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ON SOME DYNAMICAL PROBLEMS OF

THERMOELASTICITY

W. NOWACKI

Warsaw, Poland

§ 1. General relations and equations

Beginning in 1956, as the result of papers by M. A. Biot [1], M. Lessen
[2], and P. Chadwick and I. N. Sneddon [3], a new topic of investigation in
dynamical thermoelasticity was initiated which concerned the coupling
between the temperature and strain fields. In 1958, P. Chadwick and
I. N. Sneddon [3] made a detailed examination of the influence of
thermal volume changes in a body on the form of plane harmonic waves.
E. J. Lockett [4] considered the influence of temperature and strain
fields on the velocity of propagation of Rayleigh surface waves. I. N.
Sneddon [5] investigated the propagation of thermal stresses in thin
metallic rods, produced by periodic forces and an impulse, or by heat
sources situated at the end of the rod. In two papers [6, 7], H. Zorski
examined the propagation of stresses in an infinite space, produced by
the action of a thermal impulse.

In this paper, we shall be concerned with the propagation of elastic
spherical, cylindrical and plane waves, due to the action of heat sources
or centers of pressure which vary harmonically in time. We deal also with
the generation of longitudinal waves in an infinite space with a spherical
or cylindrical cavity, and with the propagation of thermal stresses
produced by heating the plane boundary of a half-space.

The equations for a thermoelastic medium have the form

(1.1) pV2u -f- (A + /") grad div u — pu = y0 grad 9,

1 . 0
(1.2) (720 0 + v div n = - — ,

K K

where u is the displacement vector, 0 is the temperature (under the
assumption that T -|- 6 is the absolute temperature and the state 0 = 0
is free of stresses and displacements), X, \x are the Lame constants, p
is the density of the material and K is the thermal conductivity. In addition,
Q = Wl{pc), r] = yoTKpc), y0 = a*(3A + 2p), where W is the amount
of heat generated in a unit volume of the body per unit time, c is the
specific heat capacity and <xt is the coefficient of linear thermal expansion.
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Introducing into the equations (1.1) and (1.2) the displacement function

(1.3) u = grad <f> + rot 4>,

we reduce the system of equations (1.1) —(1.2) to the system of three
equations

(1.4)
of

C22
(1.5) V^i- — $ = 0, (»«1 ,2 ,3 )

1
(1.6)

K

. In the above formulae ci = V l -f- 2//,/Vp is the velocity of propagation
of the elastic longitudinal wave and c% = v/njp is the velocity of the
transverse wave. Moreover

3A + 2^
A + 2/u

. In; the quasi-steady treatment of the problem the inertia forces are
neglected; this assumption is admissible, if the temperature varies slowly
in time. In this case we have the system of equations

(1.7)

0 « F 8 0(1.8)
K

We can eliminate the function <f> from the second equation. Then the
conduction equation in the infinite space takes the form

(i.9) .1720 —Ld = - i - , -L = 1 + ^o.
K • K K K

. For a stationary field temperature the coupling of the fields vanishes,
and in the infinite space we have the system

(1.10)
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§ 2. Stresses due to the action of heat sources in an
infinite body

We proceed to the investigation of thermoelastic waves in an infinite
space. We shall successively consider the effects of point, linear and
plane heat sources. We assume that the heat sources vary harmonically
in time, i.e., Q(P, t) = Qo(P)eimt, the frequency oo of the vibrations of the
source being real and positive. Since the effect of heat sources results
only in generation of longitudinal waves, we consider the equations
(1.4) and (1.6). Setting

, t) = eia>tcl>*(P), d(P, t) =

we arrive at the system of equations

(2.1) (F2 + a2)^*

(2.2)

where

(172 —

0-2 - -

# *

CO2

fi.2 '

- qrj'V^* = _ _ ^ 0

)C

- JJ/C.

Eliminating from the equations (2.1) and (2.2) first the function <f>*>
and then the function 6*, we obtain

(2.3) (P 2 - q){V* + 0-2)0* - qeV*O* = (F2 + o2)Qo(P),

(2.4)

where
S =

Let a concentrated heat source be situated at the origin of the coordi-
nate system. The solution of the equation (2.4) in cylindrical coordinates
can be represented in the integral form

0 0

where
F{a, y) = (a2 + y2

k£ + k£ = q{\ + s) - a2,



294 W. NOWACKI

After the indicated integration has been carried out the function <j>*
takes the closed form

where

R = (^2 + X22 _j_ ^32)i; /5li2 = fll>2 + ibi,i, ai,2 > 0.

