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Abstract—Frequency domain SAR image formation algorithms
are of lower computation cost (both in number of elemen-
tary operations and in required memory storage) than direct
time-domain integration, and do not make the narrow band
(monochromatic) assumption. Both the advantages are critical to
very high resolution imaging because a lower complexity yields
a drastic computation time decrease as cross-range resolution
increases and the narrow-band assumption is more and more a
concern as range resolution (hence bandwidth) increases. Though
an exact formulation exists (omega-k algorithm) for a perfect
linear uniform acquisition trajectory, in real-life airborne case,
the unavoidable trajectory deviation from a straight line needs to
be compensated. This motion compensation (MoComp) operation
is much more complicated in the case of frequency domain
processing. An efficient technique for this purpose is presented.
This method keeps the parallel processing aspect, and has been
programmed both for multi-thread on multi-core/symmetrical
multi-processor CPUs and for graphic processors units (GPU).

Index Terms—Airborne radar, Synthetic aperture radar, Mo-
tion compensation, Focusing.

I. INTRODUCTION

A. Overview of SAR image formation algorithms

IMAGE formation for synthetic aperture radar (SAR) is a
computationally demanding application. Early SAR sys-

tems used optical image formation [2] because digital pro-
cessing was beyond the capabilities of available computers,
even though the radar resolution and range were far less
demanding than today. As computer performance increased,
digital processing replaced optical processing in the late 80s.
SAR evolved from “Doppler beam sharpening” (DBS) which
was merely narrow Doppler-band filtering, to “focused SAR”
using correlation with a Doppler frequency chirp along slow-
time (thus de-convolving the signal along azimuth columns
versus the translation invariant phase history of points at
a given range). The latter algorithm was limited to cases
where range during synthetic antenna (integration time) re-
mains within a range resolution cell (low range resolution and
non squinted viewing). Increasing resolution led to develop
techniques derived from the seismic prospection approach.

Namely, two broad families of processing emerged: First,
time-domain processing in which, for each image pixel, pulse
propagation time is equalised (range migration) before pulse
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signals are added. This time-domain processing is called
backprojection algorithm (BPA). Frequency-domain process-
ing is an alternative based on the observation that range
migration within integration is nearly the same –with a slow-
time translation– for the pixels at the same distance and
depends only on the observation angle during integration.
Hence the idea of compensating the range migration in the
Doppler domain (under narrow-band assumption observation
angle and Doppler frequency are one-to-one related) which led
to the range-Doppler algorithm (RDA).

The clear advantage of the frequency-domain processing is
that the interpolation in range needs only to be done once
per Doppler & range, while in time-domain it should be done
once per aperture sample, range & azimuth, thus the frequency
domain computation for the whole image is equivalent to
the time-domain computation of a single row of the image.
The two extra Fourier transforms needed to switch between
native (time) domain and frequency-domain are equivalent to
a few time-domain image row computation, the frequency
domain computation is clearly faster: For a given image area
at resolution r, time-domain complexity is O(r3) while it is
O(r2 log(r)) for frequency-domain.

However, the above sketched RDA fails to produce well fo-
cused images at very high resolution because range migration
depends on the imaging angle (squint) δ within the aperture
and not on the Doppler frequency, thus RDA introduces a
“chromatic aberration” when the relative bandwidth increases.
Post-compensation of the chromatic aberration of RDA, the
“secondary range compression” (SRC) was proposed, but a
more efficient solution came from a seismic imaging technique
[1]: It uses a 2D Fourier transform (i.e. the processing is done
in full frequency domain, unlike the RDA where only slow-
time –or azimuth– is in the frequency domain), and can be
adapted to SAR imaging [3] as the ω-k algorithm (also known
as “range migration algorithm” or RMA) that will be further
described sections II and below.

However, the fact that processing is done in the frequency-
domain means that the space variations of processing across
the image for motion compensation of ω-k algorithm are
difficult. This is opposite to time-domain BPA which can
be applied as-is for an arbitrary trajectory and for image
points on an arbitrary ground surface. Early ω-k implementa-
tions [7] suggested the use of a “corrective autofocus post-
processing” in the airborne case even when trajectory was
accurately measured. However, the motion compensation can
be computed (not estimated from image blur) and applied as
presented in section IV below. An alternative, a simplified
approximate (but faster) frequency-domain algorithm (called
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“chirp scaling algorithm” or CSA) was proposed, and its
motion compensation is easier[4].

Seismic imaging also brought a solution to the higher
complexity of BPA: the idea is to combine smaller (less
directive) apertures (starting from the real antenna aperture)
into progressively wider (highly directive) but more numerous
apertures (ending with the full synthetic aperture for each
image row). This algorithm called fast backprojection (FBPA)
[6] yields less accurate apertures (and antenna pattern compen-
sation) than plain BPA but has a complexity in O(r2 log(r))
similar to that of frequency-domain processing, while still
remaining quite easy to motion compensate.

As a fairly good compromise CSA is widely used today –
especially for spaceborne SAR–, but for the higher resolution,
high relative bandwidth and/or wide integration angle SAR
imaging, one requires FBPA [11], BPA on supercomputers/
clusters [8], or ω-k approaches.

Current work on SAR processors are mainly in two direc-
tions: The first is on parallelizing the processing for increasing
its speed. This started in the 90s with mainframe supercom-
puters [5] and small computer clusters, but recently regained
interest with the availability of cheap and small multi-core
CPUs and GPUs [13] [15] [17].

The second currently active domain is bistatic SAR (SAR
with the transmitting radar and receiving sensor on two differ-
ent aircraft/satellites) for which the same dilemma between
easy focusing in time-domain [18] and fast synthesis in
frequency domain [14] occurs.

B. ONERA motion compensated ω − k algorithm

The frequency domain (ω-k) algorithm motion compensa-
tion described below fulfills the challenge of simultaneously
providing O(r2 log(r)) complexity, motion compensation ca-
pable of focusing high resolution and/or wide aperture air-
borne acquired images without introducing non-deterministic
geometric radiometric and phase distortions.

