

Lab 7

 Procedural Language

Structured Query Language

(PL/SQL)

Eng. Ibraheem Lubbad

The Islamic University of Gaza

Faculty of Engineering

Dept. of Computer Engineering

Database Lab (ECOM 4113)

Structured Query Language (SQL) is the primary language used to access and

modify data in relational databases. There are only a few SQL commands you can easily

learn and use them. However, if you want to alter any data that is retrieved in a

conditional manner, you soon encounter the limitations of SQL.

 PL/SQL is designed to meet more requirements than SQL. It provides a

programming extension to already-existing SQL.

 PL/SQL defines a block structure for writing code. Maintaining and debugging the

code is made easier with such a structure. One can easily understand the flow and

execution of the program unit.

PL/SQL offers modern software engineering features such as data encapsulation,

exception handling, information hiding, and object orientation. It brings state-of-the-art

programming to the Oracle server and toolset. PL/SQL provides all the procedural

constructs that are available in any third-generation language (3GL).

PL/SQL Block Structure:
A PL/SQL block consists of three sections:

 Declarative (optional): The declarative section begins with the keyword DECLARE

and ends when the executable section starts.

 Executable (required): The executable section begins with the keyword BEGIN

and ends with END. Observe that END is terminated with a semicolon. The

executable section of a PL/SQL block can in turn include any number of PL/SQL

blocks.

 Exception handling (optional): The exception section is nested within the

executable section. This section begins with the keyword EXCEPTION

PL/SQL Block Structure

DECLARE (optional)

-- Variables, cursors, user-defined exceptions

BEGIN (mandatory)

-- SQL statements

-- PL/SQL statements

EXCEPTION (optional)

--Actions to perform when errors occur -- like try-catch blocks in java

END; (mandatory)

Block Types:

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate

or nested within another block. There are three types of blocks that make up a PL/SQL

program. They are:

 Anonymous blocks

 Procedures

 Functions

Anonymous blocks: Anonymous blocks are unnamed blocks. They are declared inline at

the point in an application where they are to be executed and are compiled each time

the application is executed. These blocks are not stored in the database. They are

passed to the PL/SQL engine for execution at run time.

Example: create anonymous block to print “Hello World!” on the console

FUNCTION name

RETURN datatype

IS

BEGIN

--statements

RETURN value;

[EXCEPTION]

Functions

PROCEDURE name

IS

BEGIN

--statements

[EXCEPTION]

END;

Procedures

[DECLARE]

BEGIN

--statements

[EXCEPTION]

END;

Anonymous

Example

 SET SERVEROUTPUT ON;

DECLARE

BEGIN

 DBMS_OUTPUT.PUT_LINE(' Hello World! ');

END;

The command (SET SERVEROUTPUT ON ;) is used to enable output in SQL Developer.

Declaring PL/SQL Variables
you can declare variables in the declarative part of any PL/SQL block, subprogram.

Declarations allocate storage space for a value, specify its data type, and name the

storage location so that you can reference it. In the executable section, the existing

value of the variable can be replaced with the new value.

Control Structures
IF Statements:

Using Variables

Using Variables

Syntax

IDENTIFIER [CONSTANT] DATATYPE [NOT NULL] [:= | DEFAULT EXPR];

Example 7.2

DECLARE

INST_ID VARCHAR2(5) ;

INST_NAME VARCHAR2(20) NOT NULL := 'IBRAHEEM';

SALARY NUMBER(6,2) := 1400;

INST_HIREDATE DATE;

BUDGET CONSTANT NUMBER(12,2):=100000;

BEGIN

-- then use them in executable section

END;

Syntax of if statement

IF CONDITION THEN

 STATEMENTS;

[ELSIF CONDITION THEN

 STATEMENTS;]

[ELSE

 STATEMENTS;]

END IF;

Example

DECLARE

GRADE NUMBER(3) := 95;

RESULT VARCHAR2(1) ;

BEGIN

 IF GRADE >= 90 THEN

 RESULT := 'A' ;

 ELSIF GRADE >= 80 THEN

 RESULT := 'B' ;

 ELSIF GRADE >= 70 THEN

 RESULT := 'C' ;

 ELSIF GRADE >= 60 THEN

 RESULT := 'D' ;

 ELSE

 RESULT := 'F' ;

 END IF;

 DBMS_OUTPUT. PUT_LINE ('Result: ' || RESULT);

END;

CASE Expression:
A CASE expression selects a result and returns it. To select the result, the

CASE expression uses expressions. The value returned by these expressions

is used to select one of several alternatives.

