

C h a p t e r 1

Designing Database Tables

1.1 Introduction 2
1.2 Database Design 2
 1.2.1 Conceptual View 2
 1.2.2 Table Definitions 3
 1.2.3 Redundant Information 4
 1.2.4 Normalization 4
 1.2.5 Normalization Strategies 5
 1.2.6 Third Normal Form (3NF) 6
 1.2.7 Beyond Third Normal Form 7
1.3 Column Names and Reserved Words 8
1.4 Data Integrity 9
 1.4.1 Referential Integrity 9
1.5 Database Tables Used in This Book 10
 1.5.1 CUSTOMERS Table 10
 1.5.2 INVENTORY Table 11
 1.5.3 INVOICE Table 11
 1.5.4 MANUFACTURERS Table 12
 1.5.5 PRODUCTS Table 12

2 PROC SQL: Beyond the Basics Using SAS

 1.5.6 PURCHASES Table 13
1.6 Table Contents 13
 1.6.1 The Database Structure 16
 1.6.2 Sample Database Tables 17
1.7 Summary 21

1.1 Introduction

The area of database design is very important in relational processes. Much has been
written on this subject including entire textbooks and thousands of technical papers. No
pretenses are made about the thoroughness of this very important subject in these pages.
Rather, an attempt is made to provide a quick-start introduction for those readers
unfamiliar with the issues and techniques of basic design principles. Readers needing
more information are referred to the references listed in the back of this book.

1.2 Database Design

Activities related to “good” database design require the identification of end-user
requirements and involve defining the structure of data values on a physical level.
Database design begins with a conceptual view of what is needed. The next step, called
logical design, consists of developing a formal description of database entities and
relationships to satisfy user requirements. Seldom does a database consist of a single
table. Consequently, tables of interrelated information are created to enable more
complex and powerful operations on data. In the final step, referred to as physical design,
the goal is to achieve optimal performance and efficient storage of the logical database.

1.2.1 Conceptual View
The health and well-being of a database depends on its database design. A database must
be in balance (optimized) with all of its components to avoid performance and operation
bottlenecks. Database design doesn’t just happen. It involves planning, modeling,
creating, monitoring, and adjusting to satisfy the endless assortment of user requirements
without exhausting available resources. Of central importance to database design is the
process of planning. Planning is a valuable component that, when absent, causes a

Chapter 1 Designing Database Tables 3

database to fall prey to a host of problems including poor performance and difficulty in
operation. Database design consists of three distinct phases, as illustrated below.

1.2.2 Table Definitions
PROC SQL uses a model of data stored as sets rather than as physical files. A physical
file consists of one or more records ordered sequentially or some other way.
Programming languages such as COBOL and FORTRAN evolved to process files of this
type by performing operations one record at a time. These languages were generally
designed and used to mimic the way people process paper forms.

PROC SQL was designed to work with sets of data. Sets have no order and members of a
set are of the same type using a data structure known as a table. A table is either a base
table consisting of zero or more rows with one or more columns or a virtual table called a
view (see Chapter 8, “Working with Views”).

Conceptual
Database

Design

Logical
Database

Design

Physical
Database

Design

Conceptual Design Activities
1. Identify all entities.
2. Define entity attributes’ uniqueness and usefulness.
3. Define attribute properties including data type, size, and

whether null values can be accepted.
4. Define entities and attributes as related to one another.

Logical Design Activities
1. Transform conceptual design criteria into relational form.
2. Transform entities into tables.
3. Transform entity attributes into table columns.
4. Transform tables and columns using rules of functional

dependencies and keys or normalization.

Physical Design Activities
1. Assign one or more indexes (simple and composite).
2. Tune indexes for maximum performance.
3. Denormalize tables, if necessary, to improve access

speeds.

4 PROC SQL: Beyond the Basics Using SAS

1.2.3 Redundant Information
One of the rules of good database design is that data not be redundant or not be
duplicated in the same database. The rationale for this is that if data appears more than
once, then there is reason to believe that one of the pieces of data is likely to be in error.
Another thing to watch for is the appearance of too many columns containing null values.
When this occurs, the database is probably not designed properly. To alleviate potential
table design issues, a process referred to as normalizing is performed. When properly
done, this ensures the complete absence of redundant information in a table.

