polygons can be constructed with compass and straightedge.

For example, the heptagon (n ¼ 7) and nonagon (n ¼ 9) are impossible to con-

struct by compass and straightedge. However, a 17th-gon can be constructed!

Interestingly the solution of this problem is beyond the scope of a course in

elementary geometry and deals with number theory and the properties of algebraic

equations and expression of their solutions in terms of square roots. Karl

Friedrich Gauss solved this problem at the age of 17. He proved that it is possible

to construct a regular n-gon if and only if n ¼ 2kp1p2p3 . . . pm; k 2 N, where pi ¼
22

s þ 1; s ¼ 0 or s 2 N, the relatively prime Fermat numbers. For example, the first

Fermat numbers are 3, 5, 17, 257, etc. It is known that solving this problem

motivated Gauss to become a mathematician and that he even asked to be buried

under a stone in the shape of a regular 17th gon.

2.5.2 Area and Perimeter of Regular Polygons

Since the perimeter of any polygon is the sum of the lengths of the sides, the

perimeter of a regular n-gon is n times the length of one.

The area of a regular polygon can be found as one half the product of the

perimeter and the apothem of the polygon.

R
r

C

B

O

A

Fig. 2.19 Finding area of a regular polygon
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The proof of this statement is simple. If we connect the center of a regular

polygon with each vertex as shown in Fig. 2.19, we divide the polygon into

n-pieces: n equal isosceles triangles with a vertex angle as the central angle.

The area of each triangle (for example [AOB] in the figure above) is equal to half

the product of the height (apothem)OC and the base (side of the polygon) AB. Thus,

Area of n-gon ¼ n � 1
2
OC � a ¼ 1

2
h � P ðperimeterÞ where P ¼ n � a

Problem 48 will help you to practice in several concepts.

Problem 48 (Lidsky). Given a regular n-gon with side a. There are n circles

inscribed into the polygon so that each circle is tangent to two adjacent sides

of the polygon and two other circles. What is the area of “star” formed in the

center of the polygon?

Solution. In order to understand the problem, let us use Fig. 2.20 which shows four

circles inscribed into a regular quadrilateral (square) of side length a. (There will be
n circles inscribed this way into a regular n-gon). If we connect the centers of the

circles we will obtain a polygon similar to that given, with the center at the center of

the original polygon and with the sides parallel to the original polygon.

Let r be the radii of the circles, then the side of the small polygon (shown in

dashed line) will be 2r and its area will be 4 times the area of the triangle with the

central angleGEO ¼ 2π
n ¼ 2π

4
¼ π

2
. The area ofGEO can be found as two areas of the

right triangle HEO, where angle HEO is half of the central angle, i.e., 2π
2n ¼ π

n ¼ π
4
.

Thus, the area of a green star is S
 ¼ 2rð Þ2 � 4 � πr2
4
¼ r2 4� πð Þ. In general, for a

regular n-gon, the area of the right triangle is half the product of its legs: AHEO ¼ 1
2

r � r � cot π
n

	 
 ¼ 1
2
r2 cot π

n

	 

, then the area of triangle

GEO½ � ¼ 2 HEO½ � ¼ r2 cot
π

n

� �
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If there are exactly n right triangles to make a “small” regular n-gon, then its

area is

S ¼ n � r2 cot π

n

� �

S ¼ n � 2 � 1
2
r � r cot π

n

� �
¼ nr2 cot

π

n

� �

Let the interior angle of the original polygon beffFGH ¼ α ¼ π n�2ð Þ
n (it is marked

by two arcs on the sketch). Next, in order to evaluate the area of the star in the

middle, we need to subtract the area above and the total area of n sectors with

a central angle α. Each such sector will have area

α � r2
2

¼ πðn� 2Þr2
2n

So the area of the central “star” will be evaluated as (Fig. 2.21)

S
 ¼ n � r2 cot π

n

� �
� πðn� 2Þr2

2n
¼ r2 n cot

π

n

� �
� πðn� 2Þ

2n

� �

r

E

H OG

Fig. 2.20 First sketch for Problem 48
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Next, we need to find r.
We know that ffMOB ¼ ffHEO ¼ π

n (half of the central angle marked by one arc)

and AB ¼ a
2
. We can see that r ¼ HO ¼ AB � MB, where AB ¼ a/2. Expressing

the leg MB of the right triangle MOB in terms of tangent of the opposite angle we

obtain

a

2
� r ¼ r tan

π

n

Solving this formula for r gives us

r ¼ a

2 1þ tan π
n

	 


Hence, the area of the “star” is S
 ¼
a2 n cot πn � ðn� 2Þ π

2

	 

4 1þ tan π

n

	 
2 .

2.6 Homework on Polygons

1. A side of an equilateral triangle is 10 cm. The midpoints of its sides are joined

to form an inscribed equilateral triangle and the process is continued. Find the

sum of the perimeters of the triangles if the process is continued without end.

Hint. See Problem 40.

Answer. 80 cm.

2. Consider a rhombus ABCD where angle A ¼ 60�. Point N divides side AB in

the ratio |AN|:|BN| ¼ 2:1. Find tan ffDNCð Þ.

Answer.
9

ffiffiffi
3

p

11
.

j

r

E

A

F

M

OHG

C B

Fig. 2.21 Second sketch for Problem 48
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3. A trapezoid with bases 3 and 4 is given such that its diagonal has length 6 and

bisects one of the trapezoid’s angles. Can such a trapezoid be an isosceles?

Answer. No.

4. Two opposite angles of a quadrilateral are right angles. The length of the

diagonals passing through the two angles equals d. Find the range of the area

of the quadrilateral.

Answer. 0;
d2

2

� �
.

5. Find the point inside a quadrilateral such that the sum of distances from the

point to all vertices of a quadrilateral is minimal.

Answer. It is the point of intersection of the diagonals.

6. A square with sides, a, is rotated about its center in 45�. Find the area of the

common part of the “old” and “new” squares.

Answer. 2ð ffiffiffi
2

p � 1Þa2.
7. Two diagonals of a trapezoid divide its area so that the areas of two triangles

adjacent to the base equals S1 and S2 respectively. Find the area of the

trapezoid.

Answer.
ffiffiffiffiffi
S1

p þ ffiffiffiffiffi
S2

p	 
2
.

8. The diagonals of a quadrilateral form four triangles. The areas of three of

them are S1, S2, and S3, respectively. Find the area of the fourth triangle.

Answer.
S1 � S2
S3

.

Solution. Let us draw quadrilateral ABCD such that AC \ BD ¼ O (Fig. 2.22).

We denote five variables: BO ¼ a, OD ¼ b, AO ¼ c, OC ¼ d, and

mffBOC ¼ ϕ.

S4

S1 d

a

c b

A

B

C

D

O

Fig. 2.22 Quadrilateral as a union of four triangles
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Now we can write the area of each of four triangles as

a � c � sinð180� � ϕÞ
2

¼ S1

ad � sinϕ
2

¼ S2

db � sinϕ
2

¼ S3

cb � sinð180� � ϕÞ
2

¼ S4

Using the fact that sinð180� � xÞ ¼ sin x and dividing S1 by S2 and S4 by S3
we obtain

c

d
¼ S1

S2
c

d
¼ S4

S3

This yields S4 ¼ S1 � S2
S3

.

9. Let the lengths of sides AB, BC, CD, DA of a quadrilateral ABCD be a, b, c, and

d, respectively and let S denote the area of ABCD. Show that S � adþbc
2

and

equality holds iff angles A and C are right angles.

Hint. Connect points B andD. The area of ABC ¼ S ¼ [ABD] + [CDB]. Using

formula (1.27) for the area of each triangle we obtain that ½ABD� ¼ a�d sin ffBADð Þ
2

� ad
2
(because sine is bounded by 1). Similarly, for the area of triangle CBD we

have ½CBD� ¼ b�c�sin ffBCDð Þ
2

� bc
2
. Adding both areas, the required relationship

will be obtained.

10. Using Problem 9 show that S � ðaþcÞðbþdÞ
4

with equality iff ABCD is a rectangle.

Hint. Since S � adþbc
2

is true, then S � abþdc
2

is also true (we can connect two

other vertices, A and C) then adding the two inequalities we obtain

2S � adþbcþabþdc
2

¼ aþcð Þ bþdð Þ
2

.

11. According to Euler, in order to inscribe a regular pentagon in a circle

(Fig. 2.23), you can draw a circle with center O and construct two perpendicu-

lar diameters through its center. Let OA be one of the diameters and M be the

midpoint of the other diameter. Connect M with A and bisect the angle AMO.
Next place point N on OA and draw segment NP perpendicular to OA. Denote
the point of intersection with the circle by P. Using a compass with the radius

equal to the length of segment AP, you will find all vertices of the regular

pentagon. Prove that AP is the side of the regular pentagon.
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Proof. Denote AO ¼ OP ¼ R, AN ¼ x, AP ¼ a. Then ON ¼ R � x, and from

the right triangle AOM, we can findAM ¼ R
ffiffi
5

p
2
. Further, ifMN is the bisector of

angle AMO, then by the Angle Bisector Theorem applied to triangle AMO, we
obtain the following ratios:

AM

AN
¼ OM

NO

R
ffiffiffi
5

p

2x
¼ R

2 R� xð Þ

x ¼ R
ffiffiffi
5

p

1þ ffiffiffi
5

p

Next, applying the Pythagorean Theorem to triangles ANP and PNO, we
obtain the following:

AP2 ¼ AN2 þ NP2 ¼ AN2 þ OP2 � ON2

AP2 ¼ x2 þ R2 � R� xð Þ2
AP2 ¼ 2Rx

O

A

M

N P

Fig. 2.23 Euler’s method of constructing a regular pentagon

122 2 Quadrilaterals and Other Polygons



Finally, substituting x from the previous formula and replacing AP by a,
we obtain

a2 ¼ 2R2
ffiffiffi
5

p

1þ ffiffiffi
5

p

If we rationalize the denominator and take the square root from both sides,

then we obtain the required formula for the side of a regular pentagon inscribed

into a circle with radius R:

a ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
p

2

s

You can check it yourself. By formula (2.22) the side of a regular pentagon

can be written as

a ¼ 2R sin 36� ¼ 4R sin 18 cos 18� ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
p

2

s

The proof is completed. (See more about how to find the sine of 18� in

Chap. 4 of the book.)

12. In this chapter we proved that if for any quadrilateral, the consecutive

midpoints of all sides are connected, then they form a parallelogram. Can this

parallelogram be a rhombus? If yes, then under what condition? Under what

condition can the parallelogram be a square?

Answer. For a quadrilateral ABCD, assume that K, F,M, and N are midpoints of

sides AB, BC, CD, and AD, respectively. Since KF is the midsegment of

triangle ABC and MN is the midsegment of triangle ADC, we have that KF||
MN and KF ¼ MN and that KFMN is a parallelogram. If the diagonals of

ABCD are equal (AC ¼ BD) then the parallelogram KFMN is a rhombus. If the

diagonals are equal and perpendicular to each other, then KFMN is a square.

13. Consider a convex quadrilateral ABCD with diagonals AC and BD in which the

heights AE and DF are dropped to sides CD and AB, respectively. It is known
that AE � BD;DF � AC;AD ¼ 2AB. Find all angles of ABCD.

Solution. Consider a quadrilateral ABCD. Because AD ¼ 2AB, triangle ABD is

a right triangle inscribed into a circle of radius R ¼ AB and diameter AD. Let O
be the midpoint of AD. Obviously the height DF dropped to the side AB is

actually the diagonal, BD.
The inequality of the problem implies that AE � DF ¼ BF � AC from

which we obtain that AE � AC. However, if AE is perpendicular to side CD
then the triangle AEC is the right triangle in which AC is the hypotenuse. Since

leg AC cannot be greater than the hypotenuse, we conclude that AC is
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perpendicular to CD and AE ¼ AC. Therefore, the only quadrilateral satisfying
the given conditions is an isosceles trapezoid inscribed into a circle such that

its base AD is also the diameter of the circle. Moreover, ffA ¼ ffC ¼ 60� and

ffB ¼ ffD ¼ 120�.
14. Given a convex quadrilateral ABCD such that ABþ BD � ACþ CD. Compare

the length of segments AB and AC.

Answer. AB < AC.

Solution. Let us use Fig. 2.22 to solve this problem. By the triangle existence

inequality for triangles ABO and COD we can write the following:

AB < AOþ BO

CD < COþ DO

)
, ABþ CD < AOþ COþ BOþ DO ¼ ACþ BD

On the other hand, by the condition of the problem we know that ABþ BD
� ACþ CD.

Let us add both inequalities together and collect like terms. We will obtain

ABþ CDþ ABþ BD < ACþ BDþ ACþ CD

2AB < 2AC

AB < AC

15. Prove that if each diagonal of a convex quadrilateral divides it into equal

triangles then such a quadrilateral is a parallelogram.

Proof. Using again Fig. 2.22 as our basic figure, let us make some additional

constructions in it by dropping a perpendicular from B to the diagonal AC
(height BH) and a perpendicular from D to AC (height DK). Since each

diagonal of the quadrilateral divides it into two equal triangles then we can

write that

ABC½ � ¼ ACD½ �
1

2
BH � AC ¼ 1

2
DK � AC

BH ¼ DK

Since a side of the triangles BHO and DKO is equal as well as the angles

adjacent to them, we have that 4BHO ffi 4DKO . All sides of congruent

triangles are equal, so O is the midpoint of the diagonal BD.
By an analogues argument, we can show that O is the midpoint of AC.

Therefore, ABCD must be a parallelogram.
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16. Find an interior point of a convex quadrilateral such that the sum of the

distances from the point to all of the vertices is minimal.

Hint. Think about the triangle existence inequality.

Solution. Consider a quadrilateral ABCDwith diagonals that intersect at pointO.
The distance from O to all vertices equals

AO + BO + CO + DO ¼ AC + BD (the sum of the diagonals) (Fig. 2.24)

Let O’ be another point inside the quadrilateral. Using the triangle existence

inequality we have

AO1 þ O1C � AC; BO1 þ O1D � BD

Hence, AO1 þ O1Cþ BO1 þ O1D � ACþ BD.
Therefore, the point that minimizes the sum of the distances is the point of

intersection of diagonals.

17. Prove that the area of any quadrilateral can be evaluated with the use of its

diagonals and the sine of the angle between them as S ¼ 1
2
� d1d2 sinφ.

Proof. Consider a quadrilateral with diagonals AC \ BD ¼ O . Let AO ¼ z;
OC ¼ t;BO ¼ x;OD ¼ y; ffAOD ¼ φ:We have that ABCD½ � ¼ AOD½ � þ AOB½ �
þ BOC½ � þ COD½ �. Applying formula (1.27) to each triangle and using the fact

that angles ffBOC ¼ ffAOD ¼ φ are vertical and ffAOB ¼ π � φ, we finally

complete the proof.

18. Consider a convex quadrilateral ABCD such that the area of triangle ABC is

half the area of triangle ACD. Adjacent sides AB and BC are equal and side AD
is twice as long as side AB. Find the angle ADC of angle BAC ¼ 30�.

Solution. Let ha, hc be the length of the perpendiculars dropped to sides BC
from vertex A and to AD from vertex C, respectively. Let AB ¼ BC ¼ a, then
AD ¼ 2a (by the condition of the problem).

O

A D

B

C

O'

Fig. 2.24 Problem on an interior point of a quadrilateral
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From the relationship between the areas of triangle ABC and ACD we have

the following:

2[ABC] ¼ [ACD] or

2
1

2
aha ¼ 1

2
2ahc

after cancelation of common factors we have ha ¼ hc and then the sides of the

quadrilateral BC and AD must be parallel (Fig. 2.25).

