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Abstract—Identifying the pathways and mechanisms that are
significantly impacted in a given phenotype is challenging. Issues
include patient heterogeneity and noise. Many experiments do
not have a large enough sample size to achieve the statistical
power necessary to identify significantly impacted pathways.
Meta-analysis based on combining p-values from individual ex-
periments has been used to improve power. However, all classical
meta-analysis approaches work under the assumption that the
p-values produced by experiment-level statistical tests follow a
uniform distribution under the null hypothesis. Here we show
that this assumption does not hold for three mainstream pathway
analysis methods, and significant bias is likely to affect many,
if not all such meta-analysis studies. We introduce DANUBE,
a novel and unbiased approach to combine statistics computed
from individual studies. Our framework uses control samples to
construct empirical null distributions, from which empirical p-
values of individual studies are calculated and combined using
either a Central Limit Theorem approach or the additive method.
We assess the performance of DANUBE using four different
pathway analysis methods. DANUBE is compared with five meta-
analysis approaches, as well as with a pathway analysis approach
that employs multiple datasets (MetaPath). The 25 approaches
have been tested on 16 different datasets related to two human
diseases, Alzheimer’s disease (7 datasets) and acute myeloid
leukemia (9 datasets). We demonstrate that DANUBE overcomes
bias in order to consistently identify relevant pathways. We also
show how the framework improves results in more general cases,
compared to classical meta-analysis performed with common
experiment-level statistical tests such as Wilcoxon and t-test.

Index Terms—meta-analysis, p-values, empirical distribution,
pathway analysis, Alzheimer’s disease, acute myeloid leukemia.

I. INTRODUCTION

THE proliferation of high-throughput genomics technolo-
gies has resulted in an abundance of data, for many

different biomedical conditions. Large public repositories such
as Gene Expression Omnibus [1, 2], The Cancer Genome Atlas
(cancergenome.nih.gov), ArrayExpress [3, 4], and Therapeu-
tically Applicable Research to Generate Effective Treatments
(ocg.cancer.gov/programs/target) store thousands of datasets,
within which there are independent experimental series with
similar patient cohorts and experiment design. Gene expres-
sion data, as measured by microarrays, are particularly preva-
lent in public databases, such that some disease conditions are
represented by half a dozen studies or more.
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Experiments comparing two phenotypes, such as disease
and control, yield lists of genes that are differentially expressed
(DE). However, lists of DE genes obtained from similar but
independent experiments tend to have little in common, and
taken alone, they usually fail to elucidate the underlying
biological mechanisms. Effective meta-analysis approaches are
needed to unify the biological knowledge spread out over such
similar studies with apparently incongruent results.

The goal of the meta-analysis is to combine the results of in-
dependent but related studies and provide increased statistical
power and robustness compared to individual studies analyzed
alone [5, 6]. In spite of the numerous sophisticated tools for
meta-analysis, many biological applications still use only Venn
diagrams (intersection/union) or vote counting for combining
multiple studies [7, 8]. Such approaches are useful for demon-
strating consistency when combining a few studies. However,
when combining many studies, Venn diagrams are either too
conservative (for intersection) or too anti-conservative (for
union), while vote counting is statistically inefficient [5, 9, 10].
Regarding microarray data, meta-analysis has been used at
both gene level [5, 7, 11–13] and pathway level [11, 14].
Pathway analysis [15–18] was developed to correlate differen-
tial gene expression evidence with a-priori defined functional
modules, organized into biological pathway databases, such as
Kyoto Encyclopedia of Genes and Genomes (KEGG) [19, 20],
Reactome [21], Biocarta (www.biocarta.com), or Molecular
Signatures Database (MSigDB) [22].

One straightforward and flexible way of integrating diverse
studies is to combine the individual p-values provided by each
study. Classical meta-analysis methods of combining p-values
have been reviewed and compared in [23]. These include
Fisher’s method based on the chi-squared distribution [24], the
additive method [25] using the Irwin-Hall distribution [26, 27],
minP [28], and maxP [29].

In an early study, Rhodes and others [13] collected multiple
prostate cancer microarray datasets and combined p-values
using Fisher’s method. Since then, other sophisticated ap-
proaches have been proposed including the weighted Fisher’s
method [30] and the latent variable approach [31, 32].

The major drawback of the available p-value-based meta-
analysis frameworks is that they work under the assumption
that the p-values provided by the individual statistical tests
follow a uniform distribution under the null hypothesis. Pre-
vious reports describe non-uniform distributions of p-values
under the null as due to specific factors such as improper nor-
malization, cross-hybridization, poorly characterized variance,
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and heteroskedasticity in microarray data analysis [33, 34], or
even due to properties of some more general distributions [35].
Here we show that this assumption also does not hold in the
realm of pathway analysis methods, severely compromising
the reliability of the results. In addition to strong statistical
assumptions, the current methods for combining p-values are
sensitive to outliers. For example, using Fisher’s method, a p-
value of zero in one individual case will result in a combined
p-value of zero regardless of the other p-values. The same is
true for the minP and maxP statistics, where outliers greatly
influence the combined p-value.

Here we propose DANUBE (Data-driven meta-ANalysis
using UnBiased Empirical distributions), a new meta-analysis
framework which can combine the p-values of multiple studies
in a better way. Our contribution is two-fold. First, we use
empirical null distributions to calculate p-values for individual
studies. This approach learns from the data under the null
hypothesis and compensates for any bias potentially intro-
duced by an individual pathway analysis method. Second,
we combine the individual p-values using a method based on
the Central Limit Theorem. This is less sensitive to outliers
and provides more reliable results. Our simulation experiments
demonstrate that both type I and type II errors of DANUBE are
better than those of classical meta-analysis approaches using
both parametric and non-parametric tests.

We apply DANUBE in the context of pathway analysis
using 16 public gene expression datasets from two biological
conditions, and 4 different pathway analysis methods. Gene
Set Enrichment Analysis (GSEA) [36] and Gene Set Analysis
(GSA) [37] are Functional Class Scoring methods [36–39],
Down-weighting of Overlapping Genes (PADOG) [38] is an
enrichment method [40–42], and Signaling Pathway Impact
Analysis (SPIA) [43, 44] is a topology-aware method [43, 45].
These pathway analysis methods are applied on the human
signaling pathways from KEGG [19, 20].

We show that with the exception of GSEA, each of the other
three methods GSA, SPIA, and PADOG have different biases,
leading to non-uniform distributions of p-values under the null
hypothesis. Not surprisingly, when combining p-values using
classical methods such as Fisher’s or the additive method,
each of the three pathway analysis methods (GSA, SPIA, and
PADOG) yields a very different list of significantly impacted
pathways. We then apply the DANUBE framework using the
empirical distributions characteristic to each of these methods.
The DANUBE results yield much more consistent lists of
significant pathways that are also pertinent to the phenotypes.

II. BACKGROUND

We first recapitulate the classical methods of combining
p-values, such as Fisher’s method [24] and the additive
method [25–27]. We then demonstrate the shortcomings of
existing approaches in pathway analysis.

A. Fisher’s method

Fisher’s method [24] is one of the most widely used methods
for combining independent p-values. Considering a set of m
independent significance tests, the resulting p-values P1, P2,

. . . , Pm are independent and uniformly distributed on the in-
terval [0, 1] under the null hypothesis. Denoting Xi = −2 lnPi
(i ∈ {1, 2, . . . ,m}) as new random variables, the cumulative
distribution function of Xi can be calculated as follows:

Fi(x) = Pr(Xi ≤ x) = Pr(−2 lnPi ≤ x) = Pr(Pi ≥ e
x
2 )

=

∫ 1

e−
x
2

f(p)dp = 1− e− x
2

The above function is the cumulative distribution function
of a chi-squared distribution with two degrees of freedom
(χ2

2). Since the sum of chi-squared random variables is also a
chi-squared random variable, −2

∑m
i=1 ln(Pi) follows a chi-

squared distribution with 2m degrees of freedom (χ2
2m). In

summary, the log product of m independent p-values follows
a chi-squared distribution with 2m degrees of freedom:

X = −2
m∑
i=1

ln(Pi) ∼ χ2
2m (1)

We note that if one of the individual p-values approaches
zero, which is often the case for empirical p-values, then the
combined p-value approaches zero as well, regardless of other
individual p-values. For example, if P1 → 0, then X → ∞
and therefore, Pr(X) → 0 regardless of P2, P3, . . . , Pm.
Therefore, we see that Fisher’s method is sensitive to outliers.

In practice, most pathway analysis methods use some
kind of permutation or bootstrap approach to construct an
empirical distribution of a statistic under the null. For ex-
ample, the empirical null distribution of the t statistic is
ξt = {t1, t2, . . . , tN}. The empirical p-value calculated from
such a distribution is the fraction of the statistics’ values in
the N random trials performed that are more extreme than the
observed one. Many times, there are no occurrences of values
more extreme than the observed one, yielding an empirical p-
value of zero. In this situation, the combined p-value calculated
using Fisher’s method will be zero, even if all other p-values
are equal to one. It is important to note that this phenomenon
occurs because many methods choose to round the reported
empirical p-value down to zero (when in fact, the real p-value
is somewhere in the interval [0, 1/N ]), and not because of the
mathematical formulation of Fisher’s method.

B. Additive method

The additive method proposes an alternative approach that
uses the sum of p-values instead of the log product. Consider
m random variables P1, P2, . . . , Pm that are independent and
uniformly distributed on the interval [0, 1]. Denoting X =∑m
i=1 Pi as a new random variable, then X follows the Irwin-

Hall distribution [26, 27]. The cumulative distribution function
of X can be calculated as follows:

F (x) =
1

2
+

1

2m!

m∑
i=0

(−1)i
(
m

i

)
(x− i)msgn(x− i) (2)

Using the above cumulative distribution function, we can
calculate the probability of observing the sum X =

∑m
i=1 Pi.