Using Variables

Using Variables

Searched CASE Expressions:

In searched CASE statements, you do not have a test expression. Instead, the WHEN

clause contains an expression that results in a Boolean value. The same example is

rewritten in this slide to show searched CASE statements.

Using Variables

Syntax of CASE Expression

CASE SELECTOR

 WHEN EXPRESSION1 THEN RESULT1

 WHEN EXPRESSION2 THEN RESULT2

 ...

 WHEN EXPRESSIONN THEN RESULTN

 [ELSE RESULTN+1]

END;

Example

DECLARE

GRADE CHAR(1) := 'A' ;

APPRAISAL VARCHAR2(20);

BEGIN

APPRAISAL :=

 CASE GRADE

 WHEN 'A' THEN 'Excellent'

 WHEN 'B' THEN 'Very Good'

 WHEN 'C' THEN 'Good'

 ELSE 'No such grade'

 END;

 DBMS_OUTPUT.PUT_LINE ('Grade: '||GRADE||' - Appraisal '|| APPRAISAL);

END;

Example

DECLARE

GRADE CHAR(1) := 'B' ;

APPRAISAL VARCHAR2(20);

BEGIN

APPRAISAL :=

 CASE

 WHEN GRADE = 'A' THEN 'Excellent'

 WHEN GRADE IN ('B' , 'C') THEN 'Good'

 ELSE 'No such grade'

 END;

 DBMS_OUTPUT.PUT_LINE('Grade: ' || GRADE || ' - Appraisal ' ||APPRAISAL);

END;

Loops:

Basic Loops:

Using Variables

Example: write a PL/SQL code to print number from 1 to 15 to the console.

Using Variables

WHILE Loops:

Using Variables

Example: write a PL/SQL code to print number from 1 to 15 to the console.

Using Variables

The syntax of cursor

LOOP

STATEMENT1;

...

EXIT [WHEN CONDITION];

END LOOP;

Example

DECLARE

I NUMBER(2) := 1;

BEGIN

 LOOP

 DBMS_OUTPUT. PUT_LINE (I);

 I := I + 1;

 EXIT WHEN I > 15;

 END LOOP;

END;

The syntax of while loops

WHILE CONDITION LOOP

 STATEMENT1;

 STATEMENT2;

 ...

END LOOP;

Example

DECLARE

I NUMBER(2) := 1;

BEGIN

 WHILE I <= 15 LOOP

 DBMS_OUTPUT. PUT_LINE (I);

 I := I + 1;

 END LOOP;

END;

FOR Loops:
You can use a FOR loop to shortcut the test for the number of iterations. You do not

have to declare the counter;it is declared implicitly. 'lower bound ..upper_bound' is

required syntax.

Using Variables

Example: write a PL/SQL code to print number from 1 to 15 to the console.

Using Variables

The “SELECT INTO” Clause:
It’s used to retrieves data from one or more database tables, and assigns the selected
values to variables .It used to retrieves one or more columns from only one row.

Using Variables

Using Variables

The syntax of for loop

FOR COUNTER IN [REVERSE] LOWER_BOUND.. UPPER_BOUND LOOP

 STATEMENT1;

 STATEMENT2;

 ...

END LOOP;

Example

DECLARE

BEGIN

 FOR I IN 1.. 15 LOOP

 DBMS_OUTPUT. PUT_LINE (I);

 END LOOP;

END;

DECLARE

 INST_Name VARCHAR2(20);

 INST_SAL NUMBER(8,2);

BEGIN

 SELECT NAME, SALARY

 INTO INST_Name, INST_SAL

 FROM INSTRUCTOR

 WHERE id = '12121';

 DBMS_OUTPUT. PUT_LINE(INST_Name || ' ' || INST_SAL);

END;

SELECT select_list INTO variable_list FROM remainder_of_query;

remainder_of_query contains

the list of tables or views

The %TYPE Attribute:
The %TYPE attribute is used to declare a variable according to:

 A database column definition.