Therefore, our quadrilateral is a trapezoid. Moreover, ffCAD ¼ ffACB ¼ 30�

(since triangle ABC is an isosceles, i.e., AB ¼ BC).
Let us draw line BE parallel to CD so that ED ¼ BC ¼ a. Then it is true that

AE ¼ 2a � a ¼ a ¼ AB. Also note that triangle ABE is an isosceles and its

bisector (AF) is its height so that AC?BE ) ffACD ¼ 90� . Finally, from
triangle ACD we find that ffADC ¼ 60�.

Answer. ffADC ¼ 60�.

19. A convex pentagon ABCDE is inscribed into a circle such that the segment AD
contains the center of the circle with diameter d. The sides of the pentagon are

AB ¼ a, BC ¼ b, CD ¼ c,DE ¼ f, AE ¼ e. Evaluate the area of the pentagon.

Solution. If AD contains the center of the circle, then AD is its diameter and

AD ¼ d. Moreover, ABCD is a cyclic quadrilateral and triangle AED is the

right triangle. The area of ABCDE can be found as the sum of the areas of the

quadrilateral and the triangle. The area of the quadrilateral can be found with

the use of Brahmagupta’s Formula for the area of a cyclic quadrilateral.

Denoting p as the semiperimeter,

½ABCDE� ¼ ½ABCD� þ ½AED�
½ABCDE� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� að Þ p� bð Þ p� cð Þ p� dð Þ

p
þ ef

2

½ABCDE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ cþ d� að Þ aþ cþ d� bð Þ aþ bþ d� cð Þ aþ bþ c� dð Þp þ ef

2

a

a

E

F

A

B C

D

Fig. 2.25 Finding an angle of a quadrilateral
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20. Given three regular polygons. Two of them, with perimeters a and b,
respectively, are circumscribed about the circle and the third one is inscribed

into the circle. It is known that the second and third polygon each has twice as

many sides as the first polygon. Find the perimeter of the third regular polygon.

Answer. P ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2a� b

r
.

Solution. If a polygon is circumscribed about a circle, then the circle is

inscribed into the polygon. Let R be the radius of the inscribed circle and

assume that the first polygon has n sides and that the second and third polygons
have 2n sides. Using Fig. 2.18 and formula (2.22) we can express the sides of

the polygons in terms of the inradius, R. Then for the perimeters of the first and

second polygons with n and 2n sides, respectively, we obtain

a ¼ 2nR tan
π

n
¼ 4nR

tan π
2n

1� tan2 π
2n

b ¼ 4nR tan
π

2n

In order to obtain the second part of the first expression above, we used the

formula for the tangent of double angle.

Assume that the third polygon has perimeter P. Suppose that the side of the
inscribed polygon is AB as it is shown in the Fig. 2.19. Since the third polygon

has 2n sides, then its central angle is 2π
2n ¼ π

n . In order to express the side of the

polygon in terms of the circumradius of the circle R, we need to use the relation
between the leg AC and the hypotenuse, AO ¼ R in the right triangle AOC.

Note that the angle AOC is half the central angle, ffAOC ¼ π
2n

	 

. Applying

trigonometric identity to the sine function, the perimeter of the third polygon

can be written as

P ¼ 4nR sin
π

2n
¼ 4nR

tan π
2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 π
2n

q
From the first two formulas we can see that

1� tan2
π

2n
¼ b

a

Therefore, 1þ tan2 π
2n ¼ 2a�b

a .

Substituting this into formula for P, we finally obtain

P ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2a� b

r
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Chapter 3

Problems Involving Circles

3.1 Circles and Their Properties

A circle is the set of all points in a plane that are equidistant from a given point in

the plane known as the center of the circle.

A radius is a segment from the center of the circle to a point on the circle.

A chord is a segment whose endpoints line on a circle.

A diameter is a chord that contains the center of a circle.

A secant to a circle is a line that intersects the circle at two points.

A tangent is a line in the plane of the circle that intersects the circle at exactly

one point, which is known as the point of tangency.

An arc is an unbroken part of a circle. Any two points on a circle divide the

circle into two arcs.

Let us list most important facts we have to remember in order to successfully

solve problems involving circles.

A central angle of a circle is an angle of a circle whose vertex is the center of

the circle. An arc whose endpoints lie on the sides of the angle and whose other

parts lay in the interior of the angle is the intercepted arc (supported arc) of the

central angle.

An inscribed angle is an angle whose vertex lies on a circle and whose sides are

chords of the circle. Knowing the measure of the inscribed angle we can determine

the measure of its intercepted arc.

E. Grigorieva, Methods of Solving Complex Geometry Problems,
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3.1.1 The Inscribed Angle of a Circle

The Inscribed Angle Theorem. The measure of an inscribed angle in a circle

is equal to half the measure of the intercepted arc.

In Fig. 3.1, ffABC is inscribed in circle with center O, ffABC intercepts arc AC,
ffAOC is the central angle, ffAOC intercepts arc AC, and mffAOC ¼ 2mffABC.

Proof. Let us consider three possible cases associated with the corresponding

picture.

Case 1. One side of the inscribed angle goes through the diameter of the circle

(Fig. 3.2).

O

A

B

C

Fig. 3.1 Inscribed and central angles

C

O

A

B

Fig. 3.2 An Inscribed angle, Case 1
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Let angle ABC ¼ α, so that the isosceles triangle AOB has angle BAO ¼ α. The
central angleAOC is an exterior angle of triangleAOB soffAOC ¼ 2α ) α ¼ 1

2
ffAOC.

Case 2. The center of the circle is inside the interior of the inscribed angle ABC
(Fig. 3.3).

In this case, we will need an auxiliary construction: we will draw segment BD
through the vertex of the angle and the center of the circle. Now we can use what we

proved in Case 1.

ffABC ¼ ffABDþ ffBDC
ffABC ¼ 1

2
ffAODþ 1

2
ffCOD ¼ 1

2
ffAODþ ffCODð Þ ¼ 1

2
ffAOC

Case 3. The interior of the inscribed angle does not include center O as shown in

Fig. 3.4.

D

O

A

B

C

Fig. 3.3 An Inscribed angle, Case 2

D

O

A

B

C

Fig. 3.4 An Inscribed angle, Case 3
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Now, the inscribed angle ABC is the algebraic difference of angles ABD and

CBD. Please finish this proof by analogy with the other cases.

3.1.1.1 Angle Inscribed in a Semicircle Theorem

This is another theorem that was stated and proved by Thales (Fig. 3.5).

Thales’ Semicircle Inscribed Angle Theorem. Any angle inscribed in a semi-

circle is a right angle.

Proof. Since a semicircle’s measure is 180�, the validity of Thales’ Theorem

follows from the theorem on the inscribed angle proven above. If you want to

have another proof, then the following is an option.

Let the diameter of a circle with its center at O be AB. Let C be another point on

the circle. Since A, B, and C are on the circle, AO ¼ OC ¼ OB (as radii) and the

triangles AOC and COB are isosceles (Fig. 3.6).

Fig. 3.5 Thales’ semicircle inscribed angle theorem
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Let ffCAO ¼ ffACO ¼ α and ffBCO ¼ ffCBO ¼ β. Next, we have the relation for
the inscribed and central angles supporting arc AMC as 2ffABC ¼ ffAOC.

On the other hand, using the triangle angle theorem for AOC, we can rewrite

2ffABC ¼ ffAOC as

2β ¼ ffAOC ¼ 180� � 2α

2β þ 2α ¼ 180�

αþ β ¼ 90�

Therefore, triangle ABC is the right triangle and angle C is a 90� angle.
Our proof is complete.

3.1.1.2 Arc-Intercept Corollary

Arc-Intercept Corollary. If two inscribed angles intercept the same arc, then

they have the same measure.

As seen in Fig. 3.7, mffABC ¼ mffADC.

O
A B

C
m

Fig. 3.6 Illustration of Thales’s Theorem
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3.1.2 Chords of a Circle

3.1.2.1 Intersecting Chords

The Intersecting Chords Theorem. The product of the lengths of the segments

of each of two intersected chords is the same (Fig. 3.8).

Proof. Let us make an auxiliary construction and connect points C–B and B–A as it

is shown in Fig. 3.9.

O

A

B

C

D

Fig. 3.7 Arc-Intercept corollary

M

O

B

C

D

A

Fig. 3.8 Two intersecting chords
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Otherwise, if two chords of a circle meet, cutting each other in segments of

lengths a ¼ BM, b ¼ MA, c ¼ MD, d ¼ MC, then ab ¼ cd. If AB and CD are two

intersected chords (AB \ CD ¼ M) of a circle with center O, then angles BMC and

DMA are equal because they are vertical angles. Angles CBA and ADA are equal

because they support the same arc CA. Thus, triangles CMB and DMA are similar

and CM=MA ¼ BM=MD; BM �MA ¼ CM �MD.

3.1.2.2 The Angle Between Two Intersecting Chords

Angle Between Two Intersecting Chords Theorem. Any vertical angle bet-

ween two intersecting chords equals half the sum of the angular measure of the

arcs intercepted by it.

b

c
d

a

M

D

B

A

C

Fig. 3.9 Auxiliary construction for the theorem on two intersecting chords

2
1

K OA

C
B

D

Fig. 3.10 Angle between two intersecting chords

3.1 Circles and Their Properties 135



As seen in Fig. 3.10 ffAKB ¼ 1
2
[ABþ [CDð Þ ¼ ffACBþ ffCBD.

Proof. Let two cords, AC and BC, intersect at point K inside the circle. Then we

want to evaluate angle AKB. We will connect points B and C and make a triangle

BKC for which angle AKB is exterior angle and

ffAKB ¼ ffKBCþ ffACB ¼ ff 1þ ff 2

On the other hand, by the property of inscribed angles we can write that

ffKBC ¼ 1

2
[ CD; ffACB ¼ 1

2
[ AB

Therefore, ffAKB ¼ 1

2
[ CDþ 1

2
[ AB ¼ 1

2
ð[CDþ [ABÞ.

Remark. If two chords are perpendicular, then obviously the sum of the angle

measured by the supporting arcs is 180�.

3.1.3 Tangents and Secants of a Circle

3.1.3.1 Tangents from the Same Point

Tangents from the Same Point Theorem. Segments of tangents to a circle

drawn from a point exterior to the circle have the same length. These tangents

form congruent angles with the line passing through the point and the center of

the circle (Fig. 3.11).

w

w

O

B
A

C

Fig. 3.11 Tangent from the same exterior point
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By this theorem, B and C are tangent points ( AB?OB and AC?OC ), then

AB ¼ AC and mffCAO ¼ mffBAO ¼ w:

3.1.3.2 Secant–Tangent Segments

Secant–Tangent Segment Theorem. If a secant and a tangent are drawn to a

circle from an exterior point, then the square of the length of the tangent segment

equals the product of the entire length of the secant and the length of the exterior

segment of that secant (Fig. 3.12).

On the picture above, AB2 ¼ AD � AC (i.e., tangent squared ¼ “whole” times

“outside”).

Proof. Let us connect C–B and B–D, and C–O as shown in Fig. 3.13. This auxiliary

construction will allow us to demonstrate that the angles ABC and ADB are equal.

In fact, ffCDB ¼ α ¼ 1
2
ffCOB as the inscribed and central angles support the same

arc, CB. If the isosceles triangle COB has vertex angle of 2α, then the base

angles are

180� � 2α

2
¼ 90� � α ¼ ffCBO

AB is tangent so angle ABO is a right angle and ABC and CBO are complimentary

angles, i.e., ffABC ¼ α ¼ ffBDA. Since the angle at A is common to triangles ABC
and ADB, the triangles are similar (AA). Hence the corresponding sides are

proportional,

C

O D

BA

Fig. 3.12 Secant-tangent segments
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AB

AC
¼ AD

AB

Cross multiplying gives AB2 ¼ AD � AC.
The proof is complete.

Remark. Sometimes this theorem has a different formulation: If the tangent and

secant are drawn from the same point exterior to the circle, then the length of the

tangent segment (in our case AB) is the geometric mean of the length of the external

secant segment (AC) and the entire length of the secant (AD).

Corollary. For all secants dropped to a circle from some point outside the circle,

a product of a segment of a secant and the exterior part of the secant is the same.

r

r
C

O D

BA

Fig. 3.13 Proof of the Secant Tangent Segment Theorem

O

A

D

C

B

L

K

N

M

Fig. 3.14 Whole times outside illustration
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Proof. This corollary is illustrated in Fig. 3.14.

From point A we drew a tangent AB and three secants: AL, AD, and AN. The
theorem states thatAL � AK ¼ AD � AC ¼ AN � AM. This can be easily proven using

the previous theorem. All shown secants relate to the same tangent by

AB2 ¼ AK � AL
AB2 ¼ AC � AD
AB2 ¼ AM � AN

The left sides are the same, so the right sides must be equal.

3.1.3.3 The Angle Between Two Secants

Theorem of the Angle Between Two Secants. Two secants drawn from a point

outside the circle form an angle which measures one-half the positive difference

of the measures of the intercepted arcs.

Proof. Let us draw a picture illustrating this theorem (see Fig. 3.15). Regarding

our sketch we have to prove that

1

2

C

D

B

K

A

Fig. 3.15 The angle between two secants (must be replaced)
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ffAKC ¼ 1

2
[BC� [ADð Þ (3.1)

where [ BC is the angular measure of arc BC.
It follows from the inscribed angle theorem that (3.1) is true if

ffAKC ¼ ffBAC� ffDCA

Angle BAC is an exterior angle of triangle CKA so its measure equals the sum of

the measures of angles AKC and ACK. Now we have

ffBAC ¼ 1

2
[ BC; ffAKCþ ffACD ¼ ffBAC; ffACD ¼ 1

2
[ AD

Subtracting ffACD from ffBAC and factoring out ½ we complete the proof.

3.1.3.4 Two Intersecting Tangents

Theorem of Two Intersecting Tangents. If two tangents are drawn to a circle

from the same point outside the circle, then the measure of the angle formed is

half the measure of the larger intercepted arc minus the measure of the smaller

intercepted arc.

As can be seen in Fig. 3.16, ffABC ¼ 1
2
[ADC� [AECð Þ.

B

D

A

C

E

Fig. 3.16 Two intersecting tangents
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3.1.3.5 Archimedes’ Problems

Problem 49. Two chords of a circle AB and CD intersect at point E at a 90�

angle. Prove that the sum of the squares of segments AE, BE, CE, and DE equals

the square of the diameter of the circle.

Proof. We will show you here a solution given by the famous Greek mathemati-

cian Archimedes (287–212 BC) in his paper entitled “Lemmas.”

Let us draw diameter AF and chords AC, AD, CF, and BD (Fig. 3.17).

Since angleffAED ¼ 90�, it is equal to angle ACF by Thales’ Theorem because C
is a point of a circle and AF is the diameter. Also,ffADC ¼ ffAFC since they support

the same arc AC (shown in blue) and so the other angles of the respective right

triangles are equal, i.e., ffCFA ¼ ffDAE. Hence, arc CF equals arc BD (marked by

green color) and the corresponding chords are also equal, BD ¼ CF. We have that

DE2 þ BE2 ¼ CF2

AE2 þ CE2 ¼ AC2

AC2 þ CF2 ¼ AF2

Substituting the values of CF2 and AC2 into the last formula, we obtain:

DE2 þ BE2 þ AE2 þ CE2 ¼ AF2

E

F

C

D

O B

A

Fig. 3.17 Archimedes problem of two intersecting chords
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Problem 50 can also be attributed to Archimedes.

Problem 50. (Popov) Let AB be a diameter of a circle and let CD be a chord.

The chord is not perpendicular to the diameter. Prove that the perpendiculars

AE and BF dropped from the end of the diameter to the chord cuts the chord CD
into equal segments CF and DE.

Proof. Let us draw diameter MN||CD (Fig. 3.18).

It is clear that ff1 ¼ ff2 because CD is a transversal and AE and BF are

two parallel lines (two perpendiculars to a line are parallel). Then ffAOH ¼ ffBOK
) HO ¼ OK: Let us drop a perpendicular OL from the center of the circle O to

chord CD. Then EL ¼ HO and LF ¼ OK. It follows that EL ¼ LF and therefore

DE ¼ CF.

