
Procedural Extensions of SQL:
Understanding their usage in the wild

Surabhi Gupta
Microsoft Research India
t-sugu@microsoft.com

Karthik Ramachandra
Microsoft Azure Data (SQL), India

karam@microsoft.com

ABSTRACT
Procedural extensions of SQL have been in existence for many
decades now. However, little is known about their magnitude of
usage and their complexity in real-world workloads. Procedural
code executing in a RDBMS is known to have inefficiencies and
limitations; as a result there have been several efforts to address
this problem. However, the lack of understanding of their use in
real workloads makes it challenging to (a) motivate new work in
this area, (b) identify research challenges and opportunities, and
(c) demonstrate impact of novel work. We aim to address these
challenges with our work.

In this paper, we present the results of our in-depth analysis of
thousands of stored procedures, user-defined functions and triggers
taken from several real workloads. We introduce SQL-ProcBench, a
benchmark for procedural workloads in RDBMSs. SQL-ProcBench
has been created using the insights derived from our analysis, and
thus represents real workloads. Using SQL-ProcBench, we present
an experimental evaluation on several database engines to under-
stand and identify research challenges and opportunities. We em-
phasize the need towork on these interesting and relevant problems,
and encourage researchers to contribute to this area.

PVLDB Reference Format:
Surabhi Gupta and Karthik Ramachandra. Procedural Extensions of SQL:
Understanding their usage in the wild. PVLDB, 14(8): 1378 - 1391, 2021.
doi:10.14778/3457390.3457402

1 INTRODUCTION
Declarative SQL is the de-facto standard for querying relational
data, and it has proven its relevance time and again. Optimization
and efficient evaluation of SQL queries has been one of the impor-
tant focus areas of the DB community over the years. While this
has resulted in quite mature and sophisticated techniques, it still
remains an active area of research.

In addition to the declarative SQL interface, most RDBMSs pro-
vide extensions that allow users to write programs using procedural
extensions to SQL [7, 10, 20]. They usually appear in the form of
Stored Procedures (SPs), User Defined Functions (UDFs) and Trig-
gers. Many RDBMSs also allow procedures to be written in other
languages such as Java, C++, C# etc. These procedural extensions
augment declarative SQL with imperative constructs and enable
the procedural programming style when interacting with RDBMSs.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 8 ISSN 2150-8097.
doi:10.14778/3457390.3457402

Such extensions offer several benefits when used in conjunction
with declarative SQL, such as code reusability, modularity, readabil-
ity and maintainability.

1.1 Motivation
While procedural extensions of SQL have existed for many years,
they are known to be inefficient, especially when operating on
large datasets. The poor performance of procedural extensions in
many RDBMSs has been observed over the years by practitioners
and application developers. They have realized that the benefits of
such procedural extensions come with a rather huge performance
cost [6, 16]. Therefore, they have had to make a hard choice be-
tween performance on one side, and benefits such as modularity
and reusability on the other. In addition to the performance over-
heads, procedural extensions of SQL also lack many features that
are usually expected in programming languages. Over the years,
the language surface has remained largely stagnant and has not
evolved much. Versioning, debugging support, unit testing support,
diagnostics are some key tools that are mostly not offered, or not
as sophisticated as necessary. As a result, practitioners have to rely
upon third party tools or build their own.

Although the poor performance of procedural SQL extensions
is well-known, their optimization and efficient evaluation has not
received enough attention. One reason is perhaps that most of the
standard database benchmarks such as TPC-H [21], TPC-DS [18],
SSB [46] and JOB [43] do not include UDFs or stored procedures.
TPC-C and TPC-E [19] contain some stored procedures; but from
our study, we find that it is an under-representation of both the
number and complexity of procedures in real workloads. Real world
workloads are typically farmore complex, with amix of SQL queries,
views, stored procedures, UDFs, triggers etc. Another important
reason for the lack of attention in this area is that very little is
known about their usage patterns and the magnitude of their use
in real-world applications.

To substantiate this and to gain more insights into the proce-
dural complexity of real-world workloads, we conducted a detailed
analysis which we present in this paper. Procedural extensions to
SQL have several unique advantages that make them an attractive
choice for many application developers. Therefore, despite all their
inefficiencies and limitations, our study indicates that procedural
extensions are quite widely used. Furthermore, there are several sce-
narios where users prefer to write procedural code in conjunction
with declarative SQL.

Based on the increasing complexity of database applications
and the feedback received from practitioners, this area has now
started receiving more attention. Many of the efforts to address
this problem have explored the use of optimizing compilers and
code generators [4, 28, 40–42, 44, 45, 54, 55, 57]. Some other works

1378

https://doi.org/10.14778/3457390.3457402
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3457390.3457402

have explored techniques such as program analysis and program
synthesis to translate procedural code into equivalent declarative
SQL [29, 30, 36, 39, 48, 52]. These are discussed in Section 2.2.

A common hurdle that all these efforts face is the lack of un-
derstanding around the magnitude of use of procedural constructs
in real-world enterprise applications. This often makes it hard to
motivate and appreciate the potential impact of work in this area.
Another important challenge that researchers face is the lack of
clarity around the usage patterns and complexity of code written
by application developers ‘in the wild’. Furthermore, many of these
procedural extensions used in enterprises are proprietary in nature.
This makes it hard to identify specific research opportunities and
focus efforts where it really matters. Our present work is motivated
by these hurdles and is an attempt to address them.

1.2 Contributions
We believe that the above challenges hinder innovation in this
interesting and practically important area. To address this gap, we
make the following contributions in this paper.

(1) We conduct an in-depth analysis of more than 6500 proce-
dures across many real-world applications, and derive in-
sights about the kinds of procedures found in the wild. We
present the methods and results of this analysis in Section 3.

(2) We introduce SQL-ProcBench (Section 4), a benchmark for
procedural workloads in RDBMSs, which has been developed
using the insights derived from our analysis. We ensure
that SQL-ProcBench represents real-world workloads while
preserving the confidentiality and privacy of the proprietary
code used for our analysis. To the best of our knowledge, SQL-
ProcBench is the first benchmark that focuses specifically
on procedural workloads in RDBMSs.

(3) Using SQL-ProcBench, we present an experimental evalu-
ation on 4 database engines with different configurations
(Section 5).

(4) Based on our analysis and experiments, we identify key
research challenges and opportunities to encourage the com-
munity to contribute to this line of work (Section 6).

2 BACKGROUND
Procedural extensions to SQL have been in existence for almost 3
decades [12]. Oracle’s PL/SQL was first released in 1991 basing the
language on the Ada programming language. Procedural extensions
formally became an ISO standard named SQL/PSM (SQL/Persistent
Stored Modules) in 1996 as an extension to SQL92. Since then, it
has been part of the SQL:1999 standard, including SQL:2016 [12].

2.1 Procedural extensions and their evaluation
Broadly, procedural extensions are of 3 kinds: Stored Procedures
(SPs), User-Defined Functions (UDFs) and triggers.We now describe
each of these, and briefly explain how they have been evaluated
traditionally. Note that we only provide a conceptual explanation of
the traditional evaluation techniques. Each database engine might
vary in the details and optimizations that may be performed.

2.1.1 User-Defined Functions (UDFs). User-defined functions pro-
vide a mechanism for users to add a function that can be evaluated

as part of SQL statements. The SQL standard distinguishes between
scalar and table functions. A scalar function returns only a sin-
gle value (or NULL), whereas a table-valued function returns a
table comprising zero or more rows, each row with one or more
columns. Once created, a user-defined function may be used in
expressions in SQL statements. For example, it can be invoked from
within the various clauses of SQL statements such as the SELEC-
T/FROM/WHERE/GROUP BY/HAVING, etc. These functions can
also access data stored in tables in the database using embedded
SQL queries. Note that UDFs are not allowed to make changes to
the persistent state of the database.

The traditional evaluation technique used in most disk-based
RDBMSs for UDFs is explained in [48]. In summary, the query
optimizer does not look inside the procedural component during the
optimization of the query that invokes the UDF. During execution of
the query, the UDF is evaluated once per qualifying row. During this
evaluation, the body of the UDF is treated as a batch of statements,
and this batch is interpreted and executed statement-by-statement,
sequentially. Each statement might be compiled and optimized
during the first execution of the UDF in some systems, but it is still
iterative and sequential in most cases.

2.1.2 Stored Procedures. Stored procedures are similar to UDFs
with few key differences. One difference is that UDFs can be used
like any other expression within SQL statements, whereas stored
procedures must be invoked using the CALL or EXECUTE state-
ment. UDFs could be used in SELECT statements, but stored proce-
dures cannot. A stored procedure can return multiple values using
the OUT parameter, or return no value. Stored procedures can con-
tain transactions, and can therefore mutate the persistent state of
the database, unlike UDFs. The execution of stored procedures is
similar to UDF evaluation explained earlier.

Usually, we find that stored procedures are used to implement
application logic that includes updating the database state, whereas
UDFs are primarily used for data retrieval and computation-oriented
tasks. As we show in this paper, stored procedures are usually found
to be more complex than UDFs because they allow a broad set of
operations to be incorporated in them.

