
Problems in VLSI design

• wire and transistor sizing

– signal delay in RC circuits
– transistor and wire sizing
– Elmore delay minimization via GP
– dominant time constant minimization via SDP

• placement problems

– quadratic and ℓ1-placement
– placement with timing constraints
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Signal delay in RC circuit

vin

1

0.5

vk

vin

Dkt = 0

C
dv

dt
= −G(v(t) − 1), v(0) = 0

• capacitance matrix C = CT ≻ 0

• conductance matrix G = GT ≻ 0
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• v: node voltages

• as t → ∞, v(t) → 1

• delay at node k:

Dk = inf{T | vk(t) ≥ 0.5 for t ≥ T}

• critical delay: D = maxk Dk
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Transistor sizing

RC model of transistor

nMOS

transistor

(width w)

RC model (on)

RC model (off)

gate

drain

D

D

S

SG

Gsource

Rsd ∝ 1/w

Cd ∝ wCs ∝ wCg ∝ w

Cd ∝ wCs ∝ wCg ∝ w
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example

vout

CL
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• to first approximation: linear RC circuit

• design variable: transistor width w

• drain, source, gate capacitance affine in width

• ‘on’ resistance inversely proportional to width
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Wire sizing

interconnect wires in IC: distributed RC line

lumped RC model:
ℓi

wi

Ci ∝ wiℓi Ci

Ri ∝ ℓi/wi

• replace each segment with π model

• segment capacitance proportional to width
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• segment resistance inversely proportional to width

• design variables: wire segment widths wi
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Optimization problems involving delay

C(x)
dv

dt
= −G(x)(v(t) − 1), v(0) = 0

• design parameters x: transistor & wire segment widths

• capacitances, conductances are affine in x:

C(x) = C0 + x1C1 + · · · + xmCm

G(x) = G0 + x1G1 + · · · + xmGm
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tradeoff between

• delay, complicated function of x

• area, affine in x

• dissipated power in transition v(t) = 0 → 1

1
TC(x)1

2

affine in x
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Elmore delay

• area above step response

T elm
k =

∫

∞

0

(1 − vk(t))dt

• first moment of impulse response

T elm
k =

∫

∞

0

tvk(t)
′dt
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replacements

vk

v′

k

Dk Dk T elm
k

T elm
k

1

0.5

• T elm
k ≥ 0.5Dk

• good approximation of Dk only when vk is monotonically increasing

• interpret v′

k as probability density:
Tk is mean, Dk is median
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Elmore delay for RC tree

RC tree

R1

R2 R3

R4

R5

R6

C1

C2 C3

C4 C5

C6

vin

1mr

2mr 3mr

4mr

5mr

6mr

• one input voltage source

• resistors form a tree with root at voltage source

• all capacitors are grounded
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Elmore delay to node k:

∑

i

Ci

(

∑

R’s upstream from node k and node i
)

R1

R2 R3

R4

R5

R6

C1

C2 C3

C4 C6

C5

vin

1mr

2mr 3mr

4mr

5mr

6mr

Example:

T elm
3 = C3(R1 + R2 + R3) + C2(R1 + R2) + C1R1

+ C4R1 + C5R1 + C6R1
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Elmore delay optimization via GP

in transistor & wire sizing, Ri = αi/xi, Cj = aT
j x + bj

(αi ≥ 0, aj, bj ≥ 0)

Elmore delay:

T elm
k =

∑

ij

γijRjCi =
∑

k=1

βk

m
∏

i=1

x
αik
i

(γij = +1 or 0, βk ≥ 0, αij = +1, 0,−1)
. . . a posynomial function of x ≻ 0

hence can minimize area or power, subject to bound on Elmore delay using
geometric programming

commercial software (1980s): e.g., TILOS
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Limitations of Elmore delay optimization

• not a good approximation of 50% delay when step response is not
monotonic
(capacitive coupling between nodes, or non-diagonal C)

• no useful convexity properties when

– there are loops of resistors
– circuit has multiple sources
– resistances depend on more than one variable
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Dominant time constant

C(x)
dv

dt
= −G(x)(v(t) − 1), v(0) = 0

• eigenvalues 0 > λ1 ≥ λ2 ≥ · · · ≥ λn given by

det(λiC(x) + G(x)) = 0

• solutions have form
vk(t) = 1 −

∑

i

αike
λit

• slowest (“dominant”) time constant given by T dom = −1/λ1 (related to
delay)
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−1/T dom

• can bound D, T elm in terms of T dom

• in practice, T dom is good approximation of D

Problems in VLSI design 18



Dominant time constant constraint as linear matrix

inequality

upper bound T dom ≤ Tmax

−1/T dom

−1/Tmax

T dom ≤ Tmax ⇐⇒ TmaxG(x) − C(x) � 0

• convex constraint in x (linear matrix inequality)
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• no restrictions on G, C