We note that the concept of the additive method was also
presented in [25] with a slightly different formulation and
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proof than in [26, 27]. However, they are equivalent and can
be transformed into one another.

The additive method is not as sensitive to extremely small
individual p-values as Fisher’s method. However, both meth-
ods assume the uniformity of the p-values under the null
hypothesis. We will show that this assumption does not hold
for three mainstream pathway analysis methods. The inherent
bias of these pathway analysis methods is most likely to affect
the classical meta-analysis in most cases, and thus lead to
systematic bias in identifying significant pathways.

C. Pitfalls of the existing approaches

Null distributions are used to model populations so that sta-
tistical tests can determine whether an observation is unlikely
to occur by chance. The p-values produced by a sound sta-
tistical test must be uniformly distributed in the interval [0,1]
when the null hypothesis is true [33–35, 46]. For example,
the p-values that result from comparing two groups using a
t-test should be distributed uniformly if the data are normally
distributed [35]. When the assumptions of statistical models do
not hold, the resulting p-values are not uniformly distributed
under the null hypothesis. We will demonstrate this fact using
gene expression data and pathway analysis.

Using only the control samples from 7 publicly available
Alzheimer’s datasets (N=74), we simulate 40, 000 datasets as
follows. We randomly label 37 as “control” samples and the
remaining 37 as “disease” samples. We repeat this procedure
10, 000 times to generate different groups of 37 control and 37
disease samples. To make the simulation more general, we also
create 10, 000 datasets consisting of 10 control and 10 disease
samples, 10, 000 datasets consisting of 10 control and 20
disease samples, and 10, 000 datasets consisting of 20 control
and 10 disease samples. We then calculate the p-values of the
KEGG (version 65) human signaling pathways (extracted as
graph objects by the R package ROntoTools1.2.0 [44] version
1.2.0) using the following methods: GSEA [36], GSA [37],
SPIA [43, 44], and PADOG [38].

Figure 1 displays the empirical null distributions of p-values
using GSA, SPIA, and PADOG. The horizonal axes represent
p-values while the vertical axes represent p-value densities.
Blue panels (A0–A6) show p-value distributions from GSA,
while purple (B0–B6) and green (C0–C6) panels show p-
value distributions from SPIA and PADOG, respectively. For
each method, the larger panel (A0, B0, and C0) shows the
cumulative p-values from all KEGG signaling pathways. The
small panels, 6 per method, display extreme examples of non-
uniform p-value distributions for specific pathways. For each
method, we show three distributions severely biased towards
zero (eg. A1–A3), and three distributions severely biased
towards one (eg. A4–A6).

These results show that, contrary to generally accepted
beliefs, the p-values are not uniformly distributed for three out
of the four methods considered. Therefore one should expect
a very strong and systematic bias in identifying significant
pathways for each of these methods. Pathways that have p-
values biased towards zero will often be falsely identified
as significant (false positives). Likewise, pathways that have

p-values biased towards one are likely to rarely meet the
significance requirements, even when they are truly implicated
in the given phenotype (false negatives). Systematic bias, due
to non-uniformity of p-value distributions, results in failure
of the statistical methods to correctly identify the biological
pathways implicated in the condition, and also leads to in-
consistent and incorrect results. For example, all three of the
zero-biased GSA pathways shown in Figure 1: Prostate cancer
(A1), Adherens junction (A2), and Pathways in cancer (A3),
are reported as statistically significant in the results shown in
Table I even though these data were collected in an experiment
comparing Alzheimer’s disease patients vs. healthy subjects,
an experiment that has nothing to do with cancer.

The effect of combining control (i.e. healthy) samples from
different experiments is to uniformly distribute all sources of
bias among the random groups of samples. If we compare
groups of control samples based on experiments, there could
be true differences due to batch effects. By pooling them to-
gether, we form a population which is considered the reference
population. This approach is similar to selecting from a large
group of people that may contain different sub-groups (e.g.
different ethnicities, gender, race, or living conditions). When
we randomly select samples (for the two random groups to
be compared) from the reference population, we expect all
bias (e.g. ethnic subgroups) to be represented equally in both
random groups and therefore, we should see no difference
between these random groups, no matter how many distinct
ethnic subgroups were present in the population at large.
Therefore, the p-values of a test for difference between the two
randomly selected groups should be equally probable between
zero and one (see Supplementary Section 4 and Figures S10–
S11 for more discussion).

We apply this procedure for the popular Gene Set Enrich-
ment Analysis (GSEA) [36] using the exact same 40, 000
datasets simulated from the pool of control samples of
Alzheimer’s data. The resulting p-value distributions are uni-
form, as displayed in Supplementary Figure S1, showing not
only that our resampled data correctly models the null, but
also that GSEA is an unbiased test. This supports the idea that
the non-uniformity of the distributions is due to the methods
rather than the data. We also plot the top 24 most biased
null distributions of GSEA (Figures S2) using the exact same
data and exact same random grouping of samples. In each
figure, the panels are sorted by the distribution means. The
distributions of GSEA (Figures S2, S6) are uniform while
those of GSA (Figures S3, S7), SPIA (Figures S4, S8), and
PADOG (Figures S5, S9) are biased. Therefore, the bias is
indeed due to the methods and not to one specific pathway.

III. METHODS

In this section we introduce the DANUBE framework and
its application in the context of pathway analysis.

A. The DANUBE framework

We propose a new framework for meta-analysis that makes
no assumptions on the data and is therefore expected to
perform much better than any of the classical methods when
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Distribution of p−values for all pathways (SPIA)
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Distribution of p−values for all pathways (PADOG)
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Fig. 1: The empirical null distributions of p-values using: Gene Set Analysis (GSA) - top, Signaling Pathway Impact Analysis (SPIA) - middle, and Down-weighting of Overlapping
Genes (PADOG) - bottom. The distributions are generated by re-sampling from 74 control samples obtained from 7 public Alzheimer’s datasets. The horizontal axes display the
p-values while the vertical axes display the p-value densities. Panels A0-A6 (blue) show the distributions of p-values from GSA; panels B0-B6 (purple) show the distribution of
p-values from SPIA; panels C0-C6 (green) show the distribution of p-values from PADOG. The large panels on the left, A0, B0, and C0, display the distributions of p-values
cumulated from all KEGG signaling pathways. The smaller panels on the right display the p-value distributions of selected individual pathways, which are extreme cases. For each
method, the upper three distributions, for example A1-A3, are biased towards zero and the lower three distributions, for example A4-A6, are biased towards one. Since none of
these p-value distributions are uniform, there will be systematic bias in identifying significant pathways using any one of the methods. Pathways that have p-values biased towards
zero will often be falsely identified as significant (false positives). Likewise, pathways that have p-values biased towards one are more likely to be among false negative results even
if they may be implicated in the given phenotype.
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Fig. 2: The DANUBE framework for meta-analysis. The blue arrows (I and II) show the classical meta-analysis pipeline while black arrows (1-4) show the pipeline of DANUBE. The
first step (I) of the classical approach is to perform a parametric or non-parametric test for each study. This step provides individual p-values which are independent and identically
distributed (i.i.d.), but not necessarily uniformly distributed under the null, as shown in Fig. 1. The second step (II) of the classical approach is to use a classical method, such as
Fisher’s, to combine the individual p-values, relying heavily on the assumption of uniformity under the null. In step (1) of DANUBE, we choose the discriminating statistic and
calculate the values of this statistic in each study (t1, t2, . . . , tm). In step (2), we generate the empirical distribution ξT of the discriminating statistic under the null hypothesis.
In step (3), we calculate the probability of observing t1, t2, . . . , tm using ξT . In step (4), we combine the m empirical p-values using either the additive method or the Central
Limit Theorem (CLT).

the individual p-values are not distributed uniformly, as we
have shown that it is the case for the pathway analysis
methods. Figure 2 displays a flowchart comparison between
classical meta-analysis and DANUBE. Both approaches take
m independent studies as input. The pipeline marked by blue
arrows (I–II) shows the classical meta-analysis, and the one
marked by black arrows (1–4) is DANUBE.

The classical approach first calculates a p-value for each
study using a parametric or non-parametric test, then it com-
bines the individual p-values into one. The main limitation
of the classical approach is that it relies on the assumption
of uniformity of the p-values under the null hypothesis, which
often does not hold true. As shown in Figure 1, this assumption
is not true for real transcriptomics data and KEGG pathways.

In the DANUBE framework, instead of modeling the data
under a specific assumption, we construct empirical distribu-
tions and use them to calculate empirical p-values. Following
the black arrows (1–4) in Figure 2, we initially calculate the

values t1, t2, . . . , tm of the discriminating statistic for the m
studies in step (1). For example, instead of using a statistical
test to directly calculate the p-values, we could calculate the
means of the data samples over the m studies. In step (2),
we construct the empirical null distribution ξT for the chosen
statistic. In step (3), we calculate the empirical p-values ep1,
ep2, . . . , epm for the m studies with respect to the empirical
null distribution ξT . For all i ∈ {1, 2, . . . ,m}, epi is calculated
as the number of elements in ξT more extreme than ti, divided
by the total number of elements in ξT . We will prove that the
resulting empirical p-values are uniformly distributed under
the null hypothesis.

Lemma 1. Let T be a random variable with the empirical dis-
tribution ξT and the cumulative distribution function FT (T ).
We define the new random variable X as follows:

X =
|{x : x ∈ ξT ∧ x ≤ T}|

|ξT |
(3)
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where the numerator represents the number of elements of
ξT that are smaller than or equal to T . If ξT consists of
enough data points to be considered as continuous, then X is
uniformly distributed on the interval [0,1].