2.1.3 Triggers. A database trigger is a procedure that is automati-
cally executed in response to certain events on a particular table
or view in a database. Triggers are usually used to maintain the
integrity of the information on the database. Triggers can also be
used to log historical data or perform related operations. Triggers
can be associated at different granularities such as schema-level,
row-level, column-level, etc. These offerings vary between different
database engines; more details can be found here [2]. Traditionally,
triggers are treated very similar to stored procedures, and hence
are compiled and evaluated the same way as procedures.

2.1.4 Foreign language interfaces. In addition to procedural SQL
extensions, most RDBMSs allow procedures to be written in other
languages such as Java, C++, C# etc. These foreign language inter-
faces provide some advantages w.r.t. tooling and IDE support. But
they come with their own set of limitations and pitfalls. Debug-
ging support, diagnostics and troubleshooting are still a challenge.
Furthermore, these run in a sandboxed environment with restric-
tions on the kinds of operations allowed. They are mostly suitable

1379

for compute-only operations which purely operate on their input
parameters. Accessing persistent data requires opening new con-
nections to the DBMS, like a client application. This not only affects
performance, but also complicates transaction semantics and could
have potential security risks. This paper focuses on procedural
extensions to SQL as defined in the SQL/PSM ISO standard, as it
represents the full scope of possible operations in such procedures.

2.2 Efficient Evaluation of Procedural code
We now briefly describe known efforts to efficiently evaluate pro-
cedural extensions in RDBMSs. At the outset, we note that this is
not an exhaustive literature survey, but is meant only as a glimpse
into this area of research.

2.2.1 Compilation to assembly/machine code: These approaches
aim to take procedural SQL as input and efficiently compile them
into assembly or machine code directly. Many of these efforts have
explored compiling procedures into native machine code using a
compiler backend such as LLVM [17] while performing several
optimizations along the way [34, 40–42, 44, 45, 49, 50, 54–57]. This
kind of compilation breaks the volcano-style iterator model of
query execution and instead results in highly efficient code. It lever-
ages the large body of modern compiler optimization techniques,
architecture-specific instructions and optimizations such as vec-
torization and SIMD as part of this compilation process. These
techniques are more common in main-memory database engines.
Some real-world implementations include Hyper [45], SQL Server
Hekaton [28], Oracle [8], MemSQL [4], etc.

2.2.2 Translation of procedural SQL to declarative SQL:. An alter-
native that has emerged in the last few years is the technique of
transforming procedural code into set-oriented declarative SQL or
relational algebra. Using program-rewriting techniques to achieve
this goal was initally proposed in [36, 37]. A technique to decorre-
late UDF invocations was first given by Simhadri et. al. [52]. This
has then been followed and extended by many others [11, 29, 30,
35, 39, 48]. Other related works include [26, 33, 47]. All these ap-
proaches are based on the principle that database engines have
over the years built mature and sophisticated techniques to opti-
mize complex SQL queries. Therefore, if procedural code can be
expressed in a declarative form that database query optimizers
can consume, existing relational optimization techniques can be
leveraged to come up with an efficient query plan for procedures.

There have also been techniques proposed for optimizing proce-
dures written in non-SQL languages. Related to this, we note that
many developers also choose to implement application logic on
the client, interacting with the database using libraries/APIs such
as JDBC [22]. Similar limitations exist in this scenario, and there-
fore SQL translation techniques using program transformation and
program synthesis have been considered here as well [26, 31, 32].

2.2.3 Other approaches. Database engines have used several differ-
ent techniques to improve performance of procedures. For instance,
stored procedures can often be annotated with properties such as
such as deterministic, side-effect-free, or order-independent that en-
able certain optimizations like parallel execution. Some databases
employ techniques such as sub-program inlining [15], function
result caching [9] and interleaved execution [3]. Recent techniques

Table 1: Chosen procedural workloads

Workload Description Object Count
W1 Configuration Management System 3770
W2 Incidents & issue management software 845
W3 Document & data management tool 625
W4 Ecosystem inventory 575
W5 Retail platform 345
W6 CRM application 296
W7 Supply chain management tool 226
Total 6682

have also tried to build specialized indexes or statistics [38, 51] for
UDFs and procedures to improve performance in specific scenarios.

Stored Procedures (69%)

UDFs (24%)

Triggers (7%)1.77B

627M

173.5M

Figure 1: Object-type distribution in Azure SQL Database

3 PROCEDURAL SQL WORKLOAD ANALYSIS
Procedural extensions of SQL are quite widely used in the wild. Fig-
ure 1 gives a distribution of the number of stored procedures, UDFs
and triggers that are in use in the Microsoft Azure SQL Database
Service [5]. Note that these procedures result in multiple billions
of daily invocations; Figure 1 only shows the number of defined
procedures. This gives an indication of the magnitude of usage of
these procedural objects in real-world workloads.

We have conducted a deeper analysis on a set of real workloads
collected from various sources. In this section, we first describe the
workloads chosen for the analysis and then present the methods
and key insights we gained from this analysis. We also detail out the
distributions of various statistically interesting properties collected
on these workloads.

3.1 Choice of Workloads
We have considered 6682 objects from 7 diverse, proprietary real
workloads (under NDA), belonging to three different categories:
stored procedures, UDFs and triggers. A brief description about
the nature of these workloads and the number of objects collected
from each is shown in Table 1. These workloads include a mix
of operational, analytical and hybrid applications across different
industry verticals. Since we analyzed all the objects that we could
gain access to from these 7 randomly chosen workloads, we believe
that our selection process did not introduce biases.

1380

Figure 2: Object dependency subgraph from a real procedural SQL workload

These procedures vary greatly in their complexity and inter-
object dependencies. For instance Figure 2 shows a subgraph of
the object dependency graph from one of the workloads we have
considered. Each node in this graph represents an object – orange
represents a stored procedure and green represents a UDF. An edge
between two objects x and y means that x invokes y. Note that this
subgraph does not include triggers. We emphasize that Figure 2 is
shown to give an idea of the complex inter-object dependencies
that exist in the wild.

3.2 Feature Extraction
To gain more understanding of the procedural code present in real-
world workloads, we have performed a quantitative analysis of
several characteristic properties of these objects. We identified a set
of 38 features or properties that provide insights into the nature of
these procedures and help understand their usage. These 38 features
have been categorized into 10 buckets or categories. The categories
and the features are listed in Table 2.

These features were extracted using static analysis of the def-
initions of these objects i.e., the source code of these procedures,
UDFs and triggers. We parsed these object definitions, performed
type-derivation and built necessary data structures such as the
abstract syntax tree and control flow graph. We also captured inter-
object dependencies. Using these data structures, we computed
the frequency distributions and other complexity metrics of all the
features listed in Table 2.

3.3 Results
We now present some key insights and takeaways from this analysis
based on different feature categories.

3.3.1 Code Complexity. We analyze the objects on 4 metrics to
capture code complexity. First is the number of statements in the
body of a procedure. Second is the cyclomatic complexity which
is a standard metric to measure code complexity [1]. It is used to
quantify the number of linearly independent paths through the
object’s source code. The presence of control flow altering state-
ments increases the cyclomatic complexity. In addition to these two
metrics, we capture the maximum depth of nested if -blocks and
nested loop-blocks.

Figures 3(a) through (c) show the frequency distributions of the
number of statements inside stored procedures, UDFs and triggers
respectively. The y-axes in all these plots show the percentage of
objects having the statement count specified by the x-axis bins. For
Figure 3(a), the x-axis bin-width is 4, which means that the first
bar shows the number of procedures having statement count in the
range [1,4], second in the range [5, 8] and so on. For the other two
graphs, the bin width is 1. All these graphs are skewed towards the

left, implying that a large fraction of these objects have a rather
small statement count. We also observe that stored procedures are
more complex than UDFs and triggers. This is also corroborated
from the fact that unlike UDFs and triggers which have a higher
concentration around one statement, stored procedures have a
higher concentration around two statements (48% of the stored
procedures in the first bin have 2 statements as opposed to (16-18)%
for each of 1, 3 or 4 statements.)

Figure 4 shows the distribution of cyclomatic complexity in these
object types. We see a large percentage of these objects have a cy-
clomatic complexity value less than or equal to 5, with stored pro-
cedures being relatively more complex. Table 3 shows the average,
90th percentile and maximum values for these features.

3.3.2 Statement and Query complexity. A distinguishing charac-
teristic of procedural extensions of SQL w.r.t procedural code in
general, is the presence of SQL queries and DML/DDL statements
intermixed with procedural code. One way to quantify the intra-
statement complexity for each statement in the object is by mea-
suring the number of nodes in the syntax tree of every statement.
For SQL queries, we capture the number of operators in the query,
which acts as a decent indicator of the query complexity. SQL state-
ments usually turn out to be more complex in comparison with
procedural constructs according to this metric.