The latter is all but a minor concern: State-of-the-art
frequency domain processing for airborne SAR resorts to
autofocus for motion compensation thus introducing unpre-
dictable geometric distortion. This is not important for some
applications (such as the imaging mode of the front end radar
of a versatile combat aircraft), but it ruins other such as repeat-
pass interferometry or coherent change detection (CCD). CCD
is highly relevant since it allows detection of improvised
explosive devices (IED) that account for most of the military
casualties in current conflicts. That is why Gotcha SAR real-
time processor uses BPA notwithstanding the drastic increase
in weight, onboard power consumption and cost it implies[16]
[19].

The algorithm presented here is routinely used for synthesiz-
ing airborne SAR imagery from the RAMSES/Sethi systems
which are, at X-band, very similar to Gotcha SAR, while
keeping a geometrical and radiometric accuracy compatible
with CCD, repeat-pass interferometry or polarimetric inter-
ferometry (cf [20] for a review of civilian science research
using Sethi images from this processor). Implementation of
the algorithm on existing operational systems such as Gotcha

SAR would allow decreasing weight, power consumption &
cost of on-board computer system by at least one order of
magnitude (which is of operational significance).

Images obtained from this processor may be combined
with images obtained from the three other alternative pro-
cessors used at ONERA, namely plain BPA, 2-stage factored
backprojection algorithm (related to FBPA, but with higher
O(r2.5) complexity), and polar format algorithm (PFA). This
is why the absolute radiometric gain of the ω − k algorithm
is computed here (2b) since it is mandatory in order to have
a radar calibration valid for all four algorithms.

C. Paper organisation

Section II recalls the principles of ω − k algorithm in the
nominal (non motion compensated) case. Unlike the classical
presentation of the algorithm [12], not only the phase, but
also the amplitude of the nominal processing is addressed.
A geometrical representation of the algorithm principle is
introduced which will allow a basic description of the motion
compensation.
Section III addresses computer implementation issues for the
nominal case algorithm.
Section IV describes the motion compensation principles and
computer implementation in the ONERA ω − k processor.
Last section VI sketches the implementation details for algo-
rithm parallelisation which is instrumental in achieving SAR
image synthesis with computation time of the same order of
magnitude than the signal acquisition time.

II. OMEGA-K ALGORITHM PRINCIPLE

Frequency domain processing is motivated by the fact that
given a perfectly linear uniform SAR acquisition, a point in
the two dimensional signal spectrum corresponds exactly to a
point in the spectrum for an image in cylindrical coordinates
around the acquisition trajectory. Fig. 1 illustrates this in a
simple way (it can be formally derived from the stationary
phase principle) by replacing the forth & back propagation at
radiowave velocity c by one-way propagation from sensor to
“image” area at half velocity c

2 . (Fig. 1, 3, 4 to 7 & 9 all use
this representation of the radiowaves round-trip as a single-
way propagation at half velocity.) A given point in the signal
two dimensional spectrum correspond to the transmission of a
monochromatic signal (fast time frequency) with a constant
phase shift from one pulse to the next (corresponding to
the slow-time, or Doppler, frequency). Each pulse transmitted
radiates as a spherical wave around the sensor position, but
the large number of successive pulses sums up to conical
waves (In practice, the sensor antenna is directive, hence
the elementary waves are spherical portions and the resulting
waves are conical portions). Given the invariance through
rotation around the trajectory axis, the canonical image plane
is radial from the trajectory axis and, in this plane, the conical
waves correspond to a pure space frequency.

Hence the basic ω-k algorithm architecture (fig. 2) for the
ideal case: Fourier transform an acquired signal block, then
select an integration angle (a single look) by trimming a
Doppler range width proportional to frequency. Next, map
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Fig. 1. Principle of the ω-k algorithm: spherical monochromatic waves
(left) of linearly uniformly spaced sensor positions combine to conical waves
(right) when their phase varies linearly along sensor trajectory (i.e. for a fixed
Doppler frequency).

the signal frequencies to the corresponding image frequencies
(Stolt resampling) and multiply by the appropriate (“nominal
processing”) complex factor. Last, inverse Fourier transform
the result to a single-look complex image block.

The Stolt resampling from signal wavenumbers (k, ku) to
image wavenumbers (kr, kz) (1) and the nominal processing
phase φnom (2a) can be graphically derived (fig. 3). The extra
π/4 phase term in (2a) due to the curvature of the elementary
wave fronts with respect to the resulting cone, can be derived,
as well as the nominal processing amplitude Anom (2b), from
the principle of stationary phase (see Appendix A for details).

kr =
√

4k2 − k2
u

kz = ku
(1)

φnom(f, δ) =
−4πf
c

(1− cos(δ − δc))Rc +
π

4
(2a)

Anom(f, δ) =

√
f

fc

sin(δ)
sin(δc)

(2b)

where f and fc are the frequency of the sample and the center
frequency of the band respectively, δ and δc are the sample and
image squint angles respectively and Rc is the middle range
to which signal array is centered. Physically, the principle of
stationary phase states that the sign of the extra phase term
with respect to the envelop of the elementary waves depends of
the sign of the curvature of the elementary wave phase on the
wave front, and the modulus depends on the second derivative.
Here the curvature of the sphere with respect to the cone is one
dimensional, hence the square root in (2b), and phase varies
as the product of the optical path & the frequency, hence the
f in (2b).

In fact, the final image is not given in plain cylindrical
coordinates, but in squinted cylindrical coordinates (slant
range is measured along a cone of angle δc instead of radially
from trajectory axis) as δc may significantly differ from π/2
due to large possible drift angles in airborne case and/or
wide antenna pattern allowing computation of multiple looks
within the main Doppler lobe. This image shearing from
plain to squinted coordinates (which is a range-proportional
translation in azimuth of the image) may be encompassed in
the Stolt resampling (because a time-domain shear parallel to
the azimuth z axis is equivalent to a frequency-domain shear

parallel to the range wavenumber kr axis) which remains a
one-dimensional resampling:

kr = cos(δc)ku +
√

4k2 − k2
u (3)

A thoroughgoing dissertation on the ω-k algorithm for
satellite SAR processing in given in [12] (and a short compar-
ison with other frequency domain algorithms in [9]). These
references do not consider the nominal phase constant &
modulus (needed to calibrate images from different synthesis
algorithms cf section I-B).

