
Procedural shading and 
texturing



Local shading is complex

• Assume we know diffuse, specular, transmitted, ambient 
components

• Must apply 
• texture

• from map
• procedural
• volume

• bump
• displacement
• opacity
• etc

• Shaders
• device for managing this complexity



Texturing

• Makes materials look 
more interesting

– Color - e.g. decals
– Opacity - e.g. swiss 

cheese, wire

– Wear & tear - e.g. 
dirt, rust

• Provides additional depth 
cue to human visual 
system



Texture Mapping

• Maps image onto surface
• Depends on a surface parameterization 

(s,t)
– Difficult for surfaces with many 

features
– May include distortion
– Not necessarily 1:1

Kettle, by Mike Miller



Texture synthesis 

• Use image as a source of probability model
• Choose pixel values by matching neighbourhood, then 

filling in
• Matching process 

•  look at pixel differences
• count only synthesized pixels







From “Image quilting for texture synthesis and transfer”, Efros 
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Solid Texturing

• Uses 3-D texture coordinates (s,t,r)
• Can let s = x, t = y and r = z
• No need to parameterize surface
• No worries about distortion
• Objects appear sculpted out of solid 

substance

Darwyn Peachey, 1985

Surface
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Solid Texture 
Problems
• How can we deform an object 

without making it swim through 
texture?

• How can we efficiently store a 
procedural texture?



Procedural Texturing

• Texture map is a function
• Write a procedure to perform the function

– input: texture coordinates - s,t,r 
– output: color, opacity, shading

• Example: Wood
– Classification of texture space into 

cylindrical shells
f(s,t,r) = s2 + t2

– Outer rings closer together, which 
simulates the growth rate of real trees

– Wood colored color table
• Woodmap(0) = brown “earlywood” 
• Woodmap(1) = tan “latewood”

Wood(s,t,r) = Woodmap(f(s,t,r) mod 1)

f(s,t,r) = s2 + t2

Wood(s,t,r)

Woodmap
(f)

0 1



Noise Functions

• Add “noise” to make textures interesting
• Perlin noise function N(x,y,z)

– Smooth
– Correlated
– Bandlimited

• N(x,y,z) returns a single random number 
in [-1,1]

• Gradient noise
– Like a random sine wave

N(x,y,z)=0 for int x,y,z
• Value noise

– Also like a random sine wave
N(x,y,z)=random for int x,y,z



Using Noise

• Add noise to cylinders to warp wood

– Wood(s2 + t2 + N(s,t,r))

• Controls

– Amplitude: power of noise effect
a N(s, t, r)

– Frequency: coarse v. fine detail

N(fs s, ft t, fr r)

– Phase: location of noise peaks

N(s + φs, t + φt, r + φr)



Making Noise

• Good:
– Create 3-D array of random values
– Trilinearly interpolate 

• Better
– Create 3-D array of random 3-

vectors
– Hermite interpolate



Hermite
Interpolation
• Some cubic h(t) = at3 + bt2 + ct + d s.t.

– h(0) = 0 (d = 0)
– h(1) = 0 (a + b + c = 0)
– h’(0) = r0 (c = r0)

– h’(1) = r1 (3a + 2b + r0 = r1)

• Answer:
– h(t) = (r0 + r1) t3 - (2r0 + r1) t2 + r0t

• Tricubic interpolation
– Interpolate corners along edges
– Interpolate edges into faces
– Interpolate faces into interior



Colormap Donuts

• Spotted donut

– Gray(N(40*x,40*y,40*z))
– Gray() - ramp colormap

– Single 40Hz frequency

• Bozo donut
– Bozo(N(4*x,4*y,4*z))
– Bozo() - banded colormap
– Cubic interpolation means 

contours are smooth



Bump Mapped
Donuts

• DNoise(s,t,r) =  ∇Noise(s,t,r)

• Bumpy donut

– Same procedural texture as spotted donut

– Noise replaced with DNoise

n

x

D

n += DNoise(x,y,z); normalize(n);



Composite Donuts

• Stucco donut
– Noise(x,y,z)*DNoise(x,y,z)
– Noisy direction
– noisy amplitude

• Fleshy donut
– Same texture
– Different colormap



DNoise Bump-
Mapped Refraction



Fractals

• Fractional dimension - not
• Fractal dimension exceeds topological 

dimension 
• Self-similar
• Detail at all levels of magnification
• 1/f frequency distribution



How Can Dimension 
be Fractional?

Point: D = 0, N=1, s=1/2

Line: D = 1, N=2, s=1/2

Square: D = 2, N=4, s=1/2

Cube: D = 3, N=8, s=1/2

N = (1/s)D

log N = D log (1/s)

D = log(N)/log(1/s)



Examples

N=2
s=1/3
D = log 2/log 3
D = .6...

N=4
s=1/3
D = log 4/log 3
D = 1.3...



Brownian Motion

• random paths
• Integral of white noise
• 1/f 2 distribution

white noise brown noise

d   

F F

log  power

log f log f

1
1/f 2



Fractional Brownian 
Motion
• 1/f β distribution
• Roughness parameter β

– Ranges from 1 to 3
–  β = 3 - smooth, not flat, still 

random
–  β = 1 - rough, not space filling, but 

thick
• Construct using spectral synthesis

– Add several octaves of noise 
function

– Scale amplitude appropriately

+

=



Fractal Bump-
Mapped Donut

fbm(beta) {
 val = 0; vec = (0,0,0);
 for (i = 0; i < octaves; i++) {
  val += Noise(2i*x, 2i *y, 2i *z)/pow(2,i*beta);
  vec += DNoise(2i*x, 2i *y, 2i *z)/pow(2,i*beta);
 }
 return vec or val;
}



Fractal
Mountains
• Displacement map

of meshed plane
• Can also be formed using 

midpoint displacement

Ken Musgrave

Gunther Berkus via Mojoworld



Clouds
Water

Gunther Berkus via Mojoworld



Marble

Ken Perlin, 1985



Fire

Ken Musgrave



Planets

Ken Musgrave



Moonrise

Ken Musgrave