Figures 7(a) - (c) show the distribution of the average number
of nodes per statement in stored procedures, UDFs and triggers re-
spectively. The y-axes in all these plots show the number of objects
having the average number of nodes per statement as specified
by the x-axis bins. The bin-width for x-axes in all these plots is
5. The graphs show that in comparison to procedures and UDFs,
triggers tend to have a higher statement complexity. This is also
evident from the fact that roughly 56% stored procedures, 45% UDFs
and 78% triggers have an average number of nodes per statement
greater than 10 (see Table 3). This can be attributed to the fact
that triggers almost always contain SQL statements (SELECT/IN-
SERT/UPDATE/DELETE etc.). In comparison, we find that many
stored procedures and UDFs are computation-oriented – without
SQL statements in their definition. Note that since triggers are
invoked in response to some event and are usually used for main-
taining the integrity of information in the database, or log certain
events, they generally contain more insert, update, delete statements
than select statements. This can also be seen in the Number of Select
Statements feature in Table 3 which shows triggers having lesser
number of select statements than stored procedures and UDFs.

To quantify query complexity, we also analyzed the maximum
length of join chains across all statements in the objects. Consider
the following example to understand this metric: for the query
‘SELECT * FROM T1, T2, T3’, the length of join chain is 3. We find
the maximum value of the join chain length across all joins in the

1381

Table 2: Properties collected from real-world workloads

Feature Category Features Count
Code complexity Statement count, Cyclomatic complexity, Max. depth of nested if-block and nested loop-block 4

Statement & Query complexity Maximum length of join chain, Average number of tree nodes per statement 2
Unconditional Control Flow constructs Break, Continue, Goto, Return, Raise error 5
Conditional Control Flow constructs If, Else, Case, While loop, Cursor loop 5
Sequential Imperative constructs Set, Select with assignment, Print 3

Object dependencies Table references, Table variable references, UDF calls, Intrinsic function calls 4
DML statements Select, Insert, Update, Delete, Merge 5
DDL Statements Create table, Create table variable, Create view 3

Transaction-related statements Begin transaction, Commit, Abort, Execute 4
Parameter information Parameter count, Table-valued parameters, User-defined type parameters 3

Total number of features: 38

Table 3: Summary Statistics for key features

Feature Stored Procedures UDFs Triggers
Avg. 90th Percentile Max. Avg. 90th Percentile Max. Avg. 90th Percentile Max.

Number of Statements 13.09 30 343 5.12 11 74 4.47 10 62
Avg no. of Nodes Per Statement 19 40 394 18.94 34.76 946 23.58 48 318

Max. Length of Join Chain 2.1 4 25 2.19 4 40 2.15 3 9
Number of IF Statements 3.08 7 121 1.36 3 34 0.99 3 22

IF Nesting Depth 1.73 3 90 1.49 3 8 1.41 2 7
Number of Table References 6.47 14 343 2.70 7 162 6.79 14.6 64
Number of Set Statements 2.34 6 254 1.27 3 41 0.18 0 24

Number of Select Statements 2.23 5 65 0.65 2 16 0.36 1 5
Cyclomatic Complexity 4.85 11 146 2.87 6 182 2.11 4 26

Number of Intrinsic Function Calls 3.49 9 257 1.85 4 95 1.67 5 37

0

10

20

30

40

50

4 8 12 16 20 24 28 >=29

Pe
rc

en
ta

ge
 o

f
P

ro
ce

d
u

re
s

Number of Statements

(a) Stored Procedures

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 >=14

Pe
rc

en
ta

ge
 o

f
U

D
Fs

Number of Statements

(b) UDFs

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 >=14

Pe
rc

en
ta

ge
 o

f
Tr

ig
ge

rs

Number of Statements

(c) Triggers

Figure 3: Distribution of Number of Statements

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 >10

Pe
rc

en
ta

ge
 o

f
 O

b
je

ct
s

Cyclomatic Complexity

Stored Procedures

UDFs

Triggers

Figure 4: Distribution of Cyclomatic
Complexity

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 >12

Pe
rc

en
ta

ge
 o

f
 O

b
je

ct
s

Number of IF Statements

Stored Procedures

UDFs

Triggers

Figure 5: Distribution of IF statements

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 >9

Pe
rc

en
ta

ge
 o

f
 O

b
je

ct
s

Number of SET Statements

Stored Procedure

UDF

Trigger

Figure 6: Distribution of Set Statements

object code to get the maximum length of join chain for an object.
The average max length of join chains across all stored procedures,
UDFs and triggers which reference at least one table is 2.10, 2.19
and 2.15 respectively. The maximum value for this metric is as high

as 25 for stored procedures, 9 for triggers and 40 for UDFs as shown
in Table 3 along with other summary statistics.

3.3.3 Distribution of Control-Flow constructs. Figure 5 shows the
distribution of the number of IF statements in our workloads. We
observe that all these procedural objects make extensive use of

1382

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 >40

P
er

ce
n

ta
ge

 o
f

P
ro

ce
d

u
re

s

Average Number of Nodes per Statement

(a) Stored Procedures

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 >40

Pe
rc

en
ta

ge
 o

f
U

D
Fs

Average Number of Nodes per Statement

(b) UDFs

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 >40

P
er

ce
n

ta
ge

 o
f

Tr
ig

ge
rs

Average Number of Nodes per Statement

(c) Triggers

Figure 7: Distribution of average number of nodes per statement

0

10

20

30

40

50

3 6 9 12 15 18 21 24 >=24

Pe
rc

en
ta

ge
 o

f
P

ro
ce

d
u

re
s

Number of Table References

(a) Stored Procedures

0

10

20

30

40

50

60

70

80

3 6 9 12 15 18 21 24 >=24

Pe
rc

en
ta

ge
 o

f
U

D
Fs

Number of Table References

(b) UDFs

0

10

20

30

40

50

3 6 9 12 15 18 21 24 >=24

Pe
rc

en
ta

ge
 o

f
Tr

ig
ge

rs

Number of Table References

(c) Triggers

Figure 8: Distribution of Table References

conditional statements. This is evident from the fact that 55% of
stored procedures, 37% of UDFs and 44% of triggers in our analysis
pool have at least one if -block. In fact, we also observe a high
value for the average number of if statements per object – stored
procedures: 3.08, UDFs: 1.36, triggers: 0.99. See Table 3 for details.

A large number of objects having multiple if statements also
have them in a nested hierarchy – 21% stored procedures, 11% UDFs
and 13% triggers contain at least one nested if -block. Further, we
analyze the maximum nesting depth among all nested if-blocks
present in an object and found it to be quite high: 8 in UDFs, 7 in
triggers, and 90 in stored procedures! In addition to if statements,
many procedural objects also contain loop constructs. Our analysis
reveals that roughly 11% procedures, 7% UDFs and 8% triggers
contain at-least one loop (cursor/while).

3.3.4 Object References. Figures 8(a)-(c) show the distributions
of the number of table references in stored procedures, UDFs and
triggers. The x-axes in all these plots have bin width of 3. Note that
these distributions are not cumulative of references inside nested
invocations to UDFs and procedures. We observe that triggers on
an average access more database tables than procedures and UDFs
(see Table 3). This observation is in alignment with our earlier
observation in Section 3.3.2 that triggers almost always have SQL
statements in them.

3.3.5 Sequential imperative constructs. Figure 6 shows the fre-
quency distribution of the number of SET statements in the 3 object
types. We observe that 42% of stored procedures and 27% UDFs
have at-least one set statement. Triggers on the other hand con-
tain set statements comparatively less frequently – with roughly
8% triggers having at-least one set statement. This again can be

attributed to our earlier observation that triggers usually contain
more SQL statements as opposed to imperative statements.

3.3.6 Distribution of DML/DDL statements. Stored procedures and
triggers often contain DML/DDL statements. 33% of stored proce-
dures contain at-least one INSERT statement, 15% contain at-least
one DELETE statement and 22% contain at-least one UPDATE state-
ment. For triggers, we see that 40%, 41% and 28% triggers contain
at-least one INSERT, DELETE and UPDATE statements respectively.

3.3.7 Parameters. The stored procedures from our analysis pool
have on an average 2.63 parameters each and UDFs have 1.41 each.
Triggers do not accept parameters as they are invoked automatically
when an event that they are associated with occurs.

4 THE SQL-PROCBENCH BENCHMARK
We now present the SQL-ProcBench benchmark for procedural
workloads in RDBMSs. We begin by describing its design philoso-
phy, then describe the benchmark and provide some examples. The
full benchmark specification is available at [13].

4.1 Design philosophy
RDBMSs offer a wide range of design choices for users at different
levels of granularity, such as storage mechanisms and their corre-
sponding storage layouts. Stored procedures, UDFs and Triggers
end up operating on these various configurations at different scales
and complexities. They are found in all kinds of workloads as well
– transactional, analytical and hybrid.