III. PRACTICAL ISSUES FOR THE PERFECT CASE

The description in section II above is only conceptual. First,
the input signal in (fig. 2) is range profiles (pulse responses
from each sensor positions); while, in order to reduce peak
vs average power ratio, real-life radars spread the pulse in
time, and recompress the received echo. Though, at first
approximation, the recompression is a deconvolution of the
raw echo by the transmitted spread pulse, (which can be
efficiently embedded in the scheme of fig. 2 by dividing the
“nominal processing” factor, along the k axis, with the Fourier
transform of the transmitted pulse) the motion of the sensor
alters the transmitted spread pulse with Doppler effect. In
the perfect case, this Doppler alteration of range compres-
sion can be solved by appropriately scaling the transmitted
pulse depending on the δ angle before applying the “nominal
processing” factor in the ω-k approach.

Second, pixel size of the resulting image may not match the
sampling rate of the acquired signal, hence a “resampling” (or
pre-summing) must be done prior to the first Fourier transform
(this is why the width of the signal is narrower in frequency
domain than in time-domain in fig. 2). As will be shown
in subsection IV-A below, such a “resampling” will also be
required for motion compensation.

Third, due to both limitations of available computer memory
and proportionally increasing cost of Fourier transform with
size, the signal is processed by blocks in slow time. The
blocks should contain the full integration interval (interval of
δ angle corresponding to the synthetic aperture yielding the
desired azimuth resolution) for the produced row block of the
image, hence successive blocks overlap duration must be the
maximum (far range) integration (it is similar to the overlap-
discard method for convolution). There is an optimal block
size as smaller block are disadvantaged by proportionally
bigger overlaps per produced image line while larger blocks
are hindered by Fourier transform increasing cost per produced
line. Computer architecture and limitations may also restrict
the usable block sizes.

Last, the real antenna does not radiate a spherical wave
(which would pose a severe left-right ambiguity problem)
but a directional antenna pattern. This antenna pattern could
be compensated during the first Fourier transform, by first
doing the azimuth transform (hence to the range×Doppler
domain). Then using the heading to Doppler and elevation to
range relations (assuming flat terrain & antenna pattern linear
shrinking with frequency, in this perfect case) divide by the
antenna pattern. Eventually, a Fourier transform along range



PROCEEDINGS OF IEEE, VOL. X, NO. Y, ZZZZ 2012 4

ku

kr

kz

Signal (frequency domain)

k

Signal (time domain)

irrelevant ‘‘negative time’’

(i
n 

ba
nd

w
id

th
)

fr
eq

ue
nc

y

frequency
Doppler

t

z

fa
st

 ti
m

e

r

z

irrelevant ‘‘negative range’’

sl
an

t r
an

ge

Image (frequency domain)Image (time domain)

Stolt mapping

FT

FT
co

m
pl

ex
m

ul
tip

lic
at

io
n

re
sa

m
pl

in
g 

&

slow time

azimuth

complex factor
(nominal processing)

kr

ku

kz

Signal (time domain)

Image (frequency domain)Image (time domain)

slow time

fa
st

 ti
m

e

t

FT
k

Signal (frequency domain)

azimuth

r

sl
an

t r
an

ge

z

u

Doppler

trimming
(look)
range

FT

m
ul

tip
lic

at
io

n

co
m

pl
ex

re
sa

m
pl

in
g 

&

Fig. 2. Basic ω-k algorithm in case of perfect linear uniform trajectory: How a single frequency in signal is mapped into a single frequency in image (left),
and how a range in signal Doppler frequency is processed into a single look image (right). UHF/VHF radar signal on the right is from a real acquisition hence
the dark line in frequency-domain corresponding to a protected emergency frequency. The strong trajectory curvature –due to a late lining on acquisition axis–
induces the top-left and bottom missing signal the time-domain because mocomp was applied in order to focus the final image.
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Fig. 3. Graphic derivations of the Stolt mapping (left): let δ be the wavefront
angle, consider two transmissions separated by exactly one Doppler period λu

then λr sin(δ) = λ/2 and also λu cos(δ) = λ/2 . . . Graphic derivation of
the nominal processing phase (right): Let Rc & δc be the central range &
squint angle for processing, the optical path difference ∆R for a wavefront
at a given angle δ is Rc −Rc cos(δ − δc) . . .

axis yields the signal in frequency domain compensated for
the antenna pattern.

IV. MOTION COMPENSATION

From the simplified description above, the airborne SAR
processing is complicated because air turbulence deviates the
carrier aircraft from the planned linear uniform trajectory, and
corrective manoeuvres further induce velocity/attitude fluc-
tuations. As high azimuth resolution requires long synthetic
antenna (long integration time), real acquisition trajectory can
not be approximated by a linear uniform one during integra-
tion. Furthermore, the trajectory deviations from the straight
line break the axial symmetry of the imaging geometry, thus
inducing an elevation dependency in the focusing.

The main idea behind motion compensation for ω-k algo-
rithm is to resample the signal prior to first Fourier transform
in such a way that for the wavefront angle δc central to the

integration interval, resampled signal pure frequency maps to
image pure space frequencies, and that the correction of wave-
fronts with other angles within the integration interval remains
small. This latter compensation is obtained by applying a
“quadratic phase” (so called because its first approximation
is a quadratic function of the Doppler similar to the effect
of a longitudinal velocity error) varying across the Doppler
frequencies. This quadratic phase, however, varies with range
and azimuth, hence the block/sub-block organisation described
in subsection IV-B below.

Since the axial symmetry is broken, the motion com-
pensation will only concentrate to a surface in 3D space
corresponding to the image focusing points (fig. 4). This
surface is computed, before image synthesis, by projecting the
imaged area digital elevation model (DEM) in the cylindrical
coordinates with the nominal trajectory as axis. This projection
into the (downsampled) image geometry is computed by a
z-buffer algorithm, initialised with the altitude of the points
at angle δc behind the nominal trajectory (Nadir imaging).
In case more than one DEM cell map to the same point in
the result (overlay) there is an option in selecting the top,
bottom or average altitude, but in any case the elevation will
be discontinuous at the far end, near end or both of the overlay
region (as a matter of fact, because the focusing is elevation
dependent, it cannot focus simultaneously all layers of an
overlaid area). In case no DEM cell maps to a point, the
initial value force the focusing on the vertical plane below the
nominal trajectory, in which case there is a slope discontinuity
in the elevation at the transition between DEM surface and the
vertical plane. For further use (block-global quadratic phase
strategy described in subsection IV-B) projected elevation
points are classified into 3 classes (normal, overlay and vertical
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as a broken line.

plane).