1.2.4 Normalization
Designing an optimal database design is an important element of database operations. It
is also critical in achieving maximum performance and flexibility while working with
tables and data. To minimize errors and duplication of data, database developers apply a
concept called normalization to a logical database design.

The normalization process generally involves splitting larger multicolumn tables into two
or more smaller tables containing fewer columns. The rationale for doing this is found in
a set of data design guidelines called normal forms. The guidelines provide designers
with a set of rules for converting one or two large database tables containing numerous
columns into a normalized database consisting of multiple tables and only those columns
that should be included in each table. The normalization process typically consists of no
more than five steps with each succeeding step subscribing to the rules of the previous
steps.

Normalizing a database helps to ensure that the database does not contain redundant
information in two or more of its tables. As database designers and analysts proceed
through the normalization process, many are not satisfied unless a database design is
carried out to at least third normal form (3NF). Joe Celko in his popular book, SQL for
Smarties: Advanced SQL Programming (Morgan Kaufmann, 1999), describes 3NF this
way: “Informally, all the non-key columns are determined by the key, the whole key, and
nothing but the key.”

While the normalization guidelines are extremely useful, some database purists actually
go to great lengths to remove any and all table redundancies even at the expense of
performance. This is in direct contrast to other database experts who follow the
guidelines less rigidly in an attempt to improve the performance of a database by only
going as far as the third step (or third normal form). Whatever your preference, you
should keep this in mind as you normalize database tables. A fully normalized database
often requires a greater number of joins and adversely affects the speed of queries. Celko
mentions that the process of joining multiple tables is costly, specifically affecting
processing time and computer resources.

Chapter 1 Designing Database Tables 5

1.2.5 Normalization Strategies
After transforming entities and attributes from the conceptual design into a logical
design, the tables and columns are created. This is when a process known as
normalization occurs. Normalization refers to the process of making your database tables
subscribe to certain rules. Many, if not most, database designers are satisfied when third
normal form (3NF) is achieved and, for the objectives of this book, I will stop at 3NF too.
To help explain the various normalization steps, an example scenario will be given.

1.2.5.1 First Normal Form (1NF)
A table is considered to be in first normal form (1NF) when all of its columns describe
the table completely and when each column in a row has only one value. A table satisfies
1NF when each column in a row has a single value and no repeating group information.
Essentially every table meets 1NF as long as an array, list, or other structure has not been
defined. The following example illustrates a table satisfying the 1NF rule because it has
only one value at each row-and-column intersection. The table is in ascending order by
CUSTNUM and consists of customers and the purchases they made at an office supply
store.

 CUSTNUM CUSTNAME CUSTCITY ITEM UNITS UNITCOST MANUCITY

 1 Smith San Diego Chair 1 $179.00 San Diego

 1 Smith San Diego Pens 12 $0.89 Los Angeles

 1 Smith San Diego Paper 4 $76.95 Washington

 1 Smithe San Diego Stapler 1 $8.95 Los Angeles

 7 Lafler Spring Valley Mouse Pad 1 $11.79 San Diego

 7 Loffler Spring Valley Pens 24 $1.59 Los Angeles

 13 Thompson Miami Markers . $0.99 Los Angeles

1.2.5.2 Second Normal Form (2NF)
The very nature of leaving a table in first normal form (1NF) may present problems
because of the repetition of some information in the table as shown in the example above.
Another problem is that there are misspellings in the customer names. Although repeating
information may be permissible with hierarchical file structures and other legacy type file
structures, it does pose a potential data consistency problem as it relates to relational data.

To describe how data consistency problems can occur, let’s say that a customer takes a
new job and moves to a new city. In changing the customer’s city to the new location,
you might find it very easy to miss one or more occurrences resulting in a customer
residing incorrectly in two different cities. Assuming that our table is only meant to track
one unique customer per city, this would definitely be a data consistency problem.