3.2 Metrics of Circles, Sectors, and Segments

A circumference is the perimeter of a circle. For a circle of radius r, its circumfer-

ence, C, can be evaluated from the radius as C ¼ 2πr.
The area of circle can be evaluated as A ¼ πr2.

2

1

K

H

N

M

L

E

F

B

O

A

C

D

Fig. 3.18 Sketch for Problem 50
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What if we want to find the length of an arc or the area of a sector? Suppose we

have an arc with a central angle measure of θ (e.g., Fig. 3.20), then the length of the
arc and area of the sector can be evaluated using proportions. (See Appendix A for

more information on proportions.)

The property of proportion can be written as:

a ! b

c ! d
then a � d ¼ c � b

Let us apply it to a circle with radius r, in order to find the length, x, of the arc
with angle measure θ.

2π ! 2πr

θ ! x
then 2πx ¼ 2πrθ

Therefore, the length of the arc equals x ¼ r � θ.
By the same idea we will find the area of a sector, y.

2π ! πr2

θ ! y
then y � 2π ¼ θ � πr2

Therefore, the area of a sector with central angle θ is y ¼ θ � r2=2.
Consider the segment of a circle that is shown in red in Fig. 3.19.

How can we evaluate its area? If we connect the ends of the chord with the center

of the circle, we can see that the area bounded in red equals the difference between

sector ADBC and the area of triangle ABC (see Fig. 3.20). If the central angle

ACB ¼ θ and the radius AC ¼ CB ¼ r, then by denoting the area of the segment

ADB by Ω, we have

C

BD

A

Fig. 3.19 Sector of a circle
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Ω ¼ θ � r2
2

� r2 sin θ

2
¼ r2 θ � sin θð Þ

2

Let us solve some problems on the material of this section.

Problem 51. Each side, a, of a square is a diameter of a circle. Find the area

bounded by the arcs of the four semicircle cut a within the interior of the square.

Solution. This problem sounds unusual. Let’s sketch the situation as shown in

Fig. 3.21. ABCD is the given square with side a ¼ AB. Chord AO is related to

similar chords through a 90� angle since the diagonals of a square are perpendicular.
The area of one-half of a leaf equals

π � a2
16

� a2

8
¼ a2ðπ � 2Þ

16

Multiplying by 8, we get the area of the entire flower.

Answer. Area ¼ a2ðπ � 2Þ
2

:

r

r
θθθθ

C

A

BD

Fig. 3.20 Segment of a circle
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Problem 52. A trapezoid ABCD with bases AD ¼ a and BC ¼ b is inscribed in
a circle with radius r. The center of the circle is in the interior of the trapezoid.

Two segments of the circle that are cut by the bases of the trapezoid are reflected

with respect to the corresponding base. Find the area of the region formed by

two sides of the trapezoid and the boundaries of the images of the reflected

segments.

In Fig. 3.22 we need to find the area of the region within the red boundary.

Since the trapezoid is inscribed in a circle, it is an isosceles trapezoid and

AB ¼ CD.

H

E

F D

C

O

B

A

M

Fig. 3.22 Sketch for Problem 52

a

a

a
a

O

B C

MA D

Fig. 3.21 Sketch for Problem 51
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If the center of the circle is inside the trapezoid then the boundary of the

segments’ images will not overlap. The area of the figure equals the area of the

trapezoid minus the area of two segments, BMCE and AHDF.
Denote ffBOC ¼ α and ffAOD ¼ β . Applying the Law of Cosines to triangles

BOC and AOD we obtain

a2 ¼ 2r2 � 2r2 � cos α ¼ 2r2ð1� cos αÞ ¼ 4r2sin2
α

2

b2 ¼ 2r2 � 2r2 � cos β ¼ 2r2ð1� cos βÞ ¼ 4r2sin2
β

2

(3.2)

from which we can find angles α and β:

cos α ¼ 1� a2

2r2
; α ¼ arccos 1� a2

2r2

� �

cos β ¼ 1� b2

2r2
; β ¼ arccos 1� b2

2r2

� � (3.3)

Using formulas (3.3) for the angles, we can find the area within the red boundary.

The area of the trapezoid is

½ABCD� ¼ aþ b

2
� h

¼ aþ b

2
� r cos

α

2
þ r cos

β

2

� �

¼
r aþ bð Þ cos

α

2
þ cos

β

2

� �
2

(3.4)

By (3.2), the area of segment

BMCE ¼ r2 α� sin αð Þ
2

(3.5)

The area of segment

AHDF ¼ r2 β � sin βð Þ
2

(3.6)
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Subtracting (3.5) and (3.6) from (3.4) we finally have

Area ¼
rðaþ bÞ cos

α

2
þ cos

β

2

� �
2

� r2ðα� sin αÞ
2

� r2ðβ � sin βÞ
2

Remark. This formula can be improved if we use the double angle formula with

(3.2) and the Pythagorean identity to express sine in terms of cosine of the angle of a

right triangle. You can try it as algebraic exercise.

3.3 Circles and Convex Polygons

3.3.1 Inscribed Triangle Theorem

Inscribed Triangle Theorem. Any triangle can be inscribed in a circle. The

center of the circle will be the point of intersection of perpendicular bisectors

of the sides of the triangle.

3.3.2 Circumscribed Triangle Theorem

Circumscribed Triangle Theorem. A circle can be circumscribed about a

triangle if and only if its center is the point of intersection of the bisectors of

angles of the triangle.

3.3.3 Circumscribed Quadrilateral Theorem

A cyclic quadrilateral, ABCD, is formed by joining segments between a set of four

points, A, B, C, and D, arranged on a circle in that order. Segments AC and BD are

the diagonals of the cyclic quadrilateral.

Circumscribed Quadrilateral Theorem. A circle can be circumscribed about

a quadrilateral iff the sum of the opposite angles of the quadrilateral equals

180� (π).
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Proof. First, we construct a circle and randomly put four distinct points on it, A, B,
C, and D, in order to obtain a convex quadrilateral. A particular case of this cyclic

quadrilateral is shown in Fig. 3.23.

The theorem claims that mff 1þ mff 3 ¼ mff 2þ mff 4 ¼ 180�. Let

ff 1 ¼ ffBAD; ff 2 ¼ ffABC; ff 3 ¼ ffBCD; and ff 4 ¼ ffCDA

Consider angle BAD and an opposite angle BCD. Angle BAD supports

arc BCD and angle BCD supports arc BAD, i.e., ffBAD ¼ 1
2
[ BCD and ffBCD

¼ 1
2
[ BAD. Adding the left and the right sides of the two equalities we obtain the

sum of two opposite angles in terms of the respective arcs. Since the arcs

together form the entire circle, then the sum of their measures is 360�. Half of
this measure is 180�.

This completes our proof.

3.3.3.1 Ptolemy’s Theorem on Cyclic Quadrilaterals

Ptolemy (c. 90–168 AD) was a famous Greek astronomer and philosopher. His

theorem on cyclic quadrilaterals is very important to solving complex geometry

problems.

Ptolemy’s Theorem on Cyclic Quadrilaterals. If a quadrilateral is inscribable

in a circle then the product of the measures of its diagonals is equal to the sum of

the products of the measures of the pairs of opposite sides.

3

1

2

O

B

A

C

D

4

m DAB = 93°

m BCD = 87°

m DAB + m BCD = 180°

m ABC = 124°

m CDA = 56°

m ABC + m CDA = 180°

Fig. 3.23 Cyclic quadrilateral
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Moreover, the converse of Ptolemy’s Theorem is also true.

Fact. If the sum of the products of its two pairs of opposite sides of a quadrilateral

is equal to the product of its diagonals, then the quadrilateral can be inscribed

in a circle.

If the quadrilateral is given with vertices A, B, C, and D in that order as shown in

Fig. 3.24, then the theorem states that

jACj � jBDj ¼ jABj � jCDj þ jBCj � jADj

Proof. Consider a cyclic quadrilateral ABCD with diagonals AD and BD. Denote
AB ¼ b, AD ¼ a, BC ¼ c, CD ¼ d, AC ¼ d1, and BD ¼ d2. We need to prove that

d1 � d2 ¼ acþ bd (Fig. 3.25).

M
B

C

D

A

Fig. 3.24 First sketch for the proof of Ptolemy’s Theorem
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Construct segment AF parallel to BD so that the quadrilateral AFDB is a

trapezoid with FD ¼ AB ¼ b and FB ¼ AD ¼ a. Triangle BAD is congruent to

BFD (three sides) so [BFD] ¼ [BAD]. Since

½ABCD� ¼ ½BCD� þ ½BAD�
½FBCD� ¼ ½BCD� þ ½BFD�

the areas of the two quadrilaterals are the same.

Let angle DMA ¼ φ, then on one hand ½ABCD� ¼ 1
2
d1 � d2 sinφ

On the other hand,

ABCD½ � ¼ FBCD½ � ¼ FBC½ � þ FCD½ �
¼ 1

2
FB � BC � sin ffFBCð Þ þ 1

2
FD � CD � sin ffFDCð Þ

¼ 1

2
a � c � sin ffFBCð Þ þ 1

2
b � d � sin ffFDCð Þ

We can see that ffFBCþ ffFDC ¼ π as they are opposite angles of the cyclic

quadrilateral FBCD. Hence their sines are equal. In order to prove that d1 � d2 ¼
acþ bd , it would be enough to demonstrate that ffFDC ¼ φ: In order to see

this, denote [ AB ¼ [DF ¼ α;[BC ¼ β; and [ AF ¼ γ: By the property of the

inscribed angles we have that

m DF = 6.47 cm

m AB = 6.47 cm

M

F

B

C

D

A

Fig. 3.25 Second sketch for the proof of Ptolemy’s Theorem
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ffFDC ¼ αþ β þ γ

2

and by an application of the Angle Between Two Intersecting Chords Theorem (see

Sect. 1.2.2) we obtain

ffAMD ¼ φ ¼ β þ γ þ α

2

Therefore, it follows that ffFDC ¼ φ from which it follows from the other hand

that ABCD½ � ¼ 1
2
ðacþ bdÞ � sinφ. Comparing the two hands, we find that d1 � d2

¼ acþ bd and so the proof is completed.

3.3.3.2 Area of a Cyclic Quadrilateral

Brahmagupta’s Formula. Given a cyclic quadrilateral with sides a, b, c, and d,
then its area, S, is given by the formula

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� að Þ p� bð Þ p� cð Þ p� dð Þ

p
; where

p ¼ aþ bþ cþ d

2

Brahmagupta was an Indian mathematician who is famous for his contributions

to many fields of mathematics to include number theory and geometry. His formula

on the area of cyclic quadrilaterals must look familiar to you. Let us prove this

formula using (1.27) and the Laws of Cosines (Fig. 3.26).

a

d

b

c

D

C

A
B

Fig. 3.26 Derivation of Brahmagupta’s formula
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Proof. Denote the area of ABCD as S and draw a diagonal DB dividing the

quadrilateral so that S ¼ [ABD] + [DBC]. Applying formula (1.27) to both

triangles and with jADj ¼ a, jABj ¼ b, jBCj ¼ c, and jDCj¼ d, we have

S ¼ 1

2
ab � sin ffAð Þ þ 1

2
dc � sin ffCð Þ

Angles A and C are supplementary angles because ABCD is cyclic. So ffAþ ffC
¼ 180� ) sin ffCð Þ ¼ sin ffAð Þ and

S ¼ 1

2
abþ dcð Þ � sin ffAð Þ

Squaring both sides we obtain the following chain of transformations:

S2 ¼ 1

4
abþ dcð Þ2 � sin2 ffAð Þ

S2 ¼ 1

4
abþ dcð Þ2 � 1� cos2 ffAð Þ� � ¼ 1

4
abþ dcð Þ2 � 1

4
abþ dcð Þ2 � cos2 ffAð Þ

which can be written as

4S2 ¼ abþ dcð Þ2 � abþ dcð Þ2 � cos2 ffAð Þ (3.7)

Note that we replaced sin by cos using a trigonometric identity in order to apply

the Law of Cosines to triangles ABD and BCD:

DB2 ¼ a2 þ b2 � 2ab � cos ffAð Þ
DB2 ¼ d2 þ c2 � 2dc � cos ffCð Þ

Equating the right sides of the equalities and using the fact that cos ffCð Þ ¼
� cos ffAð Þ as cosines of supplementary angles, we have

a2 þ b2 � 2ab � cos ffAð Þ ¼ d2 þ c2 þ 2dc � cos ffAð Þ

Collecting cosine terms on the right and eliminating the common factor:

a2 þ b2 � d2 � c2 ¼ 2 abþ dcð Þ � cos ffAð Þ

or

a2 þ b2 � d2 � c2ð Þ2
4

¼ abþ dcð Þ2 � cos2 ffAð Þ (3.8)
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Let us substitute (3.8) into (3.7) to arrive at an equation solely in terms of the

lengths of the sides:

16S2 ¼ 4 abþ dcð Þ2 � a2 þ b2 � d2 � c2
� �2

Next, for the right hand side of the equality above, we will use a common

algebraic factorization called the difference of squares formula x2 � y2 ¼ x� yð Þ
xþ yð Þ.

2 abþ dcð Þð Þ2 � a2 þ b2 � d2 � c2
� �2

¼ 2ðabþ dcÞ � a2 � b2 þ d2 þ c2
� � � 2ðabþ dcÞ þ a2 þ b2 � d2 � c2

� �
We can further simplify the equation by grouping terms inside parenthesis and

by using the algebraic factorizations:

x2 þ 2xyþ y2 ¼ ðxþ yÞ2

x2 � 2xyþ y2 ¼ ðx� yÞ2

So

16S2 ¼ d þ cð Þ2 � a� bð Þ2
� �

� aþ bð Þ2 � d � cð Þ2
� �

Applying the difference of squares formula again to the right side, we obtain

16S2 ¼ aþ d þ c� bð Þ d þ cþ b� að Þ aþ bþ d � cð Þ aþ bþ c� dð Þ (3.9)

Now we will introduce a semiperimeter, p ¼ aþ bþ cþ d

2
.

Replacing each factor in (3.9) similar to

aþ d þ c� b ¼ aþ bþ cþ dð Þ � 2b ¼ 2p� 2b ¼ 2 p� bð Þ

we obtain

16S2 ¼ 16 p� bð Þ p� að Þ p� cð Þ p� dð Þ

Dividing by 16 and taking a square root, we finally arrive at the formula:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� bð Þ p� að Þ p� cð Þ p� dð Þ

p
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3.3.4 The Inscribed Circle Theorem

The Inscribed Circle Theorem. A circle can be inscribed into a quadrilateral

if the sums of its opposite sides are equal to each other.

Proof. As shown in Fig. 3.27, let ABCD be a quadrilateral circumscribed about a

circle with radius r ¼ OF and center at O. We must show that it is necessary that

the sum of opposing sides of ABCD is equal.

Using the fact that segments of a tangent line to a circle dropped from the same

point are of equal lengths, let jAFj ¼ jALj ¼ x, jFDj ¼ jDPj ¼ y, jPCj ¼ jCNj ¼ z,
and jNBj ¼ jLBj ¼ t, so

ABj j þ DCj j ¼ ALj j þ LBj j þ DPj j þ PCj j ¼ xþ tþ yþ z

ADj j þ CBj j ¼ AFj j þ FDj j þ CNj j þ NBj j ¼ xþ yþ zþ t

Therefore, jABj + jDCj ¼ jADj + jBCj (see Fig. 3.28).

We can also prove that O is the intersection of the bisectors of all angles (Fig. 3.28).

r

A

BD

C

O

F
m AB = 1.14 inches

m DC = 2.16 inches

m AD = 1.43 inches

m BC = 1.88 inches

(m AB) + (m DC) = 3.30 inches

(m AD) + (m BC) = 3.31 inches

Fig. 3.27 Inscribed circle theorem
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Proof. Let FLNP be inscribed into the same circle as that of Fig. 3.27. Then

FO ¼ LO ¼ ON ¼ OP ¼ r is the radius of the inscribing circle. FALO is a kite

as there are three other quadrilaterals: DFOP, PONC, and LBNO. Diagonals of a
kite are perpendicular. Moreover, AO, BO, CO, and DO are perpendicular bisectors

of FL, LN, NP, and PF, respectively. Therefore, O is the intersection of the angle

bisectors in a circumscribed quadrilateral ABCD.

