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1 Problems

1.1 Properties of Semiconductors

1. Which of the following semiconductors are transparent, partially transparent, non-
transparent for visible light (λ = 0.4–0.7 µm): Si, GaAs, GaP, and GaN?

2. Band gap of Si depends on the temperature as

Eg = 1.17 eV− 4.73× 10−4 T 2

T + 636
.

Find a concentration of electrons in the conduction band of intrinsic (undoped) Si at
T = 77 K if at 300 K ni = 1.05× 1010 cm−3.

3. Electron mobility in Si is 1400 cm2V−1s−1. Calculate the mean free time in scat-
tering (Relaxationszeit) of electrons. Effective mass is m∗

e/m0 = 0.33.

4. Calculate thermal velocity of electrons and holes in GaAs at room temperature.
Effective masses are m∗

e/m0 = 0.063 and m∗

h/m0 = 0.53.

5. Hole mobility in Ge at room temperature is 1900 cm2 V−1s−1. Find the diffusion
coefficient.

6. Calculate dielectric relaxation time in p-type Ge at room temperature. Assume that
all acceptors are ionized. Na = 1015 cm−3, ǫ = 16, µp = 1900 cm2V−1s−1.

7. Calculate dielectric relaxation time in intrinsic Si at 300 K. ǫ = 12, µn = 1400
cm2V−1s−1, µn = 3.1µp.

8. Find Debye length in p-type Ge at 300 K if Na = 1014 cm−3. Assume that all
acceptors are ionized, ǫ = 16.

9. Calculate the ambipolar diffusion coefficient of intrinsic (undoped) Ge at 300 K.
µn/µp = 2.1, µn = 3900 cm2V−1s−1.

10. Holes are injected into n-type Ge so that at the sample surface ∆p0 = 1014 cm−3.
Calculate ∆p at the distance of 4 mm from the surface if τp = 10−3 s and Dp = 49 cm2/s.

1.2 Schottky Diode

1. Find a hight of the potential barrier for a Au-n-Ge Schottky contact at room tem-
perature (T = 293 K) if ρ = 1Ω cm, ψAu = 5.1 eV, and χGe = 4.0 eV. Electron
mobility in Ge is 3900 cm2 V−1 s−1, density of the states in the conduction band is
Nc = 1.98× 1015 × T 3/2 cm−3.
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2. Calculate the depletion width for a Pt-n-Si Schottky diode (T = 300 K) at V = 0,
+0.4, and −2 V. Concentration of doping impurity in Si equals 4 × 1016 cm−3. Work
function of Pt is 5.65 eV, electron affinity of Si is 4.05 eV, ǫSi = 11.9, density of the
states in the conduction band is Nc = 6.2× 1015 × T 3/2 cm−3.

3. For a Schottky contact Au-GaAs calculate the maximum electric field within the
space charge region at V = 0, +0.3, and −100 V. Nd = 1016 cm−3, χGaAs = 4.07 eV,
ǫGaAs = 12.9. Work function of Au is 5.1 eV, T = 300 K, density of the states in the
conduction band is Nc = 8.63× 1013 × T 3/2 cm−3.

4. What is the electric field E for a Schottky diode Au-n-Si at V = −5 V at the distance
of 1.2 µm from the interface at room temperature if ρ = 10Ω cm, µn = 1400 cm2V−1 s−1,
Nc = 6.2× 1015 × T 3/2 cm−3.

5. Find current densities j at room temperature for a Schottky diode Pt-n-GaAs at
V = +0.5 and −5 V if ρ = 50Ω cm. µn = 8800 cm2 V−1 s−1, mn/m0 = 0.063, work
function of Pt is 5.65 eV, χGaAs = 4.07 eV, Nc = 8.63 × 1013 × T 3/2 cm−3. Apply
thermionic-emission theory.

6. The capacitance of a Au-n-GaAs Schottky diode is given by the relation 1/C2 =
1.57 × 1015 − 2.12 × 1015 V, where C is expressed in F and V is in Volts. Taking the
diode area to be 0.1 cm2, calculate the barrier height and the dopant concentration.

7. From comparison of the de Broglie wavelength of electron with the depletion width
of a contact metal-n-Si, estimate the electron concentration at which Schottky diode
loses its rectifying characteristics. For the estimate, assume that the height of the
potential barrier a the contact is half the value of the band gap at room temperature
(Eg = 1.12 eV), m∗

e = m0, T = 300 K, and ǫSi = 11.9.

1.3 Ideal p-n Junction

1. Find the built-in potential for a p-n Si junction at room temperature if the bulk
resistivity of Si is 1 Ω cm. Electron mobility in Si at RT is 1400 cm2V−1 s−1; µn/µp = 3.1;
ni = 1.05× 1010 cm−3.

2. For the p-n Si junction from the previous problem calculate the width of the space
charge region for the applied voltages V = −10, 0, and +0.3 V. ǫSi = 11.9

3. For the parameters given in the previous problem find the maximum electric field
within the space charge region. Compare these values with the electric field within a
shallow donor: E ≈ e/ǫSia

2
B, where aB is the Bohr radius of a shallow donor, aB =

ǫSi~
2/m∗

e e
2 and m∗

e/m0 = 0.33.

4. Calculate the capacity of the p-n junction from the problem 2 if the area of the
junction is 0.1 cm2.
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5. n-Si of a p-n Si junction has a resistivity of 1 Ω cm. What should be the resistivity
of p-Si so that 99 % of the total width of the space charge region would be located in
n-Si (p+-n junction)? For the parameters needed see problem 1.

