
amta2014.amtaweb.org

Vancouver, BC
October 22-26

WORKSHOP

AMT
2014

A

The 11th Conference of the Association for Machine Translation in the Americas

Workshop on Interactive and Adaptive
Machine Translation

Francisco Casacuberta
Marcello Federico

Philipp Koehn

The 11th Conference of the Association for Machine Translation in the Americas

October 22 – 26, 2014 -- Vancouver, BC Canada

Proceedings of the

Workshop on

Interactive and Adaptive Machine Translation

Francisco Casacuberta, Marcello Federico, and Philipp Koehn (Eds.)

Association for Machine Translation in the Americas

http://www.amtaweb.org

Supported by the European Commission
under the Matecat and CASMACAT projects
(grants 287688 and 287576).

ii

Preface

The increasing use of machine translation in the workflow of professional translators creates demand
for machine translation technology that provides more interactive collaboration, learns from its errors
and adapts to the translators’ style and adapts the underlying machine translation system online to the
specific needs of the translator for the given task.

The next generation of computer aided translation (CAT) tools has to move beyond the use of static
machine translation for human post-editing into a much richer division of labor between man and
machine that takes full advantage of man’s understanding of content and machine’s greater ability to
quickly process large amounts of data.

On the other hand, these tools will allow a more friendly interaction between the human and the machine
through the use of different modalities of interactions as speech, gaze tracking, e-pen, etc. Finally, all
of these issues will lead to an increase of the productivity of the professional translators.

Such tools are in development in a number of research labs across the world, one example is the open
source workbench developed by the EU-funded projects Matecat and Casmacat, led by the organizers
of this workshop.

This workshop brings to together researchers in this nascent subfield of machine translation. The
workshop will divide its schedule between invited talks by leading researchers and paper presentations
on more recent advances.

The workshop features 7 invited talks, and 6 poster presentation selected from 8 submissions.

Vancouver, October 2014

Francisco Casacuberta, Universitat Politècnica de València
Marcello Federico, Fondazione Bruno Kessler
Philipp Koehn, University of Edinburgh / Johns Hopkins University

iii

Organizers:

Francisco Casacuberta, Universitat Politècnica de València
Marcello Federico, Fondazione Bruno Kessler
Philipp Koehn, University of Edinburgh / Johns Hopkins University

Program Committee:

Vicent Alabau (Universitat Politècnica de València)
Loïc Barrault (Université du Maine)
Frédér Blain (Université du Maine)
Christian Buck (University of Edinburgh)
Chris Dyer (Carnegie Mellon University)
Mikel L. Forcada (Universitat d’Alacant)
George Foster (National Research Council, Canada)
Jesús González-Rubio (Universitat Politècnica de València)
Roland Kuhn (National Research Council, Canada)
Mauro Cettolo (Fondazione Bruno Kessler)
Matteo Negri (Fondazione Bruno Kessler)
Jan Niehues (Karlsruhe Institute of Technology)
Daniel Ortiz-Martínez (Universitat Politècnica de València)
Juan Antonio Pérez-Ortiz (Universitat d’Alacant)
Holger Schwenk (Université du Maine)
Patrick Simianer (Universität Heidelberg)
Lucia Specia (University of Sheffield)
Marco Turchi (Fondazione Bruno Kessler)
Enrique Vidal (Universitat Politècnica de València)
Katharina Wäschle (Universität Heidelberg)
François Yvon (LIMSI/CNRS, Orsay)

Invited Speakers:

Michael Denkowski, CMU
Marcello Federico, FBK
Jesús González-Rubio, Universitat Politècnica de València
Spence Green, Stanford
John Moran, Trinity College / CNGL
Lane Schwartz, University of Illinois at Urbana-Champaign
Michel Simard, National Research Council Canada

iv

Table of Contents

Integrating Online and Active Learning in a Computer-Assisted Translation Workbench
Vicent Alabau, Jesús González-Rubio, Daniel Ortiz-Martínez, Germán Sanchis Trilles, Francisco

Casacuberta, Mercedes García-Martínez, Bartolomé Mesa-Lao, Dan Cheung Petersen, Barbara Drag-
sted and Michael Carl . 1