A. Range & azimuth migrations

1) Motivation: Fig. 5 to 7 gives the motivation for range
and azimuth migrations: The elementary wave corresponding
to nominal trajectory point N is a sphere centered at N (as in
Fig. 1). For minimising compensation along integration, the
elementary wave from the true trajectory point T (a sphere
centered at T ) must remain as close as possible to the nominal
sphere. Resampling (range resolved) signal both in range and
azimuth allows it: For any azimuth z and range R0, we
compute the position of the focus point F on the imaging
surface, then find the true trajectory point T minimising the
angular distance between the

−−→
FN and

−→
FT vectors. With

respect to the point on the nominal trajectory of azimuth N ,
the signal will be sampled at range R = ‖FT‖ from the range
profile acquired at a trajectory point offset by ∆z in azimuth
(see Appendix B for details on its computation).

2) Explanation: In fact, as only the intersection of both
spheres and the imaged surface are required to match (Fig. 4),
one idea could be to adjust ∆z to have tangent spheres at point
F (solution initially implemented [10]). Alternatively one can
sample the intersections along integration angle and adjust ∆z
for best fitting the samples between the spheres. However,
because of possible edges and/or discontinuities on imaged
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Fig. 5. Before range & azimuth migrations, true signal elementary wavefront
for a given acquisition azimuth N and range R0 (solid fat line) does not
match the image wavefronts (mixed lines) that are tangent to the nominal
pulse wavefront (dashed line). Range & azimuth migration will try to match
both nominal and true pulse wavefront around the focus point F at range R0

of N under the center squint angle δc.
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squint angle δc, the true signal elementary wavefront (fat solid line) is secant
but not tangent to the image wavefronts (mixed lines), hence would require
further strong δ-dependent range corrections.

surface1, this may lead to discontinuous azimuth migration,
hence it is preferable to use an approximation that does not
depend on the imaging surface as described above.

The range & azimuth-migrated signal point at N for range
R0 will have a contribution in the synthesised image for all im-
age wavefronts with δ in the integration interval [δmin..δmax],
hence on the corresponding sector on the intersection between
the nominal elementary (spherical) wavefront at N and the
imaged surface. As visible on Fig. 7 deviation of the true
trajectory induces a change in curvature of the true pulse
wavefront with respect to the nominal one on the imaged
surface. This curvature difference implies that a further range
correction depending on δ should be applied for this sample.
This is the function of the quadratic phase compensation
described in subsection IV-B below.

1DEM is linearly interpolated in the current implementation for easing its
slant range projection. Edges between cells could be suppressed by smoother
interpolation such as bicubic or splines. However, in mountain areas, terrain
overlay would cause discontinuities in azimuth migration that ruin image
focusing in the neighbourhood.
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Note that minimising the angular distance between N and T
from F instead of having the sphere tangent at F means that
there is actually a residual linear component in the so called
“quadratic phase”, but it is not much an issue as long as the
phase deviation remains moderate in the integration angle.

3) Implementation details: Range migration is evaluated
for each pulse but only for focus points F computed on the im-
aged surface for a subset of the range gates and the migration
is interpolated (on the 3D space) between adjacent computed
points. Azimuth migration values, which vary smoothly from
pulse to pulse, are only computed for a mesh in range &
azimuth and interpolated. To implement the range & azimuth
signal migration, a first buffer is required with a fine range
sampling and a width larger than the equivalent in slow time
of the maximum azimuth migration ∆z. Azimuth migration
and minimum along-track velocity are computed prior to
processing in the “off-line” processing case, hence the buffer
size can be safely bound. In the “real-time” processing case,
future maximum amplitudes of the azimuth migration and the
minimum along-track velocities can not be guessed, hence a
sufficient prior bound on the buffer size should be provided to
the program (from observed trajectory nonlinearities in similar
meteorological conditions).

The fine range sampling, which allows a coherent arbi-
trary resampling through linear interpolation, is obtained by
zero-padding before the last Fourier transform of the range-
compression. Though range-compression varies with Doppler,
it is done at this stage for the center integration angle δc.
For the azimuth migration, three interpolation methods are
available: Lanczos resampling, pre-summing (time-domain) or
Fourier resampling (frequency domain) plus linear resampling.

Lanczos resampling does not change the Doppler spectrum
width, and is therefore only used in case the initial slow time
sampling is close to (typically up to twice) the desired az-
imuth resolution, because it otherwise requires the resampled
signal to be oversampled with respect to the desired azimuth
resolution.

Pre-summing is a low-pass time-domain filter, which can be
optimised to minimise the periodic fluctuations with respect to

the time-domain full integration across the integration interval
(such an optimisation yields a nearly triangular window),
due to the window’s finite duration however, it imposes an
oversampling in azimuth (typically a factor of two) which
allows suppression of the first side-lobes when clipping the
integration Doppler interval (see Fig. 2).

Fourier (zero-padding & zeroing out the unused Doppler
range) interpolation, by typically a factor of 4, followed by a
linear interpolation yields an azimuth resampled signal which
does not require azimuth oversampling, thus saving both mem-
ory used for processing block storage and required computing
power for subsequent processing. It has the further advantage
that the Doppler dependency of the range processing can
be elegantly corrected by doing the forward azimuth Fourier
transform before the range compression final Fourier transform
and introducing a Doppler varying adapted replica in the range
processing. However, this method increases significantly the
computation load of the resampling compared to the other two
methods. This method is, therefore, mostly used when memory
requirements are more constraining than available computing
power (namely on GPU, because of the limitation on available
graphic memory).