Solving the equation (2.3) we have

°* = ^ + W<-*X (<r2 + &«)«-**h* ^ + W< (<r + & ) « ] .
— #2 )

Let us now move the heat source to the point (£i, fa, £3) and set
Qo = 1. Then ^*(%, | r ) and 0*(%, |r) are the Green's functions for the
infinite space.

The stresses corresponding to the temperature field d are given by
the relations

(2.8) Oij{xr, in t) = 2fj\_j>tij — 8ij(f}ttc!c] +

Neglecting the coupling between the temperature and strain fields
(i.e., for e = 0, k\ — Vq, k% = ia) we obtain the familiar result [9]

(2 9) ( + 9)

AJIKR

Let us now consider the axi-symmetric problem. Suppose that on the
surface of a cylinder of radius p the heat sources Q(r, z) — eiiatQod(r — p)
are uniformly distributed. Solving the equation (2.4) we arrive at the
integral

K J F(<x)F(a) —
o

where

The function ^* can be represented in the form

' Io(hr)Ko(kip) - Io(k2r)Ko(k2p)
for 0 < r < p,

* ' ' ' IT. •> T - O ^ ' T I - L S T S I - L S T n \ rr n \

lo[Klp)Ko[/iir) — Jo(«2P)-Ko(«2?')
for p < r < oo.
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In the particular case of a linear heat source, assuming that

lim 27ipQo — q0,

we obtain from (2.10)

or

(2.13) <£* = / f ° [Ko(kir) - Ko(hr)].

It can readily be proved that

In the above formulae IQ(Z) denotes the modified Bessel function
of the first kind and Ko{z) that of the third kind.

If the coupling between the temperature and strain fields is neglected,
the formulae (2.13) and (2.14) yield the familiar results [9]

(2.15) cf>* = f°f ° [Ko(rVq) - K0{ior)],
2nK[al -\- q)

(2.16) 0* =
2TCK

The stresses corresponding to the axi-symmetric function (j>* are given
by the relations

(2-17)

Assume now that there acts in the plane »i = Da plane heat source
Q(P, t) = ei<atQ08{xi). Solving the equations (2.3) and (2.4) we obtain

( 2 1 8 »

(2.19) d* = ^ (ff2 +
r e-kLxt g-*«*» "1

(ff2 + /ei2) —r (*2 + ^2a) —: •
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The stresses produced by a plane heat source are

(2.20) J

§ 3. Effect of a center of pressure in an infinite space

The coupled equations of thermoelasticity enable us to determine
the temperature field associated with the effect of forces varying in
time. Consider the simplest three-dimensional problem in which only
longitudinal waves occur.

Let there be given a center of pressure, i.e., a system of three force
doublets acting in the directions x\, %%, xs respectively, and assume
that it acts at the origin of the coordinate system. The displacement
equations in this case have the form

(3.1) fiVHH + (A + p)u*, u + P(*r)],t = pik + y<fi,t, (i = 1, 2, 3)

where d(xr) = 8(xi)d(xz)8(xa). In the case of a center of pressure varying
harmonically in time we take

(3.2) u

Thus the system of equations (3.1) is reduced to the equation

(3.3) (F2 + cr2)<£* ^

Assuming that there are no heat sources inside the body we supple-
ment (3.3) by the equation

(3.4) (|72 _ q)0* — qrj'Vty* = 0.

The solution of the system (3.3) —(3.4) yields for a point center of
pressure

(3-6) 6*

Knowing the function <f>* we can determine the stresses by means
of the formulas (2.8). Since the temperature field has a singularity at
the origin, the point center of pressure plays a role analogous to that
of the heat source in the preceding considerations.
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If the coupling between the temperature and strain fields be neglected
(rj' = 0), we obtain the known result [10]

(3.7) <f> = — — «<(«*-•«<'), 0 = 0.