Proof. Denote FT (T ) as the cumulative distribution function
of T. For any value t ∈ ξT , FT (t) can be calculated as follows:

FT (t) =
|{x : x ∈ ξT ∧ x ≤ t}|

|ξT |
(4)

We can see that X = FT (T ). In addition, FT (t) is a strictly
increasing function for all values t ∈ ξT . Let FX(X) be the
cumulative distribution function of X, we have the following
formula:

FX(x) = Pr(X ≤ x)
= Pr(FT (T ) ≤ FT (t))
= Pr(T ≤ t) = FT (t) = x

(5)

We note that FX(x) = x is the cumulative distribution func-
tion of the continuous uniform distribution on [0,1]. Therefore,
if we have enough data for FT (T ) to be considered continuous,
then X will be a uniformly distributed random variable.

In step (4), we combine the empirical p-values using either
the additive method or the Central Limit Theorem (CLT).
According to Lemma 1, the resulting p-values after step (3)
are now truly uniformly distributed under the null hypothesis
and thus can be combined using the additive method as
described in equation (2). However, the additive method can
be computationally intensive when m is large. For this reason,
we use the CLT to approximate the combined p-value [47].
The uniform distribution has mean and variance of 1

2 and
1
12 , respectively. According to the CLT, the average of m
independent and identically distributed (i.i.d.) variables (with
large m) follows a normal distribution with mean µ = 1

2 and
variance σ2 = 1

12m . By default, we use this to approximate
the combined p-value when m ≥ 20. We note that the additive
method of combining p-values in our framework may be
substituted by any other method of combining p-values.

B. The application of DANUBE in pathway analysis

Here we present the application of DANUBE in the context
of pathway analysis (Figure 3). Let us consider a method M ,
which can be GSEA, GSA, SPIA, or PADOG, or any other
method that outputs a p-value for each pathway in the pathway
database. We treat this p-value as the discriminating statistic.
In step (1), we calculate the p-values of the pathways using
the method M . A pathway i will have m p-values (pi1, pi2,
. . . , pim) for the m studies. The m p-values for a pathway are
independent and identically distributed (i.i.d.). However, these
p-values are not necessarily uniformly distributed under the
null hypothesis (see Figure 1). Therefore, combining these p-
values will lead to systematic bias in identifying significant
pathways as shown in Section II-C and as will be further
illustrated in Section IV. Instead of combining these p-values,
we treat them as observed values of the discriminating statistic.

To calculate the probability of observing such values, we
need to construct the empirical distribution under the null

hypothesis as described in steps (2-5) above. In step (2), we
take all of the control samples from the m studies to create a
set of control samples as shown in (C) in Figure 3. In step (3),
we generate the k synthetic datasets by random sampling from
the pool of control samples. For example, for a simulation, we
choose two groups of samples from the pool and label them as
controls and diseases. In our case study using the Alzheimer’s
datasets, as described in Section II-C, we generated 10, 000
simulations of 10 control and 10 disease samples, 10, 000
simulations of 10 control and 20 disease samples, 10, 000 of
20 control and 10 disease samples, and 10, 000 of 37 control
and 37 disease samples, for a total of 40, 000 simulations.

After generating k simulations from the control samples,
we proceed to calculate the p-values for each pathway and
each simulation using the same method M . For a pathway i,
we have a set of p-values spi1, spi2, . . . , spik. Since all of
these p-values are calculated from the real control samples (i.e.
healthy people), they can be considered as p-values under the
null hypothesis. These p-values will be used to construct the
empirical distribution ξi in step (5). In summary, steps (2-5)
produce an empirical distribution for each pathway, resulting
in a total of n empirical distributions for n pathways. These
distributions will be used to calculate the empirical p-values
of the measurements done in step (1).

After steps (1–5), for a pathway i, we have m p-values
pi1, pi2, . . . , pim and an empirical distribution ξi. Using the
formula described in Equation (2), we calculate the empirical
p-values epi1, epi2, . . . , epim. As we showed in the Methods
section, these empirical p-values are independent and uni-
formly distributed under the null hypothesis. In step (7), we
combine these empirical p-values using the additive method
to have a single p-value pDANUBEi for pathway i.

IV. RESULTS AND VALIDATION

In this section we illustrate the limitations of combining
p-values using classical meta-analysis approaches, and show
that DANUBE overcomes these limitations. Sections IV-A and
IV-B compare the classical approaches with DANUBE for the
specific application domain of pathway analysis. Sections IV-C
and IV-D compare the classical meta-analysis approaches with
DANUBE in the general case, applicable to any meta-analysis.

For the pathway analysis applications on which we focus
in this paper, we compare DANUBE with 5 other classi-
cal meta-analysis methods: Stouffer’s, Z-method, Brown’s,
Fisher’s, and the additive method [14, 24, 48, 49], each of
them combined with each of the 4 pathway analysis methods
(GSEA, GSA, SPIA, and PADOG). We also compare these
methods with a stand-alone meta-analysis method, MetaPath.
In total, we analyze the results of 25 approaches: 6 meta-
analyses combined with 4 pathway analysis methods, plus
MetaPath [11, 50]. Each of these methods is tested on two
diseases, one is Alzheimer’s disease with 7 and the other
is acute myeloid leukemia (AML) with 9 datasets. These
conditions were selected for two reasons. First, there is a
pathway in KEGG for each of the diseases. We refer to this as
the target pathway, and use it to validate the methods. Second,
there are multiple experiments available in the public domain
for both of these diseases.
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Fig. 3: DANUBE’s application in pathway analysis. The input is m studies (datasets), and a pathway database, such as KEGG. Each dataset has a certain number of control and
disease samples. Step (1): perform pathway analysis using a method M (eg. GSA, SPIA, or PADOG). For each pathway, the resulting m p-values are independent and identically
distributed (i.i.d.). However, these p-values are not uniformly distributed under the null hypothesis (see Figure 1), and therefore combining them would result in systematic bias. Step
(2): pool the control samples from the m datasets to produce a large set of control samples. Step (3): generate k simulated datasets by randomly sampling from the pool. Since the
“disease” and “control” samples in each of the simulated datasets were chosen only from the control samples of the original m studies, the resulting p-values are calculated under
the null hypothesis. Step (4): perform pathway analysis on the simulated data. Step (5): build an empirical distribution for each pathway, which consists of k p-values obtained under
the null hypothesis. Step (6): calculate an empirical p-value for each p-value obtained from step (1). For example, using the empirical distribution ξ1, we calculate the empirical
p-value ep11 as the probability of observing a p-value more extreme than p1, i.e., ep11 = |{sp1i ≤ p11, i ∈ [1..k]}|. Step (7): combine the m empirical p-values obtained for
each pathway using either the additive method or the Central Limit Theorem.
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A. Pathway analysis applications: Alzheimer’s disease

The Alzheimer’s datasets we use in our data analysis are
GSE28146 (hippocampus) and GSE5281 (6 different tissues:
entorhinal cortex (EC), hippocampus (HIP), medial tempo-
ral gyrus (MTG), posterior cingulate (PC), superior frontal
gyrus (SFG), and primary visual cortex (VCX)). The 4 path-
way analysis methods, GSEA, GSA, SPIA, and PADOG, were
used to process the expression data in each study and output
a p-value for each study and for each pathway. Details of all
datasets are provided in Supplementary Section 3.

The rankings and FDR-corrected p-values of the target
pathway Alzheimer’s disease for the 7 Alzheimer’s datasets
are displayed in Figure 4. The graphs demonstrate that the
adjusted p-values and rankings of the target pathway vary
substantially between the 4 methods for a given study, and
from one study to the next. Furthermore, both GSA and
PADOG report the target pathway Alzheimer’s disease as not
significant in all 7 studies.

We combine the 4 pathway analysis methods with 6 meta-
analyses: Stouffer’s, Z-method, Brown’s, Fisher’s, the additive
method, and DANUBE. Using a pathway analysis method M ,
each pathway has 7 p-values – one per study. These 7 p-
values are combined using each of the 6 meta analysis methods
Therefore, each pathway analysis method produces 6 lists of
pathways. Each list has 150 pathways ranked according to the
combined p-values. We then adjusted the combined p-values
for multiple comparisons in each list using FDR.

In order to run DANUBE, we generated the null distribu-
tions from control samples as described in Section III-B. We
took the 74 control samples from the 7 Alzheimer’s datasets,
and randomly divided them into “control” and “disease” sub-
groups. We generated 10, 000 simulations of 10 controls and
10 diseases, 10, 000 simulations of 10 controls and 20 diseases,
10, 000 of 20 controls and 10 diseases, and 10, 000 of 37
controls and 37 diseases, for a total of 40, 000 simulations. For
each pathway analysis method, we constructed 150 empirical
distributions for 150 KEGG signaling pathways (totally 600
empirical distributions for the 4 methods GSEA, GSA, SPIA,
and PADOG). We used these empirical distributions to calcu-
late the empirical p-values before applying the additive method
to combine the empirical p-values for each pathway, resulting
in 150 combined p-values. We then adjusted the combined p-
values for multiple comparisons using FDR. Running time is
reported in Supplementary Section 5 and Tables S1–S2.

Table I displays the results using GSA combined with the
6 meta-analysis methods. The horizontal line across each list
marks the 1% significance threshold. The pathway highlighted
green is the target pathway Alzheimer’s disease. Pathways
highlighted in red are examples of false positives. These
pathways were expected to be reported as false positives
because their null distribution is very skewed towards zero
(see Figure 1 panels A1–A3 and Supplementary Figure S3).
These include Adherens junction and several cancer-related
pathways, none of which are known to be implicated in
Alzheimer’s disease. Stouffer’s method, the additive method,
and DANUBE identify the target pathway as significant.
DANUBE yields the best ranking.

Both Stouffer’s and the additive method identify the target
pathway as significant using GSA, as shown in Table I. How-
ever, the inherent bias of the null distribution brings irrelevant
results into the list of significant pathways. For Stouffer’s
method, pathways having p-values biased toward zero, such as
Prostate cancer, Adherens junction, Pathways in cancer, and
Pancreatic cancer are still among the significant pathways. For
the additive method, pathways having p-values biased toward
zero, such as Prostate cancer, Adherens junction and Pathways
in cancer are still among the significant pathways.