3.3.4.1 Inscribed Circle of a Rhombus

Circumscribed Rhombus Theorem. If a circle is inscribed in a rhombus,

its center is the point of intersection of the diagonals.

Note that the diagonals of a rhombus bisect the respective angles.

3.3.5 Simson Line Theorem

Simson Line Theorem. Let M be a point on the circumscribed circle of a

triangle ABC. If A1, B1, and C1 are the feet of the perpendiculars from M to the

sides of the triangle, then A1, B1, and C1 lay on the same line.

r
B

N

D

L

O

A

F

P

C

Fig. 3.28 Inscribed and circumscribed quadrilaterals
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Robert Simson (1687–1768) was a British mathematician and professor at

Glasgow University who worked primarily in the field of geometry. However,

based on the book by Hartshorne (Hartshorne 2000), this result was first proven

by Wallace in 1799. I would like to offer you a proof of the theorem based on the

properties of cyclic quadrilaterals.

Proof. Consider a triangle ABC inscribed in a circle (Fig. 3.29). Let point M be a

point on the circle. Let us drop perpendicularsMC1,MB1, andMA1 fromM to sides

AB, AC, and BC, respectively. Connect points B1–A1, B1–C1, and M with vertices

A and C. Since points M, A, B, and C are on the same circle, MABC is a cyclic

quadrilateral.

ffMCBþ ffMAB ¼ 180� (3.10)

Denote angle ffCMA1 ¼ ff1 and ffC1MA ¼ ff2. Since ΔCA1M is a right triangle

and angle MAB is an exterior angle of the right triangle ΔMC1A,

ffMCB ¼ 90� � ff1
ffMAB ¼ 90� þ ff2 (3.11)

Adding the left and right hand sides of (3.11) and equating to the right hand side

of (3.10), ffMCB þ ffMAB ¼ 180� ¼ 180� þ ff2� ff1 which implies ff2 ¼ ff1.

2

1

C1

A1

B1

B
C

A

M

Fig. 3.29 Simson line theorem
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Next, we note that since CMB1A1 is cyclic so ff1 ¼ ffCB1A1 . On the other

hand, quadrilateralC1MB1A is also cyclic soff2 ¼ ffAB1C1. Finally, sinceffCB1A1 ¼
ffAB1C1, we conclude that segmentsB1A1 and B1C1 are on the same line. Therefore,

the feet of the perpendiculars dropped from a point M on a circle to the sides of an

inscribed triangle are collinear.

Remark. The application of cyclic quadrilaterals is maybe the least intuitive

auxiliary construction for the proof of the Simson Line Theorem. However, the

ability to do such constructions together with the ability to see their necessity is

very important for solving many Olympiad-type problems. I hope that Problems

64 and 66 and their detailed solutions will help you to master the art of constructing

proofs where intuition seems to be lacking.

3.4 Problems on Circles

3.4.1 Inscribed, Circumscribed, and Tangent Circles

I think we are now ready to solve some problems. We will mention theorems and

properties we use. Before you start, I recommend that you review the entire chapter.

Problem 53. Prove that the sum of the lengths of the legs of a right triangle

equals the sum of diameters of the inscribed and circumscribed circles.

Proof. Of course, we will start from a sketch (Fig. 3.30). The midpoint of the

hypotenuse of the right triangle will be the center of the circumscribed circle and the

intersection of all bisectors of the triangles will be the center of the inscribed circle.

r

y

x

r

r
r

BC

A

O1

N

K

M

r

y

x

O2

Fig. 3.30 Sketch for Problem 53
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Let us introduce three variables x, y, and r, such thatAM¼AK¼ x,BN¼BK ¼ y,
and CM ¼ CN ¼ r. By the Tangents from the Same Point Theorem,

CM ¼CN ¼ O1M ¼ O1N ¼ r , the radius of the inscribed circle. Now we can

express the diameters of both circles in terms of the new variables. The diameter

of the circumscribed circle,

D ¼ 2 � AO2 ¼ AB ¼ xþ y

The diameter of the inscribed circle d ¼ 2r, so

Dþ d ¼ xþ yþ 2r (3.12)

While the sum of the two legs of the triangle is

ACþ CB ¼ xþ r þ r þ y ¼ xþ yþ 2r (3.13)

The right sides of (3.12) and (3.13) are equal and the problem is solved.

Problem 54. The tangent point of a right triangle and an inscribed circle divide

a leg into segments of length m and n such that m < n. Find the length of the

second leg.

Solution. Let us draw a picture with all relevant information (Fig. 3.31).

m

x

n

m

m

m

BC

A

O

N

K

M

m

x

n

Fig. 3.31 Sketch for Problem 54
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If CA and CB are two tangents dropped to the circle from vertex C, then
CM ¼ CN ¼ m by the Tangents from the Same Point Theorem. By the same

property AM ¼ AK ¼ n. We must calculate the length of CB. It is obvious that

CB ¼ CN + NB, but we don’t know the length of NB. Let us introduce a variable
x ¼ |NB| ¼ |KB|. In order to find x and then CB, we will use the Pythagorean

Theorem:

AC2 þ CB2 ¼ AB2

ðnþ mÞ2 þ mþ xð Þ2 ¼ ðnþ xÞ2
m2 þ 2mnþ n2 þ m2 þ 2mxþ x2 ¼ n2 þ 2nxþ x2

m2 þ mn ¼ xðn� mÞ

x ¼ m2 þ mn

n� m

Using x we can find the second leg CB:

CB ¼ mþ m2 þ mn

n� m
¼ 2mn

n� m

Answer. CB ¼ 2mn

n� m
:

In order to solve the problem below we need to demonstrate our cumulative

knowledge. I would call this problem a problem-investigation where you have to

apply many properties.

Problem 55. A circle is inscribed into a triangle with sides AB ¼ 8, BC ¼ 6,

and AC ¼ 4. Find the length of segment DE if points D and E are tangent to

sides AB and AC, respectively.

Solution. Of course, we again will start from a picture (Fig. 3.32).

This nice picture can give us some ideas for finding DE from the quadrilateral

DOEA. The quadrilateral consists of two right triangles (ODA and OEA) the areas
of which we can find. This area is a half of a product of its diagonals. Continuing

this idea, we need to know the radius of the circle and the length of DA.
As shown in Fig. 3.32, points G, D, and E are tangent to sides BC, BA, and AC,

respectively. By the Tangents from the Same Point Theorem, CG ¼ CE, BG ¼
BD, and AD ¼ AE. O is the center of the circle and the point of the intersection of

the bisectors of triangle ABC.
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Let us introduce the variables x ¼ BG ¼ BD, y ¼ GC ¼ CE, z ¼ DA ¼ AE,
and r ¼ OD ¼ OC ¼ OG. We can find the radius, r, using the relationship

between the area of the triangle ABC, the radius of the inscribed circle, and the

half perimeter, p ¼ aþbþc
2

¼ 6þ4þ8
2

¼ 9. By Heron’s Formula,

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp� aÞðp� bÞðp� cÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð9� 6Þð9� 8Þð9� 4Þ

p
¼ 3

ffiffiffiffiffi
15

p

S ¼ p � r ¼ 9r

The left sides of the equations are the same, so we can equate the right sides and

find the radius:

9r ¼ 3
ffiffiffiffiffi
15

p

r ¼
ffiffiffiffiffi
15

p

3

Variables x, y, and z can found from the system:

xþ z ¼ 8

xþ y ¼ 6

yþ z ¼ 4

8><
>: ,

z� y ¼ 2

zþ y ¼ 4

z ¼ 3

8<
: ,

x ¼ 5

y ¼ 1

z ¼ 3

8<
:

The last step of our investigation is to find DE. Let us find the area of DEOA in

two different ways:

DE � OA
2

¼ 2 � r � z
2

DE ¼ 2 �
ffiffiffiffiffi
15

p � 3
3 � OA ¼ 2

ffiffiffiffiffi
15

p

OA

x z

x

r

r

r

B

C

A

O

D

EG

H

z

y y

Fig. 3.32 Sketch for Problem 55
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In order to find the length of DE we need OA. This can be found by applying the
Pythagorean Theorem to triangle ODE

OA2 ¼
ffiffiffiffiffi
15

p

3

 !2

þ 32 ¼ 32

3

OA ¼
ffiffiffiffiffi
32

p ffiffiffi
3

p ¼ 4
ffiffiffi
6

p

3

so that

DE ¼ 2
ffiffiffiffiffi
15

p � 3
4
ffiffiffi
6

p ¼ 3
ffiffiffiffiffi
10

p

4

Answer. DE ¼ 3
ffiffiffiffiffi
10

p

4
:

Problem 56. An isosceles triangle,ABC, with sides of length 2 and a 120� vertex
angle is given. Find the radius of the circle that can be inscribed in triangle ABC.

Solution. One thought that could come into your mind is to use a very familiar

formula connecting a half perimeter of a polygon, a radius of the inscribed circle,

and an area of the polygon.

S ¼ p � r (3.14)

This formula has always helped us with problems of such type. It should work

now. After drawing Fig. 3.33 with all relevant information labeled, we can think of

introducing some appropriate variables. Triangle ABC is isosceles so AB ¼ BC
¼ 2. A circle with radius r ¼ OD is inscribed into ABC. We must find r.

2

A

B

CD

O

Fig. 3.33 Sketch for Problem 56
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Construct segment BD as the height of bisector of the triangle. Since ABC is

isosceles, BD bisects angle ABC and so mffABD ¼ mffDBC ¼ 60� from the condi-

tion of the problem (andmffBAC ¼ 30�). Triangle ABD is a right triangle. Knowing

the hypotenuse and angles, we find that AD ¼ ffiffiffi
3

p
and BD ¼ 1. Because D is the

midpoint of AC, AC ¼ 2AD ¼ 2
ffiffiffi
3

p
. Knowing the height and base of triangle ABC

we can find its area, S, and half perimeter, p.

S ¼ 1

2
2
ffiffiffi
3

p
� 1 ¼

ffiffiffi
3

p

p ¼ 1

2
ð2þ 2

ffiffiffi
3

p
þ 2Þ ¼ 2þ

ffiffiffi
3

p

The inscribed radius of formula (3.14) is then

r ¼ S

p
¼

ffiffiffi
3

p

2þ ffiffiffi
3

p (3.15)

If we want to rationalize the denominator, we should multiply the numerator and

the denominator of (3.15) by 2� ffiffiffi
3

p� �
, that is the conjugate of 2þ ffiffiffi

3
p� �

,

r ¼
ffiffiffi
3

p

ð2þ ffiffiffi
3

p Þ �
ð2� ffiffiffi

3
p Þ

ð2� ffiffiffiffiffi
3Þp ¼ 2

ffiffiffi
3

p � 3

22 � ð ffiffiffi
3

p Þ2
¼ 2

ffiffiffi
3

p
� 3

Answer. r ¼ 2
ffiffiffi
3

p
� 3:

Now we can try solving problems on two or more circles.

Problem 57. Two circles are tangent to each other. Through the center of the

second is drawn a tangent line to the first. The distance from the point of

tangency to the center of the second circle equals 3 times its radius. What is the

ratio of radii of the first circle to the second?

Solution. Of course, we start with a picture (Fig. 3.34).
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As shown, O1 and O2 are the centers of the first and second circles, respectively

andAO2 is the tangent. The radius of the first circle isO1A ¼ R1 andR2 is the radius

of the second circle. From the condition of the problem, O1O2 ¼ R1 þ R2 and O2

A ¼ 3R2. We need to find R1

R2
.

Consider the right triangle O1AO2ðffA ¼ 90�Þ. By the Pythagorean Theorem O1

O2
2 ¼ O1A

2 þ O2A
2 or R1 þ R2ð Þ2 ¼ R1

2 þ 3R2ð Þ2. Simplifying the expression we

obtain R1 ¼ 4R2 from which we have: R1

R2
¼ 4.

Answer. The ratio equals 4.

By solving the problem below you will gain practice in creating proofs.

Problem 58. Prove that if an isosceles trapezoid can be circumscribed about a

circle, then its height is the geometric mean of its bases.

Proof. Let us assume that ABCD is an isosceles trapezoid with bases AD ¼ a and

BC ¼ b, and sides AB ¼ CD ¼ c. If ABCD is circumscribed by the circle, then by

Secant–Tangent Segment Theorem, we have that a + b ¼ 2c from which we find

(Fig. 3.35)

AB ¼ aþ b

2
(3.16)

R1

R2

R1

O1
O2

A

Fig. 3.34 Sketch for Problem 57 (two tangent circles)
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Because any isosceles trapezoid is symmetric about the line passing through the

midpoints of the bases, BE is the height, h, of the trapezoid and

AE ¼ AD� BC

2
¼ a� b

2
(3.17)

Applying the Pythagorean Theorem to triangle BEA, BE2 ¼ AB2 � AE2.

Replacing AB and AE by (3.16) and (3.17), respectively, we have that

h2 ¼ aþ b

2

� �2

� a� b

2

� �2

¼ ab

h2 ¼ ab

h ¼
ffiffiffiffiffi
ab

p

The problem is solved.

Note. This is not the only solution to this problem. I included this problem in the

homework and hope that you will find a pair of the right similar triangles and use the

ratio of similar sides.

Problem 59. Five circles are inscribed in a 60� angle so that each consecutive

circle starting after the first is tangent to the previous one. How much is the

combined area of the first five circles greater than that of the first?

a

c

b

O

C

D

B

A E F

Fig. 3.35 Sketch for Problem 58 on circumscribed trapezoid
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Solution. Let A be the vertex of the angle,Oi and ri are the center and radius of the
ith circle (i ¼ 1, 2, . . ., 5). Since 0:5 � ffA ¼ 30� , AOi ¼ 2ri , AOi�1 ¼ 2ri�1 , AOi

¼ AOi�1 þ ri�1 þ ri, and 2ri ¼ 2ri�1 þ ri�1 þ ri. The radius of the ith circle can be

written as ri ¼ 3ri�1. The radii of consecutive circles form a geometric progression

so that the combined area of the five circles is

S ¼ π � r21 1þ 9þ 92 þ 93 þ 94
� � ¼ π � r21 95 � 1

� �
9� 1

¼ 7,381πr21

The area of the first circle is S1 ¼ πr21 so
S
S1
¼ 7,381

Answer. 7,381 times.

Problem 60. (Lidsky) Infinitely many circles are inscribed in an acute angle so

that each circle is tangent to its neighbors and to the sides of the angle. Prove that

the radii of these circles form a geometric progression. Find this progression as a

function of the measure of the angle.

Solution. Let O be the angle vertex, mffO ¼ α, On be the center of the nth circle,

and On � 1 the center of the nth � 1 circle (Fig. 3.36). It is clear that the line OOn is

the bisector of angle α. The radius of the nth circle can be evaluated as rn ¼ OOn�
sin α

2
. Denote by rn�1 the radius of the nth � 1 circle. On one hand, OOn � OOn�1ð Þ�

sin α
2
¼ rn � rn�1. On the other hand, OOn � OOn�1ð Þ ¼ rn þ rn�1.

Dividing these formulas by each other we obtain the following

sin
α

2
¼ rn � rn�1

rn þ rn�1

rn�1 ¼ rn � rn sin
α

2
� rn�1 � sin α

2

rn�1 1þ sin
α

2

� �
¼ rn 1� sin

α

2

� �
rn
rn�1

¼ 1þ sin α
2

1� sin α
2

¼ r
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Therefore, the radii of the consecutive circles form a geometric progression with

the ratio r given by the formula above. This ratio keeps the same value for the given

angle α.