In the case of the effect of a line center of pressure (along the ^3-axis)
we have
(3'8) ^ = J

Taking rj' = 0 (no coupling) we arrive at the familiar result

(3.10) cj> = —-Ko{ior)et«t, 6 = 0.
ZJlp

Finally, for a plane center of pressure in the plane x\ = 0, we have

» l > 0.
If 77' = 0, then

(3.13) <f> = = e x p [i(a>t — axij], 6 = 0.
ipvi

§ 4. State of stress in an infinite space with a spherical or
cylindrical cavity

Consider first a spherical cavity of radius a in an infinite space. The
solution of the homogeneous equations (2.3) —(2.4) can be represented
in the form

(4.1) <f>* = — (A e-W + Be'^R),
R

(4.2) 0* = - - — [A{h* + er8)<r*i* + B{k2
2 + »•)«-*•«].
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The constants A and B are to be determined from the boundary con-
ditions for R — a. If we assume that

0*(«) = 0o,

(4-3) « r b w -
then

(4.4) A =

where

f- akz) — a2ojp.

Setting now

(4.5) 6*(a) = 0, a*BR = - fi0,

we find

kx
2 + cr2

/s2
2 + a2 '

(4.6) A = , B =

Knowledge of the function </>* makes it possible to determine the
stresses in accordance with the formulae

4ft

(4.7) K

If the coupling between the temperature and strain fields is neglected
(e = 0), we obtain from the formulae (4.1) and (4.2), taking into account
the boundary conditions (4.5), the solutions

(4.8) <f>* = i ^ L e-tH-a)!^ o* = 0,
mR

where

In the case of a cylindrical cavity the solution of the homogeneous
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equations (2.3) and (2.4) has the form

(4.9) </>* = AKoifor) +

(4.10) 0* = — [A {hi* + a^Koihr) +

Assuming that
6* {a) = 0O,

we obtain

(4.12)

where

= 0 ,
r=a

In an analogous manner we determine the constants A and £ for other
boundary conditions. The stresses in the elastic body are given by the
relations

2/x „
arr = <p,r -\- pp,

(4.13) r

-\- pep.

We have now to investigate the roots of the equations

(4.14) (k* + h2){k'i + h2) = 0 ,

/ei2 + k£ = j(l + e) - a-2,

which enter into all the results of §§ 2-4. These roots can be represented
in the form

| «) ±41.

A = Vfj^rj2 ~ (1 + e)2] + 2i»?3(l - fi),

where rj = co/cu* is a dimensionless quantity and co* = C^/K is a charac-
teristic quantity of the thermoelastic medium which was introduced by
P. Chadwick and I. N. Sneddon [3].
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The root ki corresponds to the modified thermal wave, and fa to the
modiefied elastic longitudinal wave. In fact, k\ = -\/q, fa = ia for e = 0.
In the problems under consideration we are interested in roots the real
parts of which are positive, since they describe the thermal and elastic
waves diverging from the center of excitation into infinity.

P. Chadwick and I, N. Sneddon [3] investigated in detail the behavior
of the roots ki and fa in terms of the parameter v\, and determined their
approximate values for r\ < 1 and r\ > 1. They proved that for rj <; 1

(4.15)
r>2e

ci 2(1 + e)* ' (1 + «)* '

and f or r\ > 1

+
i ? 217

(4.16)
•— fa = \e + M7.

In the same paper the authors analysed in detail the influence of
the parameter e on the velocity of longitudinal waves and on the dispersion
coefficient. The results of Chadwick and Sneddon concern the influence of
the temperature field on plane harmonic waves. It is clear, however, that
these results are also true for spherical and cylindrical waves, since in
this case the roots ki and fa are the same. The velocity of propagation of
the modified elastic wave for rj < 1 is given by the relation

ci1 = (1 + e)ci,

where c\ denotes the velocity of propagation of the elastic wave in the
problem in which no coupling occurs, i.e., for e = 0. The dispersion
coefficient has the form

Since the quantity g is small (for aluminum e = 3.56 X lO"2, for
steel e = 2.97 X 10-4 an(} for i e a d e = 733 x 10-2) i t i s evident that
the influence of the coupling between the temperature and strain fields
on the velocity of propagation of elastic plane, cylindrical and spherical
waves due to the action of heat sources or centers of pressure is in-
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significant. Similarly, the differences in the magnitudes of the stresses
are very small. Nevertheless, it is important to observe that by taking
account of the coupling, it is possible to determine the temperature
field generated by the effect of forces varying harmonically in time.

Finally, let us observe that the results deduced may prove useful for
the determination of the stresses produced by instantaneous sources of
heat or force. Denoting by cry(P, t) the stresses produced by the action
of such sources we have

00

(4.17) ay(P, t) = f ff|(P,

where a^(P, o>) is the stress due to the sources of heat or forces which
vary harmonically in time.