Table II displays the results using PADOG combined with
the 6 meta-analysis methods. Only DANUBE identifies the
target pathway as significant. Z-method and Brown’s method
return no significant pathways. For Stouffer’s, Fisher’s, and
the additive method, the systematic bias of the pathway
analysis method greatly influences the outcome of the meta-
analyses. Pathways having p-values biased toward zero, such
as Adherens junction and cancer related pathways (see Figure 1
panels C1–C3 and Supplementary Figure S5) are among the
significant pathways.

Supplementary Table S3 displays the results using SPIA
combined with the 6 meta-analysis methods. The target path-
way is significant and is ranked near the top for all methods.
DANUBE yields the shortest list of significant pathways. All
the 5 significant pathways, Parkinson’s disease, Alzheimer’s
disease, Synaptic vesicle cycle, Cardiac muscle contration, and
Huntington’s disease are also significant when we combine
DANUBE with GSA and PADOG.

Supplementary Table S4 displays the results using GSEA
combined with the 6 meta-analysis methods. The horizontal
line across each list marks the cutoff FDR = 0.01. The
pathway highlighted green is the target pathway Alzheimer’s
disease. The target pathway is significant for all the 6 meta-
analysis methods. Because GSEA is unbiased, the additive
method and DANUBE have equivalent results. These two
methods have a shorter list of significant pathways and rank
the target pathway higher than other methods. In addition,
all the 4 significant pathways, Cardiac muscle contration,
Huntington’s disease, Alzheimer’s disease, and Parkinson’s
disease appear in the lists of significant pathways when we
combine DANUBE with GSA, PADOG, and SPIA.

There is no gold standard for assigning true or false values
to each of the results, apart from the expectation that a disease
under study should impact its namesake pathway. Indeed, the
target pathway Alzheimer’s disease is ranked as significant
for all of the 4 pathway analysis methods when combined
with DANUBE. The target pathway is also ranked higher
when using DANUBE compared to the results of other 5
meta-analysis methods. In addition, the pathways Parkinson’s
disease, Alzheimer’s disease, Cardiac muscle constration, and
Huntington’s disease, consistently appear as significant in the
results of all the 4 pathway analysis methods when combined
with DANUBE.

Alzheimer’s, Parkinson’s, and Huntington’s diseases are
three neurological disorders that have many commonalities
including abnormal protein folding, endoplasmic reticulum
stress, and ubiquitin mediated breakdown of proteins, leading
to programmed cell death. Given that the pathway Alzheimer’s
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Fig. 4: Ranks (panel A) and p-values (panel B) of the KEGG target pathway, Alzheimer’s disease, for 7 Alzheimer’s datasets, using the pathway analysis methods: Gene Set
Enrichment Analysis (GSEA), Gene Set Analysis (GSA), Signaling Pathway Impact Analysis (SPIA), and Down-weighting of Overlapping Genes (PADOG). The horizontal axes
show the 7 Alzheimer’s datasets. The vertical axis in panel (A) shows the rankings of the target pathway for each dataset using the 4 methods. The vertical axis in panel (B) shows
the FDR-corrected p-values of the target pathway. The red horizontal line in (B) shows the threshold 0.01. Note how the rankings and p-values of the target pathway vary greatly
across different datasets and methods, making the interpretation of the results very difficult.

TABLE I: The 17 top ranked pathways and FDR-corrected p-values obtained by combining the GSA p-values using 6 meta-analysis methods for Alzheimer’s disease. Stouffer’s
method, the additive method, and DANUBE, identify the target pathway as significant and rank it in positions 11th, 6th, and 2nd, respectively. DANUBE yields the best ranking.

GSA + Stouffer’s method GSA + Z-method GSA + Brown’s method

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Vasopressin-regulated water reabsorp-
tion

< 10−4 Vasopressin-regulated water reabsorp-
tion

< 10−4 Vasopressin-regulated water reabsorp-
tion

< 10−4

2 Pathogenic Escherichia coli infection < 10−4 Pathogenic Escherichia coli infection < 10−4 Pathogenic Escherichia coli infection < 10−4

3 Prostate cancer < 10−4 Prostate cancer 0.0307 Prostate cancer 0.0418
4 Pathways in cancer 0.0003 Pathways in cancer 0.1352 Adherens junction 0.1722
5 Adherens junction 0.0003 Adherens junction 0.1352 Pathways in cancer 0.1722
6 Hippo signaling pathway 0.0004 Hippo signaling pathway 0.1352 Hippo signaling pathway 0.1765
7 Synaptic vesicle cycle 0.0032 Synaptic vesicle cycle 0.2443 Synaptic vesicle cycle 0.2625
8 Vibrio cholerae infection 0.0032 Vibrio cholerae infection 0.2443 Endocrine and other factor-regulated

calcium reabsorption
0.2625

9 Endocrine and other factor-regulated
calcium reabsorption

0.0032 Endocrine and other factor-regulated
calcium reabsorption

0.2443 Vibrio cholerae infection 0.2625

10 Shigellosis 0.0071 Shigellosis 0.2808 Pancreatic cancer 0.2625
11 Alzheimer’s disease 0.0073 Alzheimer’s disease 0.2808 Focal adhesion 0.2950
12 Bacterial invasion of epithelial cells 0.0073 Bacterial invasion of epithelial cells 0.2808 Shigellosis 0.3027
13 Pancreatic cancer 0.0095 Pancreatic cancer 0.2808 Bacterial invasion of epithelial cells 0.3034
14 Focal adhesion 0.0112 Focal adhesion 0.2808 Notch signaling pathway 0.3254
15 Parkinson’s disease 0.0112 Parkinson’s disease 0.2808 Alzheimer’s disease 0.3254
16 Huntington’s disease 0.0112 Huntington’s disease 0.2808 HIF-1 signaling pathway 0.3274
17 Wnt signaling pathway 0.0112 Wnt signaling pathway 0.2808 SNARE interactions in vesicular trans-

port
0.3274

GSA + Fisher’s method GSA + Additive method GSA + DANUBE

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Vasopressin-regulated water reabsorp-
tion

< 10−4 Prostate cancer < 10−4 Cardiac muscle contraction 0.0014

2 Pathogenic Escherichia coli infection < 10−4 Pathways in cancer 0.0002 Alzheimer’s disease 0.0014

3 Prostate cancer < 10−4 Hippo signaling pathway 0.0005 Huntington’s disease 0.0014
4 Adherens junction 0.0019 Adherens junction 0.0015 Parkinson’s disease 0.0014
5 Pathways in cancer 0.0023 Endocrine and other factor-regulated

calcium reabsorption
0.0042 Hippo signaling pathway 0.0025

6 Hippo signaling pathway 0.0030 Alzheimer’s disease 0.0042 Vibrio cholerae infection 0.0047
7 Synaptic vesicle cycle 0.0097 Vibrio cholerae infection 0.0057 Synaptic vesicle cycle 0.0081
8 Vibrio cholerae infection 0.0121 Shigellosis 0.0057 Prostate cancer 0.0112
9 Endocrine and other factor-regulated

calcium reabsorption
0.0133 Huntington’s disease 0.0057 Vasopressin-regulated water reabsorp-

tion
0.0112

10 Pancreatic cancer 0.0133 Bacterial invasion of epithelial cells 0.0057 Epithelial cell signaling in Helicobacter
pylori infection

0.0118

11 Focal adhesion 0.0190 Parkinson’s disease 0.0057 Systemic lupus erythematosus 0.0150
12 Shigellosis 0.0222 Glioma 0.0057 Amyotrophic lateral sclerosis (ALS) 0.0174
13 Bacterial invasion of epithelial cells 0.0245 Vasopressin-regulated water reabsorp-

tion
0.0057 Shigellosis 0.0193

14 Alzheimer’s disease 0.0334 Cardiac muscle contraction 0.0057 Endocrine and other factor-regulated
calcium reabsorption

0.0193

15 Notch signaling pathway 0.0334 Wnt signaling pathway 0.0057 Phagosome 0.0302
16 SNARE interactions in vesicular trans-

port
0.0465 Synaptic vesicle cycle 0.0057 Lysosome 0.0302

17 Wnt signaling pathway 0.0465 Dorso-ventral axis formation 0.0119 Ribosome biogenesis in eukaryotes 0.0302

The horizontal lines show the 1% significance threshold. The target pathway Alzheimer’s disease is highlighted in green. Pathways highlighted in red are examples of false positives.
These pathways were expected to be reported as false positives because their null distributions are very skewed toward zero (see Figure 1 panels A1-A3 and Supplementary
Figure S3). These include Adherens junction and several cancer-related pathways, which are not considered to be implicated in Alzheimer’s disease.
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TABLE II: The 20 top ranked pathways and FDR-corrected p-values obtained by combining the PADOG p-values using 6 meta-analysis methods for Alzheimer’s disease. Only
DANUBE identifies the target pathway Alzheimer’s disease as significant and ranks it in position 6th.