6 PROC SQL: Beyond the Basics Using SAS

Essentially, second normal form (2NF) is important because it says that every nonkey
column must depend on the entire primary key.

Tables that subscribe to 2NF prevent the need to make changes in more than one place.
What this means in normalization terms is that tables in 2NF have no partial key
dependencies. As a result, our database consisting of a single table that satisfies 1NF will
need to be split into two separate tables in order to subscribe to the 2NF rule. Each table
would contain the CUSTNUM column to connect the two tables. Unlike the single table
in 1NF, the tables in 2NF allow a customer’s city to be easily changed whenever they
move to another city because the CUSTCITY column only appears once. The tables in
2NF would be constructed as follows.

CUSTOMERS Table

CUSTNUM CUSTNAME CUSTCITY
 1 Smith San Diego
 1 Smithe San Diego
 7 Lafler Spring Valley
 13 Thompson Miami

PURCHASES Table

CUSTNUM ITEM UNITS UNITCOST MANUCITY
 1 Chair 1 $179.00 San Diego
 1 Pens 12 $0.89 Los Angeles
 1 Paper 4 $6.95 Washington
 1 Stapler 1 $8.95 Los Angeles
 7 Mouse Pad 1 $11.79 San Diego
 7 Pens 24 $1.59 Los Angeles
 13 Markers . $0.99 Los Angeles

1.2.6 Third Normal Form (3NF)
Referring to the two tables constructed according to the rules of 2NF, you may have
noticed that the PURCHASES table contains a column called MANUCITY. The
MANUCITY column stores the city where the product manufacturer is headquartered.
Keeping this column in the PURCHASES table violates the third normal form (3NF)
because MANUCITY does not provide factual information about the primary key column
in the PURCHASES table. Consequently, tables are considered to be in third normal
form (3NF) when each column is “dependent on the key, the whole key, and nothing but
the key.” The tables in 3NF are constructed so the MANUCITY column would be in a
table of its own as follows.

Chapter 1 Designing Database Tables 7

CUSTOMERS Table

CUSTNUM CUSTNAME CUSTCITY
 1 Smith San Diego
 1 Smithe San Diego
 7 Lafler Spring Valley
 13 Thompson Miami

PURCHASES Table

CUSTNUM ITEM UNITS UNITCOST
 1 Chair 1 $179.00
 1 Pens 12 $0.89
 1 Paper 4 $6.95
 1 Stapler 1 $8.95
 7 Mouse Pad 1 $11.79
 7 Pens 24 $1.59
 13 Markers . $0.99

MANUFACTURERS Table

MANUNUM MANUCITY
 101 San Diego
 112 San Diego
 210 Los Angeles
 212 Los Angeles
 213 Los Angeles
 214 Los Angeles
 401 Washington

1.2.7 Beyond Third Normal Form
In general, database designers are satisfied when their database tables subscribe to the
rules in 3NF. But it is not uncommon for others to normalize their database tables to
fourth normal form (4NF) where independent one-to-many relationships between primary
key and nonkey columns are forbidden. Some database purists will even normalize to
fifth normal form (5NF) where tables are split into the smallest pieces of information in
an attempt to eliminate any and all table redundancies. Although constructing tables in
5NF may provide the greatest level of database integrity, it is neither practical nor desired
by most database practitioners.

8 PROC SQL: Beyond the Basics Using SAS

There is no absolute right or wrong reason for database designers to normalize beyond
3NF as long as they have considered all the performance issues that may arise by doing
so. A common problem that occurs when database tables are normalized beyond 3NF is
that a large number of small tables are generated. In these cases, an increase in time and
computer resources frequently occurs because small tables must first be joined before a
query, report, or statistic can be produced.

1.3 Column Names and Reserved Words

The ANSI Standard reserves a number of SQL keywords from being used as column
names. The SAS SQL implementation is not as rigid, but users should be aware of what
reserved words exist to prevent unexpected and unintended results during SQL
processing. Column names should conform to proper SAS naming conventions (as
described in the SAS Language Reference), and they should not conflict with certain
reserved words found in the SQL language. The following list identifies the reserved
words found in the ANSI SQL standard.