Evaluation techniques for stored procedures and UDFs may re-
sult in very different characteristics w.r.t performance and resource
utilization, depending upon database design choices and nature of
the workload. Therefore, any benchmark that aims to model these

1383

procedural extension workloads needs to consider this broad land-
scape. Keeping this in mind, we have incorporated the following
choices in SQL-ProcBench.

4.1.1 Language. As described in Section 2.1, database systems sup-
port procedures and functions to be written in different program-
ming languages in addition to procedural extensions of SQL. For
procedures written in languages other than SQL, there are usually
certain restrictions on the kinds of operations allowed. This bench-
mark focuses on procedural extensions to SQL as defined in the
SQL/PSM ISO standard - as it represents the full scope of possible
operations in such procedures.

4.1.2 Storage layouts. Both row and columnar storage layouts are
extremely common in real-world scenarios, and users make this
choice based on the nature of the workload. Usually row-stores
are preferred for transactional/operational workloads and colum-
nar storage layouts are preferred for analytical workloads. HTAP
scenarios that are increasingly being adapted recently, include a
combination or a mix of row and columnar layouts. A single data-
base might have some tables in row format while others in columnar
format. We include both kinds in SQL-ProcBench.

4.1.3 Storage Mechanism. Disk-based and in-memory databases
are also very common in real-world scenarios. Again, there are
also designs that incorporate a mix of these mechanisms – where
some tables are disk-based and others are memory-resident. SQL-
ProcBench is designed with this aspect in consideration, and some
of our experiments show results in both these configurations.

4.1.4 Query types and complexity. Procedural extension of SQL
are usually interspersed with declarative SQL queries in two ways.
(a) Embedded queries: queries found inside the body of procedures,
UDFs and triggers, and (b) Calling queries: UDFs invoked as part
of an SQL query in the FROM clause (table functions) or in the
SELECT/WHERE clauses (scalar functions). Further, the queries
found inside procedures can be read-only (SELECT) queries or
DML (INSERT/UPDATE/DELETE/...) depending upon the type of
the object. We have incorporated all these query types in SQL-
ProcBench. Based on the results of our analysis, we also vary the
complexity of both embedded and calling queries.

4.1.5 Modeled on real business domain scenarios. The stored pro-
cedures, UDFs and triggers in SQL-ProcBench have been designed
such that they not only represent real world procedural work-
loads in terms of their statistical properties, but they also model
real-world business scenarios. This makes SQL-ProcBench more
realistic and helps the community understand the scenarios better.
This is in-line with standard database benchmark scenarios such as
TPC-H, TPC-DS etc.

4.2 Benchmark Description
The SQL-ProcBench benchmark has been carefully designed to
incorporate the various aspects described above, while faithfully
reflecting real-world procedural SQL workloads. To achieve the
latter, we have made use of the results of our analysis of many
real-world workloads as presented in Section 3. We now describe
the schema, procedures and queries, and then give a few examples.

4.2.1 Schema. The SQL-ProcBench schema is based on an aug-
mented TPC-DS [18] schema which models the sales and returns
process of a retail business through 3 different sales channels: store,
catalog and web. The original TPC-DS schema consists of 7 fact
tables and 17 dimension tables. Six fact tables store the sales and
returns data for each of three channels and one fact table stores
the inventory of items for the catalog and web channels. We chose
to build the SQL-ProcBench schema based on TPC-DS due to the
following reasons:
• TPC-DS schema is well known and is widely used in the commu-
nity; it enables easy data generation and convenient scaling.

• The schema models a real-world business scenario.
• The data distributions and skew properties reflect real-world
enterprise datasets.

• Table cardinalities scale realistically - with fact tables scaling
linearly and dimension tables scaling sub-linearly.
For SQL-ProcBench, we augment the TPC-DS schema with 7

new fact tables namely store_sales_history, catalog_sales_history,
web_sales_history, store_returns_history, catalog_returns_history,
web_returns_history and inventory_history to store historical sales
and returns data. The attributes of these history tables are identical
to their non-history counterparts from the original schema. The
DDL statements for these tables are also given in [13].

This augmentation enables the following scenario: all the data
pertaining to sales and returns of the current year is stored in the
non-history tables, and the corresponding history tables store all
past data. This design is inspired by system-versioned tables or
temporal tables introduced in the SQL:2011 standard [14]. In this
model, the non-history tables will undergo frequent updates and
inserts; and are thus stored as row-store tables in the database.
The history tables are rarely updated and are used to perform
analytical queries on the history data. These are therefore stored
using a columnar layout. The dimension tables are relatively much
smaller and are stored as row-store tables. Note that these storage
layouts are just provided for guidance and represent one possible
combination that we used for our experiments; users are free to
use any layout as desired.

As it can be observed, the SQL-ProcBench schema can model dif-
ferent kinds of workloads (transactional, analytical and hybrid), and
various database configurations. This helps us to cover the gamut of
usage scenarios encountered in real workloads. Depending upon the
aspect that needs to be measured, parts of the benchmark can there-
fore be used as necessary. For instance, to focus on transactional
workloads, a slice of SQL-ProcBench that only targets rowstore
tables (non-history tables and dimension tables) can be used.

4.2.2 Indexes. All the non-history fact tables and the dimension
tables are stored in row-store format and have clustered indexes on
their primary-key attributes. This is because they store the most
recent 1 year data and are updated frequently. The history fact
tables on the other hand are stored in columnar format with the
corresponding index structures. This is done to enable efficient
analytical operations on history tables.

In addition to these, we have also created non-clustered B-tree in-
dexes on the sold_date_sk attributes of the 3 sales tables: store_sales,
catalog_sales, web_sales; and the inv_date_sk attribute of the in-
ventory table. Note that indexes and their implementations may

1384

vary across databases, so we only recommend the above indexes to
be present. The index creation statements are also included in [13].

proc_29

proc_24

sudf_11

proc_33proc_36proc_46proc_52proc_57proc_59proc_60proc_61

sudf_4

Figure 9: An object dependency graph from SQL-ProcBench

4.2.3 Objects and queries. SQL-ProcBench consists of 103 objects
belonging to 3 categories: Stored Procedures, User Defined Func-
tions (UDFs) and Triggers. The UDFs are further sub-categorized
into Scalar UDFs and Table Valued UDFs. The calling queries and
statements that are used to invoke these objects, along with the
object definitions can be found in [13]. The break-up for each of
these object types is: 63 stored procedures, 24 scalar UDFs, 10 table
valued UDFs and 6 triggers.

This object-type distribution in SQL-ProcBench is based on the
object-type distribution seen in Azure SQL Database shown in
Figure 1. To reflect real world usage scenarios, the distribution of
various other properties described in section Section 3.3 in SQL-
ProcBench also mirror those seen in the real workloads. Moreover,
like real-workloads, SQL-ProcBench also has complex inter-object
dependencies; one such dependency graph is shown in Figure 9.

The schema definitions, object definitions and queries are all
available at [13] in three SQL dialects: PL/SQL [10], PL/pgSQL [7]
and T-SQL [20]. The naming convention we use is as follows.
Stored procedures are named as proc_<i>_<name>, scalar UDFs
are named as sudf_<i>_<name>, table valued functions named as
tvf_<i>_<name> and triggers are named as trig_<i>_<name>; where
<i> is a number identifying the object and <name> is the name of
the object as created inside the database.

Listing 1: Definition of procedure AssessItemQuality
create procedure AssessItemQuality as

begin

declare @maxRetItems table(itemNo int , manId int);

insert into @maxRetItems

select * from dbo.MaxReturnItems ();

delete from item where i_item_sk in

(select itemNo from @maxRetItems);

update item set i_item_desc = 'HIGH␣RISK␣ITEM'

where i_manufact_id in

(select manId from @maxRetItems);

end

4.3 Examples
To illustrate some objects present in SQL-ProcBench, consider a
scenario that aims to assess the quality of items sold through the
retail business. This scenario is modeled through a stored procedure
AssessItemQuality whose definition is shown in Listing 1 in the T-
SQL dialect. The PL/SQL and PL/pgSQL variants of this scenario can
be found in [13]. This procedure first finds all items that are returned
the maximum number of times by calling a user-defined function
MaxReturnItems(), and inserts the result in a variable@maxRetItems.