PADOG + Stouffer’s method PADOG + Z-method PADOG + Brown’s method

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Adherens junction < 10−4 Adherens junction 0.6725 HIF-1 signaling pathway 0.6495
2 Shigellosis 0.0002 Shigellosis 0.6725 Adherens junction 0.6495
3 Renal cell carcinoma 0.0002 Renal cell carcinoma 0.6725 Gap junction 0.6495
4 Prostate cancer 0.0005 Prostate cancer 0.6725 Long-term potentiation 0.6495
5 Bacterial invasion of epithelial cells 0.0014 Bacterial invasion of epithelial cells 0.6725 Long-term depression 0.6495
6 Long-term depression 0.0036 Long-term depression 0.6725 Endocrine and other factor-regulated

calcium reabsorption
0.6495

7 Pathogenic Escherichia coli infection 0.0036 Pathogenic Escherichia coli infection 0.6725 Bacterial invasion of epithelial cells 0.6495
8 Colorectal cancer 0.0036 Colorectal cancer 0.6725 Vibrio cholerae infection 0.6495
9 Gap junction 0.0036 Gap junction 0.6725 Pathogenic Escherichia coli infection 0.6495
10 Glioma 0.0036 Glioma 0.6725 Shigellosis 0.6495
11 Pancreatic cancer 0.0036 Pancreatic cancer 0.6725 Colorectal cancer 0.6495
12 Vibrio cholerae infection 0.0036 Vibrio cholerae infection 0.6725 Renal cell carcinoma 0.6495
13 Endocrine and other factor-regulated

calcium reabsorption
0.0043 Endocrine and other factor-regulated

calcium reabsorption
0.6725 Pancreatic cancer 0.6495

14 ErbB signaling pathway 0.0053 ErbB signaling pathway 0.6725 Endometrial cancer 0.6495
15 Endometrial cancer 0.0063 Endometrial cancer 0.6725 Glioma 0.6495
16 HIF-1 signaling pathway 0.0063 HIF-1 signaling pathway 0.6725 Prostate cancer 0.6495
17 Neurotrophin signaling pathway 0.0067 Neurotrophin signaling pathway 0.6725 ErbB signaling pathway 0.6533
18 Long-term potentiation 0.0076 Long-term potentiation 0.6725 Neurotrophin signaling pathway 0.6533
19 Synaptic vesicle cycle 0.0160 Synaptic vesicle cycle 0.7324 mRNA surveillance pathway 0.7157
20 VEGF signaling pathway 0.0317 VEGF signaling pathway 0.7324 MAPK signaling pathway 0.7157

PADOG + Fisher’s method PADOG + Additive method PADOG + DANUBE

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Adherens junction 0.0008 Adherens junction < 10−4 Vibrio cholerae infection < 10−4

2 Shigellosis 0.0022 Renal cell carcinoma < 10−4 Shigellosis < 10−4

3 Renal cell carcinoma 0.0022 Shigellosis < 10−4 Parkinson’s disease 0.0007
4 Prostate cancer 0.0049 Prostate cancer 0.0001 Synaptic vesicle cycle 0.0007
5 Bacterial invasion of epithelial cells 0.0065 Long-term depression 0.0006 Gap junction 0.0007
6 Pathogenic Escherichia coli infection 0.0149 Colorectal cancer 0.0009 Alzheimer’s disease 0.0007
7 Endocrine and other factor-regulated

calcium reabsorption
0.0199 Gap junction 0.0011 Pathogenic Escherichia coli infection 0.0007

8 Glioma 0.0199 ErbB signaling pathway 0.0013 Cardiac muscle contraction 0.0007
9 Pancreatic cancer 0.0199 Bacterial invasion of epithelial cells 0.0013 Epithelial cell signaling in Helicobacter

pylori infection
0.0009

10 Long-term depression 0.0199 Vibrio cholerae infection 0.0013 Huntington’s disease 0.0013
11 Gap junction 0.0199 Pancreatic cancer 0.0021 Renal cell carcinoma 0.0024
12 Colorectal cancer 0.0199 Glioma 0.0022 Vasopressin-regulated water reabsorp-

tion
0.0047

13 Vibrio cholerae infection 0.0199 Neurotrophin signaling pathway 0.0028 VEGF signaling pathway 0.0052
14 Long-term potentiation 0.0226 HIF-1 signaling pathway 0.0037 Endocrine and other factor-regulated

calcium reabsorption
0.0072

15 Endometrial cancer 0.0226 Pathogenic Escherichia coli infection 0.0042 Bacterial invasion of epithelial cells 0.0078
16 HIF-1 signaling pathway 0.0257 Endometrial cancer 0.0052 GABAergic synapse 0.0102
17 ErbB signaling pathway 0.0326 VEGF signaling pathway 0.0052 Adherens junction 0.0103
18 Neurotrophin signaling pathway 0.0352 Endocrine and other factor-regulated

calcium reabsorption
0.0052 Long-term depression 0.0103

19 Synaptic vesicle cycle 0.0600 Synaptic vesicle cycle 0.0086 Salmonella infection 0.0134
20 Dopaminergic synapse 0.1305 Long-term potentiation 0.0106 Colorectal cancer 0.0198

The horizontal lines show the 1% significance threshold. The target pathway Alzheimer’s disease is highlighted in green. Pathways highlighted in red are examples of false
positives (see Figure 1 panels C1-C3 and Supplementary Figure S5).

disease is influenced by the mitochondrial compartment, which
is strongly implicated in the disease [51–54], it is not surpris-
ing that other pathways with strong mitochondrial components
also garner high rankings. Previous studies [55] have shown
the presence of a cross-talk that makes the neurological dis-
ease pathways, Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease, along with Cardiac muscle contraction,
appear as significant simultaneously, due to their dominant mi-
tochondrial module. Cardiac muscle contraction has a strong
mitochondrial component and is highly dependent on calcium
signaling, which is also prevalent in Synaptic vesicle cycle,
Alzheimer’s disease, and Huntington’s disease. Ca2+ regulates
mitochondrial metabolism, but calcium overload to mitochon-
dria can result in cell damage from reactive oxygen [56].

We also use MetaPath to combine the 7 studies. MetaPath
is a stand-alone meta-analysis method, which does not need

an external pathway analysis tool. This method performs
meta-analysis at both gene (MAPE G) and pathway levels
(MAPE P), and then combines the results (MAPE I) to give
the final p-value and ranking of pathways. Supplementary
Table S5 shows the top 7 pathways using MetaPath for the 7
Alzheimer’s datasets. The target pathway Alzheimer’s disease
is not significant and is outranked by 6 other pathways.

B. Pathway analysis applications: AML

The AML datasets we use in our data analysis are
GSE14924 (CD4 and CD8 T cells), GSE17054 (stem cells),
GSE12662 (CD34+ cells, promyelocytes, and neutrophils and
PR9 cell line), GSE57194 (CD34+ cells), GSE33223 (pe-
ripheral blood, bone marrow), GSE42140 (peripheral blood,
bone marrow), GSE8023 (CD34+ cells), and GSE15061 (bone
marrow). The rankings and FDR-corrected p-values of the
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target pathway Acute myeloid leukemia for the 9 AML datasets
are displayed in Supplementary Figure S12. The graphs
demonstrate that the adjusted p-values and rankings of the
target pathway vary substantially between the 4 methods for a
given study, and from one study to the next. Furthermore, the
AML pathway was not found to be significant by any method
in any dataset.

We combine the 4 pathway analysis methods with the 6
meta-analysis methods. Using a pathway analysis method M ,
each pathway has 9 p-values – one per study. These 9 p-values
are combined using each of the 6 meta-analysis methods
Therefore, each pathway analysis method produces 6 lists of
pathways. Each list has 150 pathways ranked according to the
combined p-values. We then adjust the combined p-values for
multiple comparisons in each list using FDR.

In order to run DANUBE, we generated the null distri-
butions from control samples as described in Section III-B.
We took the 140 control samples of the 9 AML datasets,
and randomly designated “control” and “disease” subgroups.
We generated 10, 000 simulations of 10 controls and 10
diseases, 10, 000 simulations of 30 controls and 50 diseases,
10, 000 of 50 controls and 30 diseases, and 10, 000 of 70
controls and 70 diseases, for a total of 40, 000 simulations. For
each pathway analysis method, we constructed 150 empirical
distributions for 150 KEGG signaling pathways (totally 600
empirical distributions for the 4 pathway analysis methods).
We then used the empirical distributions to calculate the
empirical p-values before applying the additive method to
combine the empirical p-values for each pathway, resulting
in 150 combined p-values. Finally, we adjusted the combined
p-values for multiple comparisons using FDR.

Table III displays the results of GSA combined with the
6 meta-analysis methods, ordered by the FDR corrected p-
values. We place a horizontal line across each list to mark
our 1% cutoff. Stouffer’s method, the additive method, and
DANUBE identify the target pathway as significant. DANUBE
yields the best ranking (ranked 1st), followed by the additive
(2nd) and Stouffer’s method (13th). In addition, the target
pathway is the only significant pathway in DANUBE’s result.

Table IV shows the results of PADOG combined with the
6 meta-analysis methods. The target pathway is significant for
the 4 methods: DANUBE, Stouffer’s, Fisher’s, and the additive
method. For DANUBE, Acute myeloid leukemia is ranked 1st

compared to 7th using the other three meta-analysis methods.
There are no significant pathways using the Z-method and
Brown’s method.

Supplementary Table S6 shows the results of SPIA com-
bined with the 6 meta-analysis methods, ordered by the FDR
corrected p-value. Again, the target pathway is significant
using Stouffer’s, Fisher’s, the additive method, and DANUBE.
The additive method and DANUBE have the same list of
significant pathways. In addition, both methods place the target
pathway higher than the other two methods.

Supplementary Table S7 displays the results of GSEA com-
bined with the 6 meta-analysis methods. The target pathway
Acute myeloid leukemia is highlighted in green. For all 6 meta-
analyses, the target pathway is not significant despite being
ranked among the top pathways. Since GSEA has no bias,

the additive method and DANUBE yield similar results. In
essence, even though it is completely unbiased, GSEA lacks
the power to identify the Acute myeloid leukemia (AML) as
significant in the AML data.

We also use MetaPath to combine the 9 acute myeloid
leukemia studies. Supplementary Table S8 shows the top 5
pathways using MetaPath. The target pathway is not significant
(p=0.4), and is outranked by 2 other pathways.

Table V summarizes all the results for the 25 approaches (4
pathway analysis methods each combined with one of 6 meta-
analysis approaches, plus MetaPath). On average, DANUBE
performs best in terms of ranking, as well as in terms of
identifying the target pathway as significant at the 1% cutoff.

We note that for both diseases, DANUBE and the additive
methods have the same results when combined with GSEA
because GSEA is an unbiased method with uniform distribu-
tions of p-values under the null. In addition, the results of
the two methods for SPIA are almost equivalent because the
distributions of the p-values produced by SPIA under the null
are closer to the expected uniform. Notably, DANUBE is more
useful in conjunction with methods that have more skewed
empirical null distributions.