Problem 61. Can the area of a triangle be decreased if all sides of a triangle are

increased?

Solution. Yes. It is possible. For example, consider an equilateral triangle with

side a ¼ 1 so that its area is S1 ¼
ffiffi
3

p
4
. Let us increase the sides of the triangle and

allow it to become an isosceles triangle with sides a ¼ 2; b ¼ c ¼ 1:01. Then the

area of the new triangle with bigger sides will be much less. In fact, it will be

S2 ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
1:012�1

p
2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0201

p � S1 ¼
ffiffi
3

p
4
.

How can we explain this phenomenon? The explanation will surprise you.

Do you remember the formula connecting the area of a triangle and a radius, R,

of the subscribed circle? Here it is! S ¼ abc
4R .

This formula is a key to the solution. Increasing a, b, and c and simultaneously

letting R become much greater than abc, we can make S become very small and

almost 0. How can we get such an effect? Let us imagine a circle of a very big

radius, R (Fig. 3.37).

rn-1

rn
On

A

On-1

O

Fig. 3.36 Sketch for Problem 60
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Problem 62. Consider two tangent circles such that one is within the other. A line

passes through points B, C, and the center of the smaller circle and crosses the

bigger one at points A and D. Find the ratio of radii of circles if |AB|:|BC|:
|CD| ¼ 2:4:3.

Solution. Let us sketch a picture (Fig. 3.38). DenoteO1 andO2 as centers of the big

and the small circles, respectively. Let M be a point of tangency of the two circles,

so that a line drawn through points O1;O2 , and M forms a chord MN of the big

circle. By the properties of chords,

MO2j j : O2Nj j ¼ AO2j j � O2Dj j (3.18)

We need to find these components in terms of r and R.

C
A

B

Fig. 3.37 Sketch for Problem 61
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If the radius of the small circle is denoted as r, by the condition of the problem

|AB|:|BC| ¼ 2:4 or
ABj j
2r ¼ 2

4
, so r ¼ |AB|.

Also from the condition of the problem, |BC|:|CD| ¼ 4:3;
BCj j
CDj j ¼

4

3
or in terms

of r,
2r

CDj j ¼
4

3
; CDj j ¼ 3

2
r. The lengths of AO2 and O2D are

AO2j j ¼ ABj j þ BO2j j ¼ 2r

O2Dj j ¼ O2Cj j þ CDj j ¼ r þ 3

2
r ¼ 5

2
r

Denoting the radius of the big circle as R, we have that MO2 and O2N are

MO2j j ¼ r

O2Nj j ¼ Rþ R� r ¼ 2R� r

Substituting the lengths: |MO2|, |O2N|, |AO2|, and |O2D| into (3.18),

r � ð2R� rÞ ¼ 5r2

R ¼ 3r

Answer. 3:1.

r

O1

O2

N

M
D

A

C

B

Fig. 3.38 Sketch for Problem 62
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3.4.2 Problems on Cyclic Quadrilaterals

I hope the following problem will be of interest to those who enjoy “tricky”

problems. Problem 63 is not really tricky, but at first glance seems to have too

many unknowns.

Problem 63. The angles between opposite sides of a quadrilateral inscribed in a

circle are α and β. Find all angles of the quadrilateral.

Solution. First, we will draw a quadrilateral ABCD inscribed in a circle (Fig. 3.39).

From the condition of the problem, we know the angles between opposite sides of

the quadrilateral. The opposite sides themselves do not intersect, but the lines

containing them do. Continue the opposite sides until they intersect at points M
and N and form angles α and β that we show with one and two red arcs, respectively.

AD \ BC ¼ M; mffDMC ¼ α

AB \ CD ¼ N; mffAND ¼ β

Let us assume that we are looking for the measures of angles A, B, C, and D of

the quadrilateral, ABCD, that is inscribed in a circle. By the Circumscribed Quadri-

lateral Theorem, we can write the first two equations.

ffBþ ffD ¼ 180�

ffAþ ffC ¼ 180�
(3.19)

a

b

B C

D

A

N

M

Fig. 3.39 Sketch for Problem 63
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In order to find all four angles of the quadrilateral we need to create two more

equations. We can notice that angles C and D are also the angles of triangle MCD
and angles A and D are also angles of triangle AND. We know that for any triangle

the sum of the interior angles equals 180�. This can be written as

ffAþ ffDþ β ¼ 180�

ffCþ ffDþ α ¼ 180�
(3.20)

Combining (3.19) and (3.20), we have

ffAþ ffD ¼ 180� � β
ffCþ ffD ¼ 180� � α
ffAþ ffC ¼ 180� . . .
ffBþ ffD ¼ 180� . . .

8>><
>>: (3.21)

Subtracting the second equation of the system from the first we obtain

ffA� ffC ¼ α� β (3.22)

Adding the third equation of system (3.21), we find ffA,

ffA ¼ 90� þ α� β

2
(3.23)

Now from (3.22) and (3.23) we can find angle C,

ffC ¼ 90� � α� β

2

We will find angle D by adding the left and the right sides of the first two

equations of the system:

ffAþ ffCþ 2ffD ¼ 360� � ðαþ βÞ

and replacing ffAþ ffC ¼ 180�, we have

180� þ 2ffD ¼ 360� � ðαþ βÞ

or

ffD ¼ 90� � αþ β

2
; ffB ¼ 90� þ αþ β

2

Problem 64. Prove that if points K, L,M are the feet of the altitudes of an acute

triangle ABC, then these altitudes are the angle bisectors of the orthic
triangle KLM.
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Proof. In order to solve this problem we will use the properties of cyclic

quadrilaterals. First, we will draw a triangle ABC and show its three heights AM,

BL, and CK. (See Fig. 3.40.)

Denote ffAML ¼ α , ffKCA ¼ γ; ffABL ¼ β , and ffKMA ¼ δ . If each height of

triangle ABC is also a bisector of the orthic triangle KLM (shown in red as formed

by the altitudes of ABC), then we need to prove that α ¼ δ. However, Fig. 3.40 has
too many lines and it is hard to work with. Let us temporarily erase segments KL
and KM and connect only points M and L as shown in Fig. 3.41.

ββββ

γγγγ
δδδδ αααα

L

B

K

M

A

C

H

Fig. 3.40 First sketch for Problem 64

L

B

K

M

A

C

H

Fig. 3.41 Second sketch for Problem 64

3.4 Problems on Circles 171



We can state that the quadrilateral LMAB is cyclic because the angles at

L (ffALB ¼ 90�) and at M (ffAMB ¼ 90�) are right angles, so triangles ALB and

AMB are inscribed in the same circle with diameter AB. Therefore, by Thales’

Theorem, AB is a diameter of the circle in which the cyclic quadrilateral ALMB
is inscribed. Hence, α ¼ ffAML ¼ β ¼ ffABL since they support the same arc, AL.
The angles and the arc are shown in green in Fig. 3.42. Next, KLCB is also a

cyclic quadrilateral because the angles K and L are right and BC is the diameter

of the circle in which the quadrilateral KLCB is inscribed.

Hence β ¼ γ ¼ ffKCL are angles supporting arc KL. Finally, MKAC is a cyclic

quadrilateral (Fig. 3.43) because the anglesM and K are right, so γ ¼ δ ¼ ∡ AMK.
Thus, α ¼ δ and ffKMA ¼ ffAML.. Therefore, the altitude AM of ABC is the angle

bisector of the angle KML of the orthic triangle. The same argument can be applied

to the other two altitudes.

L

B

K

M

A

C

H

Fig. 3.42 Problem 64. View of cyclic quadrilateral BALM
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Note. Since the angle bisectors of triangle KLM meet at a point, this gives us

another proof that the altitudes of ABC meet in one point.

Problem 65. Let A, B, C, D be distinct points in the plane, with A, B both on the

same side of the line CD. Prove that A, B, C, D lie on a circle if and only if the

angles DAC and DBC are equal.

It was noted first by Euclid that if A, B, C, D lie on a circle (with A and B on the

same side of CD), then the angles CAD and DBC are equal since they both support

the same arc DC.

m∠AMC = 90.00°

m∠AKC = 90.00°

m∠ALB = 90.00°

m∠AMB = 90.00°

L

M

K

B

A

C

Fig. 3.43 Problem 64. View of cyclic quadrilaterals
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Proof. Suppose conversely that angles CAD and DBC are equal, but point B is not

on the circle (Fig. 3.44). Let the circle through A, D, and C meet the line BD at M.

In our figure B lies outside the circle, but the argument will be similar if B lies inside

the circle. Then the angle at M is also equal to the angles at A and at B. We know

that it cannot be true thatB 6¼ M because the angle DMC atM is an exterior angle to

the triangle BCM and so it must be greater than the opposite interior angle at B.
Hence B ¼ M and all four points lie on the same circle.

Problem 66. Let AXYZB be a convex pentagon inscribed in a semicircle of

diameter AB. Denote by P, Q, R, S the feet of the perpendicular from Y onto

lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines

PQ and RS is half of the angle XOZ, where O is the midpoint of segment AB.

Solution. Let us draw a semicircle and inscribe a pentagon AXYZB in it (Fig. 3.45).

Additionally, we will construct points P, Q, R, and S, and continue lines PQ and SR
to intersect at T.

M

C

D

AB

Fig. 3.44 Sketch for Problem 65
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First, consider triangle AXB:

YP?AX

YQ?XB

YT?AB ) fP;Q; Tg 2 the same line ðSimsonÞ

Secondly, consider triangle ZAB:

YR?AZ

YS? ZB

YT?AB ) fS;R; Tg 2 the same line ðSimsonÞ

And note that

ffPTS ¼ ffPTY þ ffYTS

First, we will evaluate angle PTY: Consider quadrilateral APYT. It is cyclic,

because ffYPA ¼ ffYTA ¼ 90� Also, ffPTY ¼ ffPAY ¼ 1
2
ffXOY (both angles support

the same arc) as shown in Fig. 3.46. The angle ffYTS can be found from the cyclic

n

T

Q
R

S

P

x

O
A B

Y

Z

Fig. 3.45 First sketch for Problem 66
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quadrilateral YSBT (see Fig. 3.47) since YB is the diameter of the circumscribed

circle: We can state that ffYTS ¼ ffYBS. Further, we can continue and rewrite the last
equality as ffYTS ¼ ffYBS ¼ ffYBZ ¼ 1

2
ffYOZ . In order to understand how the last

part of the equality was obtained, we note thatffYBS ¼ ffYBZ because Z is on the line

BS (see Fig. 3.45). Next ffYBZ ¼ 1
2
ffYOZ since they are the inscribed and central

angles supporting the same arc.

P

Y

A

T

Fig. 3.46 Second sketch for Problem 66

B

Y

T

S

Fig. 3.47 Third sketch for Problem 66
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Finally,

ffPTS ¼ 1

2
ffXOY þ 1

2
ff YOZ ¼ 1

2
ffXOZ

The proof is completed.

3.5 Homework on Circles

1. Prove that if an isosceles trapezoid can be circumscribed about a circle, then its

height is the geometric mean of its bases (Fig. 3.48).

Solution.

r

x

y

r

x

y

r

H

C B

M

A

N

O

KD

Fig. 3.48 Circumscribed trapezoid problem
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Denote jADj ¼ a, jBCj ¼ b, jKAj ¼ x, then jDAj ¼ 2x. Also let jNBj ¼ y so
jCBj ¼ 2y. jKOj ¼ r (the radius of the inscribed circle), then the height of the

trapezoid jAHj ¼ jKNj ¼ h ¼ 2r.
Drop a perpendicular OM from the center of the circle O to the side AB.

Then triangles OMA and OMB are similar and the ratio of the corresponding

sides is the same:

OMj j
MBj j ¼

AMj j
OMj j

r

y
¼ x

r

r2 ¼ xy

Since h ¼ 2r and a ¼ 2y, and b ¼ 2x, then multiplying both sides of the last

relationship by 4 and after the substitution we obtain

4r2 ¼ 4xy

2rð Þ2 ¼ 2x � 2y
h2 ¼ a � b
h ¼

ffiffiffiffiffi
ab

p

We got the proof.

2. Given triangle ABC, such that its altitudes BL and CK intersect at O. Let line
AO intersect the opposite side at point M. Prove that AM?BC. (Archimedes

Problem.)

Hint: Use cyclic quadrilaterals.

3. Two circles of the same radius R intersect each other so that the distance

between their centers equals R as well. In a figure formed by the intersection

of two circles a square is inscribed. Find the side of the square.

Answer.

ffiffiffi
7

p � 1

2
� R.

4. A circle is inscribed into a triangle ABC, such that AB ¼ 4, BC ¼ 2, and

AC ¼ 3. Find the area of triangle AMN, where M and N are tangent points of

the circle with sides AB and AC, respectively.

Answer.
25

ffiffiffiffiffi
15

p

64
.

5. Four congruent circles are placed in a 4 � 4 square so that each is tangent to

two sides of the square and to two sides of the other circles. A smaller fifth

circle is drawn tangent to each of the four circles, as shown by Fig. 3.49.

Find its radius.
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Answer. r ¼ ffiffiffi
2

p � 1.

Solution. In Fig. 3.50, we have that ABCD is a square,M is the midpoint of side

AB,O is the center of the small circle, N is the tangent point of the small and the

big circle, r is the radius of the small circle, and R is the radius of the big circle.

By the Pythagorean Theorem with AB ¼ 4, thenAC ¼ 4
ffiffiffi
2

p
and radiusOA ¼

1=2AC ¼ 2
ffiffiffi
2

p
. Also, 4R ¼ AC so R ¼ 1. In terms of the radii of the circles, O

A ¼ ON þ NA ¼ r þ Rþ R
ffiffiffi
2

p ¼ r þ 1þ ffiffiffi
2

p
. So OA, r ¼ ffiffiffi

2
p � 1.

Fig. 3.49 Problem on five circles

r

R

C D

B A

O

M

N

Fig. 3.50 Second sketch of five circles
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6. Prove that the product of the diagonals of the quadrilateral inscribed in a circle

equals the sum of the product of its sides

7. A circle of radius r is inscribed in the sector of a circle of radius R. The chord of

the sector equals 2a. Prove that
1

r
¼ 1

R
þ 1

a
8. Prove that internal bisectors of angles A, B, C, and D of quadrilateral ABCD

intersect at four points on a circle.

9. Prove that the distance from a point on a circle to a chord of the circle is a

geometric mean of the distances between the end points of the chord and the

tangent to the circle that goes through this point.

Proof.

A. If a chord is parallel to the tangent then the statement is true.

B. Assume that chord is not parallel to the tangent. Then extension of the chord

and tangent will intersect at point S. LetMN be the distance from the tangent

pointM to the chord and let AK and BF be the distances from the ends of the

chord to the tangent. We need to prove that MN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BF � AKp

.

Let us draw a picture of the situation (Fig. 3.51).

Triangles SKA and SFB are similar, so
AS

SB
¼ AK

BF
.

K

F

B

A N
S

M

Fig. 3.51 Distance from a point on a circle to a chord of the circle
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Triangles SAK and SMN are similar so
AS

SM
¼ AK

MN
or MN ¼ SM

AS
AK.

By the property of the tangent and secant dropped to a circle from the same

point we can write SM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SA � SBp

from which we obtain that

MN ¼ SM

AS
� AK ¼

ffiffiffiffiffiffiffi
SB

AK

r
AK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BF � AK

p

10. Given a scalene triangle ABC, prove that the point of intersection of the bisector
of angle A and the perpendicular dropped from the midpoint of side BC lies on

the circumscribed circle of triangle ABC.

Proof. Let point D be the intersection of the angle bisector (of angle BAC) of
triangle ABC with the circle (Fig. 3.52).

Since angles BAD and CAD are equal, BD ¼ CD and the triangle BDC is

isosceles. Hence, the perpendicular dropped from point D to the segment BC
divides this segment into two equal parts (bisects it).