B. Quadratic phase
As visible on Fig. 7 (right), after both range & azimuth

signal migration, the elementary spherical wavefronts cor-
responding to a sample (range/fast-time & azimuth along
trajectory) do not present the same curvature on the imaged
surface. This curvature implies that there is a mismatch in
range that “increases as δ deviates from δc” in a more or
less quadric manner. As it depends on the relative distance
of the nominal N & true “migrated” T trajectory points to
the focus point F on the image corresponding to the given
signal sample, the curvature varies both with range and with
azimuth. (Note that, on Fig. 5 to 7, the deviation of the
true trajectory is exaggerated for visibility.) One point critical
for the algorithm implementation is that significant curvature
changes in azimuth are much slower than significant range
fluctuations. Indeed, a range fluctuation larger than, say, 1

10
of the wavelength may easily occur from pulse to pulse
(and are corrected by the range migration). Curvature change
requires a significant change of the trajectory deviation with
respect to the observing range. Therefore the main idea of
the quadratic phase compensation in the ω-k algorithm is to
compensate, on a wide band assumption, the average quadratic
phase for a processing block in the frequency domain. The
difference between the local and average quadratic phase are
compensated for azimuth sub-blocks and range gates in a
mixed range×Doppler time-frequency-domain (the processing
sub-block allows slow azimuth variations of the quadratic
phase). This latter compensation being done on a range
resolved domain, it is applied as a phase, hence with narrow-
band assumption. An important point is that the sub-block
size depends on the transversal velocity error independently
of the azimuth resolution, hence the algorithm remains with
O(r2 log(r)) complexity.

Range×Doppler quadratic phase compensation is done on
(optionally overlapping) sub-blocks with the result being zero-
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Fig. 8. Signal pre-compensation for second order motion compensation:
range columns are processed “sequentially”. A range & azimuth varying
difference in quadratic phase is applied on overlapping azimuth sub-blocks.
Note the sub-block padding because of the azimuth smearing beyond its
bounds induced by quadratic phase.

padded (generally by a factor of 2, but larger interpolations
may be needed in case of strong motion compensation) to
avoid azimuth wrapping of the compensated signal. Indeed,
the quadratic phase (difference) applied to a sub-block has an
azimuth spread effect very similar to the effect an unmodelled
velocity bias has on a SAR image, hence the compensated
signal azimuth slice (sub-block) is wider than the original
signal slice. Fig. 8 shows how the local difference in quadratic
phase is compensated (the block-wise average quadratic phase
is simply added to the “nominal processing” phase).

Note that the “quadratic phase” is defined as an arbitrary
function of the Doppler frequency, and not as a quadratic
function nor as a polynomial (as was the case in early
implementation [10]). It is computed from the sensor trajectory
and the DEM (see Appendix C for details on its computation).
As it is applied on slow-time signal sub-blocks, the sub-block
limits appear in the frequency domain of the final image
and thus do not cause any geometric, radiometric nor phase
blocking artefacts on the image (which is very important for
interferometric or polarimetric applications). Moreover, at high
resolution, integration spans several sub-blocks and their limits
are not parallel in the image spectrum, which smears the
side lobes induced by the phase step between adjacent sub-
blocks in range below significant level. The azimuth antenna
pattern (and also the average elevation antenna pattern on
the azimuth sub-block for this range gate) as well as the
blanking out of the image Doppler band (if not done in the
range & azimuth migration stage) are also applied at this
stage (see section V below). Note also that depending on
the computer architecture (multi-core or GPU) several range
columns may be processed “in parallel” instead of sequentially
for performance enhancement (see section VI below).

As the azimuth migration, the quadratic phase is computed
for a mesh in azimuth and range, but also for a subset
{δ0 . . . δn−1} of the integration interval. For a given resampled
range, azimuth & squint angle δi, the conical image wavefront
of angle δi at the given range of the nominal point N is
computed on the imaged surface (due to the imaged surface
mesh, it is a broken line). The range difference d∆R is
computed by comparing with the range to true trajectory point

image wavefront(   )δc

image wavefront(   )δ
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nom
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pulse
w
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R
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Fig. 9. Computation of the “quadratic phase” for the azimuth of N and the
range R0: The range from the image (conical) wavefront for an angle δ to
the true trajectory point T –corresponding to the range & azimuth migrated
signal– (i.e. the radii of the “true pulse wavefront” solid lines) varies with
δ unlike the range to the nominal trajectory point N (i.e. the radius of the
dashed line). Due to the DEM mesh, the image wavefronts are broken lines,
computing the distance from it to point T is basic geometry which yields the
δ-varying range correction to nominal processing d∆R = Rδ −R.

T of the conical wavefront corrected by the range migration
(which was computed at the integration center angle δc) see
Fig. 9.

For simplification of the computations, the “quadratic
phase” is computed for a grid with sin(δi) evenly spaced
and aligned with the sampling of the azimuth sub-block in
frequency domain (only the samples within the aperture of
course). Since the quadratic phase is applied at the azimuth
sub-block level when the signal is range time-domain, it is
converted to a phase at the middle-frequency of the aperture
for each Doppler frequency (Fig. 10).

This conversion of a range error to a phase makes a narrow
band assumption not appropriate for high resolution, hence we
minimise this correction by applying the “common part” of
the range correction in full frequency domain for the whole
processing block (while applying the “nominal processing”
phase). At this point the conversion of a range difference
varying with δ to phase is done using the exact frequency
for each sample, but conversely, there is no space variation
of the correction (it is constant on the whole block). Only the
smaller difference between the local (space varying) and global
(constant on the processing block) corrections is applied at the
azimuth sub-block level (thus reducing the amplitude of the
correction applied with narrow band assumption).

There are several options for determining the processing-
block “global quadratic phase”, from simply the value at
middle-range & the middle of the azimuth block to more
complicated ways as taking the average on the block for
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Fig. 10. Signal (fast-time) frequency k (fat line) used for converting
“quadratic phase” range error Rδ−Rδc to phase while in the range×Doppler
domain. It corresponds to the average wave-number k in the aperture along the
constant Doppler frequency (or constant ku) vertical lines. It is represented
for an aperture containing the 0-Doppler (left) and strongly squinted (right).

points on non-overlaid area of the DEM (i.e. averaging with
discarding the points on the vertical plane and the points
on overlaid parts of the image). Note also that the “global
quadratic phase” differs from a processing block to the next,
this means that the signal pre-compensation for second order
of Fig. 8 needs to be done twice for the overlapping signal
between two consecutive blocks. As the range compression
and the range & azimuth migrations are not affected by the
processing block change, we need to save the overlapping
preprocessed signal. Either use an array for saving the overlap,
which is the solution implemented on CPU, or use two buffers
for before and after second order compensation, which is the
solution implemented on GPU. When overlap is less than 50%
of the block, the buffer space freed by the decimated part of
the spectrum may be used for overlap storage.