Towards a Combination of Online and Multitask Learning for MT Quality Estimation: a Preliminary
Study

José G. C. de Souza, Marco Turchi and Matteo Negri . 9

Dynamic Phrase Tables for Machine Translation in an Interactive Post-editing Scenario
Ulrich Germann . 20

Optimized MT Online Learning in Computer Assisted Translation
Prashant Mathur and Cettolo Mauro . 32

Behind the Scenes in an Interactive Speech Translation System
Mark Seligman and Mike Dillinger . 42

Predicting Post-Editor Profiles from the Translation Process
Karan Singla, David Orrego Carmona, Ashleigh Rhea Gonzales, Michael Carl and Srinivas Ban-

galore . 51

v

Conference Program

Wednesday, October 22, 2014

8:45am Opening of the Workshop

Invited Talks

9am Measuring Translation Productivity Offline — Some commercial challenges and
research opportunities apparent from the iOmegaT project
John Moran, Trinity College / CNGL

9:30am Mixed-initiative Human Language Translation
Spence Green, Stanford

10am Online and Active Learning for Machine Translation and Computer-Assisted Trans-
lation
Jesús González-Rubio, Universitat Politècnica de València

10:30am Coffee Break

Invited Talks

11am Translators, Machine Translation and Trust
Michel Simard, National Research Council Canada

11:30am Learning from Post-Editing: Real Time Model Adaptation for Machine Translation
Michael Denkowski, CMU

12pm User-Adaptative MT in the MateCat Tool
Marcello Federico, FBK

12:30pm The Human Language Model
Lane Schwartz, University of Illinois at Urbana-Champaign

1pm Lunch

2:30pm Panel Discussion

3:30pm Coffee Break

vi

Wednesday, October 22, 2014 (continued)

Poster Session

4pm-5:30pm Integrating Online and Active Learning in a Computer-Assisted Translation Workbench
Vicent Alabau, Jesús González-Rubio, Daniel Ortiz-Martínez, Germán Sanchis Trilles,
Francisco Casacuberta, Mercedes García-Martínez, Bartolomé Mesa-Lao, Dan Cheung
Petersen, Barbara Dragsted and Michael Carl

Towards a Combination of Online and Multitask Learning for MT Quality Estimation: a
Preliminary Study
José G. C. de Souza, Marco Turchi and Matteo Negri

Dynamic Phrase Tables for Machine Translation in an Interactive Post-editing Scenario
Ulrich Germann

Optimized MT Online Learning in Computer Assisted Translation
Prashant Mathur and Cettolo Mauro

Behind the Scenes in an Interactive Speech Translation System
Mark Seligman and Mike Dillinger

Predicting Post-Editor Profiles from the Translation Process
Karan Singla, David Orrego Carmona, Ashleigh Rhea Gonzales, Michael Carl and Srinivas
Bangalore

vii

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 1–8
AMTA Workshop. Vancouver, Canada. September 22, 2014

Integrating Online and Active Learning in a
Computer-Assisted Translation Workbench

Vicent Alabau valabau@prhlt.upv.es
Jesús González-Rubio jegonzalez@prhlt.upv.es
Daniel Ortiz-Martı́nez dortiz@prhlt.upv.es
Germán Sanchis-Trilles gsanchis@dsic.upv.es
Francisco Casacuberta fcn@prhlt.upv.es
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València
Camino de Vera s/n, 46021 Valencia (Spain)

Mercedes Garcı́a-Martı́nez mgm.ibc@cbs.dk
Bartolomé Mesa-Lao bm.ibc@cbs.dk
Dan Cheung Petersen dcp.icb@cbs.dk
Barbara Dragsted bd.ibc@cbs.dk
Michael Carl mc.ibc@cbs.dk
Center for Research and Innovation in Translation and Translation Technology (CRITT)
Copenhagen Business School, Dalgas Have 15, 2000 Frederiksberg (Denmark)

Abstract

This paper describes a pilot study with a computed-assisted translation workbench aiming at
testing the integration of online and active learning features. We investigate the effect of these
features on translation productivity, using interactive translation prediction (ITP) as a baseline.
User activity data were collected from five beta testers using key-logging and eye-tracking.
User feedback was also collected at the end of the experiments in the form of retrospective
think-aloud protocols. We found that OL performs better than ITP, especially in terms of trans-
lation speed. In addition, AL provides better translation quality than ITP for the same levels of
user effort. We plan to incorporate these features in the final version of the workbench.