ANSI SQL Reserved Words

AS INNER OUTER
CASE INTERSECT RIGHT
EXCEPT JOIN UNION
FROM LEFT UPPER
FULL LOWER USER
GROUP ON WHEN
HAVING ORDER WHERE

You probably will not encounter too many conflicts between a column name and an SQL
reserved word, but when you do you will need to follow a few simple rules to prevent
processing errors from occurring. As was stated earlier, although PROC SQL’s naming
conventions are not as rigid as other vendors’ implementations, care should still be
exercised, in particular when PROC SQL code is transferred to other database

Chapter 1 Designing Database Tables 9

environments expecting it to run error-free. If a column name in an existing table
conflicts with a reserved word, you have three options at your disposal:

1. Physically rename the column in the table, as well as any
 references to the column.

2. Use the RENAME= data set option to rename the desired column in
 the current query.

3. Specify the PROC SQL option DQUOTE=ANSI, and surround the
 column name (reserved word) in double quotes, as illustrated below.

SQL Code

PROC SQL DQUOTE=ANSI;
 SELECT *
 FROM RESERVED_WORDS
 WHERE "WHERE"="EXAMPLE";
QUIT;

1.4 Data Integrity

Webster’s New World Dictionary defines integrity as “the quality or state of being
complete; perfect condition; reliable; soundness.” Data integrity is a critical element that
every organization must promote and strive for. It is imperative that the data tables in a
database environment be reliable, free of errors, and sound in every conceivable way. The
existence of data errors, missing information, broken links, and other related problems in
one or more tables can affect decision-making and information reporting activities
resulting in a loss of confidence among users.

Applying a set of rules to the database structure and content can ensure the integrity of
data resources. These rules consist of table and column constraints and will be discussed
in detail in Chapter 5, “Creating, Populating, and Deleting Tables.”

1.4.1 Referential Integrity
Referential integrity refers to the way in which database tables handle update and delete
requests. Database tables frequently have a primary key where one or more columns
have a unique value by which rows in a table can be identified and selected. Other tables

10 PROC SQL: Beyond the Basics Using SAS

may have one or more columns called a foreign key that is used to connect to some other
table through its value. Database designers frequently apply rules to database tables to
control what happens when a primary key value changes and its effect on one or more
foreign key values in other tables. These referential integrity rules restrict the data that
may be updated or deleted in tables.

Referential integrity ensures that rows in one table have corresponding rows in another
table. This prevents lost linkages between data elements in one table and those of another
enabling the integrity of data to always be maintained. Using the 3NF tables defined
earlier, a foreign key called CUSTNUM can be defined in the PURCHASES table that
corresponds to the primary key CUSTNUM column in the CUSTOMERS table. Users
are referred to Chapter 5, “Creating, Populating, and Deleting Tables,” for more details
on assigning referential integrity constraints.

1.5 Database Tables Used in This Book

This section describes a database or library of tables that is used by an imaginary
computer hardware and software manufacturer. The library consists of six tables:
customer, inventory, invoice, manufacturers, products, and purchases. The examples used
throughout this book are based on this library (database) of tables and are described and
displayed below. An alphabetical description of each table used throughout this book
appears below.

1.5.1 CUSTOMERS Table
The CUSTOMERS table contains data on customers that have purchased computer
hardware and software products from a manufacturer. Each customer is uniquely
identified with a customer number. A description of each column in the customers table
follows.

Chapter 1 Designing Database Tables 11

 CUSTOMERS
CUSTNUM Unique number identifying the customer
CUSTNAME Name of customer
CUSTCITY City where customer is located

1.5.2 INVENTORY Table
The INVENTORY table contains customer inventory information consisting of computer
hardware and software products. The inventory table contains no historical data. As
inventories are replenished, the old quantity is overwritten with the new quantity. A
description of each column in the inventory table follows.