 Another declared variable.

It is a prefixed with:

 The database table and column.

 The name of the declared variable.

Use it to declare a new variable with the same data type of a predefined variable or a

column in a table.

Using Variables

Using Variables

Explicit Cursor:

A cursor is a SELECT statement that is defined within the declaration section of your

PL/SQL code. It is created on a SELECT Statement which returns more than one row.

Using Variables

Use Conversion function

DECLARE

 INST_NAME INSTRUCTOR.NAME%TYPE;

 BALANCE NUMBER(7, 2);

 MIN_BALANCE BALANCE%TYPE := 1000;

 STD_NAME INST_NAME%TYPE;

BEGIN

...

END;

The syntax of cursor

Declare CURSOR C IS

 SELECT_STATEMENT;

BEGIN

 OPEN EMP_CURSOR;

 ...

 FETCH ...

 ...

 CLOSE EMP_CURSOR;

END;

Use Conversion function

IDENTIFIER TABLE_NAME.COLUMN_NAME%TYPE;

Controlling Cursors:

Explicit Cursor Attributes:

Attributes that Obtain status information about a cursor. The following table

illustrates explicit cursors you can use with cursors:

Attribute Type Description

%ISOPEN Boolean Return TRUE if the cursor is open

%NOTFOUND Boolean Returns FALSE if the last fetch returned a row

%FOUND Boolean Returns TRUE if the last fetch returned a row

%ROWCOUNT Number Returns the number of rows fetched

Any Explicit cursor attribute will be accessed as

cursor_name%attribute_name as shown below in the example.

DECLARE FETCH

CLOSE

 Empty?

FETCH
Create a

named

SQL area

CLOSE

e a

nCreate

a named

sql area

Identify the

active

et

Load the

current

row into

variables

the active

set

 Empty?

bles

Test for

existing

rows

Release the

active set

Return to

FETCH if

rows are

found

OPEN

Using Variables

The previous code will print the first record returned from the query. You can

use loop to print all records:

Using Variables

Example

 DECLARE

 CURSOR STD_CURSOR IS

 SELECT ID, NAME FROM STUDENT

 WHERE DEPT_NAME = 'Comp. Sci.';

 STD_NAME STUDENT.NAME%TYPE;

 STD_ID STUDENT.ID%TYPE;

BEGIN

 OPEN STD_CURSOR;

 DBMS_OUTPUT. PUT_LINE('Order Id Student Name ');

 FETCH STD_CURSOR INTO STD_ID,STD_NAME;

 DBMS_OUTPUT. PUT_LINE(STD_CURSOR%ROWCOUNT || ' ' || STD_ID || '

' || STD_NAME);

 CLOSE STD_CURSOR;

END;

Example

DECLARE

 CURSOR STD_CURSOR IS

 SELECT ID, NAME FROM STUDENT

 WHERE DEPT_NAME = 'Comp. Sci.';

 STD_NAME STUDENT.NAME%TYPE;

 STD_ID STUDENT.ID%TYPE;

BEGIN

 OPEN STD_CURSOR;

 DBMS_OUTPUT. PUT_LINE('Order Id Student Name ');

 IF STD_CURSOR%ISOPEN THEN

 LOOP

 FETCH STD_CURSOR INTO STD_ID,STD_NAME;

 EXIT WHEN STD_CURSOR%NOTFOUND;

 DBMS_OUTPUT. PUT_LINE(STD_CURSOR%ROWCOUNT || ' ' || STD_ID

|| ' ' || STD_NAME);

 END LOOP;

 END IF;

 CLOSE STD_CURSOR;

END;

Note that you can process the rows of the active set by fetching values into

a PL/SQL record using %ROWTYPE Attribute:

Using Variables

Using Variables

Using ROWTYPE Attribute

DECLARE

 CURSOR STD_CURSOR IS

 SELECT ID, NAME FROM STUDENT

 WHERE DEPT_NAME = 'Comp. Sci.';