C. General case: t-test and Wilcoxon test
In this section we will demonstrate the generality of the

problem, beyond pathway analysis applications. In order to
do so, we have used the one sample t-test [57, 58] and the
one sample Wilcoxon signed-rank test [59–61], as illustra-
tive examples of parametric and non-parametric tests. Using
simulated null distributions, we show that both the t-test and
Wilcoxon tests have systematic bias depending on the shape
and the symmetry of the null distribution. When the p-values
are biased towards zero, combining multiple studies results
in an increase of type I error (prevalence of false positives).
When the p-values are biased towards one, the test loses power
and more evidence is needed to identify true positives.

In Figure 5, panel (a) displays a simulated null distribution
H0 which is not symmetrical and does not follow any standard
distribution. Panel (b) displays an alternative distribution H1,
which has the same shape as H0, but a slightly smaller
median. Panel (c) displays another alternative distribution H2

which has the same shape as H0 but a slightly larger median.
Each population has 100, 000 elements. The goal here is to
investigate the ability of each approach to distinguish between
H0 and H1, and between H0 and H2, respectively. This is
attempted using both a t-test and a Wilcoxon test.

Denoting M0 and m0 as the mean and median of the null
distribution H0, M0 is used as the parameter (mean) for the t-
tests where m0 is used as the parameter (median) for Wilcoxon
test. To make the analysis more general, the sample size is
randomized between 3 and 10 everytime we pick a sample.
Since DANUBE uses the additive method to combine the p-
values, we also use the additive method to combine the p-
values of t-test and Wilcoxon test. When the number of studies
is larger or equals to 20, the combined p-values are calculated
using the Central Limit Theorem as described in section III.

Panels (d–h) show the results using the one sample left-
tailed t-test for the mean; panels (i–m) show the results using



PROCEEDINGS OF THE IEEE, VOL. PP, NO. 99, 2016, DOI=10.1109/JPROC.2015.2507119 12

TABLE III: The 21 top ranked pathways and FDR-corrected p-values obtained by combining the GSA p-values using 6 meta-analysis methods for acute myeloid leukemia (AML).
The target pathway Acute myeloid leukemia is significant for Stouffer’s, the additive method, and DANUBE with rankings 13th, 2nd, and 1st, respectively.

GSA + Stouffer’s method GSA + Z-method GSA + Brown’s method

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 ErbB signaling pathway < 10−4 ErbB signaling pathway < 10−4 ErbB signaling pathway < 10−4

2 Sulfur relay system < 10−4 Sulfur relay system < 10−4 Sulfur relay system < 10−4

3 Adherens junction < 10−4 Adherens junction < 10−4 Adherens junction < 10−4

4 Tight junction < 10−4 Tight junction < 10−4 Tight junction < 10−4

5 Circadian rhythm < 10−4 Circadian rhythm < 10−4 Circadian rhythm < 10−4

6 Alcoholism < 10−4 Alcoholism < 10−4 Alcoholism < 10−4

7 Shigellosis < 10−4 Shigellosis < 10−4 Shigellosis < 10−4

8 Transcriptional misregulation in cancer < 10−4 Transcriptional misregulation in cancer < 10−4 Transcriptional misregulation in cancer < 10−4

9 Renal cell carcinoma < 10−4 Renal cell carcinoma < 10−4 Renal cell carcinoma < 10−4

10 Glioma < 10−4 Glioma < 10−4 Glioma < 10−4

11 Systemic lupus erythematosus < 10−4 Systemic lupus erythematosus < 10−4 Systemic lupus erythematosus < 10−4

12 Non-small cell lung cancer 0.0003 Non-small cell lung cancer 0.0606 Non-small cell lung cancer 0.1250
13 Acute myeloid leukemia 0.0012 Acute myeloid leukemia 0.1011 mTOR signaling pathway 0.2120
14 VEGF signaling pathway 0.0017 VEGF signaling pathway 0.1139 VEGF signaling pathway 0.2120
15 Endometrial cancer 0.0025 Endometrial cancer 0.1298 Pathways in cancer 0.2120
16 Pathways in cancer 0.0029 Pathways in cancer 0.1352 Acute myeloid leukemia 0.2120
17 mTOR signaling pathway 0.0033 mTOR signaling pathway 0.1386 HIF-1 signaling pathway 0.2252
18 Chronic myeloid leukemia 0.0081 Chronic myeloid leukemia 0.1933 Endometrial cancer 0.2252
19 Prostate cancer 0.0081 Prostate cancer 0.1933 Prostate cancer 0.2252
20 Pancreatic cancer 0.0097 Pancreatic cancer 0.2037 Insulin signaling pathway 0.2379
21 HIF-1 signaling pathway 0.0150 HIF-1 signaling pathway 0.2394 Pancreatic cancer 0.2628

GSA + Fisher’s method GSA + Additive method GSA + DANUBE

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 ErbB signaling pathway < 10−4 Non-small cell lung cancer 0.0003 Acute myeloid leukemia 0.0065

2 Sulfur relay system < 10−4 Acute myeloid leukemia 0.0003 Transcriptional misregulation in cancer 0.0231

3 Adherens junction < 10−4 VEGF signaling pathway 0.0005 VEGF signaling pathway 0.0489

4 Tight junction < 10−4 ErbB signaling pathway 0.0005 Alcoholism 0.1161

5 Circadian rhythm < 10−4 Endometrial cancer 0.0008 Non-small cell lung cancer 0.5968

6 Alcoholism < 10−4 Transcriptional misregulation in cancer 0.0020 Bladder cancer 0.5968

7 Shigellosis < 10−4 Chronic myeloid leukemia 0.0038 HIF-1 signaling pathway 0.5968

8 Transcriptional misregulation in cancer < 10−4 mTOR signaling pathway 0.0043 Apoptosis 0.5968

9 Renal cell carcinoma < 10−4 Pathways in cancer 0.0043 mTOR signaling pathway 0.5968

10 Glioma < 10−4 Colorectal cancer 0.0084 Cocaine addiction 0.5968

11 Systemic lupus erythematosus < 10−4 Glioma 0.0108 Autoimmune thyroid disease 0.6141
12 Non-small cell lung cancer 0.0048 Pancreatic cancer 0.0108 Amyotrophic lateral sclerosis (ALS) 0.6458
13 Pathways in cancer 0.0153 Prostate cancer 0.0108 Notch signaling pathway 0.6458
14 Acute myeloid leukemia 0.0181 Small cell lung cancer 0.0177 ErbB signaling pathway 0.6458
15 mTOR signaling pathway 0.0188 Bacterial invasion of epithelial cells 0.0177 HTLV-I infection 0.6458
16 VEGF signaling pathway 0.0188 Adherens junction 0.0184 Natural killer cell mediated cytotoxic-

ity
0.6458

17 Endometrial cancer 0.0243 Renal cell carcinoma 0.0239 Chronic myeloid leukemia 0.6458
18 HIF-1 signaling pathway 0.0252 Melanoma 0.0326 Endocytosis 0.6458
19 Prostate cancer 0.0252 Endocytosis 0.0403 Small cell lung cancer 0.6458
20 Insulin signaling pathway 0.0295 HIF-1 signaling pathway 0.0447 Fc gamma R-mediated phagocytosis 0.6458
21 Pancreatic cancer 0.0378 Circadian rhythm 0.0447 African trypanosomiasis 0.6458

The horizontal lines show the 1% significance threshold. The target pathway Acute myeloid leukemia is highlighted in green.

the one sample right-tailed t-test for the mean; panels (n–r)
show the results using the one sample left-tailed Wilcoxon
test for the median; panels (s–w) show the results using one
sample right-tailed Wilcoxon test for the median.

Panel (d) shows the distribution of p-values for samples
drawn from the null distribution H0. To plot this panel, we
randomly select 100, 000 samples from H0 and then calculate
the p-values using the left-tailed t-test. Since the null distribu-
tion H0 is not normal, the resulting p-values are not uniformly
distributed. Panel (e) displays the distribution of combined p-
values for samples drawn from the null distribution H0. To
calculate a combined p-value, we randomly pick 10 samples
from the null population H0 and then calculate the 10 p-values
using the left-tailed t-test. From these 10 p-values, we calculate
a combined p-value using the additive method. This procedure
is repeated 100, 000 times to generate the distribution of the
combined p-values under the null hypothesis. Similarly, panel
(f) displays the distribution of the combined p-values for

samples drawn from the alternative distribution H1.
The red dashed lines in panels (e, f) show the 0.05 cutoff.

Since the combined p-values in (e) are calculated under
the null hypothesis, values smaller than the cutoff are false
positives. Therefore, the blue area to the left of the red dashed
line is type I error of the classical meta-analysis using the
left-tailed t-test. Similarly, combined p-values larger than the
cutoff in panel (f) are false negatives. The blue area to the
right of the red line panel (f) displays type II error.

The results show that combined p-values will be biased
towards zero, since p-values of the left-tailed t-test are biased
towards zero. To understand the behavior of the meta-analysis,
we display type I and type II error in panels (g, h) with varying
numbers of studies to be combined. As the number of studies
increases, the meta-analysis becomes more biased, and type
I error increases. For example, when the number of studies
reaches 50, the analysis has more than 60% false positives.
Paradoxically, increasing the number of studies will make the
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TABLE IV: The 23 top ranked pathways and FDR-corrected p-values obtained by combining the PADOG p-values using 6 meta-analysis methods for acute myeloid leukemia
(AML). The target pathway Acute myeloid leukemia is significant for Stouffer’s, Fisher’s, the additive method and DANUBE. DANUBE yields the best ranking.