6. At room temperature under the forward bias of 0.15 V the current through a p-n

junction is 1.66 mA. What will be the current through the junction under reverse bias?

7. For a p+-n Si junction the reverse current at room temperature is 0.9 nA/cm2.
Calculate the minority-carrier lifetime if Nd = 1015 cm−3, ni = 1.05 × 1010 cm−3, and
µp = 450 cm2V−1 s−1.

8. How does the reverse current of a Si p-n junction change if the temperature raises
from 20 to 50 ◦C? The same for a Ge p-n junction. Band gaps of Si and Ge are 1.12 and
0.66 eV, respectively.

9. Estimate temperatures at which p-n junctions made of Ge, Si, and GaN lose their
rectifying characteristics. In all cases Na = Nd = 1015 cm−3. Assume that Eg are
independent of the temperature and are 0.66, 1.12, and 3.44 eV for Ge, Si, and GaN,
respectively. Intrinsic carrier concentrations at room temperature are nGe

i = 2 × 1013,
nSi
i = 1010, and nGaN

i = 10−9 cm−3.

1.4 Nonideal p-n Junction

1. n-Si with Nd = 7 × 1015 cm−3 additionally contains Nt = 1015 cm−3 generation-
recombination centers located at the intrinsic Fermi level with σn = σp = 10−15 cm2 and
vt = 107 cm/s. Calculate generation rate, if

1. n and p are low as compared to the equilibrium value

2. only p is below the equilibrium value.

For Si, ni = 1.05× 1010 cm−3.

2. Illumination of n-type Si (Nd = 1016 cm−3) generates 1021 cm−3/s electron-hole
pairs. Si has Nt = 1015 cm−3 generation-recombination centers with σn = σp =
10−16 cm2. Calculate equilibrium concentration of electrons and holes if Et = Ei, where
Ei is the Fermi level of intrinsic Si, and vt = 107 cm/s.

3. A p+-n Si junction (ni = 1.05×1010 cm−3, ǫ = 11.9) is formed in an n-type substrate
with Nd = 1015 cm−3. If the junction contains 1015 cm−3 generation-recombination
centers located at the intrinsic Fermi level with σn = σp = 10−15 cm2 (vt = 107 cm/s),
calculate generation current density at a reverse bias of 10 V.

4. For a p-n Si junction with the p-side doped to 1017 cm−3, the n-side doped to
1019 cm−3 (n+-p junction), and a reverse bias of −2 V, calculate the generation current
density at room temperature, assuming that the effective lifetime is 10−5 s.
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5. For a p-n GaAs junction at room temperature find the donor/acceptor concentration
at which de Broglie wavelength (λ = 2π~/

√
2m∗E) of electrons/holes is equal to the

width of the space charge region. Assume 〈E〉 = 3kT/2, m∗

e/m0 = 0.063, m∗

h/m0 = 0.53,
and ǫGaAs = 12.9, nGaAs

i = 2.1× 106 cm−3, and Na = Nd.

6. When a silicon p+-n junction is reverse-biased to 30 V, the depletion-layer ca-
pacitance is 1.75 nF/cm2. If the maximum electric field at avalanche breakdown is
3× 105 V/cm, find the breakdown voltage. ǫSi = 11.9.

7. For a p+-n Si junction with Nd = 1016 cm−3, the breakdown voltage is 32 V.
Calculate the maximum electric field at the breakdown. ǫSi = 11.9.

1.5 Solar Cells

1. The spectrum of Sun could be reasonably well modelled by that of the black body
with T ≈ 5800 K. In this case, the number of photons and power per unit energy could
be approximated as

dNω = g(ω)dω ∼ ω2dω

e~ω/kT − 1
, dEω = ~ω g(ω)dω ∼ ω3dω

e~ω/kT − 1
.

Find the maximum flux density and power per photon energy coming to Earth from Sun
(find maxima of g(ω) and ω g(ω)). What are the corresponding maxima in wavelength?
Hint: use the relation ω = 2πc/λ in ω g(ω).

2. Consider a Si p-n junction solar sell of area 2 cm2. If the dopings of the solar cell
are Na = 1.7 × 1016 cm−3 and Nd = 5 × 1019 cm−3, and given τn = 10 µs, τp = 0.5 µs,
Dn = 9.3 cm2/s, Dp = 2.5 cm2/s, and IL = 95 mA, (i) calculate the open-circuit voltage,
and (ii) determine the maximum output power of the solar cell at room temperature.

3. At room temperature, an ideal solar cell has a short-circuit current of 3 A and an
open-circuit voltage of 0.6 V. Calculate and sketch its power output as a function of
operation voltage and find its fill factor from this power output.

4. What happens to the short-circuit current, the open-circuit voltage, and the max-
imum output power of the solar cell from the previous problem if it is employed as a
power supply for the Mars Pathfinder mission? Mean distance from the Mars to the
Sun is approximately a factor of 1.5 longer than that of between the Earth and the Sun.
Assume that in both cases the solar cell operates at room temperature.

5. At room temperature, an ideal solar cell has a short-circuit current of 2 A and an
open-circuit voltage of 0.5 V. How does the open-circuit voltage change if the short-
circuit current drops by a factor of 2, 5, or 10?