§ 5. Stresses due to heating of the plane boundary of an elastic
half-space

Suppose that on the plane z = 0, bounding the elastic half-space, the
temperature Q(r, 0, t) ~ Oo*(r)eio}t is prescribed. This heating causes in
the elastic semi-space an axi-symmetric temperature field and axi-
symmetric state of stress. Assume that the surface z = 0 is free of
tractions.

Let us construct the solution in two parts: the solution of the system
of equations (2.1) —(2.2) for the infinite space the boundary condition
0{r, 0, t) = 0Q*(r)eimt being satisfied on the plane z = 0, and the additional
solution for the half-space ensuring the fulfilment of the remaining
boundary conditions. To deduce the first solution consider the equations

(5.1) {V* - q)B* - qq'Vty* = 0,
(5.2) (172 -f- 0*)$* =

Applying the Fourier-Hankel integral transform we arrive at the system
of algebraic equations

_ (a2 _|_ y2 _ q)8* _|_ w ' ( a 2 _)_ y2)^* _|_ yQ0* = 0,

(5-3)

( * + 2 2 ) ^ *
This problem was solved by a different method by Eason and Sneddon [11],

and Paria [12].
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where

$*(«, y) = J/— I I 0*{r, z)rjo{ar) sin yzdrdz,

o o
oo oo

(5.4) $*(«, y) = J/-^- j j <f>*{r, z)rjo{ar) sin yzdrdz,
0 0

oo

O0*(oc)=jrj0(ar)e0*(r)dr.
o

Solving the system (5.3) we obtain

j y&oSo* • - . y#*

F(a, y) F(a, y

where

(5.6) ki2 -j- k%2 = q(l

Inverting the transform we have

oo oo

(5.7) Mr, *) = - &QI/I f f 'o'fcWoW
' 7i J J F(oc, y)

o o
or

(5.8) <£*(r,«) == - V — d° I 50*(«)a(e-*i» - e-^)J0(ar) da.
0

Knowing the function ^* we calculate the stresses

(5.9)
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In the plane z = 0 we have o{*J — 0 and ofj ^ 0,

i / 2 fyneia>t C
(5.10) c$(r, O,t) = V— T i - r a3gfo*(a)/oHAx.

' 71 k\ -f- «2 J
0

The second stage of the solution consists in completing the state
0$ by a state o42) such that in the plane z — 0 the following boundary
conditions are satisfied:

cr<2>(r, 0, t) = 0,

(5.11) ollJ(r,0,t) + ol2J(r,0,t) = 0,

In the elastic half-space occur both longitudinal and transverse waves.
Hence, in the second stage, we have to consider the system of equations

(5.12) (P2 _ ?)(P2 4. ff8)^*<2) _ qeV*<l>*V) = 0,

(5.13) (P2 _ T2)v* = 0.

The displacements are related to the functions </>(2) and ip by the formulae

J
Hence

Expressing the stresses by the displacements we obtain

(5.16)
<<2'

The solution of the equation (5.12) can be represented by the Hankel
integral

00

(5.17) </>*<2) = [{AerM + Be-*#)Jo{«z) da,

0

where X\, A2 are the roots of the equation

(5.18) W + [ff2 _ ?(1 + 8) - 2a2]A2 + «4 - a2[cj2 - y(i + £)] - g<T2 = 0

the real parts of which are positive.
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The solution of the equation (5.13) is assumed to have the form

(5.19) y>* = | c(a.)e-™J0(xz)doL, v = Vocz — T2.

o

The amplitude of the temperature is given by the relation

(5.20) 0*<2> = — (F2 + <T

Substituting (5.17) into (5.20) we have

(5.21) 0*<z> = — I [

0

The quantities A, B and C are to be determined in accordance with the
boundary conditions (5.11). Thus we have

A = — V 2n
+ k2

(5.22) B--A*. c -
2ft,v(xz

1,2 = 4 2 4-(T2

Knowledge of the functions <̂ *(2> and y><*> enables us to determine the
displacements Mr*<2), MZ*(2), and then also the stresses o*J-2\ Adding
the stresses oy*1) and e%<2> we obtain the final stresses cry.

The second stage of the solution is identical with the Lamb-problem
for the elastic half-space.
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