PADOG + Stouffer’s method PADOG + Z-method PADOG + Brown’s method

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Non-small cell lung cancer < 10−4 Non-small cell lung cancer 0.0705 Chronic myeloid leukemia 0.0412

2 Chronic myeloid leukemia < 10−4 Chronic myeloid leukemia 0.0705 Non-small cell lung cancer 0.0412

3 Glioma < 10−4 Glioma 0.2152 Glioma 0.1240

4 ErbB signaling pathway < 10−4 ErbB signaling pathway 0.2239 ErbB signaling pathway 0.2149

5 Colorectal cancer < 10−4 Colorectal cancer 0.2565 VEGF signaling pathway 0.2806

6 Prostate cancer < 10−4 Prostate cancer 0.2565 Pathways in cancer 0.2806

7 Acute myeloid leukemia < 10−4 Acute myeloid leukemia 0.2565 Colorectal cancer 0.2806
8 VEGF signaling pathway 0.0001 VEGF signaling pathway 0.2565 Pancreatic cancer 0.2806
9 Endometrial cancer 0.0001 Endometrial cancer 0.2565 Prostate cancer 0.2806
10 Pancreatic cancer 0.0001 Pancreatic cancer 0.2565 Acute myeloid leukemia 0.2806
11 Pathways in cancer 0.0001 Pathways in cancer 0.2565 Endometrial cancer 0.3398
12 Transcriptional misregulation in cancer 0.0005 Transcriptional misregulation in cancer 0.3509 mTOR signaling pathway 0.4198
13 T cell receptor signaling pathway 0.0012 T cell receptor signaling pathway 0.4055 T cell receptor signaling pathway 0.4198
14 mTOR signaling pathway 0.0012 mTOR signaling pathway 0.4055 Circadian rhythm 0.4198
15 Circadian rhythm 0.0015 Circadian rhythm 0.4061 Insulin signaling pathway 0.4198
16 Neurotrophin signaling pathway 0.0021 Neurotrophin signaling pathway 0.4184 Transcriptional misregulation in cancer 0.4198
17 Small cell lung cancer 0.0024 Small cell lung cancer 0.4184 Small cell lung cancer 0.4491
18 Renal cell carcinoma 0.0054 Renal cell carcinoma 0.4837 Neurotrophin signaling pathway 0.4568
19 Insulin signaling pathway 0.0063 Insulin signaling pathway 0.4837 mRNA surveillance pathway 0.4695
20 Endocytosis 0.0070 Endocytosis 0.4837 MAPK signaling pathway 0.4695
21 Adherens junction 0.0070 Adherens junction 0.4837 HIF-1 signaling pathway 0.4695
22 Wnt signaling pathway 0.0168 Wnt signaling pathway 0.5674 Endocytosis 0.4695
23 Melanoma 0.0195 Melanoma 0.5674 Wnt signaling pathway 0.4695

PADOG + Fisher’s method PADOG + Additive method PADOG + DANUBE

Pathway pvalue.fdr Pathway pvalue.fdr Pathway pvalue.fdr

1 Chronic myeloid leukemia < 10−4 Non-small cell lung cancer < 10−4 Acute myeloid leukemia < 10−4

2 Non-small cell lung cancer < 10−4 Chronic myeloid leukemia < 10−4 VEGF signaling pathway 0.0007

3 Glioma < 10−4 ErbB signaling pathway < 10−4 Non-small cell lung cancer 0.0008

4 ErbB signaling pathway < 10−4 Endometrial cancer < 10−4 T cell receptor signaling pathway 0.0021

5 Colorectal cancer 0.0003 Glioma < 10−4 Colorectal cancer 0.0023

6 Prostate cancer 0.0006 Colorectal cancer < 10−4 Chronic myeloid leukemia 0.0027

7 Acute myeloid leukemia 0.0006 Acute myeloid leukemia < 10−4 Endometrial cancer 0.0057

8 Pancreatic cancer 0.0007 Prostate cancer < 10−4 Transcriptional misregulation in cancer 0.0095
9 VEGF signaling pathway 0.0007 Transcriptional misregulation in cancer 0.0001 Glioma 0.0153
10 Pathways in cancer 0.0009 VEGF signaling pathway 0.0001 mTOR signaling pathway 0.0160
11 Endometrial cancer 0.0021 Pathways in cancer 0.0001 Prostate cancer 0.0203
12 Transcriptional misregulation in cancer 0.0056 Pancreatic cancer 0.0002 Apoptosis 0.0239
13 T cell receptor signaling pathway 0.0080 mTOR signaling pathway 0.0005 ErbB signaling pathway 0.0390
14 mTOR signaling pathway 0.0098 Neurotrophin signaling pathway 0.0005 B cell receptor signaling pathway 0.0464
15 Insulin signaling pathway 0.0098 Renal cell carcinoma 0.0006 Circadian rhythm 0.0521
16 Circadian rhythm 0.0098 T cell receptor signaling pathway 0.0006 Thyroid cancer 0.0844
17 Small cell lung cancer 0.0138 Circadian rhythm 0.0006 Progesterone-mediated oocyte matura-

tion
0.1040

18 Neurotrophin signaling pathway 0.0165 Small cell lung cancer 0.0011 Oocyte meiosis 0.1040
19 Adherens junction 0.0318 Endocytosis 0.0036 Systemic lupus erythematosus 0.1441
20 Endocytosis 0.0356 Adherens junction 0.0052 Neurotrophin signaling pathway 0.1697
21 Renal cell carcinoma 0.0502 Melanoma 0.0072 Shigellosis 0.1697
22 Axon guidance 0.0564 Bacterial invasion of epithelial cells 0.0081 Fc epsilon RI signaling pathway 0.1697
23 Wnt signaling pathway 0.0564 Wnt signaling pathway 0.0128 Pancreatic cancer 0.2083

The horizontal lines show the 1% significance threshold. The target pathway Acute myeloid leukemia is highlighted in green.

TABLE V: Ranking and significance of the target pathway for Alzheimer’s disease and acute myeloid leukemia (AML). The first and second columns show the disease and the
pathway analysis methods. The next 6 columns show the ranking of the target pathways for 6 meta-analysis combined with the 4 pathway analysis methods. Each row shows the
result of the 6 meta-analysis methods combined with the same pathway analysis method. Each cell shows the ranking of the target pathways. The Y(es) or N(o) letters next to the
ranking denote if the target pathway is significant or not. Cells highlighted in green are those that are significant and have the best rankings in their row. The last column shows
the result of MetaPath. For both diseases, and for all the 4 pathway analysis methods, the target pathway is significant and is ranked the highest when using DANUBE. The target
pathway is not significant for AML data when the GSEA p-values are combined with any of the 6 meta-analysis methods.

Meta- Stouffer’s Z-method Brown’s Fisher’s Additive DANUBE MetaPath
analysis method method method method

Pathway analysis

Alzheimer’s

GSEA 4 (Y) 4 (Y) 4 (Y) 4 (Y) 3 (Y) 3 (Y)

7 (N)GSA 11 (Y) 11 (N) 15 (N) 14 (N) 6 (Y) 2 (Y)
SPIA 2 (Y) 2 (Y) 3 (Y) 3 (Y) 2 (Y) 2 (Y)
PADOG 21 (N) 21 (N) 31 (N) 23 (N) 21 (N) 6 (Y)

AML

GSEA 1 (N) 1 (N) 4 (N) 4 (N) 1 (N) 1 (N)

4 (N)GSA 13 (Y) 13 (N) 16 (N) 14 (N) 2 (Y) 1 (Y)
SPIA 4 (Y) 4 (N) 6 (N) 6 (Y) 2 (Y) 2 (Y)
PADOG 7 (Y) 7 (N) 10 (N) 7 (Y) 7 (Y) 1 (Y)
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The Null Distribution (H0)
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(a) An alternative distribution (H1)
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(b) An alternative distribution (H2)
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Results of Wilcoxon signed−rank test
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Fig. 5: Type I and Type II errors of the classical meta-analysis using one sample t-test and Wilcoxon signed-ranked test. Panel (a) displays the probability distribution under the
null hypothesis H0. Panel (b) displays an alternative distribution H1 which has the same shape as the null distribution with a slightly smaller median. Panel (c) displays another
alternative distribution H2 which has the same shape as the null distribution with a slightly larger median. Panels (d–h) display the results using left-tailed t-tests. Panel (d) displays
the distribution of p-values using left-tailed t-test for samples drawn from the null distribution H0. Panel (e) displays the distribution of combined p-values using left-tailed t-test
for samples drawn from the null distribution H0. The red dashed line represents the threshold (0.05) below which the null hypothesis will be rejected. The blue area to the left
of the red dashed line is type I error (false positives). Panel (f) displays the distribution of combined p-values using a left-tailed t-test for samples drawn from the alternative
distribution H1. The blue area to the right of the red dashed line is type II error (false negatives). Panel (g) displays the type I error with varying number of studies. Panel (h)
displays the type II error with varying number of studies using a left-tailed t-test for samples drawn from the alternative distribution H1. Similarly, panels (i–m) display the results
using right-tailed t-test; panels (n–r) display the results of left-tailed Wilcoxon signed-rank test; panels (s–w) display the results of right-tailed Wilcoxon signed-rank test. In this
example, the left-tailed t-test and right-tailed Wilcoxon tests are biased towards 0 as shown in (e,f). Therefore, an increase in the number of studies makes the combined p-values
more biased towards 0, causing an increase in type I error as shown in (g,v). On the contrary, the right-tailed t-test and left-tailed Wilcoxon test are biased towards 1. This kind of
bias makes the test less powerful. For example, with 10 studies, type II errors using right-tailed t-test and left-tailed Wilcoxon test are 0.51 and 0.61, respectively.
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(a) An alternative distribution (H1)
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(b) An alternative distribution (H2)
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Results of DANUBE using mean
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(d) p−values using mean (H0, right tailed)
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Fig. 6: Type I and type II errors of DANUBE using mean and median as discriminative statistics. Panel (a) displays the probability distribution under the null hypothesis (H0).
Panel (b) displays an alternative distribution (H1), which has the same shape as the null distribution but a slightly smaller median. Panel (c) displays an alternative distribution
(H2) which has the same shape as the null distribution but a slightly larger median. Panels (d–h) display the results of the left-tailed DANUBE using mean; panels (i–m) display
the results of the right-tailed DANUBE using mean; panels (n–r) display the results of left-tailed DANUBE using median; panels (s–w) display the results of right-tailed DANUBE
using median. Panels (d, i, n, s) show the p-value distributions for samples drawn from the null. For all four tests, p-values are uniformly distributed under the null hypothesis.
Consequently, the combined p-values (using the additive method) are also uniformly distributed under the null hypothesis as shown in (e, j, o, t). The result is that the type I
error equals the threshold (0.05) regardless of the number of studies combined, as shown in (g, l, q, v). Panels (h, m, r, w) show that the type II error converges quickly to zero.
Combining 10 studies, the type II errors of left and right-tailed DANUBE for the mean are both less than 0.3 compared to 0.51 for the right-tailed t-test. Similarly, using the
median, the type II error of DANUBE is less than 0.2 compared to 0.61 for the left-tailed Wilcoxon test.
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meta-analysis less useful due to the increase of type I error.
Panels (i–m) display the results of the right-tailed t-test.