1 Introduction

The use of machine translation (MT) systems for the production of post-editing drafts has be-
come a widespread practice in the industry. Many language service providers are now using
port-editing workflows due to a greater availability of resources and tools for the development
of MT systems, as well as a successful integration of MT systems in already well-established
computer-assisted translation (CAT) workbenches.

This paper reports on the CAT workbench being developed within the CASMACAT
project1. Among the different features implemented in the workbench, we will investigate the
interactive translation prediction (ITP) approach (Langlais and Lapalme, 2002; Casacuberta
et al., 2009; Barrachina et al., 2009). Within the ITP framework, a state-of-the-art statistical

1CASMACAT: Cognitive Analysis and Statistical Methods for Advanced Computer Aided Translation. Project co-
funded by the European Union under the Seventh Framework Programme Project 287576 (ICT-2011.4.2).

1

machine translation (SMT) system is used in the following way. For a given source sentence,
the SMT system automatically generates an initial translation. A human translator then proof-
reads checks this machine generated translation, correcting the first error. The SMT system then
proposes a new completion (or suffix), taking the user correction into account. These steps are
repeated until the whole input sentence has been correctly translated.

The CASMACAT workbench further extends the ITP approach by introducing two new
features, namely, online and active learning. These two new features are designed to allow
the system to take further advantage from user feedback. Specifically, the SMT models are
updated in real time from the target translations validated by the user, preventing the system
from repeating errors in the translation of similar sentences. Despite the strong potential of these
features to improve the user experience (Ortiz-Martı́nez et al., 2010; González-Rubio et al.,
2012; Bertoldi et al., 2013; Denkowski et al., 2014), they are still not widely implemented in
CAT systems. To the best of our knowledge, the only exception is (Ortiz-Martı́nez et al., 2011)
where the authors describe the implementation of online learning within an ITP system.

The present study reports on the results and user evaluation of the CASMACAT workbench
under three different conditions: 1) basic ITP, 2) ITP with online learning, and 3) ITP with active
learning. The ultimate aim of testing these different configurations was to assess their potential
in real world post-editing scenarios and decide which of them can be successfully integrated
into the final prototype of the CASMACAT workbench for the benefit of the human translator.

2 Online and Active Learning for SMT

The proposed CAT workbench has been extended by incorporating online and active learning,
which are targeted to optimizing the quality of the final translations and speeding the post-
editing process by taking advantage of user feedback in real time.

2.1 Online Learning

Online learning (OL) allows us to efficiently re-estimate the parameters of the SMT model with
the new translations generated by the user (Ortiz-Martı́nez et al., 2010). As a result, the SMT
system is able to learn from the translation edits of the user preventing further errors in the
machine generated translations.

Conventional batch learning techniques establish a strict separation between model train-
ing and the subsequent use of the estimated parameters for prediction. As a result, SMT systems
implementing batch learning require to retrain the whole corpus whenever a new training ex-
ample is available, spending days or even weeks of computation depending on the size of the
training set. In contrast, OL techniques process the training examples one at a time or in small
batches. This approach allows the re-estimation of the parameters of an SMT model in constant
time, whatever the number of training examples previously processed is.

The application of OL to the SMT framework requires the definition of incremental up-
date rules for the statistical models involved in the translation process. For this purpose, first
it is necessary to identify a set of sufficient statistics for such models. A sufficient statistic
for a statistical model is a statistic that captures all the information that is relevant to estimate
this model. If the estimation of the statistical model does not require the use of the EM algo-
rithm (Dempster et al., 1977), e.g. language models, then it is generally easy to incrementally
extend the model given a new training sample. By contrast, if the EM algorithm is required,
e.g. alignment models, the estimation procedure has to be modified, since the conventional
EM algorithm is designed for its use in batch learning scenarios. To address this problem, we
implement the incremental version of the EM algorithm defined in (Neal and Hinton, 1999).

2

Figure 1: Screenshot of the CASMACAT workbench.