 STD_RECORD STD_CURSOR%ROWTYPE;

BEGIN

 OPEN STD_CURSOR;

 DBMS_OUTPUT. PUT_LINE('Order Id Student Name ');

 IF STD_CURSOR%ISOPEN THEN

 LOOP

 FETCH STD_CURSOR INTO STD_RECORD;

 EXIT WHEN STD_CURSOR%NOTFOUND;

 DBMS_OUTPUT. PUT_LINE(STD_CURSOR%ROWCOUNT || ' ' ||

STD_RECORD.ID || ' ' || STD_RECORD.NAME);

 END LOOP;

 END IF;

 CLOSE STD_CURSOR;

END;

%ROWTYPE:

The %ROWTYPE attribute provides a record type that represents a row in a database

table, you can use the %ROWTYPE attribute in variable declarations as a datatype

specified.

Example: Uses %ROWCOUNT to fetch the names with id and department name of the

three highest-paid instructor.

Using Variables

Cursor’s FOR Loops:

The cursor FOR LOOP statement implicitly declares its loop index as a record variable of

the row type, and then opens a cursor. With each iteration, the

cursor FOR LOOP statement fetches a row from the result set into the record

Using Variables

Example use %rowcount

 DECLARE

 CURSOR INST_CURSOR is

 SELECT id , name, dept_name FROM instructor

 ORDER BY salary DESC; -- start with highest-paid instructor

 INST_RECORD INST_CURSOR%ROWTYPE;

BEGIN

 OPEN INST_CURSOR;

 LOOP

 FETCH INST_CURSOR INTO INST_RECORD;

 EXIT WHEN (INST_CURSOR%ROWCOUNT > 3) OR (INST_CURSOR%NOTFOUND);

 dbms_output.put_line('Instructor ' || INST_RECORD.name || ' (' ||

INST_RECORD.id || ') work on ' || INST_RECORD.dept_name);

 END LOOP;

 CLOSE INST_CURSOR;

END;

Cursor’s FOR Loops

DECLARE

CURSOR STD_CURSOR IS

 SELECT ID, NAME FROM STUDENT

 WHERE DEPT_NAME = 'Comp. Sci.';

STD_RECORD STD_CURSOR%ROWTYPE;

BEGIN

 DBMS_OUTPUT. PUT_LINE('Order Id Student Name ');

 FOR STD_RECORD IN STD_CURSOR LOOP

 DBMS_OUTPUT. PUT_LINE(STD_CURSOR%ROWCOUNT || ' ' ||

STD_RECORD.ID || ' ' || STD_RECORD.NAME);

 END LOOP;

END;

Explicit Cursor (SQL):

A SQL (implicit) cursor is automatically opened by the database to process each SQL

statement is executed.

 For INSERT operations, the cursor holds the data that needs to be inserted

 For UPDATE and DELETE operations, the cursor identifies the rows that would be
affected.

Attribute Type Description

%ISOPEN Boolean Always returns FALSE, since SQL cursor closed
automatically after executing its associated SQL statement.

%NOTFOUND Boolean returns TRUE if an INSERT, UPDATE, or DELETE statement
affected no rows, or a SELECTINTO statement returned no
rows

%FOUND Boolean Returns TRUE if an INSERT, UPDATE, or DELETE statement
affected one or more rows or a SELECT INTO statement
returned one or more rows

%ROWCOUNT Number Returns the number of rows affected by
an INSERT, UPDATE or DELETE statement, or returned by
a SELECT INTO statement

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the

example.

Example: Increase salary of each instructor in Computer Sciences by 5% and use the

SQL%ROWCOUNT attribute to determine the number of rows affected:

Using Variables

Note: You can use cursor attributes in procedural statements but not in SQL statements

END

Example

BEGIN

 UPDATE INSTRUCTOR SET SALARY =SALARY+ SALARY * .05

 WHERE DEPT_NAME='Comp. Sci.';

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE(' THE NUMBER OF INSTRUCTOR, AFFECTED BY RISING

'|| SQL%ROWCOUNT);

 END IF;

END;