Panel (i) displays the distribution of p-values for samples
drawn from the null distribution H0. Panel (j) displays the
combined p-values for samples drawn from the null distribu-
tion H0. Panel (k) displays the combined p-values for samples
drawn from the alternative distribution H2. Each combined
p-value is calculated from 10 individual p-values. The right-
tailed t-test is biased towards one, therefore more evidence is
required to identify true positives. Compared to the left-tailed
t-test, the right-tailed t-test has smaller type I error but larger
type II error (less power). Therefore, many more studies would
be required for this test to identify true positives. Panel (m)
shows that for the case of combining 10 studies, the type II
error of the right-tailed t-test is about 0.5 whereas the type II
error of the left-tailed t-test is less than 0.2.

Panels (n–r) display the results of meta-analysis using the
one sample left-tailed Wilcoxon test for the median. In this
example, the left-tailed Wilcoxon test is biased towards one, so
more evidence is required to identify true positives. As shown
in panel (r), the expected type II error of the meta-analysis
is about 0.6 when combining 10 studies. Interestingly, the
behavior of the meta-analysis using the left-tailed Wilcoxon
test is similar to that of the the right-tailed t-test. In both
cases, the meta-analysis needs a large number of studies to
identify true positives. Panels (m and r) show that type II
error converges to zero as the number of studies increases.

Panels (s–w) display the results of meta-analysis using the
one sample right-tailed Wilcoxon test for the median. Similar
to the t-test, the right-tailed Wilcoxon test is biased towards
zero. As shown in panels (g, v), type I error using either of
the two tests increases as the number of studies increases.

D. General case: DANUBE
In this section, we analyze the performance of DANUBE

using the same null and alternative distributions that were used
for the t-test and Wilcoxon tests. Figure 6 displays the results
using DANUBE. Panels (a, b, c) show the null distribution
H0 and two alternative distributions H1 and H2. Panels (d–h)
display the results using left-tailed DANUBE for the mean;
panels (i–m) display the results using right-tailed DANUBE
for the mean; panels (n–r) display the results using left-tailed
DANUBE for the median; panels (s–w) display the results
using right-tailed DANUBE for the median.

We randomly select 10, 000 samples from the null distri-
bution and use them to construct the empirical distribution of
sample means (panels d–m) and likewise of sample medians
(panels n–w). For a given empirical distribution, we calculate
the probability of observing the discriminating statistic in a
study. Panel (d) displays the distribution of empirical p-values
for samples drawn from the null distribution H0; we see that
these are uniformly distributed under the null hypothesis. Panel
(e) displays the distribution of combined p-values for samples
drawn from the null distribution H0. Each combined p-value
is calculated from 10 individual empirical p-values. The blue
area to the left of the red dashed line is type I error. Since the
individual p-values are uniformly distributed, the combined p-
values are also uniformly distributed. Consequently, the type I

error of this test is equal to the threshold. Panel (f) displays
the distribution of combined p-values for samples drawn from
the alternative distribution H1. The blue area to the right of
the red dashed line is the type II error.

Panels (g, h) display the type I and type II error of DANUBE
with varying numbers of combined studies. The graphs show
that the type I error of DANUBE consistently equals the
threshold while type II error decreases when the number of
studies increases. When combining 10 studies, the type I and
type II errors of the left-tailed DANUBE for the mean are
0.05 and 0.27, respectively, compared to 0.24 and 0.14 for
the left-tailed t-test. When the number of the studies increases
over 30, one can expect DANUBE to give a 0.05 type I error
and an almost zero type II error.

Similar to the left-tailed test, right-tailed DANUBE on the
mean has the expected type I error and a reasonable type
II error as shown in panels (l, m). With 10 studies to be
combined, the right-tailed DANUBE’s type I and type II errors
are 0.05 and 0.25, respectively, compared to 0.01 and 0.51 for
the right-tailed t-test. The results for the mean show that both
left- and right-tailed type I errors are equal to the threshold
while the type II error decreases rapidly. On the contrary, the
left and right-tailed t-tests have unpredictable behavior due to
the skewness of the null distribution.

Panels (n–w) show the results of left- and right-tailed
DANUBE for the median. As expected, the type I error for
the median is also equal to the threshold, regardless of the
number of studies that are combined. The test is proven to
be powerful for both tails with type II error less than 0.2 for
10 studies. When compared to the left-tailed Wilcoxon test on
10 studies, the DANUBE left-tailed type II error is 0.17 as
opposed to 0.61.

V. CONCLUSIONS

In this paper, we present a new framework to combine the
results of multiple studies in order to gain more statistical
power. Our framework first calculates the empirical p-values
for each study using the empirical distribution of the discrim-
inating statistic. It then combines the empirical p-value using
either the Central Limit Theorem or the additive method. The
new framework makes no statistical assumptions about the
data and is therefore usable in many practical cases when no
simple model is appropriate. In addition, use of the additive
method makes the framework more robust to outliers.

The advantage of the new meta-analysis framework is
demonstrated using both simulation and real-world data. In
our simulation study, we compare the results of DANUBE
to the classical additive method using the one sample t-test
and Wilcoxon signed-rank test. The skewness and the non-
normality of the simulated null distribution produces system-
atic bias in classical meta-analysis, either increasing type I
error or decreasing the power of the test. In contrast, the type
I error of DANUBE is equal to the threshold cutoff and type II
error declines quickly when the number of studies increases.

To evaluate the proposed framework for pathway anal-
ysis applications, we examine 7 Alzheimer’s and 9 acute
myeloid leukemia datasets using 25 approaches: 6 meta-
analysis methods, Stouffer’s, Z-method, Brown’s, Fisher’s,
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the additive method and DANUBE, each of them combined
with 4 representative pathway analysis methods, GSA, SPIA,
PADOG, and GSEA, plus an additional independent meta-
analysis method MetaPath. The results confirm the advantage
of DANUBE over classical meta-analysis to identify pathways
relevant to the phenotype.

This work describes an important limitation of current meta-
analysis techniques, and provides a general statistical approach
to increase the power of an analysis method using empirical
distributions. With vast databases of biological data being
made available, this framework may be powerful because it
lets the data speak for itself. The proposed framework is
flexible enough to be applicable to various types of studies,
including gene-level analysis, pathway analysis, or clinical
trials to assess the effect of a therapy in complex diseases.
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[7] T. Manoli, N. Gretz, H.-J. Gröne, M. Kenzelmann, R. Eils, and B. Brors, “Group
testing for pathway analysis improves comparability of different microarray
datasets,” Bioinformatics, vol. 22, no. 20, pp. 2500–2506, 2006.

[8] F. Borovecki, L. Lovrecic, J. Zhou, H. Jeong, F. Then, H. Rosas, S. Hersch,
P. Hogarth, B. Bouzou, R. Jensen, and D. Krainc, “Genome-wide expression
profiling of human blood reveals biomarkers for Huntington’s disease,” Proceed-
ings of the National Academy of Sciences of the United States of America, vol.
102, no. 31, pp. 11 023–11 028, 2005.

[9] L. Friedman, “Why vote-count reviews don’t count,” Biological Psychiatry,
vol. 49, no. 2, pp. 161–162, 2001.

[10] L. V. Hedges and I. Olkin, “Vote-counting methods in research synthesis,”
Psychological Bulletin, vol. 88, no. 2, p. 359, 1980.

[11] K. Shen and G. C. Tseng, “Meta-analysis for pathway enrichment analysis when
combining multiple genomic studies,” Bioinformatics, vol. 26, no. 10, pp. 1316–
1323, 2010.

[12] S. R. Setlur, T. E. Royce, A. Sboner, J.-M. Mosquera, F. Demichelis, M. D. Hofer,
K. D. Mertz, M. Gerstein, and M. A. Rubin, “Integrative microarray analysis of
pathways dysregulated in metastatic prostate cancer,” Cancer Research, vol. 67,
no. 21, pp. 10 296–10 303, 2007.

[13] D. R. Rhodes, T. R. Barrette, M. A. Rubin, D. Ghosh, and A. M. Chinnaiyan,
“Meta-analysis of microarrays interstudy validation of gene expression profiles
reveals pathway dysregulation in prostate cancer,” Cancer Research, vol. 62,
no. 15, pp. 4427–4433, 2002.

[14] A. Kaever, M. Landesfeind, K. Feussner, B. Morgenstern, I. Feussner, and
P. Meinicke, “Meta-analysis of pathway enrichment: combining independent and
dependent omics data sets,” PloS One, vol. 9, no. 2, p. e89297, 2014.

[15] C. Mitrea, Z. Taghavi, B. Bokanizad, S. Hanoudi, R. Tagett, M. Donato,
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