C. The range aperture migration issue

In fact, the “difference between the local and global correc-
tions” is slightly more complicated in practice than presented
in subsection IV-B above: One important point is that the radar
frequency within the band (the aperture in range) is mapped
to a space varying interval in k once in full frequency domain
after the motion pre-compensations. Indeed, as the range to
true trajectory is locally compressed with a rate ∂R

∂R0
by the

range & azimuth migration, it is scaled by the reciprocal in
the frequency domain, and this yields an offset dkr (4) for the
center of the signal band after pre-compensation. However, the
global quadratic phase is applied (with the nominal processing
phase) around the bandwidth center for the middle of the
processing block (an offset on k of dkr0), while the local
aperture is mapped to the spectrum with a range & azimuth
varying offset dkr.

dkr = kr(
1
∂R
∂R0

− 1) (4)

This range aperture offset is very similar to the range
band offset that would limit the possibility to obtain an
interferogram between an image acquired from the nominal
trajectory and another image acquired from the true trajectory:
It is a consequence of the baseline between the nominal and
true trajectories, hence in airborne case, it varies both in range
(due to the incident angle change) and in azimuth (due to true
trajectory nonlinearities).

This means that the “global quadratic phase” deduced from
the local quadratic phase for a given range gate & azimuth
sub-block must be computed from the δ-dependent range error
with the signal middle frequency shifted by the dkr − dkr0
offset. Furthermore, the nominal processing must be applied
to a wider interval of k than the mere (dkr0 -shifted) radar
bandwidth, but on the interval scanned by the bandwidth
for the minimum and maximum “relevant” dkr. Here again,
several strategies are available to select the relevant dkr
offsets, such as the average on the full block or the average
excluding point on the vertical and/or overlaid areas. . .

V. ILLUMINATION COMPENSATION & REMODULATION

Unlike the spaceborne SAR, airborne SAR illumination
pattern is not a constant function of range as sensor irregular
attitude motions during acquisition change the antenna pattern
projection on the ground. Aside from the induced radar
cross sections (RCS) calibration errors on the final image,
uncompensated illumination changes during integration would
apply a unwanted (and space-varying) azimuth weighting, thus
impacting azimuth resolution and other image quality factors
such as peak side lobe & spurious side lobe ratios (PSLR &
SSLR).

The illumination compensation is done for each range
gate & each azimuth sub-block in the range×Doppler do-
main. For each sample, the average illumination is computed
for the given range & the direction δi and compensated.
The average (with triangular weighting) illumination during
the sub-block acquisition is evaluated from the attitude, the
antenna pattern and optional on-board pre-summing of the
signal before recording. Note that the antenna pattern may
contain a phase component(and not only amplitude) which is
sometimes necessary for wide integration angles as the “phase
center” approximation for an antenna may not apply (e.g. the
UHF/VHF signal used in Fig. 2 & 8 is acquired from a low
directivity antenna suffering multi-paths via the aircraft wings
that cannot be approximated by a point-like phase center)

Because of this subblockwise compensation, the compen-
sation is not perfect along the integration, hence the final
synthesised image is post-corrected in amplitude by comparing
at each point the average illumination during its integration and
the subblocks compensation applied. The average illumination
is also output by the processor because it may be needed
for further image processing (such as mosaicking or multi-
looking).

In fact there is a last operation before the final image is out-
put: In order to make resampling operations easier, the initial
signal is offset in frequency (both within the radar bandwidth
and in Doppler) yielding a zero average frequency in both
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axes. This frequency offset is reinjected in the image (keeping
track of the phase origin) because otherwise the frequency
would make image comparison or combination difficult. For
example, it would be difficult to make an interferogram or a
coherent change detection between two acquisitions. It could
also be difficult to combine images obtained by processing
sub-apertures, while after offset cancellation, an image with
the full aperture is simply the sum of the images from sub-
apertures (splitting the radar bandwidth is not uncommon
as it allows an antenna pattern compensation varying with
frequency –useful for very wide bandwidth– and is often used
to share an image synthesis between several GPUs).

VI. ALGORITHM PARALLELISATION

This ω-k synthesis can be parallelised for increasing the
processing speed, as it can be simply separated in stages where
data is processed along rows (range) and stages where data is
processed along columns (azimuth). In case several processing
units are available, they can process simultaneously the data
of separate rows during the along-row stages and the data of
separate columns during along-column stages, thus increasing
the processing speed.

In fact, SAR processing is also limited by data transfers
(signal read and, to a lesser extent, image write), hence pipelin-
ing (parallelising successive stages of the processing) is also
implemented to mask the disk read/write latencies. Namely,
1) signal input to range & azimuth migration, 2) second-order
pre-compensation to azimuth forward FT, 3) range forward
FT to backward azimuth FT & 4) optional range resampling,
illumination post-compensation and image output are the four
pipeline stages. In the multi-core/multiprocessor architecture
(programmed with the native posix thread interface) true
pipelining is done between the pair of stages 1 & 2 and the
pair of stages 3 & 4, with a dynamic balancing of the number
of threads allocated to stages 1 to 3 (4 is single thread) done
after the first block (using measured disk read & processing
times). Within each pair, the two stages are run in sequence.

In the GPU architecture (programmed with the OpenCL
interface) true pipelining is not possible since a GPU can
only run one given program (kernel) at a time (in a “block
vector-like” way). It can, however, perform CPU to/from GPU
transfers (and disk input/output) during processing: Typically,
blocks of signal are input (or image blocks are output) in
parallel with processing the previous signal block (respectively
the next image block). Furthermore, during disk write (or
disk read-modify-write in case of multi GPU sub-aperture
processing) which is long compared to the last processing
stage 4 (illumination post-compensation & reformatting from
GPU complex interlacing to native CPU complex), signal
vector-blocks for the next processing block are read and
preprocessed up to range & azimuth migrations (a kind of
“cycle steal” by stage 1 during stage 4). Of course, all this
requires tedious synchronisations and double-buffering that are
beyond the scope of this paper.

Fig. 11 is an example of high resolution image (3 dB
azimuth & range resolutions are both 11 cm). It has been
processed in 4 min 30 s on an Nvidia M2050 GPU (448

elementary processors) with the ω-k algorithm (the only one
programmed to date for GPU) using 2843 Mb of video RAM
(out of 3072 Mb available)2. The same processing takes 24 min
on two Xeon X5650 2.67 GHz (12 processor cores) using
3692 Mb RAM (for 64 Gb available, NTP version of the
program is less optimised for memory usage, hence the larger
RAM footprint). Restricting to a single processor core, the
processing takes 3 h 47 min using 3672 Mb RAM (this
show the scalability is not perfect, probably because of the
insufficient size of the L2 and L3 caches that are shared by
the 6 CPU cores of each die).