• T dom is quasiconvex function of x, i.e., sublevel sets

{

x | T dom(x) ≤ Tmax

}

are convex
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Sizing via semidefinite programming

minimize area, power s.t. bound on T dom, upper and lower bounds on sizes

minimize fTx

subject to TmaxG(x) − C(x) � 0

xmin
i ≤ xi ≤ xmax

i

• a convex optimization problem (SDP)

• no restrictions on topology
(loops of resistors, non-grounded capacitors)
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Wire sizing

minimize wire area subject to

• bound on delay (dominant time constant)

• bounds on segments widths

RC-model:

x1 x20

βxi βxi
αxi

xi
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as SDP:
minimize

∑

i

ℓixi

subject to TmaxG(x) − C(x) � 0

0 ≤ xi ≤ 1
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area-delay tradeoff
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• globally optimal tradeoff curve

• optimal wire profile tapers off
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step responses (solution (a))
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Wire sizing and topology

x1 x2

x3

x4

x5

x6

βixi βixi
αxi

xi

1m 2m 3m

4m

not solvable via Elmore delay minimization

min area s.t. max dominant time constant (via SDP):

minimize
∑

xi

subject to TmaxG(x) − C(x) � 0
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tradeoff curve
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• usually have more wires than are needed
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• solutions usually have some xi = 0

• different points on tradeoff curve have different topologies
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solution (a)

1m

4m

3m

x4 = 0.15 x6 = 0.11
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solution (b)

x4 = 0.03 x6 = 0.03

x3 = 0.02
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solution (c)

x3 = 0.014

1m 3m

4j

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ��	
v1(t)

@@I v3(t)

��	
T elm�

�
��

T dom

@@R
D

Problems in VLSI design 31



Placement

• list of cells: cells i = 1, . . . , N are placeable, cells
i = N + 1, . . . , N + M are fixed (e.g., I/O)

• input and output terminals on boundary of cells

• group of terminals connected together is called a net
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• placement of cells determines length of interconnect wires, hence signal
delay

• problem: determine positions (xk, yk) for the placeable cells to satisfy
delay constraints

• practical problem sizes can involve 100,000s of cells

• exact solution (including delay, area, overlap constraints) is very hard to
compute

• heuristics (often based on convex optimization) are widely used in
practice
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Quadratic placement

assume for simplicity:

• cells are points (i.e., have zero area)

• nets connect two terminals (i.e., are simple wires)

quadratic placement:

minimize
∑

nets (i,j)

wij

(

(xi − xj)
2 + (yi − yj)

2
)

weights wij ≥ 0

unconstrained convex quadratic minimization
(called ‘quadratic programming’ in VLSI)
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• solved using CG (and related methods) exploiting problem structure
(e.g., sparsity)

• physical interpretation: wires are linear elastic springs

• widely used in industry

• constraints handled using heuristics
(e.g., adjusting weights)
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ℓ1-placement

minimize
∑

nets (i,j)

wij (|xi − xj| + |yi − yj|)

• measures wire length using Manhattan distance
(wire routing is horizontal/vertical)

• motivation: delay of wire (i, j) is RC with

R = Rdriver + Rwire, C = Cwire + Cload

Rdriver, Cload are given, Rwire ≪ Rdriver,

Cwire ∝ wire length (Manhattan)

Problems in VLSI design 37



Rdriver

Cwire Cload

• called ‘linear objective’ in VLSI
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Nonlinear spring models

minimize
∑

nets (i,j)

h(|xi − xj| + |yi − yj|)

h convex, increasing on R+

example

z

h(z)

• flat part avoids ‘clustering’ of cells
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• quadratic part: for long wires Rwire ∝ length

• solved via convex programming
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Timing constraints

• cell i has a processing delay Dproc
i

• propagation delay through wire (i, j) is αℓij, where ℓij is the length of
the wire

• minimize max delay from any input to any output
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Dproc
1

Dproc
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problem is:

minimize T

subject to
∑

cells
in path

Dproc
i +

∑

wires
in path

αℓij ≤ T

• one constraint for each path

• variables: T , positions of placeable cells (which determine ℓij)

• a very large number of inequalities
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A more compact representation

• introduce new variable T out
i for each cell

• for all cells j, add one inequality for each cell i in the fan-in of j

T out
i + αℓij + Dproc

j ≤ T out
j (1)

• for all output cells
T out

i ≤ T (2)

• minimize T subject to (??) and (??)

convex optimization problem:

• with ℓ1-norm, get LP

• with ℓ2-norm, get SOCP
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extensions (still convex optimization):

• delay is convex, increasing fct of wire length

• max delay constraints on intermediate cells

• different delay constraints on cells
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Non-convex constraints and generalizations

non-convex constraints

• cells are placed on grid of legal positions

• cells are rectangles that cannot overlap

• reserved regions on chip
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generalizations

• multi-pin nets: share interconnect wires

• combine placement with wire and gate sizing
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