2.2 Active Learning

Active learning (AL) applied to ITP aims at optimizing the quality of the final translation as a
whole when the available resources, (e.g. manpower, time, money, etc.) are limited (González-
Rubio and Casacuberta, 2014). In this case, the user is asked to post-edit only a subset of the
worst machine generated translations while the system returns SMT outputs for the rest of the
sentences. Moreover, each time the user translates a sentence, we feed the newly generated
translation example to the SMT model.

This AL framework has several potential advantages over conventional ITP technology.
On the one hand, asking the user to only translate a subset of the sentences allows us to limit the
amount of effort to be invested in the translation process and, by focusing human effort in those
sentences for which the investment of user effort is estimated to be more profitable, we also
maximize the utility of each user interaction. On the other hand, the underlying SMT model is
continually updated with new examples which allows the system to learn new translations and
to adapt its outputs to match the preferences of the user. As a result, the subsequent machine
generated translations will be closer to those preferred by the user thus reducing the human
effort required to translate them. Additionally, all these technicalities are transparent to the user
who interacts with the system in the same way she does with a conventional ITP system.

An important practical challenge is the strict bound to the response time imposed by the
interaction with the user. This fact constraints the models and techniques that can be used
to implement AL. Particularly, we select which sentences should be post-edited by the user
according to a sentence-level quality measure based on statistical lexicons (González-Rubio
et al., 2012) and, given a new translation example, the parameters of the SMT model are re-
estimated via the OL techniques described above.

3

Native Danish Speaker Professional translator

U0 yes no
U1 yes yes
U2 no yes
U3 yes yes
U4 yes yes

Table 1: Profile of the users in the pilot study.

3 CASMACAT Workbench

CASMACAT is a CAT workbench developed on top of the MATECAT post-editing inter-
face (Bertoldi et al., 2012). The user is presented with a GUI in which the left-hand window
displays the source text while the right-hand one contains the target text. Texts are split into
segments (corresponding to sentences and headings in the text) so that the translator post-edits
one translation segment at a time. The user can see several segments on the screen at the same
time and can scroll back and forth to choose which segment to translate. The workbench con-
tains a fully-fledged MT engine with interactivity which can search for alternative translations
whilst the user is post-editing the machine translation. The SMT engine providing the above
mentioned functionalities has been implemented using the Thot toolkit (Ortiz-Martı́nez and
Casacuberta, 2014). Figure 1 shows a screenshot of the CASMACAT workbench.

Moreover, the workbench includes facilities for logging system configuration and user
activity data including keystrokes and gaze obtained using an eye-tracking device.

4 Experimental design

The main goal of this pilot study was to assess and compare OL and AL against conventional
ITP. To analyze the results, we used the following measures of the translation process:

• Speed: total number of words translated divided by time in minutes.

• Effort: total number of edits done by the user divided by the number of translated words.

The source texts were extracted from the EMEA corpus (Tiedemann, 2009). A group of
five users volunteered to perform the evaluation of the system post-editing from English into
Danish. Table 1 summarizes the profile of the users. According to the professional experience
of the users, we carried out two different experiments:

First experiment: U0 post-edited three comparable texts with 55 segments each (843 words,
803 words, and 1,005 words). Each text was translated using a different condition, i.e. ITP,
ITP with OL, or ITP with AL.

Second experiment: Four users (U1 to U4) were asked to post-edit the same source text (the
one with 1,005 words in the first experiment), each user in a different condition. In this
case we maintain constant the translation task and compare results from different users.

4

U0 ITP OL

Words translated 843 803
Words/min. 14.1 16.4
Keystrokes/word 2.3 2.3

Table 2: First experiment: ITP vs. OL results.

U1 U2 U3

Native Yes No Yes
Condition ITP OL OL
Words/minute 15.2 40.2 18.0
Keystrokes/word 2.9 0.6 1.8

Table 3: Second experiment: ITP vs. OL results.

5 Results

5.1 User activity data

First we will present the results comparing conventional ITP and ITP with OL. In both condi-
tions, users post-edited all the sentences in the corpus. Table 2 shows ITP and OL results for
the first experiment in which U0 post-edited different texts under the three conditions. Table 3
shows the corresponding results for the second experiment, where the same text (1,005 words)
was post-edited by different users under one condition each.