Listing 2: Definition of UDF MaxReturnItems
create function MaxReturnItems ()

returns @maxRetItems table (itemNo int , manufactId int) as

begin

declare @itemNo int , @manufact int;

declare @recDate date;

declare @itemTbl table(itmNo int ,cnt int);

insert into @itemTbl

select top 1000 cr_item_sk ,count(cnt) tCnt

from

(select cr_item_sk , count (*) cnt

from catalog_returns group by cr_item_sk

union all

select wr_item_sk , count (*) cnt

from web_returns group by wr_item_sk

union all

select sr_item_sk , count (*) cnt

from store_returns group by sr_item_sk)t

group by cr_item_sk order by tCnt desc

declare c1 cursor for select itemNo from @itemTbl;

open c1; fetch next from c1 into @itemNo;

while(@@FETCH_STATUS =0) begin

set @recDate = (select i_rec_start_date

from item where i_item_sk=@itemNo);

set @manufact = (select i_manufact_id

from item where i_item_sk=@itemNo);

if(DATEDIFF(day ,@recDate ,'2000 -01 -01')>0)

insert into @maxRetItems

values(@itemNo , @manufact);

fetch next from c1 into @itemNo;

end

close c1; deallocate c1;

return;

end

Listing 3: Definition of a Trigger on the Item table
CREATE TRIGGER delUp_item ON item AFTER DELETE , UPDATE AS

begin

if(update(i_item_sk)) begin

raiserror('Operation␣not␣allowed ', 16, 10);

rollback transaction;

end

if exists (select * from inserted) begin

insert into logTable values

('logging␣updation␣to␣item␣table ', GETDATE ());

end

else begin

delete from catalog_sales

where cs_item_sk in (select i_item_sk from deleted);

delete from catalog_returns

where cr_item_sk in (select i_item_sk from deleted);

delete from store_sales

where ss_item_sk in (select i_item_sk from deleted);

delete from store_returns

where sr_item_sk in (select i_item_sk from deleted);

delete from web_sales

where ws_item_sk in (select i_item_sk from deleted);

delete from web_returns

where wr_item_sk in (select i_item_sk from deleted);

delete from promotion

where p_item_sk in (select i_item_sk from deleted);

delete from inventory

where inv_item_sk in (select i_item_sk from deleted);

end

end

1385

Table 4: Database engines and configurations used

Name Fact & Dimension tables History tables
Layout Mechanism Layout Mechanism

D1 Row Disk Columnar Disk
D2 Row Disk Row Disk
D3 Row Disk Columnar In-Memory
D4 Row In-Memory Row In-Memory

Then, it deletes these items and marks all other items from the
manufacturers of these highly returned items as ‘high risk’.

Listing 2 shows the code for the user defined function MaxRe-
turnItems(). This function first finds out the 1000 most returned
items across all the sales channels and inserts them into a table
variable @itemTbl. Next, it loops over this @itemTbl to find items
which are outdated (received prior to 2000); these items and their
manufacturers are then inserted into the table@maxRetItemswhich
is finally returned to the calling procedure.

These updates and deletes in the item table also invoke a trigger
which logs the updates into a logging table and performs necessary
deletions from several other database tables to maintain referential
integrity. The definition of this trigger delUp_item is shown in
Listing 3. These examples give a glimpse of the kind of procedural
code that is present in the SQL-ProcBench benchmark.

5 EXPERIMENTS
Using SQL-ProcBench, we have conducted experiments on multiple
database engines with different configurations. In this section, we
present some of the results and our observations. The broad goals of
these experiments are (a) to understand the characteristics regard-
ing evaluation of procedural SQL across different database engines
and configurations, and (b) to uncover some of the insights we
get from running SQL-ProcBench, thereby identify and highlight
opportunities for future research in this area.

5.1 Setup
We have conducted experiments on four database engines and
configurations. The characteristics of these four engines D1-D4 are
given in Table 4. The names of these systems have been withheld
for anonymity. All these databases have been set up on machines
with identical hardware and software configurations. The machines
were equipped with Intel(R) 2.10 GHz dual processors with 8 hyper
threaded cores each, resulting in 32 logical cores. They had 256 GB
of RAM, and a 1TB SSD. All of them used Windows Server 2019 as
the operating system.

We have used the default database settings for all our experi-
ments, and have not attempted to manually tune any engine based
on our workloads. We set up the SQL-ProcBench schema as de-
scribed in Section 4.2 with 3 different scale factors: 1GB, 10GB and
100GB. All our experiments have been conducted on these 3 scale
factors. Since different database engines expose different levels of
diagnostics and monitoring information about time and resources
spent in executing procedural components, we show results based
on the availability of this information.

We present results in this paper that cover stored procedures,
UDFs and triggers of varying complexities. Table 5 gives some key
properties about the chosen UDFs and their complexity. We show

the number of statements, describe the logic of the UDF briefly,
and also describe the complexity of the query that invokes this
UDF. Table 6 summarizes key properties about the chosen stored
procedures, showing the number of statements, object dependen-
cies, and some information about the operations in the procedure.
Similarly, Table 7 shows properties about triggers. We show the
DML statement that is used to invoke the trigger with the number
of rows affected by the DML statement in brackets, the affected
table, some notes on the complexity of the logic inside the trigger
and the number of statements in the trigger code. As it can be
observed from these three tables, we have picked a mix of simple
and complex procedures with different characteristics.

5.2 Where is time spent?
Using SQL-ProcBench, We conduct a series of experiments to an-
swer the following question:What fraction of time/resources is spent
executing the procedural SQL component in a given query/work-
load that involves a procedural component? This is important to
understand and emphasize the importance of efficient evaluation
of procedural components.

5.2.1 User Defined Functions. UDFs are usually invoked from an
SQL query. The overall performance/resource utilization of such
queries will depend both on the complexity of the invoking query
as well as the complexity of the UDF, in addition to data sizes.
Note that the query that invokes the UDF might itself be simple or
arbitrarily complex in many scenarios, involving large tables, joins,
aggregates etc. and the UDF can also vary in complexity.

Therefore, we conduct the following experiment to understand
how the relative complexities of the UDF and its calling query
might impact the time spent in the UDF. First, we consider a simple,
single-statement UDF sudf_20a_GetManufactSimple that just looks
up a small table and returns a value. Please refer to Table 5 for
details about this UDF. We consider two scenarios for executing
this UDF. First, where the invoking query is very simple, and second,
where the invoking query is very complex. The calling queries can
be found in the benchmark specification [13]. We run these two
queries that invoke the same UDF with varying data sizes.

Figure 10(a) shows the results of this experiment on D1. The
x-axis indicates the data size. We vary the data size and hence the
number of UDF invocations by using the LIMIT clause of SQL (or
equivalent). The y-axis shows the percentage of the total execution
time of this query that was spent in evaluating the UDF. The orange
(circle marker) and blue (triangle marker) lines show the results for
the simple and complex calling queries respectively.

We observe that if the query that invokes this UDF is simple,
almost 100% of the time is spent in executing the UDF, irrespective
of the data size. On the other hand, if the calling query is complex,
we see that at smaller data sizes, the UDF is not the bottleneck –
more time is spent in executing the calling query. However, the
larger the data gets, the more the time spent executing the UDF.
For the simple UDF that we chose, more than 70% of the time was
spent in the UDF when executing over 100k rows.

The key takeaway from this graph is that even though the pro-
cedural component (the UDF in this case) is very simple, it can in
fact be the main bottleneck when operating on large datasets. This

1386

Table 5: UDFs used in our experiments

Name Num. Statements Remarks on Calling Query Remarks on UDF Code
sudf_1_TotalLargePurchases 1 Complex - with table joins, Group by, Order by Return output of select statement

sudf_5_MorEveRatio 4 Contains subquery with distinct filtering Mutliple assigns with aggregate queries
sudf_6_TotalDiscount 3 Table Scan with Distinct Filtering Multiple assigns with aggregate queries

sudf_7_ProfitableManager 4 UDF called from the where clause Aggregate query with conditionals
sudf_12_IncWebSpending 10 Performs set intersect.; UDF call in where clause Multiple assigns with conditionals

sudf_13_MaxPurchaseChannel 12 Table Scan Contains nested if-else blocks
sudf_15_IncomeBandOfMaxBuy 13 UDF called from where clause; Presence of Order by Multiple conditional statements
sudf_20a_GetManufactSimple 1 Expt. with both simple and complex calling queries Table lookup
sudf_20b_GetManufactComplex 8 Expt. with both simple and complex calling queries Access multiple large fact tables

tvf_4a_BestPromoWeb 2 Called from procedure proc_23 Insert into table variable
tvf_4b_BestPromoCatalog 2 Called from procedure proc_21 Insert into table variable
tvf_4c_BestPromostore 2 Called from procedure proc_22 Insert into table variable
tvf_8_MaxReturnItems 15 Called from procedure proc_63 Contains cursor loop

Table 6: Stored Procedures used in our experiments

Name Num. Statements Dependencies Remarks
proc_21_ActivatePromoCat 8 tvf_4b, trig_3 Updates promotion table in a loop
proc_22_ActivatePromoStore 8 tvf_4c, trig_3 Updates promotion table in a loop
proc_23_ActivatePromoWeb 8 tvf_4a, trig_3 Updates promotion table in a loop
proc_24_CreateRandomString 6 sudf_11 Generates random string from specified character set

proc_25_DelCatalogPage 5 trig_5 Deletes and updates in conditional blocks
proc_43_DeleteCustomer 9 trig_6 Delete using cursor loop

proc_52_CatalogOrderCancellation 16 proc_24 Multiple assignments, conditionals and error generating statements.
proc_63_AssessItemQuality 4 tvf_8, trig_4 presence of multiple DML statements

0

20

40

60

80

100

0 30000 60000 90000 120000Ti
m

e
sp

en
t

in
 U

D
F

(%
)

No. of UDF invocations (thousands)

Complex query Simple query

(a) Simple UDF (D1)

50

60

70

80

90

100

0 5000 10000Ti
m

e
sp

en
t

in
 U

D
F

(%
)

Number of UDF invocations

Complex query (elapsed) Simple query(elapsed)
Complex query(cpu) Simple query(cpu)

(b) Complex UDF (D1)

0

20

40

60

80

100

0 30 60 90 120Ti
m

e
Sp

en
t

in
 U

D
F

(%
)

No. of UDF Invocations (thousands)
Complex Query Simple Query

(c) Simple UDF (D4)

0

20

40

60

80

100

0 10 20Ti
m

e
Sp

en
t

in
 U

D
F

(%
)

No. of UDF Invocations (thousands)

Complex Query Simple Query

(d) Complex UDF (D4)
Figure 10: Percentage of time spent executing a UDF when called from a query

is because the overhead introduced due to iterative execution of
UDFs eventually outweighs the complexity of the calling query.