For comparison, time-domain processing using 2-stage fac-
tored back-projection algorithm on 12 processor cores takes
1 h 59 min using 1599 Mb RAM, and unfactored (plain) back-
projection algorithm on 12 processor cores takes 23 h 46 min
using 2449 Mb RAM.

VII. CONCLUSION & PERSPECTIVES

The motion-compensated ω-k algorithm described above
allows focusing both wide band and wide aperture airborne
SAR acquisition with a deterministic motion compensation
which preserves image geometry, radiometry and phase, while
keeping a O(r2 log(r)) complexity. This makes it appropriate
for demanding SAR applications as repeat-pass interferometry,
coherent change detection or polarimetric analysis.

It can be further enhanced: For example, it is possible to
have a full polarimetric processing even when real antenna
radiates imperfect polarization and aircraft attitude fluctuations
rotate the polarization axes during integration. This could be
performed by parallel processing of the four polarization chan-
nels with a recombination of the four channels for restoring
the linear orthogonal basis for each range gate & azimuth sub-
block during the local quadratic phase compensation.

It is also possible to increase the compensatable trajectory
deviation (N to T baseline) by using a blockwise nominal
trajectory, but this imposes an uneven resampling of the
processing block image lines to map them in the final (global)
image coordinates. This could be necessary for real-time pro-
cessing, because the nominal trajectory would be the planned
one and not a linear fit of the final true trajectory as in the
“off-line” case. Such a resampling is also needed for bistatic
SAR processing, as the image coordinates in which the signal
frequencies correspond to image frequencies are no longer the
cylindrical coordinates.

Adapting the algorithm to time-varying waveforms such
as orthogonal frequencies modulation (OFDM) for using the
transmitted signal as a downlink or for low probability of
interception (LPI) still raises difficult problems in the coupling
of range compression and Doppler effect along the wide
integration angle.

APPENDIX A
NOMINAL PROCESSING DERIVATION

First, (2b) is derived: For a sample of the signal spectrum
of given signal fast-time frequency of f and slow-time (i.e.

2note: mocomp parameters are processed in 9 s on one CPU core, and the
4 CPU threads used for pipelining, disk transfers & GPU control consume
around 30% of one core capability and 40 Mb of CPU RAM.
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Fig. 11. High resolution acquisition example: X-band acquisition of downtown Toulouse from a C160-Transall aircraft. Bandwidth is 1.224 GHz (5 successive
frequency agilities covering 240 MHz each), duration is 120 s, signal size (single channel 8 bits) is 34.3 Gb, full resolution swath is 1200 m (slant), stripe
length (for square resolution) is 9300 m.

Doppler) frequency 2f
c cos(δ), we need the corresponding

illumination for a one-way trip at c
2 (which correspond to the

imaging factor for the back-and-forth propagation at c).
We shall later correct for propagation and antenna pattern,

hence we first derive the image vs signal spectrum amplitude
due to SAR geometry alone. Note also that c is the radiowave
celerity in the atmosphere during acquisition, which is derived
from air pressure, temperature & dew point, information that
is mandatory for the pilot. In our software, it is averaged
between the flight altitude and the ground by integrating the
1976 standard atmospheric model.

Consider a given point F at range R in the direction
squinted by angle δ from an acquisition point N taken as
origin of phase here (we shall later change that while deriving
(2a)). Image value at F is obtained from signal acquired from
other acquisition points on the nominal trajectory around N
(the integration interval). Let denote s the algebraic distance
of the generic acquisition point from N . The phase (single trip
illumination at c/2) from this generic acquisition point is:

ψ(s) =
−4πf
c

√
(R cos(δ)− s)2 + (R sin(δ))2

+
−4πf
c

cos(δ)s (5)

The first term being the contribution from the difference in
propagation and the second the contribution of slow-time
(Doppler) frequency. Thus the cumulative illumination (or
equivalently back-and-forth at c image contribution) can be
expressed as:

σ ∼= 1
∆zs

∫

Σ

p(s)
(R cos(δ)− ds)2 + (R sin(δ))2

ejψ(s)ds (6)

where ∆zs is the signal slow time sampling along trajectory
(for illumination is in fact a discrete sum, not an integral), Σ is
the signal support (i.e. the processing block), p(s) is the two-
way antenna pattern factor and the R−2 factor the propagation
gain.

Here ψ′(0) = 0 (hence 0 is a stationary phase point) and
ψ′′(0) = −4πf(sin(δ))2

cR hence the illumination can be further
approximated (thanks to the principle of stationary phase[7])
as:

σ ∼= p(0)ejψ(0)

∆zs sin(δ)

√
cR

2f
e−j

π
4 (7)

Hence (2b) (if we assume processing gain compensated for the
center of the processing block). The −π/4 extra phase term
shows there is a constant phase offset for σ from the phase
φ(0) (value of (5) at s = 0) which correspond to the direct N

to F propagation (and this justify the geometrical derivations
from sections II & IV).

In practice, range compression is centered at a middle swath
range Rc, the range frequency is cancelled for the middle
frequency fc and the Doppler frequency offset by 2fc

c cos(δc)
with origin at the center Nc of the processing block. This
centering is important for easing the complex interpolations
both in time and frequency domain (i.e. both image and
spectrum are zero-centered). The range compression center-
ing at range Rc changes the phase φ(0) at the processing
block center Nc to 4πf

c Rc. At this point the phase is that
of the transmitted signal and does not depend on δ. The
translation of the time domain origin of the processing bloc
to range Rc in squint direction δc (or (Rc cos(δc), Rc sin(δc))
in Cartesian –unsquinted– (x, y) image coordinates) changes
the phase to 4πf

c Rc(1− cos(δc) cos(δ)− sin(δc) sin(δ)) since
kx = 4πf

c cos(δ) and ky = 4πf
c sin(δ), hence (2a) when the

π/4 constant phase offset is added.