11. Prove that the sum of the legs of a right triangle is equal to the sum of diameters

of the inscribed and circumscribed circles.

12. Two unequal trapezoids with parallel corresponding sides are inscribed into the

same circle. Prove that their diagonals are equal.

13. The tangent to a circle at point K is parallel to chord LM of the circle. It is

known that LM ¼ 6 and KM ¼ 5. Find the radius of the circle.

Answer. 25/8.

14. Find the area of a pentagon ABCDE inscribed in a circle with radius 1 if AB

¼ ffiffiffi
2

p
; ffABE ¼ π

4
; ffEBD ¼ π

6
, and BC ¼ CD.

H

D

B

A

C

Fig. 3.52 A homework problem on an cyclic quadrilateral
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Hint: Note that the triangle ABE is also inscribed in the same circle. Using

formula (1.27) for its area we can find that sin ffAEB ¼ AB

2R
¼ 1ffiffiffi

2
p so ffAEB

¼ π

4
. Then we conclude that triangle BAE is the right isosceles triangle with BE

to be the diameter of the circle.

Answer. 1þ 3

4

ffiffiffi
3

p
:

15. It is known that the area of a convex quadrilateral, ABCD, is equal to the

arithmetic mean of the products AB � CD and AD � BC. Find the length of

segment CD if |BC| ¼ 4, ffADC ¼ π

3
, and ffBAD ¼ π

2
.

Answer. 4
ffiffiffi
3

p
.

16. Consider a trapezoid ABCD whereBC k AD and side AB is perpendicular to the

bases. A circle, for which |AB| is the diameter, intersects side CD in two points

that divide the side in ratio 2:1:3, starting from the vertex C. Find the acute

angle of the trapezoid.

Hint. Use theorem on tangent and secant.

Answer. α ¼ arccos

ffiffiffi
2

p � 1ffiffiffi
6

p
� �

.

17. Chords AP and CQ of the circle circumscribed about acute triangle ABC
contain its heights dropped from vertices A and C. Find the radius of the circle

circumscribed about triangle PLQ where L is the point of the intersection of

chords AP and CQ, ffBAC ¼ 65�; ffACB ¼ 70�, and PQ ¼ 2
ffiffiffi
2

p
.

Solution. Let M and N be the feet of the heights of the triangle ABC dropped

from vertex A and C, respectively. These feet belong to the sides of the triangle
because the triangle is acute (see Fig. 3.53).
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CAN and ACM are right triangles so ffACQ ¼ 25� and ffCAP ¼ 20�:
From the inscribed angle theorem, it follows that

ffAPQ ¼ ACQ ¼ 25�; ffCQP ¼ ffCAP ¼ 20� )
ffQLP ¼ 180� � 25� � 20� ¼ 135�

Finally, applying the Law of Sines to the triangle PLQ, we can find the radius
of its circumscribed circle

R ¼ PQ

2 sin ffPLQ ¼ 2
ffiffiffi
2

p

2 sin 135�
¼

ffiffiffi
2

p

sin 45�
¼ 2

Answer. R ¼ 2.

18. Triangle ABC is inscribed in a circle. A tangent dropped from vertex C of the

triangle intersects the extension of side AB from vertex B at pointD. It is known
that ffCDAþ ffACB ¼ 2ffBAC. Find the angle between tangent and chord CB.

Solution. Denote α ¼ ffBAC and β ¼ ffABC (Fig. 3.54). The angle between

tangent CD and chord CB equals the inscribed angle BAC: ffBCD ¼ α. Also, in
triangle ACD we note that ffCAD ¼ α and ffACD ¼ 180� � β so ffCDA ¼ β � α.

L

Q

C

N

P

MB

A

Fig. 3.53 Homework problem on an inscribed triangle
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Let us use the given relationship between angles: ffCDAþ ffACB ¼ 2ffBAC it

can be written as

β � αð Þ þ 180� � α� βð Þ ¼ 2α

α ¼ 45�

Answer. α ¼ 45�.

19. A quadrilateral PQRS is inscribed in a circle. Diagonals PR and QS are

perpendicular to one another and intersect at a point M. It is known that

PS ¼ 13, QM ¼ 10. And QR ¼ 26. Evaluate the area of the

quadrilateral PQRS.

Answer. 319.

Solution. Let us draw a quadrilateral with perpendicular diagonals that is

inscribed into a circle (Fig. 3.55).

a180°-a-b

ba
DA

B

C

b-a

Fig. 3.54 Problem on finding the angle between a tangent and chord

M

Q

S

P R

Fig. 3.55 Cyclic quadrilateral with perpendicular diagonals
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From the right triangle QMR we obtain that MR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
262 � 102

p
¼ 24 .

Since angles QSP and PRQ support the same arc, they are equal and the

following is true.

ffQSP ¼ ffPRQ
ΔSPM 	 ΔRQM

PM

QM
¼ MS

MR
¼ PS

QR
¼ 1

2

PM ¼ 5; SM ¼ 12

½PQRS� ¼ 1

2
PR � QM þ 1

2
PR �MS ¼ 319

20. A trapezoid with basea ¼ ffiffiffi
8

p
and heighth ¼ ffiffiffi

3
p þ ffiffiffi

2
p

h is inscribed in a circle

with radius R ¼ ffiffiffi
5

p
. The center of the circle is inside the trapezoid. Each of the

four segments of the circle cut by the sides of the trapezoid is reflected with

respect to the cutting side. Find the area of the geometric figure that is formed

by the interior points of the trapezoid that do not belong to any of the cutting

segments.

Hint. See Problem 52 and show that KBCL of Fig. 3.56 is a square. The area of

the figure equals the area of this square minus the four segment areas.

Answer. S ¼ 8þ 4
ffiffiffi
6

p � 10 arcsin 2
ffiffi
6

p
5

� �
.

F

E

M

LK

C

O

D

B

A

W

X

Z

Y

W'

X' Y'

Z'

N

Fig. 3.56 Illustration for Homework Problem 20
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Chapter 4

Problems on Construction

In this section we will make our constructions as it was done by the Greeks, using

only an unmarked rulers and a compass. Our constructions will be based on two

Euclidean postulates of plane geometry:

1. There is a unique line through two distinct points.

2. Given a point and a segment length, a circle can be contracted with the given

point as a center and the given length as a radius.

Ancient Greeks were able to construct many things using only straightedges and

compasses. However, they were unsuccessful in solving some problems such as

trisecting an angle, constructing a regular heptagon or nonagon, and duplicating a

cube. The answers to these problems that were unsolved for thousands of years

came with the development of modern mathematics such as analytical geometry,

algebra, and number theory. Mathematicians who greatly contributed to unsolved

problems were Vieta, Fermat, Descartes, Euler, and Gauss. Ancient constructions

are still the basis of Euclidean geometry. In this section we will do some of them

and discuss why some construction problems are unsolvable and how modern

development in the field explains this fact.

4.1 Angles

4.1.1 Construction of Angles

Problem 67. Can you construct an angle of 30�?

If yes, then do it right away. There are several ways to do it. I will show one of

them here. Suppose you have a right triangle with angles 30�, 60�, and 90�. Then for
this triangle, the side opposite to the 30� angle is half of the hypotenuse. This fact can

E. Grigorieva, Methods of Solving Complex Geometry Problems,
DOI 10.1007/978-3-319-00705-2_4, # Springer International Publishing Switzerland 2013
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be explained by the Law of Sines for the right triangle. Remember that the length of a

leg of a right triangle equals a product of its hypotenuse and the sine of the opposite

angle. Thus, for the Fig. 4.1 we have that a ¼ c sin ffCABð Þ ¼ c sin 30� ¼ c
2
.

Therefore, the construction of a 30� angle can be reduced to the construction of

a right triangle with the length of one of the legs equal to half of that of the

hypotenuse. The next step is very important: if AB is a diameter of a circle then

any triangle with a vertex on the circle will be a right triangle (by Thales’ Theorem).

We need a unique one such that its side equals half of the hypotenuse. To do this

we just intersect the circle by another circle of the same radius with its center at B
(or A) (Fig. 4.2).

One such problem is offered in this section for your consideration.

b

a

c

A

C B

Fig. 4.1 Angle of 30�

a=c/2

b

c

C

OB A

Fig. 4.2 Construction of 30� angle
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Problem 68. Construct an angle of 36�.

Solution. 36� is not 30� and we need to think of some fresh ideas.

Method 1: Combination of Geometric and Algebraic Approaches

Assume that a 36� angle is constructed and it is a vertex angle of isosceles

triangle AOB (Fig. 4.3).

Denote jAOj ¼ jOBj ¼ R, jABj ¼ a, and ffAOB ¼ 36�. Then the base angles of

this triangle equal 72�. Let us drop a bisector AK; then ffOAK ¼ ffBAK ¼ 36� and
ffAKB ¼ 72� . So jOKj ¼ jAKj ¼ jABj ¼ a (equal segments are shown in blue).

By the angle bisector theorem and from the similarity of triangles AOB and BAK
(by the AA property) we obtain the following relationship:

OAj j
ABj j ¼

OKj j
BKj j

R

a
¼ a

R� a

(4.1)

a2 þ Ra� R2 ¼ 0

This quadratic equation has only one positive root, a ¼ R
ffiffi
5

p �1ð Þ
2

.

Therefore, in order to solve this problem, we can select a segment of length R

and construct an isosceles triangle with side R and base a ¼ R
ffiffiffi
5

p � 1
� �

2
. The vertex

A B

O

K

Fig. 4.3 Angle of 36�
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angle will be 36�. Of course, if R ¼ 1, then a ¼
ffiffiffi
5

p � 1
� �

2
, a Fibonacci number!

Hence, our construction can consist of two steps (Fig. 4.4):

1. Construct a segment of length a ¼
ffiffiffi
5

p � 1
� �

2
. One approach is to construct a

right triangle with legs 1 and 2, so that the hypotenuse will be
ffiffiffi
5

p
. We then draw

an arc with center at point B of the hypotenuse and of radius 1. It will cut from

the hypotenuse a segment AM of length
ffiffiffi
5

p � 1 . Finally, we will find its

midpoint, N. Therefore, ANj j ¼ NMj j ¼ a ¼
ffiffiffi
5

p � 1
� �

2
.

2. Consider segment AN as the base of the future isosceles triangle with a vertex

angle of 36�. Using the same sketch (Fig. 4.4) draw semicircles of radius 1 from

vertices at A and N. The point of the intersection, O, will complete our construc-

tion of ffAON ¼ 36�.

Method 2: Trigonometric Approach

This approach is based on the properties of complementary angles, e.g.,

cos β ¼ sin 90� � βð Þ so cos 36� ¼ sin 54� can be rewritten as sin 3α ¼ cos 2α
where α ¼ 18�.

I remember when I was in ninth grade, a similar problem appeared at the city

math Olympiad. We had to evaluate sin 18� precisely. I first rewrote sin 3α as the

sine of the sum of two angles and replaced the right hand side in terms of a sine of

single angle:

sinð2αþ αÞ ¼ 1� 2sin2α
sin α � cos 2αþ cos α � sin 2α ¼ 1� 2sin2α
sin α 1� 2sin2α

� �þ cos α � 2 sin α cos α ¼ 1� 2sin2α
sin α 1� 2sin2α

� �þ 2 sin α 1� sin2α
� � ¼ sin α 1� 2sin2α

� �
4 sin3 α� 2sin2α� 3 sin αþ 1 ¼ 0

This equation can be factored as sin α� 1ð Þ 4 sin2 αþ 2 sin α� 1
� � ¼ 0.
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We are not interested in sin α ¼ 1 ðα ¼ 90�Þ. Our answer comes from solving

the quadratic equation 4sin2αþ 2 sin α� 1 ¼ 0 and selecting the root that is less

than 1; sin α ¼ sin 18� ¼
ffiffiffi
5

p � 1

4
.

First we will construct 18� and then we will double it (Fig. 4.5):

1. Construct a right triangle with legs 1 and 2.

2. Construct
ffiffiffi
5

p � 1 and then

ffiffiffi
5

p � 1

4
.

3. Construct a right triangle AMO with leg AM ¼
ffiffiffi
5

p � 1

4
opposite to angle of 18�

with hypotenuse OA ¼ 1.

4. Reflect this triangle over the line passing through OM to obtain the image OMB.
Angle BOA is 36�.

O

N

M

C B

A

Fig. 4.4 Construction of 36� angle, Method 1

4.1 Angles 191



4.1.2 Angle Bisection

Problem 69. Can we bisect any angle (divide it into two equal parts)?

Yes! For example, it can be done by constructing an arc with the center

at the angle vertex A of any radius AB, then by finding the midpoint D of the

base BC of the formed isosceles triangle ABC, and then by drawing the ray AD
passing through the vertex of the angle and the midpoint (see constructions

in Fig. 4.6).

0

B

O

M
A

Fig. 4.5 Construction of 36� angle, Method 2
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4.1.3 Angle Trisection

Angle trisection for any given angle is a famous ancient geometry problem and its

explanation can be found in many books. As you have already seen in this book,

Archimedes proposed the following method of trisection of an angle:

Let COD be the given angle. Construct a circle with center O of any radius. Construct a

line through C intersecting the diameter FD extended from OD so that jABj is equal to the

radius of the circle. Then ffCAD ¼ 1
3
ffCOD (Fig. 4.7).

Although there is nothing wrong in this problem algebraically and we proved that

by solving a corresponding problem in the beginning of the book, this method of an

angle trisection is not valid from the point of view of construction with straightedge

jD

C
A

B

Fig. 4.6 Angle bisection

a

2a

2a

a 3a D

C

B

O
A

Fig. 4.7 Angle trisection idea by Archimedes
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and compass rules: In order to construct the line ABC so that AB ¼ r we would

require placing two marks on the straightedge (which should be unmarked).

Continuing Bisecting is another ingenious procedure for trisecting an angle.

The idea of it follows:

Let AOB be the given angle and OC be the bisector of angle AOB, OD the

bisector of angle COB, etc., i.e., continue bisecting the angle formed by OB and

the last angle bisector drawn. We have the following fractional parts of angle

AOB :
1

2
;
1

4
;
1

8
;
1

16
; . . .

We can combine the parts starting with 1/4 with a pair of compasses and a

straightedge. Eventually, after infinitely many operations we would get

1

4
þ 1

16
þ 1

64
þ � � � ¼ b1

1� r
¼

1
4

1� 1
4

¼ 1

3

Again, although there is nothing wrong with this idea algebraically and an infinite

geometric series does converge to 1/3, froma construction point of view, this procedure

would require bisection by an infinite number of operations. For good reason, only a

finite number of operations with straightedge and compass are permitted.

Fact. There is no procedure using only an unmarked ruler and compass to trisect

an arbitrary angle.

Why? Modern algebra gives us the answer to this question. For instance, if 3α is

the angle to trisect and if we were to use the trigonometric identity, cos 3α ¼ 4cos3α
�3 cos α, we might substitute 3α into the left side of the equation and evaluate

cos 3α. Letting cos 3α ¼ b and substituting x ¼ cos α, we have a cubic equation,
4x3 � 3x� b ¼ 0 . This equation can be solved to give real solutions only for

certain values of x (complex solutions have no meaning for x ¼ cos α).
Trisection of an angle is possible if the cubic equation is “reducible.” You can also

say that an angle 3α can be trisected if cos α can be constructed. For example, let

3α ¼ 90�, then cos 90� ¼ 0; and 4x3 � 3x ¼ 0: It is clear that α ¼ 90� can be

trisected.

Problem 70. Trisect a 90� angle without a protractor (i.e., divide a 90� angle
into three equal angles).

A 90� angle can be trisected easily. For example, the following scenario can be

offered (Fig. 4.8).

A right angle can be constructed as a perpendicular bisector. Label its vertex as C
and take a pointB anywhere on one of its sides (for example, on its “horizontal” side).