Now we consider a more complex UDF: sudf_20b_GetManufact-
Complex and repeat the experiment by invoking it from a simple
and complex query. The results of this experiment are shown in
Figure 10 (b). The x-axis indicates data size and y-axis shows the
percentage of the total time spent in evaluating the UDF. The or-
ange (circle marker) and blue (triangle marker) lines show the
percentage of elapsed time in the UDF for the simple and com-
plex calling queries respectively. The yellow (diamond marker) and
green (square marker) lines show the percentage of CPU time spent
in the UDF for the simple and complex calling queries respectively.

For the simple calling query, we see that the percentage of time
spent in the UDF is quite high right from low cardinalities and
remains high. For the complex calling query, the percentage of time
spent in the UDF starts off low, but quickly reaches a high value
and remains high. This shows that having complex UDFs invariably
means that the bottleneck will most likely be the UDF, irrespective
of the complexity of the calling query or the size of the data. We
have observed similar trends in other databases as well; Figure 10(c)

and Figure 10(d) show the results for D4. While there have been
recent efforts towards optimizing UDFs [30, 35, 48], there is still a
huge optimization opportunity as described in Section 6.

5.2.2 Triggers. As mentioned earlier, triggers are often used in
operational or transactional workloads to maintain integrity of the
data, log information, enforce business rules, etc. To measure the
overhead introduced by triggers on transactional workloads, we
execute DML statements (INSERT/UPDATE/DELETE) on tables
that have triggers associated with them. Then, we measure the time
taken to execute these statements with and without the triggers
enabled. Note that these statements were run individually (no con-
current execution). There are a total of 6 triggers in SQL-ProcBench
and we show results for all of them. Table 7 explains the DML used
in these experiments, and also gives some information about the
complexity of the logic in the trigger.

The results of this experiment for D2 and D3 are shown in Fig-
ure 11 and Figure 12 respectively. The y-axis shows the percentage
of time spent in the trigger code while executing the DML statement.
From the figure it is clear that triggers often consume a significant
chunk of the overall query execution. For 3 statements, triggers

1387

Table 7: Triggers used in our experiments

Name DML (rows affected) Table Remarks on Trigger Complexity Lines of Code
Trig1 INSERT (1) date_dim Conditional checks to validate the legality of the insertion 20
Trig2 UPDATE (15) customer_address Check validity; insert in log table based on multiple conditional checks 17
Trig3 UPDATE (200) promotion Logging the update in a log table 1
Trig4 DELETE (47, in loop) item Deletions in other tables to maintain referential integrity 14
Trig5 DELETE (34) catalog_page Conditional validity checks; multiple updates using cursor loop 13
Trig6 DELETE (1) customer Multiple deletes in cursor loop 14

0

20

40

60

80

100

Trig1 Trig2 Trig3 Trig4 Trig5 Trig6

Ti
m

e
sp

en
t

in
 t

ri
gg

er
 (

%
)

Figure 11: Trigger Overhead (D2)

0

20

40

60

80

100

Trig1 Trig2 Trig3 Trig4 Trig5 Trig6

Ti
m

e
sp

en
t

in
 t

ri
gg

er
 (

%
)

Figure 12: Trigger Overhead (D3)

0%

20%

40%

60%

80%

100%

P_52 P_43 P_21 P_22 P_23 P_25 P_63

Ti
m

e
sp

en
t

Procedure Functions Triggers

Figure 13: Break-up of stored proce-
dure execution time (D1)

took around 20-25%, whereas for the other 3, we found that most
of the time was spent in the triggers (>95%). This depends on the
complexity of the procedural code within the trigger and the num-
ber of rows affected by the DML operation (which determines the
number of times the trigger gets invoked). For instance, we see that
triggers Trig4, Trig5 and Trig6 all contain looping constructs. But
we also observe that although Trig3 affects 200 rows, it is still a
fairly simple operation of logging the update into a log table, so it is
relatively cheap. as shown in Figure 12, D3 shows similar behavior
as D2 w.r.t trigger overheads. It should also be noted that none
of the SQL translation based optimization techniques described
in Section 2.2 can handle triggers currently.

5.2.3 Stored Procedures. Stored procedures are the most general
form of procedural code, which can perform all kinds of permissible
database operations such as data retrieval, transactions etc. In order
to understand how time is spent in stored procedures, we collected
information about the percentage of time spent in the various mod-
ules (UDFs/triggers and other procedures) as part of execution of
a stored procedure. Figure 13 shows the results for 6 procedures
from SQL-ProcBench. Except for Proc_52, we see that for other
procedures, significant amount of time is spent in triggers, and
some time in nested UDFs. This implies that any efforts to optimize
triggers and UDFs will have a cascading effect on improving the
performance of the calling procedures and functions. While tech-
niques mentioned in Section 2.2 can help, but they provide limited
coverage or performance gains. For instance, the SQL translation
techniques cannot handle DML and exception handling constructs,
which are fairly common in stored procedures.

5.3 Impact on Transaction Throughput
We conducted an experiment to study the impact of procedures on
transaction throughput. We considered 3 relatively simple stored
procedures that perform transactions with inserts and updates, and
ran a mix of these transactions concurrently. These concurrent
threads were run from a separate machine and connected to the

Table 8: Scalability experiment for D1

Name Data growth Execution time growth factor
Factor 1G-10G 10G-100G

sudf_5 3,8 1.22 (sub-linear) 3.32 (sub-linear)
sudf_6 10 22.6 (super-linear) 10.99 (super-linear)
sudf_7 10 6.06 (sub-linear) 23.67 (super-linear)
sudf_12 9 63.8 (super-linear) 9.42 (linear)
sudf_13 10 123.8 (super-linear) 16.07 (super-linear)
sudf_15 10 12.59 (super-linear) 14.76 (super-linear)

database server through high speed LAN. Figure 14 shows the
result of this experiment for D1 with both Serializable and Read
committed isolation levels. We increase the number of concurrent
threads, shown on the x-axis, and measure the throughput in terms
of transactions per minute, shown on the y-axis in log scale. The
red(minus) and green(cross) lines show the results with triggers
disabled, and the yellow(square) and violet(diamond) lines show
results with triggers enabled.

For both the isolation levels, we see an order of magnitude
degradation in throughput when triggers are enabled, for all the
concurrency levels. These triggers are quite simple, but run into
contention-related delays as they update the same database log
table. This degradation increases with more concurrency, and is
observed for both isolation levels. We observed similar trends in
other database engines as well, although the exact numbers vary.
This shows that optimizing stored procedures and triggers in trans-
actional workloads can directly improve transactional throughput.

5.4 Impact of Scale
To understand the impact of data scale, we ran SQL-ProcBench over
3 different scale factors: 1GB, 10GB and 100GB. The results of this
experiment for D1 is given in Figure 15 and Table 8. We show the
results for 6 UDFs. Figure 15 shows scale factor on the x-axis and
execution time (log scale) on the y-axis. Each line represents a UDF.

Table 8 gives more details about how performance of these UDFs
degrade at larger scales. It shows the variation in execution times

1388

10

100

1000

10000

3 6 9 12 15 18 30 45 60

Tr
an

sa
ct

io
n

s/
m

in
 (

Lo
g

sc
al

e
)

No. of concurrent threads

No Triggers, Read commited With Triggers, Read commited

No Triggers, Serializable With Triggers, Serializable

Figure 14: Transaction throughput (D1)

0.1

1

10

100

1000

10000

100000

1G 10G 100G

Ex
ec

u
to

n
 T

im
e

(s
),

 lo
g

sc
al

e

sudf_15

sudf_13

sudf_12

sudf_7

sudf_6

sudf_5

Figure 15: Scalability in D1

0.1

1

10

100

1000

10000

100000

1G 10G 100G

Ex
ec

u
to

n
 T

im
e

(s
),

 lo
g

sc
al

e

sudf_1

sudf_3a

sudf_5

sudf_7

sudf_8

sudf_15

Figure 16: Scalability in D3

Table 9: Scalability experiment for D3

Name Data growth Execution time growth factor
Factor 1G-10G 10G-100G

sudf_1 9 20.67 (super-linear) >11 (super-linear)
sudf_3b 10 9.18 (sub-linear) 38.38 (super-linear)
sudf_5 3, 8 16.95 (super-linear) 127 (super-linear)
sudf_7 10 270 (super-linear) >13.6 (super-linear)
sudf_8 8 1.49 (sub-linear) 15.94 (super-linear)
sudf_15 10 121.85 (super-linear) >13.4 (super-linear)

with data growth. The data growth factor column indicates the
total increment factor across all the tables accessed by a UDF as
we scale from 1GB to 10GB and then to 100GB. Note that since
roughly 90% of the data scales linearly (fact tables) and the rest
scales sub-linearly (dimension tables), the total data accessed by the
UDF increments by slightly less than 10x in most cases. For sudf_5,
the values 3,8 denote that the total data accessed increased by 3
times from 1-10G and by 8 times from 10-100G. The growth-factor
numbers shown in the table are rounded off to the nearest integers.