6. At 300 K, an ideal Si p-n junction solar cell has a short-circuit current of 2 A and
an open-circuit voltage of 0.5 V. How does the maximum output power of the solar cell
change if the temperature raises to 400 K?
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1.6 Bipolar Transistor

1. A silicon p+-n-p transistor has impurity concentrations of 5×1018, 1016, and 1015 cm−3

in the emitter, base, and collector, respectively. If the metallurgical base width is 1.0 µm,
VEB = 0.5 V, and VCB = 5 V (reverse), calculate (i) the neutral base width, and (ii)
the minority carrier concentration at the emitter-base junction. Transistor operates at
room temperature.

2. For the transistor from the previous problem calculate the emitter injection effi-
ciency, γ, assuming that DE = DB and the neutral base and emitter widths are equal
(xE = xB).

3. For the same transistor calculate the base transport factor (αT ) assuming the dif-
fusion length of the minority carriers in the base of 3.5 µm.

4. Diffusion length of the minority carriers in the base region is 4 µm. Calculate he
base width at which the base transport factor is 0.99, 0.9, and 0.5.

5. A Si n+-p-n transistor has dopings of 1019, 3×1016, and 5×1015 cm−3 in the emitter,
base, and collector, respectively. Find the upper limit of the base-collector voltage at
which the neutral base width becomes zero (punch-through). Assume the base width
(between metallurgical junctions) is 0.5 µm.

6. Empirically the band gap reduction ∆Eg in Si can be expressed as

∆Eg = 18.7 ln

(
N

7× 1017

)
meV .

Compare the emitter injection efficiency at room temperature for emitter dopings of 1019

and 1020 cm−3. The base doping in both cases is 1018 cm−3. Assume that xE = xB and
DE = DB.

7. What profile of the base doping results in a uniform electric field in the base?

8. For a nonuniform doping profile of the base resulting in a mean electric field of
104 V/cm compare the drift and diffusion transport time at room temperature of the
minority carriers through the base (xB = 0.5 µm).

9. For a Si transistor with DB = 50 cm2/s and LB = 3.5 µm in the base and
xB = 0.5 µm estimate the cut-off frequencies in common-emitter and common-base
configurations.
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1.7 MIS/MOS Capacitor and MOSFET

1. For an ideal Si-SiO2 MOS capacitor with d = 10 nm, Na = 5 × 1017 cm−3, find the
applied voltage at the SiO2-Si interface required (a) to make the silicon surface intrinsic,
and (b) to bring about a strong inversion. Dielectric permittivities of Si and SiO2 are
11.9 and 3.9, respectively. T = 296 K.

2. A voltage of 1 V is applied to the MOS capacitor from the previous problem. How
this voltage is distributed between insulator and semiconductor?

3. An ideal Si-SiO2 MOSFET has d = 15 nm and Na = 1016 cm−3. What is the
flat-band capacitance of this system? S = 1 mm2, and T = 296 K.

4. For the MOSFET from the previous problem find the turn-on voltage (VT ) and the
minimum capacitance under high-frequency regime.

5. For a metal-SiO2-Si capacitor with Na = 1016 cm−3 and d = 8 nm, calculate the
minimum capacitance on the C-V curve under high-frequency condition. S = 1 mm2,
and T = 296 K.

6. Find a number of electrons per unit area in the inversion region for an ideal Si-SiO2

MOS capacitor with Na = 1016 cm−3, d = 10 nm, V = 1.5 V, T = 296 K.

7. Turn-on voltage of the MOS from the previous problem was found to be shifted by
0.5 V from the ideal value. Assuming that the shift is due entirely to the fixed oxide
charges at the SiO2-Si interface, find the number of fixed oxide charges.

1.8 Low-dimensional Structures

1. Electric field at the surface of a semiconductor in the inversion layer is E = 5 ×
104 V/cm. Using the variational principle with the probe function ψ ∼ z exp(−z/a)
estimate the lowest energy of an electron in the triangle potential well (V = 0 for z ≤ 0
and V = eEz for z > 0) formed by the electric field.1 Effective mass of the electron is
m∗ = 0.063m.

2. A potential well has a hight of 0.05 eV. What should be the width of the well so
that the binding energy of the electron (m∗ = 0.063me) would be equal to 0.025 eV.

3. A potential well of width 10 nm is formed by GaAs and AlxGa1−xAs. Band gap of
GaAs is 1.42 eV, the band gap of AlxGa1−xAs is 1.42 + 1.247 x (x ≤ 0.45). The band
gap discontinuity is ∆Ec = 0.78 x. What should be x so that the binding energy of an
electron (m∗ = 0.063me) in the well is 5 kT at room temperature?

1The ground state energy is E = min 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉
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4. Two barriers with the hight of 0.1 eV and width of 20 nm are separated by the
distance of 5 nm. Calculate at which bias voltage a resonance tunneling diode made
of this structure has the first local maximum on the I/V curve. Effective mass of the
electron is m∗ = 0.063m.

5. Estimate the ground state lifetime of an electron trapped between the two barriers
from the previous problem.

1.9 LEDs and Lasers

1. The spectrum for spontaneous emission is proportional to

(E −Eg)
1/2 exp(−E/kT ) .

Find (a) the photon energy at the maximum of the spectrum and (b) the full width at
half maximum (FWHM) of the emission spectrum.

2. Find the FWHM of the spontaneous emission in wavelength. If the maximum
intensity occurs at 0.555 µm, what is the FWHM at room temperature?