194 4 Problems on Construction



Next, construct a semicircle with center B and radius equal to double the length

of side CB. The intersection with the other side of the angle is marked as A.
Now triangle ABC is a special triangle (30�, 60�, and 90� triangle). By dropping

a perpendicular from C to AB we will obtain another right triangle, such that

angle DCB equals 30�. Thus, the ray CD divides the angle into angles of 30�

and 60�. Finally, by bisecting angle ACD we will trisect the given angle ACB.

The angle of Problem 71 can be also trisected. Please prove it in your homework

exercise.

Problem 71. Divide an angle of 54� into three equal parts using only a compass.

Solution 1. First, we will construct an angle of 18� ¼ 54�:3. Since 18� ¼ 36� : 2¼
90� �54�

2
, it is enough to construct a complementary angle of 36�and divide it by

two. Finally, using the constructed angle we will divide the given one into three

equal parts.

a

G

M

E

D

A

C B

Fig. 4.8 Trisection of the right angle

4.1 Angles 195



Solution 2. We will first construct an angle of measurement 18�. Note that 18� ¼
180� � 3 � 54� . Next, we will construct a circle with center O at the vertex of the

angle of measurement 54� that intersects the sides of the angle at points A and B.
Starting from point A and using a compass to mark off the radius of the circle,

we progress counterclockwise along the circumference of the circle, with each mark

at 60� until point M is reached on the third mark. This point M will be central-

symmetric to point A with respect to O. Consequently, we will construct arcs BC
and CD equal to arc AB. Thus, arc DM is equal to 18�.

4.1.4 Challenge: Line to an Unreachable Vertex

In ancient times people were interested in the following construction.

Problem 72. Construct the line that goes through the interior point K and the

vertex of the angle formed by two nonparallel lines n and m, such that the vertex
of the angle cannot be reached (for example, it is located outside of the sheet

of paper).

Solution 1. Assume that K is the orthocenter of a triangle with sides lying on

lines n and m (Fig. 4.9). Such a triangle exists and is unique. The construction is

similar to Problem 80 on the construction of a triangle by its two vertices and the

orthocenter.

Draw two sides of the given angle with an unattainable vertex. Put point K
somewhere between two line segments.

n

m

K

Fig. 4.9 A point between two nonparallel lines
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If K is the orthocenter of some triangle with two sides lying on n and m, then
we can find two of the vertices by drawing two lines through point K perpendicular

to n and m. For example, the line that is perpendicular to line m will intersect

the line n at point B. Likewise, the line that is perpendicular to line n will intersect

line m at point C (Fig. 4.10).

Connect B and C. The red line KL dropped from K and perpendicular to BC is the

line through vertex A that would reach point A (Fig. 4.11).

n

mC

B

K

Fig. 4.10 Making a point the orthocenter of a triangle

n

m

L

C

B

A

K

Fig. 4.11 Sketch for Solution 1 of Problem 72
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Solution 2. We can use Menelaus’ Theorem. Draw two segments DM and EF
through point K such that {D, E} lie on n and points {F, M} on line m (Fig. 4.12).

Suppose that lines n andm intersect at pointC outside of the figure. LetFD \ EM ¼ Q
and let the line QT intersect n at N and line m at T. If DT \ NF ¼ L, then L 2 ðCKÞ.
Here (CK) is the line that goes through points C and K.

Let us prove that L 2 ðCKÞ
1. Apply Menelaus’ Theorem to triangle QDT, where (NF) is a transversal line:

QNj j
NTj j �

TLj j
LDj j �

DFj j
FQj j ¼ 1

2. Apply Menelaus’ Theorem to triangle QDM, where (EF) is a transversal line:

QEj j
EMj j �

MKj j
KDj j �

DFj j
FQj j ¼ 1

From these two relationships we have,

QNj j
NTj j �

TLj j
LDj j ¼

QEj j
EMj j �

MKj j
KDj j

F

j K
L

N

Q

E
D

MT

Fig. 4.12 Construction for Solution 2 of Problem 72
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3. Apply Menelaus’ Theorem to triangle TQM, where (EN) is a transversal line:

QNj j
NTj j �

TCj j
CMj j �

MEj j
EQj j ¼ 1 ) QNj j

NTj j ¼
QEj j
EMj j �

MCj j
CTj j

Substituting the second into third we have

QEj j
EMj j �

MCj j
CTj j �

TLj j
LDj j ¼

QEj j
EMj j �

MKj j
KDj j

TLj j
LDj j �

DKj j
KMj j �

MCj j
CTj j ¼ 1

Therefore, (LK) is transversal to triangle TDM and C 2 ðLKÞ (Blinkov)

4.2 Segments: Ancient Mathematicians’

Construction Problems

When I teach a course in history of mathematics, I always give my students

geometry problems that regularly were offered at the Moscow State University

oral entrance exams. Some of the problems are on constructions with the use of only

ruler, compass, and pencil. For example, the following set is an example of such

problems.

Problems 73–76. If segments of length 1, a, and b are given, then construct the
following segments:

73.
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p

74.
ffiffiffiffiffi
ab

p
;

ffiffiffi
a

p
;

ffiffiffi
b

p
;
2ab

aþ b

75.
a

b
;
b

a
;
1

a
;
1

b
76. ab

Solving Problem 73. Many students offer the Pythagorean Theorem approach.

For example, if we construct right triangles with sides 1 and a, a and b, and 1 and b,

then they will have a hypotenuses of lengths
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 1

p
,

respectively.
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Solving Problem 74. Considering just the first segment of length
ffiffiffiffiffi
ab

p
, does it

remind you anything, algebraically?

It must remind you a geometric mean of a and b, so the constructions of ancient
Babylonians and Greeks can be used! We all know the following inequality

between the arithmetic and geometric means

aþ b

2
�

ffiffiffiffiffi
ab

p
, for a > 0 and b > 0.

The inequality becomes equality only when a ¼ b. For any other a and b an

arithmetic mean (AM) is always greater than the geometric mean (GM). This can be

easily proved as follows:

ða� bÞ2 � 0

a2 � 2abþ b2 � 0

a2 þ 2abþ b2 � 4ab

ðaþ bÞ2 � 4ab

aþ b � 2
ffiffiffiffiffi
ab

p

In 1893 the Russian collector Golenischev purchased an Egyptian papyrus

which was about 18 feet long and about 3 inches high. From a sample of

problems from the papyrus it was clear that the inequality between arithmetic and

geometric means was known to ancient Egyptians in 1850 BC. The Egyptians were

impressively good at building pyramids and they used a geometric approach for

establishing important relationships. They also introduced so-called harmonic

mean (HM) and knew that

HM � GM � AM (4.2)

Let us demonstrate that the inequality is true using plane geometry. Our

approach will be similar to that for a geometric mean in the proof of the Pythago-

rean Theorem, but we will add to it other constructions.

We will construct a circle with diameter jBDj + jDCj (Fig. 4.13). Let a ¼ jBDj,
b ¼ jDCj and let A be the point where the perpendicular to BC in D intersects the

circle and let E be the foot of the perpendicular from D to the radius AO. Radius

of the circle, OAj j ¼ aþ b

2
, represents an arithmetic mean of lengths a and b. Let

us denote jADj ¼ h, jAEj ¼ g. Since ΔABD and ΔCAD are similar right triangles,

h

b
¼ a

h
; then h ¼

ffiffiffiffiffi
ab

p

Therefore, ADj j ¼ h ¼ ffiffiffiffiffi
ab

p
, the geometric mean of lengths a and b, is now

constructed. If jBDj ¼ a and jDCj ¼ 1, then ADj j ¼ h ¼ ffiffiffi
a

p
.
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Also, since AOD and ADE are similar right triangles, we have

gffiffiffiffiffi
ab

p ¼
ffiffiffiffiffi
ab

p
aþ b

2

; then g ¼ 2ab

aþ b
¼ 2

1

a
þ 1

b

� �

Therefore, segment length AE is the harmonic mean. Finally, from geometry

we know that in a right triangle, the length of any leg is always smaller than the

length of the hypotenuse. Hence, g � h � aþ b

2
, which can be rewritten as

2ab

aþ b
�

ffiffiffiffiffi
ab

p
� aþ b

2

Problems 74 and 75 are quite difficult at first, but can be easily solved with the

use of Thales’ Theorem and the similar triangles approach.

Solving Problem 74. Assume that three segments of length 1, a, and b are given.

Let us show how a segment of length a/b can be constructed. First, we will create an
angle of any measure. Starting from its vertex,O, on one side we will make segment

of length b (ON) and 1 (NK). On the other side we will place point M so that

OM ¼ a. Next, we will connect points N and M and then draw a segment through

point K parallel to NM. Therefore, segment MP has length a/b. Proof of this is

simple. Triangles ONM and OMP are similar and let MP ¼ x (Fig. 4.14).

h

g

OB D C

A

E

Fig. 4.13 Arithmetic and geometric means on a circle
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Then we have the following relationships:

b

1þ b
¼ a

aþ x

bðaþ xÞ ¼ að1þ bÞ
x ¼ a

b

The same can be obtained from the Split Converse Theorem:

ON ¼ b, NK ¼ 1, OM ¼ a, KPjjNM, MP ¼ x, then
b

1
¼ a

x
; x ¼ a

b

Solving Problem 75. Many of you are trying to solve it using constructions

similar to the problem above and you are right! The difference here is only in the

order of the segments. We will start on one side with segment of length 1 (ON)
followed by segmentNK of length a. On the other side of an acute angle we will place
point M (OM ¼ b). Next, by drawing line through K parallel to segment NM,

we will make segment KP ¼ ab. In more details: Triangles ONM and OKP are

similar (Fig. 4.15):

1

1þ a
¼ b

bþ x

bþ x ¼ bð1þ aÞ
x ¼ ab

PO

N

K

M

Fig. 4.14 Sketch for Problem 74
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Remark. Of course, in order to make a segment of the given length we use

compass and draw parallel line using a ruler.

4.3 Dissection, Golden Ratio, and Related Problems

Remark 1. It is interesting that construction of angle of 36� is simultaneously the

construction of the golden ratio of the given segment. The golden ratio of the given

segment divides a segment into two parts such that the ratio of the segment to its

biggest part is the same as the ratio of the biggest part to the smallest part of the

segment.

Consider the ratio (4.1):
R

a
¼ a

R� a
and rewrite it as a2 ¼ R R� að Þ. The last

relationship is equivalent to a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðR� aÞp

. This equation can be recognized as a

geometric mean. Construct the golden ratio of a segment means to place on the

segment, AB, a dividing point, G, such that the length of the smaller segment is

a geometric mean of the segment and its larger part. Such a point is unique

(Fig. 4.16).

a

b

1

P

O
N

M

K

Fig. 4.15 Sketch for Problem 75

a

AB=R,
AG=R-a,
GB=a

R-aA BG

Fig. 4.16 Dissection
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The golden ratio is not a trivial problem that cannot be solved differently.

We will mention here two ways to do it and want you to think of some other

possible ways. In Problem 68 we constructed a 36� angle where point K divides

segment OB in a golden ratio. Therefore, if we have an isosceles triangle AOB with

vertex angle of 36�, then in order to construct the golden ratio of segment OB it is

sufficient to construct the bisector AK of the base angle. The foot of the bisector will

divide OB in the golden ratio!

An ancient Greek solution will be given in Problem 77.

Problem 77. Given a segment AB, cut the segment in the golden ratio.

Solution. First, having a square ABDC with side a ¼ AB, we will construct a

segment BE (E is midpoint of the side AC) as shown in Fig. 4.17.

BE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a2

4

r
¼ a

ffiffiffi
5

p

2

Next, we will draw an arc of radius EB with center at E until it intersects AC at F.

BE ¼ EF ¼ a
ffiffiffi
5

p

2

Notice that AF ¼ AH ¼ a
ffiffiffi
5

p

2
� a

2
¼ a

ffiffiffi
5

p � 1
� �

2
.
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Finally, draw an arc of radius AF at center A until it intersects BA at point H.
H divides segment AB in the golden ratio.

The following problemhas a very unusual condition and came fromancientGreece.

Problem 78. (Popov) Consider a figure formed by a triangle and an arc as

shown in Fig. 4.18. Dissect the figure into equal areas using one line.

x

x

B A

D C

F

H

E

Fig. 4.17 Dividing a segment in the golden ratio

A
D

B

Fig. 4.18 Dissecting a figure into figures of equal areas. First Sketch for Problem 78
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Solution. This nontrivial problem came from ancient Greeks. When I offer it to my

graduate students in my history of mathematics class, they quickly propose a

solution by making two cuts as shown in Fig. 4.19.

Although this is an incorrect approach, we can use it and Fig. 4.19 to find the correct

one. Obviously, ifO is the midpoint of AD then the two segmentsOB andOF divide

the figure into two equal ones: ABOF and BOFD. Let us keep this in mind.

Connect points F and B and then draw segment OP through point O and parallel

to FB (Fig. 4.20). Now FOPB is a trapezoid. Next, we will prove that the other

diagonal PF is that one required cut!

A

F

D

B

O

Fig. 4.19 Second sketch for Problem 78

j

E

A

F

D

B

O

P

Fig. 4.20 Third sketch for Problem 78
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Proof. Consider the figure FOBD; its area is half of the given figure and consists of
the area of figure FBD and triangle FOB. However, the area of triangle PFB equals

the area of triangle FOB (Fig. 4.21). We obtain the following relation:

Half of the given figure ¼ [FBD] + [FOB] ¼ [FBD] + [FPB].

Done!

Remark 2. Note that the construction of angles with a given measure closely deals

with the construction of regular polygons with n sides with the use of compass and

ruler, because such construction can be considered as construction of the central

angle of a circle with radius Rwith the degree measure
360�

n
. For example, if we are

able to construct an angle of 60�, then we can easily construct a regular hexagon.

If we have an angle of 36�, then we can construct a regular decagon.

4.4 Polygons

4.4.1 Constructions Involving Polygons

A polygon is inscribed into a shape if all its vertices are on the boundary of the shape.

For example, Fig. 4.22 shows a quadrilateral DEFG inscribed into triangle ABC.

j

E

A

F

D

B

O

P

Fig. 4.21 Final sketch for Problem 78
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Homothetic transformations can help us to solve the following problem.

Problem 79. Inscribe a square in a scalene triangle ABC so that two of its

vertices are on its base, AC, and two others are on sides AB and BC.

Solution 1. Since two vertices of the square must belong to the base of the triangle,

any square that has two vertices on this base and just one other vertex on side AB will

be an image of the square that we have to construct. Here A is the center of homothety.

Thus, first we will construct any square that satisfies the condition and then construct

its image (Fig. 4.23).

1. Construct a scalene triangle ABC with base AC.
2. Take any point D0 on side AB as a vertex of the image square and then drop a

perpendicular to side AC. D0G0 is the side of the image square.

3. Construct square D0G0F0E0. First, draw an arc of radius G0D0 from center G0 to
obtain the third vertex of the square, F0, on side AC. Second, obtain the fourth

vertex E0 of the square as the point of intersection of two lines, parallel D0E0 and
perpendicular F0E0.

4. Find the image E of point E0 under homothety at the point of intersection of lines

AE0 and the side of the triangle BC. One of vertices on the future square, E,
is found.

5. Draw parallel and perpendicular lines to the base of the triangle through point E
to points of intersection at D and F.

6. Draw a line parallel to EF through D. The point of the intersection, G, with side

AC is the last vertex of the constructed square.

7. DEFG is now inscribed in triangle ABC.

A

B

C

E

F

GD

Fig. 4.22 Polygon inscribed into a triangle

208 4 Problems on Construction



Solution 2. The solution was given by Leonardo Fibonacci in the Practica
Geometriae in the case of equilateral triangles. Inscribe a square into an equilateral
triangle so the side of the square is on the side of the triangle. This problem can be

solved using an algebraic approach.