We see a super linear execution time growth in a majority of
cases. Some extreme cases show particularly high increments such
as 123.8 times (for UDF 13). This shows that performance prob-
lems of procedural extensions are disproportionately exacerbated
at larger data sizes. We observed similar trends on D3, shown in
Figure 16 and Table 9. In most cases, we see a super linear increase
in execution time as the data grows.

6 OPPORTUNITIES
We now discuss some interesting challenges and opportunities for
research in this area.
Language support. We see two broad future directions in the area
of language surface. First, procedural SQL extensions need to evolve
to include more complex data structures and data types such as
collections, trees etc. that are common in programming languages.
Second, the current optimization techniques for procedural exten-
sions are limited in their support – for instance, none of the existing
techniques optimize DML statements or exception handling con-
structs. Further, optimization of procedures written in non-SQL
languages is also a promising direction, as explored in [26, 32].
Handling large procedures and large data. Both compilation
and translation-based techniques have limits w.r.t the size of pro-
cedures that they can optimize. Compilation often results in huge
binaries and long compile times when procedures are large. SQL-
translation techniques end up in huge, extremely complex SQL

queries for large UDFs. This can push the query optimizer to its lim-
its and result in bad plans or optimizer timeouts. We have observed
this phenomenon in D1, D2 and D4.

A related interesting direction here is to extend cardinality esti-
mation techniques to handle procedural SQL extensions, building
upon the work of [23]. Based on experiments in Section 5.4, we have
also seen how the performance of procedural programs degrade
super-linearly in most cases as the scale of data increases. As the
size of data increases in database applications, these problems start
to surface and become more prominent. Any new techniques in
this space must take this into consideration.
Combining compilation and translation. As mentioned in Sec-
tion 2.2, there are two broad directions that have evolved w.r.t
optimizing procedural extensions of SQL viz. compilation and trans-
lation. These two have evolved independently so far, but there is a
promising space where these two could potentially be combined.
Automatic Parallelization/Vectorization. Through our experi-
ments, we observed that in general, most DB engines do not use
parallelism to execute procedural SQL. While it is not straight-
forward to parallelize arbitrary procedures, it is definitely not a
conceptual limitation. Therefore, automatically parallelizing and
vectorizing complex SQL procedures is an interesting direction.
Testing and proving correctness. Testing and verifying correct-
ness of techniques that optimize procedural SQL is challenging.
Switching between declarative/relational and procedural semantics
can often be tricky in terms of guaranteeing semantics. Testing and
proving correctness of such techniques is very important. Tech-
niques such as RAGS [53], XData [24], Cosette [27], MutaSQL [25]
are attempts to achieve this for SQL queries but this needs to be
extended to cover procedural SQL.

7 CONCLUSION
Procedural extensions of SQL are widely used in real-world appli-
cations. Users prefer the flexibility to express their intent using
a mix of declarative and imperative code. In this work, we have
performed a detailed analysis of thousands of real world proce-
dural workloads and found that users write moderate-to-complex
logic in these procedures. Based on our analysis, we have created
SQL-ProcBench, an easy-to-use benchmark that represents real
procedural workloads. Our experiments using this benchmark on
multiple database engines highlight the opportunities that lie un-
tapped in this area. Through our work, we hope to bring these
challenges to the attention of the research community and encour-
age more contributions. We believe that our work enables novel
contributions in this interesting and relevant area of research.

1389

REFERENCES
[1] [n.d.]. Cyclomatic complexity. https://en.wikipedia.org/wiki/Cyclomatic_

complexity.
[2] [n.d.]. Database Triggers. https://en.wikipedia.org/wiki/Database_trigger.
[3] [n.d.]. Interleaved execution for MSTVFs in Microsoft SQL Server. https:

//docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-
query-processing?view=sql-server-ver15#interleaved-execution-for-mstvfs.

[4] [n.d.]. MemSQL SQL compiler. https://www.singlestore.com/blog/full-fledged-
sql-compiler-faster-query-processing/.

[5] [n.d.]. Microsoft Azure SQL Database. https://azure.microsoft.com/en-us/
services/sql-database/.

[6] [n.d.]. Performance overhead of SQL user-defined functions. http://glennpaulley.
ca/conestoga/2015/07/performance-overhead-of-sql-user-defined-functions/.

[7] [n.d.]. PL/pgSQL: SQL Procedural Language for PostgreSQL. http://www.
postgresql.org/docs/8.2/static/plpgsql.html.

[8] [n.d.]. PL/SQL compilation in Oracle. http://www.dba-oracle.com/t_compiled_
pl_sql.htm.

[9] [n.d.]. PL/SQL Function Result Cache. http://www.oracle.com/technetwork/issue-
archive/2010/10-sep/o57plsql-088600.html.

[10] [n.d.]. PL/SQL: Oracle’s Procedural Extension to SQL. http://www.oracle.com/
technology/tech/pl_sql.

[11] [n.d.]. Scalar UDF Inlining. https://docs.microsoft.com/en-us/sql/relational-
databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15.

[12] [n.d.]. SQL Persisted Stored Modules. https://en.wikipedia.org/wiki/SQL/PSM.
[13] [n.d.]. SQL-ProcBench Benchmark Specification: Schema, Queries and Objects.

https://aka.ms/sqlprocbench.
[14] [n.d.]. SQL:2011 or ISO/IEC 9075:2011. https://en.wikipedia.org/wiki/SQL:2011.
[15] [n.d.]. Subprogram Inlining in Oracle. https://docs.oracle.com/cd/B28359_01/

appdev.111/-b28370/inline_pragma.htm.
[16] [n.d.]. T-SQL User-Defined Functions: the good, the bad, and the

ugly. http://sqlblog.com/blogs/hugo_kornelis/archive/2012/05/20/t-sql-user-
defined-functions-the-good-the-bad-and-the-ugly-part-1.aspx.

[17] [n.d.]. The LLVM Compiler Infrastructure. http://llvm.org/.
[18] [n.d.]. The TPC-DS Benchmark Specification. http://www.tpc.org.
[19] [n.d.]. TPC-C and TPC-E. TPC-C and TPC-E Benchmark Specification. http:

//www.tpc.org.
[20] [n.d.]. Transact SQL. https://docs.microsoft.com/en-us/sql/t-sql/language-

elements/language-elements-transact-sql.
[21] 2005. The TPC-H Benchmark Specification. http://www.tpc.org.
[22] 2020. The Java Database Connectivity API. https://docs.oracle.com/javase/8/

docs/technotes/guides/jdbc/.
[23] Nicolas Bruno, Sameer Agarwal, Srikanth Kandula, Bing Shi, Ming-Chuan Wu,

and Jingren Zhou. 2012. Recurring Job Optimization in Scope. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data (Scottsdale,
Arizona, USA) (SIGMOD ’12). Association for Computing Machinery, New York,
NY, USA, 805–806. https://doi.org/10.1145/2213836.2213959

[24] Bikash Chandra, Amol Bhangadia, Bhupesh Chawda, Biplab Kar, K. Reddy, Shetal
Shah, and S. Sudarshan. 2014. Data Generation for Testing and Grading SQL
Queries. The VLDB Journal 24 (11 2014).

[25] Xinyue Chen, Chenglong Wang, and Alvin Cheung. 2020. Testing Query Execu-
tion Engines with Mutations. In Proceedings of the Workshop on Testing Database
Systems (Portland, Oregon) (DBTest ’20). Association for Computing Machinery,
New York, NY, USA, Article 6, 5 pages. https://doi.org/10.1145/3395032.3395322

[26] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing
database-backed applications with query synthesis (PLDI). 3–14. https://doi.org/
10.1145/2462156.2462180

[27] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. 2017.
Demonstration of the Cosette Automated SQL Prover. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1591–1594. https://doi.org/10.1145/3035918.3058728

[28] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-optimized OLTP Engine. In ACM SIGMOD (SIGMOD ’13). 12.