 INVENTORY
PRODNUM Unique number identifying product
MANUNUM Unique number identifying the manufacturer
INVENQTY Number of units of product in stock
ORDDATE Date product was last ordered
INVENCST Cost of inventory in customer’s stock room

1.5.3 INVOICE Table
The INVOICE table contains information about customer purchases. Each invoice is
uniquely identified with an invoice number. A description of each column in the invoice
table follows:

 INVOICE
INVNUM Unique number identifying the invoice
MANUNUM Unique number identifying the manufacturer
CUSTNUM Customer number
PRODNUM Product number
INVQTY Number of units sold
INVPRICE Unit price

12 PROC SQL: Beyond the Basics Using SAS

1.5.4 MANUFACTURERS Table
The MANUFACTURERS table contains data about companies that make computer
hardware and software products. Two companies cannot have the same name. No
historical data is kept in this table. If a company is sold or stops making computer
hardware or software, then the manufacturer is dropped from the table. In the event a
manufacturer has an address change, the old address is overwritten with the new address.
A description of each column in the manufacturers table follows.

 MANUFACTURERS
MANUNUM Unique number identifying the manufacturer
MANUNAME Name of manufacturer
MANUCITY City where manufacturer is located
MANUSTAT State where manufacturer is located

1.5.5 PRODUCTS Table
The PRODUCTS table contains data about computer hardware and software products
offered for sale by the manufacturer. Each product is uniquely identified with a product
number. A description of each column in the products table follows.

 PRODUCTS
PRODNUM Unique number identifying the product
PRODNAME Name of product
MANUNUM Unique number identifying the manufacturer
PRODTYPE Type of product
PRODCOST Cost of product

Chapter 1 Designing Database Tables 13

1.5.6 PURCHASES Table
The PURCHASES table contains information about computer hardware and software
products purchased by customers. Each product is uniquely identified with a product
number. A description of each column in the purchases table follows.

 PURCHASES
CUSTNUM Unique number identifying the product
ITEM Name of product
UNITS Unique number identifying the manufacturer
UNITCOST Cost of product

1.6 Table Contents

An alphabetical list of tables, variables, and attributes for each table is displayed below.

Customers CONTENTS Output

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label
custcity Char 20 25 Customer's Home City

custname Char 25 0 Customer Name

custnum Num 3 45 Customer Number

14 PROC SQL: Beyond the Basics Using SAS

Inventory CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

invencst Num 6 10 DOLLAR10.2 Inventory Cost

invenqty Num 3 7 Inventory Quantity

manunum Num 3 16 Manufacturer
Number

orddate Num 4 0 MMDDYY10. MMDDYY10 Date Inventory Last
Ordered

prodnum Num 3 4 Product Number

Invoice CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label
custnum Num 3 6 Customer Number

invnum Num 3 0 Invoice Number

invprice Num 5 12 DOLLAR12.2 Invoice Unit Price

invqty Num 3 9 Invoice Quantity - Units Sold

manunum Num 3 3 Manufacturer Number

prodnum Num 3 17 Product Number

Chapter 1 Designing Database Tables 15

Manufacturers CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

manucity Char 20 25 Manufacturer City

manuname Char 25 0 Manufacturer Name

manunum Num 3 47 Manufacturer Number

manustat Char 2 45 Manufacturer State

 Products CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

manunum Num 3 40 Manufacturer
Number

prodcost Num 5 43 DOLLAR9.2 Product Cost

prodname Char 25 0 Product Name

prodnum Num 3 48 Product Number

prodtype Char 15 25 Product Type

16 PROC SQL: Beyond the Basics Using SAS

 Purchases CONTENTS Output

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format

custnum Num 4 0

item Char 10 8

unitcost Num 4 4 DOLLAR12.2

units Num 3 18

1.6.1 The Database Structure
The logical relationship between each table and the columns common to each appear
below.

Chapter 1 Designing Database Tables 17

1.6.2 Sample Database Tables
The six tables (named above) represent a relational database that will be illustrated in the
examples in this book. These tables are small enough to follow easily, but complex
enough to illustrate the power of SQL. The data contained in each table appears below.

