
Procedural shading and
texturing

Local shading is complex

• Assume we know diffuse, specular, transmitted, ambient
components

• Must apply
• texture

• from map
• procedural
• volume

• bump
• displacement
• opacity
• etc

• Shaders
• device for managing this complexity

Texturing

• Makes materials look
more interesting

– Color - e.g. decals
– Opacity - e.g. swiss

cheese, wire

– Wear & tear - e.g.
dirt, rust

• Provides additional depth
cue to human visual
system

Texture Mapping

• Maps image onto surface
• Depends on a surface parameterization

(s,t)
– Difficult for surfaces with many

features
– May include distortion
– Not necessarily 1:1

Kettle, by Mike Miller

Texture synthesis

• Use image as a source of probability model
• Choose pixel values by matching neighbourhood, then

filling in
• Matching process

• look at pixel differences
• count only synthesized pixels

From “Image quilting for texture synthesis and transfer”, Efros
and Freeman, SIGGRAPH 2001

From “Image quilting for texture synthesis and transfer”, Efros
and Freeman, SIGGRAPH 2001

From “Image quilting for texture synthesis and transfer”, Efros
and Freeman, SIGGRAPH 2001

From “Image quilting for texture synthesis and transfer”, Efros
and Freeman, SIGGRAPH 2001

From “Image analogies”, Herzmann et al, SIGGRAPH 2001

From “Image analogies”, Herzmann et al, SIGGRAPH 2001

Solid Texturing

• Uses 3-D texture coordinates (s,t,r)
• Can let s = x, t = y and r = z
• No need to parameterize surface
• No worries about distortion
• Objects appear sculpted out of solid

substance

Darwyn Peachey, 1985

Surface
Texture

features
don’t

line up

Solid
Texture

features
do

line up

Solid Texture
Problems
• How can we deform an object

without making it swim through
texture?

• How can we efficiently store a
procedural texture?

Procedural Texturing

• Texture map is a function
• Write a procedure to perform the function

– input: texture coordinates - s,t,r
– output: color, opacity, shading

• Example: Wood
– Classification of texture space into

cylindrical shells
f(s,t,r) = s2 + t2

– Outer rings closer together, which
simulates the growth rate of real trees

– Wood colored color table
• Woodmap(0) = brown “earlywood”
• Woodmap(1) = tan “latewood”

Wood(s,t,r) = Woodmap(f(s,t,r) mod 1)

f(s,t,r) = s2 + t2

Wood(s,t,r)

Woodmap
(f)

0 1

Noise Functions

• Add “noise” to make textures interesting
• Perlin noise function N(x,y,z)

– Smooth
– Correlated
– Bandlimited

• N(x,y,z) returns a single random number
in [-1,1]

• Gradient noise
– Like a random sine wave

N(x,y,z)=0 for int x,y,z
• Value noise

– Also like a random sine wave
N(x,y,z)=random for int x,y,z

Using Noise

• Add noise to cylinders to warp wood

– Wood(s2 + t2 + N(s,t,r))

• Controls

– Amplitude: power of noise effect
a N(s, t, r)

– Frequency: coarse v. fine detail

N(fs s, ft t, fr r)

– Phase: location of noise peaks

N(s + φs, t + φt, r + φr)

Making Noise

• Good:
– Create 3-D array of random values
– Trilinearly interpolate

• Better
– Create 3-D array of random 3-

vectors
– Hermite interpolate

Hermite
Interpolation
• Some cubic h(t) = at3 + bt2 + ct + d s.t.

– h(0) = 0 (d = 0)
– h(1) = 0 (a + b + c = 0)
– h’(0) = r0 (c = r0)

– h’(1) = r1 (3a + 2b + r0 = r1)

• Answer:
– h(t) = (r0 + r1) t3 - (2r0 + r1) t2 + r0t

• Tricubic interpolation
– Interpolate corners along edges
– Interpolate edges into faces
– Interpolate faces into interior

Colormap Donuts

• Spotted donut

– Gray(N(40*x,40*y,40*z))
– Gray() - ramp colormap

– Single 40Hz frequency

• Bozo donut
– Bozo(N(4*x,4*y,4*z))
– Bozo() - banded colormap
– Cubic interpolation means

contours are smooth

Bump Mapped
Donuts

• DNoise(s,t,r) = ∇Noise(s,t,r)

• Bumpy donut

– Same procedural texture as spotted donut

– Noise replaced with DNoise

n

x

D

n += DNoise(x,y,z); normalize(n);

Composite Donuts

• Stucco donut
– Noise(x,y,z)*DNoise(x,y,z)
– Noisy direction
– noisy amplitude

• Fleshy donut
– Same texture
– Different colormap

DNoise Bump-
Mapped Refraction

Fractals

• Fractional dimension - not
• Fractal dimension exceeds topological

dimension
• Self-similar
• Detail at all levels of magnification
• 1/f frequency distribution

How Can Dimension
be Fractional?

Point: D = 0, N=1, s=1/2

Line: D = 1, N=2, s=1/2

Square: D = 2, N=4, s=1/2

Cube: D = 3, N=8, s=1/2

N = (1/s)D

log N = D log (1/s)

D = log(N)/log(1/s)

Examples

N=2
s=1/3
D = log 2/log 3
D = .6...

N=4
s=1/3
D = log 4/log 3
D = 1.3...

Brownian Motion

• random paths
• Integral of white noise
• 1/f 2 distribution

white noise brown noise

d

F F

log power

log f log f

1
1/f 2

Fractional Brownian
Motion
• 1/f β distribution
• Roughness parameter β

– Ranges from 1 to 3
– β = 3 - smooth, not flat, still

random
– β = 1 - rough, not space filling, but

thick
• Construct using spectral synthesis

– Add several octaves of noise
function

– Scale amplitude appropriately

+

=

Fractal Bump-
Mapped Donut

fbm(beta) {
 val = 0; vec = (0,0,0);
 for (i = 0; i < octaves; i++) {
 val += Noise(2i*x, 2i *y, 2i *z)/pow(2,i*beta);
 vec += DNoise(2i*x, 2i *y, 2i *z)/pow(2,i*beta);
 }
 return vec or val;
}

Fractal
Mountains
• Displacement map

of meshed plane
• Can also be formed using

midpoint displacement

Ken Musgrave

Gunther Berkus via Mojoworld

Clouds
Water

Gunther Berkus via Mojoworld

Marble

Ken Perlin, 1985

Fire

Ken Musgrave

Planets

Ken Musgrave

Moonrise

Ken Musgrave