Although it seems to be easy, if you try to inscribe a square in a triangle, you most

likely get a rectangle rather than a square. So assume first that we have already

constructed the square. Given the side of the triangle, a, let us find the length of the

side of the square, x. As shown in Fig. 4.24, x ¼ HF ¼ DE ¼ DH ¼ EF and a ¼
AB ¼ BC ¼ AC. Drop a perpendicular BO from vertex B to side AC and let K be the

intersection of BOwith sideDE of the square. TrianglesDBE and ABC are similar so,

E

G

D

F

I

F'G'
A

C

B

E'D'

Fig. 4.23 Sketch for Problem 79. Solution 1

jK

OH F

E

B

A C

D

Fig. 4.24 Sketch for Problem 79. Solution 2
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DE

AC
¼ BK

BO

x

a
¼

a
ffiffi
3

p
2

� x
� �

a
ffiffi
3

p
2

x ¼ a 2
ffiffiffi
3

p
� 3

� �

The next step is to construct a square with this side length. I wish for you to do it

yourself. If you need help, please practice by solving similar problems in Sect. 5.

Problem 80. Construct a triangle by its two vertices, A and B, and its

orthocenter, H.

Solution. Connect points A and H to draw the line AH as shown in Fig. 4.25.

Drop a perpendicular from vertex B to line AH. The point of their intersection, D,
is the foot of the altitude from A. Next, connect B and H with the line BH.
Drop a perpendicular to this line from A. The point of their intersection is E.
Then BE is the second altitude of the triangle.

C

F

D

A

B
H

Fig. 4.25 Sketch for Problem 80
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4.4.2 Construction of a Regular Polygon

Every regular polygon is cyclic, so it can be inscribed into a circle. In order to

construct a regular n-polygon, we need to construct a circle of radius R and a central

angle of the circle with measurement
360�

n
. Thus, to construct a square, we can

create a circle and two perpendicular diameters of it. To construct a regular

hexagon, we can use the fact that its side equals the radius of the circle and then

make the entire construction with compass only as it is shown in Fig. 4.26. Here

OB ¼ OA ¼ R, ∡ AOB ¼ 360�

6
¼ 60�.

Next, let us recall that the side of the regular 10-gon in terms of the radius R of

the circumscribed circle can be written as a ¼ Rð ffiffiffi
5

p � 1Þ
2

which means that we can

construct a regular pentagon, regular 20-gon, etc.

O

R B

A

Fig. 4.26 Construction of regular hexagon
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4.4.2.1 Construction of a Regular Pentagon and Decagon

Problem 81. Construct a side of a regular pentagon and decagon using the

same circle and the same sketch.

Consider a circle of radius R and center O with two diameters AF and GB
perpendicular to each other (Fig. 4.27). Divide segment AO at midpoint M into

two equal parts, then MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ R

2

� �2
s

¼ R
ffiffiffi
5

p

2
. Then by constructing an arc

with center M and radius MB until it intersects segment AF at point E, we obtain

that OE ¼ ME�MO ¼ MB�MO ¼ R
ffiffiffi
5

p � 1
� �

2
. Therefore, OE is the side of

the regular decagon and BE is the side of the regular pentagon inscribed in the same

circle of radius R (Fig. 4.28).

Let us prove that BE is the side of the regular pentagon inscribed into the same

circle. We have that a5 ¼ 2a10 cos 18
�. From the isosceles triangle AOB below, we

can easily obtain some trigonometric functions of 18� angles (Fig. 4.29).

k

E

M

OG B

A

F

Fig. 4.27 Construction of a regular pentagon and decagon
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sin 18� ¼ 0:5a

R
¼

ffiffiffi
5

p � 1

4
; cos 18� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5þ ffiffiffi

5
p Þ

q
4

so a5 ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5� ffiffiffi

5
p Þ

q
2

From the right triangle BOE we have BE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OB2 þ OE2

p ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5� ffiffiffi

5
p Þ

q
2

.

O

E

M

G B

A

F

Fig. 4.28 Side of a regular pentagon and decagon

36

a

R

72

AO=OB=R
AB=a

A B

O

K

Fig. 4.29 Illustration for Problem 81
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4.5 Homework on Construction

1. Prove that a 54� angle can be trisected using straightedge and compass.

In Problems 2–10, given segments of unit length, segment of length a, and
segment of length b, construct the following (solutions can vary):

2. aþ b.
3. a� b.

4.
ffiffiffi
a

p
.

5. a2.

6.
a2

b
.

7.
ffiffiffi
a4

p
.

Hint. Use
ffiffiffi
a

p
and 1 as segments for diameter.

8.
ffiffiffi
a8

p
.

9. a2 � b2

10. aþ bð Þ2
11. Place a point on segment AB such that it will divide the segment by the golden

ratio (Fig. 4.30).

Solution. Let us start from the analysis. Assume that H is that point, then the

following relationship must hold: AH2 ¼ AB � BH. Solution of this problem is

not obvious; it probably took some hours for Greeks to find it. Here it is.

On side AB draw a square ABCD, such that AB k CD and AC k DB. Then from

the midpoint, E, of side AC draw an arc of radius EB with center E until it

intersects the continuation of segment AC at point F. At last, draw an arc from

point A as a center of radius AF until it intersects side AB at point H. Therefore,
H is the required point (Fig. 4.31).

B H A

Fig. 4.30 Point on a segment
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Next, the proof of this ancient problem will be done using a modern

algebraic approach. Let HA ¼ x, BA ¼ a, BH ¼ a � x, ABCD be a square,

and E be the midpoint of AC.

BE2 ¼ a2 þ a

2

� �2

FE ¼ xþ a

2
BE ¼ FE

a2 þ a

2

� �2

¼ xþ a

2

� �2

a2 þ a2

4
¼ x2 þ xaþ a2

4
x2 ¼ aða� xÞ

Here a is the length of segment AB and (a � x) is the length of the longest

segment.

12. Given a circle and a point A outside the circle. Construct a tangent from A to the

circle.

13. Given a triangle ABC. Inscribe a circle into the triangle.

14. Given a triangle ABC circumscribe a circle about the triangle.

x

x

B A

D C

F

H

E

Fig. 4.31 Golden ration of segment AB
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15. Given a quadrilateral ABCD determine if a circle can be inscribed in it. Can a

circle be circumscribed about it? Inscribe or circumscribe a circle (or both) if

possible.

16. Inscribe a square into a sector of a circle.

Solution. Let O be the center of the sector. Construct a square ABCD, two
vertices of which (A and D) are on the radius of the sector at the equal distance
from point O. Draw lines OB and OC which intersect the arc of the sector at

points B0 and C0. Further, we will construct B0A0?B0C0 and C0D0?B0C0 .
Quadrilaterals ABCD and A0B0C0D0 are similar (one is obtained from the

other one by means of homothety with center O). Hence, A0B0C0D0 is a square,
but it is also inscribed in the sector (Fig. 4.32).

17. Construct a circle that is tangent to the given angle.

Solution. Bisect the angle by placing a point on the angle bisector. It will be the

circle center. Drop perpendiculars from the center to both sides of the angle.

Connect the center of the circle with the feet of the perpendicular to obtain the

radius of the circle. We can now draw a circle using a compass. Note: many

inscribed circles can be constructed.

18. Construct a circle that is tangent to the given angle and that passes through a

given point of the angle interior.

D'A'

C'B'

CB

A D

Fig. 4.32 Square inscribed into a sector
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Solution. Start as in the previous problem and construct an auxiliary circle with

centerO0 inscribed in the angle. Next, connect the vertex of the angle Bwith the

given point A in the interior of the angle. Let point A0 be the point of the

intersection of line BA with the auxiliary circle. Draw a line parallel to segment

A0O0 through point A so that it will intersect the ray BO0 at point O, the center of
the required circle (Fig. 4.33).

Remark. If we use another point of intersection of the ray BA with the first

circle, we would be able to draw the second circle passing through point A and

tangent to the sides of the given angle.

19. Given segment MNj j ¼ ffiffiffi
5

p
, construct a segment of length 2.

Solution. Note that there are several possible solutions. This one uses similar

triangles.

Construct a right triangle with legs AB ¼ a and BC ¼ 2a, where a is some

arbitrary segment. Then the length of the hypotenuse equals ACj j ¼ a
ffiffiffi
5

p
. Place

point D on the hypotenuse using a compass such that jCDj ¼ jMNj. Drop a

perpendicularDH from pointD to side BC. TrianglesDHC and ABC are similar

so jCHj ¼ 2.

20. (Budak). Points A and B lie on a circle. Draw a chord XY of the circle and

parallel to a given line m such that the sum of chords AX and BY equals the

length of a given segment n.

O

A'

B

A

O'

Fig. 4.33 Construction of a circle tangent to a given angle
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Solution. Connect points A and B (Fig. 4.34). Assume that X and Y are the

points of interest. Construct chord AA0 parallel to the given direction m.
Segment A0Y ¼ AX as the sides of the inscribed isosceles trapezoid AA0YX.
Therefore, we need to construct point Y such that BY + YA0 ¼ n.

m

n
n = 8.28 cm

m YA'= 2.48 cm

m YB = 5.80 cm

m YA'= 2.48 cm

m AX= 2.48 cm

NH

X

A'

M

A B

Y

Fig. 4.34 Sketch for Homework Problem 20
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Appendix A: Ratios and Proportion

A ratio represents a comparison between two numbers or quantities. For example,

if a box has 5 red and 7 blue balls then the ratio between red and blue balls is 5–7

that also can be written as a fraction 5/7 or using a division sign as 5:7. Now, if we

want to make another box with the same ratio of red and blue balls in it then we

have to put in the new box the same multiple of 5 of the red and the same multiple of

7 of the blue balls. Thus, if we want to have 40 red balls (8·5) in the new box, then

we need to add 56 blue balls (8·7) in order to keep the ratio 5:7

A ratio does not have any units of measure.

A proportion represents two equal ratios and can be written as a
b ¼ c

d ¼ k

where k is the coefficient of proportionality.
There are many problems involving proportions and their applications. I noticed

that some students do not know how to use proportions correctly and try to

memorize formulas—eventually applying them wrongly. When I was a student I

used the following method that connects proportional objects. Maybe it can be

useful for you as well.

For example, we need to solve the following problem.

Problem 82 Given a circle of radius R, evaluate the area of its sector with

central angle 30�

E. Grigorieva, Methods of Solving Complex Geometry Problems,
DOI 10.1007/978-3-319-00705-2, # Springer International Publishing Switzerland 2013
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Many of us do not remember the formula for a sector of a circle. However, most

of us know that the area of a circle with radius R is A ¼ πR2 . Can we derive the

formula for a sector? Of course! Look at the picture above. A sector of degree θ is

like the area of a piece of pie with central angel θ with respect to the area of the

whole pie with central angle 2π. Denote the area of the sector by x and we know that

the area of the pie (circle) is πR2. Next, there is a very important step: instead of

writing proportions, we will start from correspondence sentences such as

2π (angle): corresponds to πR2 (area)

θ (angle): corresponds to x (area).

It is important to relate angles to angles and areas to areas in the proportions.

Mathematically, we can use arrows for simplification:

2π ! πR2

θ ! x

By cross multiplying the means and extremes, after canceling common factors,

we will get the required formula for the area of the sector.

2πx ¼ θ � πR2

x ¼ θ � πR2

2π
¼ θ � R2

2

Note. We derived the sector area using proportions. If a central angle is given in

degrees, the procedure of finding its area is the same. Just replace 2π by 360� and θ
by the angle measure in degrees. Thus, for 30� sector, we have the following:

Fig. A.1 Sketch for Problem 82
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360� ! 2πR
30� ! x

�
) 360� � x ¼ 2πR � 30� ) x ¼ 2πR � 30�

360�
¼ πR

6

Of course, one would say that such areas can be evaluated mentally by dividing

the area of the circle by 12 (since 360 ¼ 12·30) which is fine, but the method of

proportions is general and works for any angle measure, not necessarily a multiple

of 360�.
Let us finalize the rule of proportion. If a is related to b as c is to d, then:

a ! b
c ! d

�
) a � d ¼ c � b

If three or more ratios are equal, then an extended proportion exists,

a

b
¼ c

d
¼ f

e
¼ m

n
¼ k

Equal Ratios Property. If you know two ratios are equal (we’ll call them k in the

first equation below), then subtracting their numerators and subtracting their

denominators give a ratio that’s also equal to the first two.

If we have
a

b
¼ c

d
¼ k, then

a� c

b� d
¼ k.

Proof. Since a/b ¼ k, a ¼ k � b. If c/d ¼ k, then c ¼ k � d.
Therefore, a� c ¼ k b� dð Þ and a� c

b� d
¼ k b� dð Þ

b� d
¼ k.

Multifactor Ratios

Sometimes we are given a condition such as a : b : c : d ¼ e : f : g : h or perhaps a
proportion with a greater number of factors. How can you understand this relation-

ship between quantities?

Problem 83 will help with this issue.

Problem 83. A segment is divided into five parts in the ratio 2:3:4:5:6. Find the

length of each segment if the length of original is 15 inches.

Solution. Giving a similar problem, I often see mistakes in the students’ solutions.

They believed that given numbers of ratios 2:3:4:5:6 they could use the actual

lengths of the segments. Of course, such ratios mean only that the length of the first
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segment is proportional to 2, the length of the second segment is proportional to

3, the third to 4, and so on. Using algebra we can assume that the length of the first

segment is 2x, where x is some variable we don’t know it yet. Then 3x is the length
of the second segment, 4x of the third, 5x of the fourth, and 6x of the fifth segment.

How can we find x?
We will use the fact that the length of original segment is 15 inches. Putting

together the lengths of all segments and solving the equation:

2xþ 3xþ 4xþ 5xþ 6x ¼ 15

20x ¼ 15; x ¼ 0:75

Because 2x ¼ 1.5, 3x ¼ 2.25, 4x ¼ 3, 5x ¼ 3.75, and 6x ¼ 4.5 we can con-

clude that a segment of 15 inches was divided into segments of 1.5, 2.25, 3, 3.75,

and 4.5 inches.

Answer. 1.5, 2.25, 3, 3.75, and 4.25 inches.

Question. In the problem above, a segment is divided into five smaller segments in

the ratio 2:3:4:5:6. How is the length of the first segment related to the length of the

whole segment?

Answer. The smallest segment is only two parts of the big one. The big one is

2 + 3 + 4 + 5 + 6 ¼ 20 parts, then the proportion of the smallest to the biggest is

2:20 ¼ 1:10. It is one tenth the part of the whole segment.

Proof of the Vector Form of Menelaus Theorem

Connect points A1, B1, and C1 and draw lines through B, C, and A parallel to line

A1C1. Pick a point L on the line that goes through point A and draw another line

through L (the line does not have to be parallel to AB).
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The ratios of corresponding segments cut by parallel lines are obtained by

Thales’ Theorem. Multiplying the left and right sides of these ratios completes

the proof.

AC1

C1B
¼ LK

KF
BA1

A1C
¼ FK

KJ
CB1

B1A
¼ JK

KL

9>>>>>>=
>>>>>>;

) AC1

C1B
� BA1

A1C
� CB1

B1A
¼ LK

KF
� FK
KJ

� JK
KL

¼ LK

KL
� FK
KF

� JK
KJ

�1ð Þ � �1ð Þ � �1ð Þ ¼ �1

A1

B1

C1

J K

B

C

A

F

L

Fig. A.2 Proof of the vector form of the Menelaus Theorem using Thales’s Theorem
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Appendix B: My Ninth Grade Notebook Page

Fig. B.1 My ninth grade geometry notebook page

E. Grigorieva, Methods of Solving Complex Geometry Problems,
DOI 10.1007/978-3-319-00705-2, # Springer International Publishing Switzerland 2013
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Appendix C: My Pictures

Fig. C.1 I am in my office

E. Grigorieva, Methods of Solving Complex Geometry Problems,
DOI 10.1007/978-3-319-00705-2, # Springer International Publishing Switzerland 2013
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Fig. C.2 At an International Conference in honor of Suresh Sethi, France, 2005

Fig. C.3 USAMO 2008 Graders, Washington, DC
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Fig. C.4 USSR Math Olympiad Winners, circa 1979
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