3. Assume that the radiative lifetime τr is given by τr = 109/N s, where N is the
semiconductor doping in cm−3 and the nonradiative lifetime τnr is equal to 10−7 s. Find
the cutoff frequency of an LED having a doping of 1019 cm−3.

4. For an InGaAsP laser operating at a wavelength of 1.3 µm, calculate the mode
spacing in nanometer for a cavity of 300 µm, assuming that the group refractive index
is 3.4.

5. Assuming that the refractive index depends on the wavelength as n = n0+dn/dλ(λ−
λ0), find the separation ∆λ between the allowed modes for a GaAs laser at λ0 = 0.89 µm,
L = 300 µm, n0 = 3.58, dn/dλ = 2.5 µm−1.

6. An InGaAsP Fabry-Perot laser operating at a wavelength of 1.3 µm has a cavity
length of 300 µm. The refractive index of InGaAsP is 3.9. If one of the laser facets
is coated to produce 90 % reflectivity, what should be the minimum gain for lasing,
assuming the absorption coefficient of the material α to be 10 cm−1?
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3 Tables

Table 1: SI vs. CGS units.

Quantity SI CGS

Force 1 Newton (N) 1 dyne (dyn) = 10−5 N
Work, energy 1 Joule (J) 1 erg = 10−7 J
Dynamic viscosity 1 Pa·s 1 Poise (P) = 0.1 Pa·s
Kinematic viscosity 1 m2/s 1 Stokes (St) = 10−4 m2/s
Pressure 1 Pascal (Pa) 1 barye (ba) = 0.1 Pa
Charge 1 Coulomb (C) 1 esu = 10/c ≈ 3.3356 · 10−10 C
Current 1 Amperes (A) 1 esu/s = 10/c ≈ 3.3356 · 10−10 A
Voltage 1 Volt (V) 1 Statvolt = 10−8c ≈ 300 V
Resistance 1 Ohm (Ω) 1 s/cm = 10−9c2 ≈ 9 · 1011Ω
Capacitance 1 Farad (F) 1 cm = 109/c2 ≈ 10−11/9 F
Magnetic field strength 1 A/m 1 Oersted (Oe) = 103/(4π) ≈ 79.6 A/m
Magnetic flux density 1 Tesla (T) 1 Gauss (G) = 10−4 T
Magnetic flux 1 Weber (Wb) 1 Maxwell (Mx) = 10−8 Wb

Table 2: Basic parameters of some semiconductors at room temperature.

Effective mass,a m0 Mobility, cm2/V sec
Semiconductor Eg, eV Band m∗

e m∗

h µe µh ǫ

Ge 0.66 I 0.57 0.37 3900 1900 16.0
Si 1.12 I 1.08 0.59 1400 450 11.9
GaAs 1.42 D 0.063 0.53 8800 400 12.9
GaP 2.26 I 0.8 0,83 250 150 11.4
GaN 3.44 D 0.22 0,61 8500 400 10.4

aEffective mass in the expression for the density of the states of the conduction/valence band:
Nc(v) = 2(m∗

e(h)kT/2π~
2)3/2.

Table 3: Work function of some metals.

Au Ag Al Cu Pt

ψm, eV 5.1 4.3 4.25 4.7 5.65
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Table 4: Electron affinity of some semiconductors.

Si Ge GaAs GaP GaN

χ, eV 4.05 4.0 4.07 3.8 4.2

Table 5: Properties of SiO2 and Si3N4 at room temperature.

Property SiO2 Si3N4

Energy gap, eV 9 5
Electron affinity, eV 0.9 –
Dielectric constant 3.9 7.5
Refractive index 1.46 2.05
Resistivity, Ω·cm 1014–1016 1014
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4 Answers and Solutions

4.1 Properties of Semiconductors

1. It follows from Table 2 that Si and GaAs are not transparent, GaP is partially
transparent, and GaN is transparent for the visible light.

2. n2
i = NcNv exp (−Eg/kT ) ∼ T 3 exp (−Eg/kT ). Therefore

ni(T2) = ni(T1)

(
T2
T1

)3/2

exp

(
−Eg(T2)

2kT2
+
Eg(T1)

2kT1

)
.

Putting the proper values in the formula we obtain that ni(77K) ≈ 10−20cm−3.

3. From µ = eτ/m∗ we get that τ = 2.6× 10−13 s.

4. Since

vt =

∫
∞

0
v exp (−m∗v2/2kT )d3v∫

∞

0
exp (−m∗v2/2kT ) d3v

=

√
8kT

πm∗
,

thermal velocities of electrons and holes are 4.3× 107 and 1.5× 107 cm/s, respec-
tively.

5. From eD = µkT , it follows that D = 49 cm2/s.

6. τr = ǫ/4πeNaµp = 4.7× 10−12 s.

7. In this case,

τr =
ǫ

4πeni(µn + µp)
= 3.4× 10−7 s .

8. LD = 0.48 µm.

9. D = 65 cm2/s.

10. ∆p = ∆p0 × exp

(
− L√

Dpτp

)
= 1.6× 1013 cm−3.

4.2 Schottky Diode

1. eVd = 0.88 eV.

2. w = 0.22, 0.19, and 0.34 µm for V = 0, +0.4, and −2 V, respectively.

3. E = 5.1 × 104, 4.2 × 104, and 5.1 × 105 V/cm for V = 0, +0.3, and −100 V,
respectively.

4. E = 2× 104 V/cm.

5. From n = 1/eρµn we obtain that n = 1.4× 1013 cm−3. Thus,

eϕd = ψPt − χGaAs − kT lnNc/n = 1.32 eV.