[29] Christian Duta and Torsten Grust. 2020. Functional-Style SQL UDFs With a
Capital ’F’. In ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 1273–1287. https://doi.org/10.1145/3318464.3389707

[30] Christian Duta, Denis Hirn, and Torsten Grust. 2019. Compiling PL/SQL Away.
arXiv e-prints (Sep 2019). arXiv:1909.03291 [cs.DB]

[31] K. Venkatesh Emani, Tejas Deshpande, Karthik Ramachandra, and S. Sudarshan.
2017. DBridge: Translating Imperative Code to SQL (ACM SIGMOD). 1663–1666.

[32] K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Su-
darshan. 2016. Extracting Equivalent SQL from Imperative Code in Database
Applications (ACM SIGMOD). 16.

[33] Sofoklis Floratos, Yanfeng Zhang, Yuan Yuan, Rubao Lee, and Xiaodong Zhang.
2018. SQLoop: High Performance Iterative Processing in Data Management. In

38th IEEE International Conference on Distributed Computing Systems, ICDCS 2018,
Vienna, Austria, July 2-6, 2018. 1039–1051.

[34] Craig Freedman, Erik Ismert, Per-Åke Larson, et al. 2014. Compilation in the
Microsoft SQL Server Hekaton Engine. IEEE Data Eng. Bull. 37, 1 (2014), 22–30.

[35] Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify:
Lifting the Curse of Cursor Loops Using Custom Aggregates. In ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 559–573. https:
//doi.org/10.1145/3318464.3389736

[36] Ravindra Guravannavar. 2009. Optimizing Nested Queries and Procedures. PhD
Thesis. Indian Institute of Technology, Bombay, Department of Computer Sc. &
Engg.

[37] Ravindra Guravannavar and S Sudarshan. 2008. Rewriting Procedures for Batched
Bindings. In Intl. Conf. on Very Large Databases.

[38] Wenjia He, Michael R. Anderson, Maxwell Strome, and Michael Cafarella. 2020.
A Method for Optimizing Opaque Filter Queries. In ACM SIGMOD International
Conference onManagement of Data (Portland, OR, USA) (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 1257–1272. https://doi.org/10.
1145/3318464.3389766

[39] Denis Hirn and Torsten Grust. 2020. PL/SQL Without the PL. In ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2677–2680.
https://doi.org/10.1145/3318464.3384678

[40] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything You Always Wanted to Know about Compiled
and Vectorized Queries but Were Afraid to Ask. Proc. VLDB Endow. 11, 13 (Sept.
2018), 2209–2222. https://doi.org/10.14778/3275366.3284966

[41] A. Kohn, V. Leis, and T. Neumann. 2019. Making Compiling Query Engines
Practical. IEEE Transactions on Knowledge and Data Engineering (2019), 1–1.

[42] K. Krikellas, S. D. Viglas, and M. Cintra. 2010. Generating code for holistic query
evaluation. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010). 613–624.

[43] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[44] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew Pavlo.
2020. Permutable Compiled Queries: Dynamically Adapting Compiled Queries
without Recompiling. Proc. VLDB Endow. 14, 2 (2020), 101–113. https://doi.org/
10.14778/3425879.3425882

[45] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[46] Pat O’Neil, Betty O’Neil, and Xuedong Chen. 2009. (2009). https://www.
bibsonomy.org/bibtex/26dc770318eb757ebc65ac4c3bce019d2/christophv

[47] Kisung Park, Hojin Seo, Mostofa Kamal Rasel, Young-Koo Lee, Chanho Jeong,
Sung Yeol Lee, Chungmin Lee, and Dong-Hun Lee. 2019. Iterative Query Pro-
cessing Based on Unified Optimization Techniques. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 54–68.
https://doi.org/10.1145/3299869.3324960

[48] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson,
César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
Imperative Programs in a Relational Database. PVLDB 11, 4 (2017), 432–444.

[49] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann.
2020. Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected
Functions in PostgreSQL. In 32nd International Conference on Scientific and
Statistical Database Management (Vienna, Austria) (SSDBM 2020). Association
for Computing Machinery, New York, NY, USA, Article 6, 12 pages. https:
//doi.org/10.1145/3400903.3400915

[50] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 1907–1922. https://doi.org/10.1145/2882903.2915244

[51] Sourav Sikdar and Chris Jermaine. 2020. MONSOON: Multi-Step Optimization
and Execution of Queries with Partially Obscured Predicates. In ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 225–240. https:
//doi.org/10.1145/3318464.3389728

[52] V. Simhadri, K. Ramachandra, A. Chaitanya, R. Guravannavar, and S. Sudarshan.
2014. Decorrelation of user defined function invocations in queries. In ICDE 2014.
532–543.

[53] Don Slutz. 1998. Massive Stochastic Testing of SQL. Technical Report MSR-TR-98-
21. 9 pages. https://www.microsoft.com/en-us/research/publication/massive-
stochastic-testing-of-sql/

[54] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization vs.
Compilation in Query Execution. In Proceedings of the Seventh International

1390

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Database_trigger
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15#interleaved-execution-for-mstvfs
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15#interleaved-execution-for-mstvfs
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15#interleaved-execution-for-mstvfs
https://www.singlestore.com/blog/full-fledged-sql-compiler-faster-query-processing/
https://www.singlestore.com/blog/full-fledged-sql-compiler-faster-query-processing/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
http://glennpaulley.ca/conestoga/2015/07/performance-overhead-of-sql-user-defined-functions/
http://glennpaulley.ca/conestoga/2015/07/performance-overhead-of-sql-user-defined-functions/
http://www.postgresql.org/docs/8.2/static/plpgsql.html
http://www.postgresql.org/docs/8.2/static/plpgsql.html
http://www.dba-oracle.com/t_compiled_pl_sql.htm
http://www.dba-oracle.com/t_compiled_pl_sql.htm
http://www.oracle.com/technetwork/issue-archive/2010/10-sep/o57plsql-088600.html
http://www.oracle.com/technetwork/issue-archive/2010/10-sep/o57plsql-088600.html
http://www.oracle.com/technology/tech/pl_sql
http://www.oracle.com/technology/tech/pl_sql
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://en.wikipedia.org/wiki/SQL/PSM
https://aka.ms/sqlprocbench
https://en.wikipedia.org/wiki/SQL:2011
https://docs.oracle.com/cd/B28359_01/appdev.111/-b28370/inline_pragma.htm
https://docs.oracle.com/cd/B28359_01/appdev.111/-b28370/inline_pragma.htm
http://sqlblog.com/blogs/hugo_kornelis/archive/2012/05/20/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1.aspx
http://sqlblog.com/blogs/hugo_kornelis/archive/2012/05/20/t-sql-user-defined-functions-the-good-the-bad-and-the-ugly-part-1.aspx
http://llvm.org/
http://www.tpc.org
http://www.tpc.org
http://www.tpc.org
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-transact-sql
http://www.tpc.org
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://doi.org/10.1145/2213836.2213959
https://doi.org/10.1145/3395032.3395322
https://doi.org/10.1145/2462156.2462180
https://doi.org/10.1145/2462156.2462180
https://doi.org/10.1145/3035918.3058728
https://doi.org/10.1145/3318464.3389707
https://arxiv.org/abs/1909.03291
https://doi.org/10.1145/3318464.3389736
https://doi.org/10.1145/3318464.3389736
https://doi.org/10.1145/3318464.3389766
https://doi.org/10.1145/3318464.3389766
https://doi.org/10.1145/3318464.3384678
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3425879.3425882
https://doi.org/10.14778/3425879.3425882
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://www.bibsonomy.org/bibtex/26dc770318eb757ebc65ac4c3bce019d2/christophv
https://www.bibsonomy.org/bibtex/26dc770318eb757ebc65ac4c3bce019d2/christophv
https://doi.org/10.1145/3299869.3324960
https://doi.org/10.1145/3400903.3400915
https://doi.org/10.1145/3400903.3400915
https://doi.org/10.1145/2882903.2915244
https://doi.org/10.1145/3318464.3389728
https://doi.org/10.1145/3318464.3389728
https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/
https://www.microsoft.com/en-us/research/publication/massive-stochastic-testing-of-sql/

Workshop on Data Management on New Hardware (Athens, Greece) (DaMoN
’11). Association for Computing Machinery, New York, NY, USA, 33–40. https:
//doi.org/10.1145/1995441.1995446

[55] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In Proceedings of the 2018 International Conference
on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for
Computing Machinery, New York, NY, USA, 307–322. https://doi.org/10.1145/

3183713.3196893
[56] S. D. Viglas. 2014. Just-in-time compilation for SQL query processing. In 2014

IEEE 30th International Conference on Data Engineering. 1298–1301.
[57] S. D. Viglas. 2017. Processing Declarative Queries through Generating Imperative

Code in Managed Runtimes. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). 1610–1611.

1391

https://doi.org/10.1145/1995441.1995446
https://doi.org/10.1145/1995441.1995446
https://doi.org/10.1145/3183713.3196893
https://doi.org/10.1145/3183713.3196893