CUSTOMERS Table

custnum custname custcity

101 La Mesa Computer Land La Mesa

201 Vista Tech Center Vista

301 Coronado Internet Zone Coronado

401 La Jolla Computing La Jolla

501 Alpine Technical Center Alpine

601 Oceanside Computer Land Oceanside

701 San Diego Byte Store San Diego

801 Jamul Hardware & Software Jamul

901 Del Mar Tech Center Del Mar

1001 Lakeside Software Center Lakeside

1101 Bonsall Network Store Bonsall

1201 Rancho Santa Fe Tech Rancho Santa Fe

1301 Spring Valley Byte Center Spring Valley

1401 Poway Central Poway

1501 Valley Center Tech Center Valley Center

1601 Fairbanks Tech USA Fairbanks Ranch

 (continued on next page)

18 PROC SQL: Beyond the Basics Using SAS

custnum custname custcity

1701 Blossom Valley Tech Blossom Valley

1801 Chula Vista Networks

N = 18

INVENTORY Table

prodnum invenqty orddate invencst manunum

1110 20 09/01/2000 $45,000.00 111

1700 10 08/15/2000 $28,000.00 170

5001 5 08/15/2000 $1,000.00 500

5002 3 08/15/2000 $900.00 500

5003 10 08/15/2000 $2,000.00 500

5004 20 09/01/2000 $1,400.00 500

5001 2 09/01/2000 $1,200.00 600

N = 7

Chapter 1 Designing Database Tables 19

INVOICE Table

invnum manunum custnum invqty invprice prodnum

1001 500 201 5 $1,495.00 5001

1002 600 1301 2 $1,598.00 6001

1003 210 101 7 $245.00 2101

1004 111 501 3 $9,600.00 1110

1005 500 801 2 $798.00 5002

1006 500 901 4 $396.00 6000

1007 500 401 7 $23,100.00 1200

N = 7

MANUFACTURERS Table

manunum manuname manucity manustat

111 Cupid Computer Houston TX

210 KPL Enterprises San Diego CA

600 World Internet Corp Miami FL

120 Storage Devices Inc San Mateo CA

500 Global Software San Diego CA

700 San Diego PC Planet San Diego CA

N = 6

20 PROC SQL: Beyond the Basics Using SAS

PRODUCTS Table

prodnum prodname manunum prodtype prodcost

1110 Dream Machine 111 Workstation $3,200.00

1200 Business Machine 120 Workstation $3,300.00

1700 Travel Laptop 170 Laptop $3,400.00

2101 Analog Cell Phone 210 Phone $35.00

2102 Digital Cell Phone 210 Phone $175.00

2200 Office Phone 220 Phone $130.00

5001 Spreadsheet Software 500 Software $299.00

5002 Database Software 500 Software $399.00

5003 Wordprocessor Software 500 Software $299.00

5004 Graphics Software 500 Software $299.00

N=10

PURCHASES Table

custnum item units unitcost

1 Chair 1 $179.00

1 Pens 12 $0.89

1 Paper 4 $6.95

1 Stapler 1 $8.95

7 Mouse Pad 1 $11.79

 (continued on next page)

Chapter 1 Designing Database Tables 21

custnum item units unitcost

7 Pens 24 $1.59

13 Markers . $0.99

N=7

1.7 Summary

1. Poor database design is often attributed to the relative ease by which tables can be
created and populated in a relational database. By adhering to certain rules, good
design can be structured into almost any database (see section 1.2.1).

2. SQL was designed to work with sets of data and accesses a data structure known as a

table (see section 1.2.2).

3. Achieving optimal design of a database means that the database contains little or no

redundant information in two or more of its tables. This means that good database
design calls for little or no replication of data (see section 1.2.3).

4. Poor database design can result in costly or inefficient processing, coding

complexities, complex logical relationships, long application development times, or
excessive storage requirements (see section 1.2.4).

5. Design decisions made in one phase may involve making one or more tradeoffs in

another phase (see section 1.2.4).

6. A database in third normal form (3NF) is where a column is “dependent on the key,

the whole key, and nothing but the key” (see section 1.2.4).

22 PROC SQL: Beyond the Basics Using SAS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