The average thermal velocity is

vT = (8kT/πmn)
1/2 = 4.6× 107 cm/s.
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From here we get

js =
1

4
envT exp(−eϕd/kT ) = 3× 10−22A/cm2.

Finally, from
j = js (exp(eV/kT )− 1)

we obtain j(0.5V) = 1.5× 10−13 A/cm2 and j(−5V) = js.

6. ϕd = 0.74 V, n = 2.8× 1017 cm−3.

7. A Schottky diode loses its rectifying characteristics when de Broglie wavelength,
λ, of electron becomes comparable with the depletion width, ω, of the diode. Since
λ = 2π~/

√
2m0E and ω =

√
ǫSiEg/4πe2n from the condition λ ≪ ω we obtain

that

n≪ 3ǫSim0kTEg

16π3e2~2

Here, we assumed that the mean energy of electron is E = 3kT/2 and the po-
tential barrier at the contact is ϕd = Eg/2e. Substituting numerical values in the
above expression we get that for proper functioning of the Schottky diode, electron
concentration must be significantly less than 2× 1019 cm−3.

4.3 Ideal p-n Junction

1. By definition, eϕd = Fn − Fp. Concentrations of the free carriers are given by

n = Nc exp

(
−Eg − Fn

kT

)
, p = Nv exp

(
− Fp

kT

)
.

From here we get that

eϕd = Eg + kT ln

(
n

Nc

)
+ kT ln

(
p

Nv

)
= Eg + kT ln

(
np

NcNv

)
.

Since,

n2
i = NcNv exp

(
−Eg

kT

)
,

we obtain that

ϕd =
kT

e
ln

(
np

n2
i

)
.

From n = 1/eρµn and p = 1/eρµp, we finally get ϕd = 0.68 V.

2. Taking into account that at room temperature all donors and acceptors are ionized,
i.e. n = Nd and p = Na, from the values found in the previous problem and

ω =

(
ǫ(ϕd − V )

2πe

Nd +Na

NdNa

)1/2

we get ω(−10V) = 2 µm, ω(0V) = 0.5 µm, and ω(+0.3V) = 0.4 µm.
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3. From the previous problem and

E = 2

(
2πe(ϕd − V )

ǫ

NdNa

Nd +Na

)1/2

,

we obtain that E(−10V) = 105 V/cm, E(0V) = 2.6×104 V/cm, and E(+0.3V) =
2× 104 V/cm.

The electric field within a shallow donor is, in turn, E ≈ 3.4× 105 V/cm, that is,
comparable to that of the p-n junction.

4. Since

C =
ǫS

4πω
,

we get C(−10V) = 0.5 nF, C(0V) = 2 nF, and C(+0.3V) = 2.6 nF.

5. From the conditions of the problem ωa = 0.01ω and ωd = 0.99ω. Since

ωa/ωd = Nd/Na ,

we get that Na = 99Nd. Because Nd = 1/eρµn = 4.5 × 1015 cm−3, we get Na =
4.4× 1017 cm−3.

6. js = 1.66mAexp(−eV/kT ) = 4 µA.

7. For a p+-n junction

js =
eDpp

Lp

=
eDpn

2
i

NdLp

=
en2

i

Nd

(
Dp

τp

)1/2

.

Taking into account that µ = eD/kT , we finally get τp = 4.5× 10−9 s.

8. Since
js ∼ n2

i ∼ T 3 exp (−Eg/kT ) ,

we get

js(T2)/js(T1) = (T2/T1)
3 exp

(
− Eg

kT2
+

Eg

kT1

)
.

From here the ratios of the reverse currents in the p-n junctions made of Ge and
Si are 15 and 82, respectively.

9. p-n junction stops working when concentrations of electrons and holes equalize.
It happens when Nd(Na) ≈ ni =

√
NcNv exp(−Eg/2kT ) ∼ T 3/2 exp(−Eg/2kT ).

From here and the parameters given we get that the maximum temperatures are
TGe ≈ 400 K, TSi ≈ 650 K, and TGaN ≈ 1700 K. That is, only wide band gap
semiconductors are suitable for extremal applications.

4.4 Nonideal p-n Junction

1. By definition

Gn = −Rn =
n2
i − pn

τp(n+ ni) + τn(p+ pi)
,
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where τ−1
n = τ−1

p = Ntσnvt = 107 sec−1. In the first case n and p are less than ni.
Thus, np < n2

i and hence

Gn =
n2
i

τn(ni + pi)
=

ni

2τn
= 5.3× 1016 cm−3/s.

In the second case n = Nd ≫ ni, whereas p < ni, hence

Gn =
n2
i

τn(n + ni + pi)
=

n2
i

τnn
=

n2
i

τnNd

= 1.6× 1011 cm−3/s.

2. In equilibrium, the generation G = 1021 cm−3/s and recombination R rates are
equal,

G = R =
np− n2

i

τp(n+ ni) + τn(p+ ni)
≈ np

τpn + τnp
=

np

τ(n + p)
.

Here we used τn = τp = τ = (Ntvtσn)
−1 = 10−6 sec.

In n-type Si under illumination, n = Nd +∆n, p ≈ ∆p = ∆n. Thus,

Gτ =
(Nd +∆n)∆n

Nd + 2∆n
.

Solving this equation with respect to ∆n we obtain p = ∆n = 1.1×1015 cm−3 and
n = 1.1× 1016 cm−3.