APPENDIX B
AZIMUTH MIGRATION DETAILS

Prior to this computation, sensor trajectory and DEM are
converted to Cartesian coordinates centered at an origin point
(generally the zero altitude point below the acquisition start
point) with axes corresponding to the East, North and zenith
directions at the origin point. The nominal trajectory is defined
as a straight line from the point at a given altitude above
origin point with a given heading and slope (measured in the
Cartesian coordinate, i.e. at the origin point). DEM is projected
in the final image coordinates as described in section IV.

For any azimuth z (measured from origin along the nominal
trajectory) and nominal range R, the ground altitude H of the
mid-integration focusing point F is read in the projected DEM.
Cartesian coordinates of F are given by:

xF = z sin(η) cos(ρ) + d1 sin(η)±d2 cos(η)
yF = z cos(η) cos(ρ) + d1 cos(η)∓d2 sin(η) (8)

zF =
∣∣∣∣

H −Horg if d2 > 0
z sin(ρ) +R sin(ρ− δc) if d2 = 0

with Horg , η & ρ respectively the nominal trajectory origin
altitude, heading & slope. and

d1 =
∣∣∣∣
R+ z tan(ρ) if d2 > 0
R cos(ρ− δc) if d2 = 0 (9)

d2 =
∣∣∣∣
√
R2 − z2 − d2

1 if R2 − z2 − d2
1 > 0

0 if R2 − z2 − d2
1 ≤ 0
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Upper (resp. lower) signs of ± & ∓ in (9) are used when
imaging to the right (resp. left) side. The lower condition in
(10) corresponds to imaging below the track (above ground).

From F coordinates, the acquisition time τ for the migrated
cell for range R and azimuth z is derived from an iterative
search. Given two adjacent sample times τn−1 and τn, the
barycentric coordinate w of the nearest angle to F from N on
the straight line Tτn−1Tτn

is given by the elementary algebraic
expression:

w =

(
F̂N − F̂ Tτn−1

)T (
F̂ Tτn − F̂ Tτn−1

)

∥∥∥F̂ Tτn
− F̂ Tτn−1

∥∥∥
2 (10)

with V̂ denoting normalized vector V
‖V‖ . When 0≤w≤1

the acquisition time is τ = wτn + (1 − w)τn−1, when
w < 0 (resp. w > 1) we consider the previous (resp.
next) sampling time τn+1 = min(τn−1, taun) − δτ (resp.
τn+1 = max(τn−1, taun)+δτ ) and reiterate except in the case
τn+1 = τn−1 in which case the acquisition time is τ = τn.

This algorithm seems quite rudimentary, however, because
of the continuity of the azimuth migration, when initialized
from the previous azimuth z − δz at the same range R by
the two sampling times around τ |z−δz + δz/v (v being the
sensor velocity along track at τ |z−δz) it typically converges in
a couple of iterations.

This time of acquisition τ yields both range migration
∆R = ‖FTτ‖ −R and azimuth migration ∆z = z(Tτ )− z.

APPENDIX C
QUADRATIC PHASE DETAILS

Consider the sample for spectrum point i (at squint angle δi)
of the quadratic phase for the sub-block j (of azimuth center
zj): The conical wavefront at squint angle δi for sample with
range R and azimuth zj is parametrised in cylindrical (z, r)
coordinates as:

r(z) = − tan(δi)z +
(

R

cos(δi)
+ tan(δi)zj

)
(11)

with z the azimuth and r the range to nominal trajectory.
Those are non-squinted coordinates linked to final image (r, z)
coordinates by:

r =
r

cos(δc)
z = z− r sin(δc) (12)

From (12) the focusing elevation is retrieved from the pro-
jected DEM, for each intersection of the wavefront with
the rows of the projected DEM. (11) provides the other
two coordinates and (9) allows to derive the 3D Cartesian
coordinates of the intersections of the wavefront with the rows
of the projected DEM (i.e. determines the vertices of the 3D
broken line wavefront).

Wavefront point M closest to Tτ is first bracketed by
stepping through the intersections with DEM rows (vertices)
and comparing range to Tτ of intersections with adjacent
rows. Then a Fibonacci search is applied between the two
adjacent DEM rows yielding the closest point of the wavefront,

and the corresponding quadratic phase point is given by
‖MTτ‖−‖FTτ‖ in distance (it is later converted into a phase).

As mentioned in subsection IV-B the squint angle δi for
which the quadratic phase is evaluated are such that the δi
span the integration interval and sin(δi) is aligned with sub-
block’s frequency domain azimuth samples. Thinner grid may
be evaluated in order to have a better estimate of the block
average quadratic phase (which is applied on the full block
in frequency domain, thus without narrow band condition).
The local (i.e. at range R in the sub-block of center z)
quadratic phases distance is converted to phase at a frequency
as illustrated in Fig. 10 and with distance offset by the global
(block average) quadratic phase distance itself converted with
compensation of range aperture migration (subsection IV-C).
The local quadratic phase difference is applied in range
Doppler domain (and here under narrow band assumption), but
the fact that the block average quadratic phase is applied under
wide band conditions allows larger deviation of the sensor
trajectory from the nominal one.

The latter point is critical when two SAR images are
synthesized with a common nominal trajectory, thus allowing
direct interferogram computation with the images. The range
aperture migration issue translates directly into critical base-
line issue in that case.

Note that it is not mandatory to synthesize both images with
the same nominal trajectory for generating an interferogram
because with a deterministic motion compensation we also
have a deterministic determination of the space frequency
envelop for each image, hence it is possible to coherently
resample them (e.g. resample the slave image in the master
image coordinate and then compute the interferogram).

The sub-block zero-padding in Fig. 8 is decisive in applying
the “quadratic” phase correction: Indeed the effect of such a
phase is to smear the sub-block in azimuth exactly as a velocity
bias smears (unfocuses) the point echoes in a SAR images
along azimuth axis. Hence, the sub-block must be padded
with margin in which it could smear (instead of wrapping
in azimuth, with disastrous consequences on the final image).
The pre-compensated signal is eventually obtained by adding
the overlapping padded sub-blocks.

The azimuth smearing of the sub-blocks has however a
paradoxical positive impact: If the quadratic phase changes
between sub-blocks, then the quadratic phase difference ap-
plied on each sub-block differ, but the phase step between
sub-blocks is smoothed by the azimuth smear even when the
sub-blocks are not overlapping. The 50% sub-block overlap
is the default option of the software, but even if disabled,
sub-blocking artefacts do not appear in the point echo image
spectrum (aperture).
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