3. Generation current in the space charge region w is given by

jg =
eniw

2τ
.

Here, τ−1 = Ntσnvt = 107 s−1. The width w of the space charge region for a p+-n
junction under reverse bias is

w =

(
ǫ(ϕd − V )

2πeNd

)1/2

≈
(

ǫ|V |
2πeNd

)1/2

= 3.6µm .

Here we used relation |V | ≫ ϕd. From here we obtain that jg = 3 µA/cm2.

4. Using the formulae of the previous problem and relation

ϕd =
kT

e
ln

(
np

n2
i

)
,

we get js = 1.6 nA/cm2.

5. From the parameters given, we find λn = 2.5× 10−6 cm and λp = 8.5× 10−7 cm.
If Nd = Na = N the width of the space charge region is

w =
( ǫϕd

πeN

)1/2
.

By definition, w = λ. Substituting

ϕd =
kT

e
ln

(
N2

n2
i

)
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into the expression above and after some simplifications, we get

N =
ǫ

πeλ2
2kT

e
ln

(
N

ni

)
.

Solving the above equation numerically, we obtain N = 6.8 × 1018 cm−3 and
6.2× 1019 cm−3 for electron and holes, respectively.

6. Since C = ǫ/4πw0, and under strong reverse bias w0 ≈ (ǫV/2πeNd)
1/2, we obtain

Nd = 1.1× 1015 cm−3.

Maximum electric field is at the interface and for a p+-n junction equals E ≈
4πeNdw1/ǫ. From conditions of the problem we find that at the breakdown w1 =
18 µm and, hence, the breakdown voltage is 273 V .

7. The width of the space charge region is w ≈ (ǫV/2πeNd)
1/2 = 2 µm. From here

we get that the maximum electric field at the breakdown is

E =
4πeNd

ǫ
w ≈ 3× 105V/cm.

4.5 Solar Cells

1. To find the maxima of the photon flux density and the incoming energy one has to
calculate g′(ωflux) = 0 and (ωenergyg(ωenergy))

′ = 0. Denoting x = ~ω/kT we obtain

xflux = 2
(
1− e−xflux

)
, xenergy = 3

(
1− e−xenergy

)
.

Solving these equations numerically we obtain that xflux = 1.59 and xenergy = 2.82,
which for T = 5800 K corresponds to 0.8 and 1.4 eV, respectively.

After replacing ω with 2πc/λ and taking into account that dω = 2πc dλ/λ2 we
obtain that in terms of wavelength the maxima are to find from

xflux = 4
(
1− e−xflux

)
, xenergy = 5

(
1− e−xenergy

)
.

Here, x = 2πc~/λkT . The solutions of the above equations are xflux = 3.92 and
xenergy = 4.97, which corresponds to λ = 0.63 and 0.5 µm, respectively.

2. The open-circuit voltage is obtained from

0 = Is

(
exp

(
eVoc
kT

)
− 1

)
− IL,⇒ Voc ≈

kT

e
ln

(
IL
Is

)
.

With the parameters given we find Is = 2 × 10−12 A and hence Voc = 0.61 V at
room temperature.

The maximum power operating voltage Vm we find from dP/dV = 0, where the
operating power is

P = ILV − IsV

(
exp

(
eV

kT

)
− 1

)
.

From here, we obtain

Vm ≈ Voc −
kT

e
ln

(
1 +

eVm
kT

)
.

Solving the above equation numerically we get Vm = 0.53 V and finally obtain the
maximum operating power Pm = 48 mW.
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3. Since at room temperature kT/e = 0.025 V, from

Is ≈ IL exp

(
−eVoc
kT

)
,

we find that Is = 1.1× 10−10 A.

The power output is

P (V ) = IV = ILV − IsV

(
exp

(
eV

kT

)
− 1

)
.

From the plot P vs. V , we find that the maximum power output is Pm = 1.5 W.

By definition, the fill factor is

FF =
Pm

ILVoc

In our case, the fill factor equals 0.83.

4. Since the flux density depends as r−2 from the distance to the Sun, the short-circuit
current is IMars

L = IEarthL /1.52 = 1.33 A. The open-circuit voltage is then

V Mars
oc =

kT

e
ln

(
IMars
L

Is

)
= 0.58A.

From here, we find Vm = 0.5 V and, thus, Pm = VmIm = 0.61 W.

5. From the paremeters given, we find that Is ≈ IL exp(−eVoc/kT ) = 4.1 × 10−9 A.
Therefore, Voc = 0.48, 0.46, and 0.44 V, for IL = 1, 0.4, and 0.2 A, respectively.

6. From the values of Voc and IL, we find that at 300 K Is ≈ IL exp(−eVoc/kT ) =
4.1 × 10−9 A. Employing the results of the previous problems, we find that the
maximum output power at 300 K is equal to 0.8 W.

In the case of a p-n junction Is ∼ n2
i ∼ exp(−Eg/kT ). Since for Si Eg = 1.12 eV,

we obtain that Is = 0.2 mA when the temperature raises to 400 K. The new value
of Is corresponds to Voc = 0.3 V.

Finally, we get that the maximum output power of the Si solar cell at 400 K drops
down to 0.4 W.
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4.6 Bipolar Transistor

1. From the concentrations given we obtain the built-in potential of the junctions
emitter-base (ϕEB) and base-collector (ϕBC)

ϕEB =
kT

e
ln

(
NENB

n2
i

)
= 0.84V,

ϕBC =
kT

e
ln

(
NBNC

n2
i

)
= 0.63V.

Knowing the built-in potentials and the voltages applied to the emitter-base and
base collector junctions, from the theory of the p-n junction we get the appropriate
widths of the space charge regions and accordingly—the neutral base width xB =
0.5 µm.

The minority carrier concentraton at the emitter-base junction is

nB = nB0 exp

(
eVEB

kT

)
=

n2
i

NB
exp

(
eVEB

kT

)
= 5× 1012 cm−3.

2. By definition,

γ =
jnE

jnE + jpE
=

1

1 + DE

DB

NB

NE

xB

xE

.

Since xE = xB and DE = DB,

γ =
1

1 +NB/NE
= 0.998.

3. For a thin base (xB ≪ LB),

αT =
1

cosh (xB/LB)
≈ 1

1 + 1
2
(xB/LB)

2 .

From the first problem we know that xB = 0.5 µm. Thus, we obtain that αT =
0.99.

4. From the previous problem we obtain that

xB = LB ln

(
1 +

√
1− α2

T

αT

)
.

Substituting the proper values in this formula we get that xB = 0.57, 1.87, and
5.3 µm for αT = 0.99, 0.9, and 0.5, respectively.

5. Punch-through occurs when the neutral base width becomes zero. Employing
the theory of an ideal p-n junction, after somewhat tiresome but straightforward
calculation we obtain that for the given parameters the punch-through voltage is
13.6 V.
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6. For certainty, we assume that we have a n+-p-n transistor. The injection efficiency
is

γ =
1

1 + DE

DB

pE0

nB0

xB

xE

=
1

1 + pE0

nB0

=
1

1 + NB

NE

n2
Ei

n2
Bi

.

Here, nEi and nBi are the intrinsic concentrations of free carriers in emitter and
collector, respectively.

Since n2
i ∼ exp(−Eg/kT ), we obtain that

n2
Ei

n2
Bi

= exp

(
∆EEg −∆EBg

kT

)
.

From here, we get that γ = 0.64 and 0.76 for the emitter dopings of 1019 and
1020 cm−3, respectively.

7. For certainty, we assume that the base is n-type. Without applied voltage j =
enµnE(x) + eDndn/dx = 0. Since µn = eDn/kT , from here we obtain an equation
to determine the concentration profile

dn

dx
= −eE(x)

kT
n.

Because E(x) = const, from the above equation follows that the concentration
profile should be exponential, n ∼ exp(−x/l), where l = kT/eE .

8. The drift time of minority carriers through the base is τdrift = xB/vdrift = xB/µE .
The diffusion transport time is approximately τdiff = x2B/2D. From here we get
the ratio of the two values

τdiff
τdrift

=
x2B
2D

µE
xB

=
exBE
2kT

= 10.

That is, the drift transistor can operate at about one order of magnitude higher
frequencies.

9. In the case of common-emitter configuration, the frequency is determined by the
life time of the minority carriers in the base f ≈ τ−1

B = DB/L
2
B = 0.4 GHz. For the

common-base configuration the frequency depends on the diffusion rate through
the base, that is, f ≈ τ−1

diff = 2DB/x
2
B = 40 GHz.

4.7 MIS/MOS Capacitor and MOSFET

1. The voltage (V ) applied to a MOS capacitor appears across an insulator (Vi) and
a semiconductor (ψs). Thus

V = Vi + ψs.

The voltage across the insulator is

Vi =
|Qs|
Ci

, where Ci =
ǫi
4πd

.

Here, |Qs| is the charge stored in the semiconductor, ǫi is the dielectric permittivity
of the insulator, and d is the thickness of the insulator.
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If the voltage across the semiconductor is less than the one needed to bring about
a strong inversion the charge stored in the semiconductor is

|Qs| = eNawd = eNa

(
ǫsψs

2πeNa

)1/2

,

where ǫs is the dielectric permittivity of the semiconductor and wd is the width of
the depletion layer. From here we obtain that

V = ψs +
2d

ǫi

√
2πeǫsNaψs.

The value of ψs to make the surface intrinsic is

ψs = ψpB =
kT

e
ln

(
Na

ni

)
,

whereas a strong inverstion occurs at ψs = 2ψpB.

Thus, from the parameters given we obtain that V = 1.24 and 2.0 V result in the
intrinsic surface of Si and the strong inverstion, respectively.

2. From the results obtained in the previous problem we find that ψs = 0.32 V and
Vi = 0.68 V.

3. By definition, the flat-band capacitance is

CFB =
ǫiǫsS

4π(ǫsd+ ǫiLD)
,

where LD is the Debye length. Substituting in this formula the parameters given
we obtain that CFB = 1.2 nF.

4. By definition, the turn-on voltage (VT ) is the voltage at which the strong inversion
occurs, that is ψs = 2ψpB. Based on the results of Problem 1 we obtain that

VT = 2ψpB ++
2d

ǫi

√
2πeǫsNa(2ψpB).

From the parameters given we find that VT = 0.9 V.

The minimum capacitance under high-frequency regime is

C ′

min =
ǫiǫsS

4π(ǫsd+ ǫiwd)
,

where wd is the width of the depletion layer under ψs = 2ψpB. From here we find
that C ′

min = 0.3 nF.

5. C ′

min = 0.32 nF.

6. The turn-on voltage VT = 2ψpB = 2kT/e ln(Na/ni) = 0.69 V. The maximum width
of the depletion layer is

wd =

(
ǫsVT
2πeNa

)1/2

= 0.3 µm.
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Thus, the number of negatively charged acceptors per unit area in the depletion
layer is σa = Nawd = 3× 1011 cm−2.

To find the total charge stored in the semiconductor we have to solve a nonlinear
equation (see the solution of Problem 1)

V = ψs + Vi = ψs +
|Qs|
Ci

= ψs +
4πd

ǫi
|Qs|. (1)

The charge |Qs| is given by

|Qs| =
√
2ǫskT

4πeLD
F (ψs, np0/pp0).

Under strong inverstion

F ≈
(
np0

pp0

)1/2

exp

(
ψs

2kT

)
.

Substituting this expression into Eq. (1) we obtain an equation to determine ψs.
Numerical solution gives ψs = 0.85 V. We see that ψs > VT , which justifies our
suggestion that the capacitor is in the strong inversion regime.

Knowing the value of ψs we find |Qs| and finally determine the number of electrons
per unit area in the inversion layer of the capacitor

σe =
|Qs|
e

− σa = 1.1× 1012 cm−2.

7. The voltage shift is given by

∆V =
Q

Ci

,

whereas the number of fixed charges in the oxide is σ = Q/e. From the parameters
given we obtain that σ = 1.1× 1012 cm−2.

4.8 Low-dimensional Structures

1. Schrödinger equation for an electron in the triangle potential is

Ĥψ = − ~
2

2m∗
ψ′′ + eEzψ = Eψ. (2)

To find the ground state energy we have to calculate

〈ψ|Ĥ|ψ〉 = − ~
2

2m∗

∫
∞

0

ψψ′′dz + eE
∫

∞

0

z|ψ|2dz

and

〈ψ|ψ〉 =
∫

∞

0

|ψ|2dz.
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With the probe function ψ = Az exp(−z/a) we obtain that

〈ψ|Ĥ|ψ〉 = A2

(
~
2

8m∗
a+

3eE
8
a4
)

and 〈ψ|ψ〉 = A2a
3

4
.

As follows from Eq. (2), energy of the ground state is a minimum of

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 =

~
2

2m∗a2
+

3

2
eEa.

From E ′ = 0 we obtain that Emin occurs at a = (2~2/3meE)1/3 and equals

Emin =
9

4

(
2~2e2E2

3m∗

)1/3

.

With the values given, we get Emin = 61 meV. Note that Emin in bigger than kT
at room temperature.2

2. Denoting the hight of the potential well as V0 we get that the well width a should
be equal

a =
π~

2
√
m∗V0

≈ 80 Å.

3. The ground state energy E0 of a particle in a square box is found from
(
V0 − E0

E0

)1/2

= tan

(√
2m∗E0a

2~

)
.

By definition E0 = V0 − 5kT . From the above equation we find that V0 = 1.24 ×
5kT = 155 meV and, hence, x = 0.16.

4. The ground level of an electron trapped between the barriers is found from
(
V0 − E0

E0

)1/2

= tan

(√
2m∗E0a

2~

)
.

Here, V0 = 0.1 eV is the barrier hight, and a = 5 nm is the distance between the
barriers. From here we find that E0 = 55 meV.

Since the resonance tunneling diode is symmetric, to line up the ground level of an
electron in the wall with the conduction band minimum of the emitter the voltage
to be applied is V ≈ 2E0/e. Thus, the first maximum on the I/V curve occurs at
approximately 110 mV.

5. Probability of tunneling for an electron with the energy E0 = 55 meV through the
square barrier with the hight of V = 0.1 eV and the width of b = 20 nm is

D =
1

1 + 1
4

(√
E0

V0−E0
+
√

V0−E0

E0

)2
sinh2

(√
2m∗(V0−E0)

~
b

) ≈ 7× 10−5.

“Attempt frequency” ν can be estimated from ν ≈ E0/2π~ = 1.3×1013 s−1. Thus,
the lifetime of an electron between the barriers is

τ ≈ (νD)−1 ≈ 10−9 s.

2The exact value of the ground state energy is about 94 % of Emin.
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4.9 LEDs and Lasers

1. Differentiating the expression given and equalizing it to zero we find that the
maximum of the emission spectrum occurs at Emax = Eg + kT/2. The FWHM is
found from the condition

(E − Eg)
1/2 exp(−E/kT ) = 1

2
(Emax − Eg) exp(−Emax/kT ).

Numerical solution gives ∆E = 1.8 kT .

2. Based on the results of the previous problem we find that the FWHM of the
spontaneous emission in wavelength is

∆λ =
1.8 kTλ2

2π~c
= 12 nm.

Note that ∆λ/λ = 0.02.

3. Per definition,

fT =
1

2πτ
=

1

2πτr
+

1

2πτnr
.

Substituting in this relation the parameters given we obtain that fT = 1.6 GHz.

4. Since

∆λ =
λ2

2nL
∆m,

for the neighboring modes (∆m = 1) we obtain ∆λ = 8.3 Å.

5. Differentiating the condition for the resonance modes

m
λ

2n
= L,

we obtain that

∆λ =
λ20

2L(n0 − λ0dn/dλ)
= 9.7 Å.

6. The minimum gain for lasing is

gmin = α+
1

2L
ln

(
1

R1R2

)
.

Here, R1 = 0.9. The reflectivity of the noncoated facet is

R2 =

(
n− 1

n + 1

)2

= 0.35.

Finally, we get that gmin = 29.3 cm−1.

23