It can be seen that OL significantly improved translation speed (about 2.5 more words
translated per minute). Regarding the number of keystrokes, results are not consistent: no
significant difference was found in the first experiment for the two conditions while it was
significantly better for OL in the second experiment. The anomalous results for U2 can be
explained by the different profile of the user (i.e. U2 was not a native speaker of Danish).

Regarding the results for ITP with AL against conventional ITP, the users were asked to
post-edit the segments according to the quality of the SMT output. That is, users post-edited
first the segments for which the machine generated translations were considered to be worst. It
is important to note that since the user did not post-edit all machine generated translations (just
the ones with the worst quality), the final target text was a mixture of automatic and human
post-edited translations. In a second phase, we computed the quality (BLEU) of the output
translations and the effort invested (keystrokes per post-edited word) as a function of the number
n of automatic translations post-edited by the user. We ranged n between zero and 55, the
number of segments in the text. Figure 2 shows the improvement in translation quality with
respect to SMT as a function of the effort invested by U0. Similar results were obtained when
comparing U1 versus U4 in the second experiment. Results show that for the same amount of
effort, AL provides a larger increase in translation quality as compared to conventional ITP.

5.2 User feedback

User feedback was collected after each post-editing session in the form of retrospective think-
aloud protocols. The post-editing process was recorded in the form of screen capture video and
then replayed to the users in order to elicit their actions and feelings as they went about with the
post-editing tasks. Below, we include some of the comments and ideas provided by the users.

5

 0

 10

 20

 30

 40

 0 0.5 1 1.5 2 2.5

∆ BLEU

Effort

AL

ITP

Figure 2: First experiment: improvement in translation quality with respect to SMT as a func-
tion of the human effort (keystrokes/word) invested by U0.

U1 (native speaker and professional translator) observations on post-editing through ITP.

“Compared with editing in a non-interactive setting, the interactive translation mode
was generally quite a different experience from a users point of view. It was necessary
to ’unlearn’ some of the editing processes normally carried out during revision of hu-
man or machine translation, such as highlighting words or segments and overwriting
them with improved alternatives, and reading and planning a whole sentence before
making corrections. This lead to a very different editing process, which required some
getting used to and caused a good deal of frustration at first. However, after some time
and practice, and ’unlearning’ of old habits, efficiency improvements kicked in, but
only to the extent that the dynamic changes were appropriate, which was not always
the case. Thus, the problems experienced when working in the interactive mode were
generally associated more with the quality of some of the dynamic corrections made
by the system and less with the interactive mode as such.

On the positive side, the grammatical corrections generally worked well. For exam-
ple, when the definite article (’det’/’den’/’de’ in Danish) was inserted (by the user)
before a pre-modifying adjective, the system automatically added the inflection -e to
the adjective, which is the correct form in Danish. Also, when a noun was written
as an alternative to the original MT solution, the original noun was automatically
removed, which saved the user the delete action and thus improved efficiency.

On the negative side, dynamic corrections at the lexical level were not always appro-
priate. For example, when adding the morpheme ’op-’ to the Danish noun ’løsning’
to arrive at the Danish word for ’dissolution’ (’opløsning’), rather than ’solution’
(’løsning’), the system suggested ’opfølgning’ (’follow-up’). This inappropriate
dynamic correction then had to be revised by deleting ’følgning’ and reinserting
’løsning’, which lead to decreased efficiency in the post-editing process.

The gray/black distinction to differentiate between edited and non-edited text worked
well for me. It was easy to keep track of already accepted text and output that was yet
to be checked.”

6

U0 (native speaker and non professional translator) observations on ITP with AL.

“The use of AL features while post-editing helped me a lot especially when using a
more technical vocabulary. The interactivity seems faster and easier to recall com-
pletely different words, but it is quite the opposite when it comes to introduce small
grammatical chances, such as word endings in Danish. I think that I would need
more hours interacting with the system to make the most of it, but it is a nice feature
when the system is able to remember my word preferences to help me improving my
productivity and consistency overall.”

6 Conclusions

We have presented the results of a pilot study concerning the implementation of OL and AL
within a CAT workbench. We have reported both quantitative results measuring the efficiency
of the translation process, and qualitative results in form of the comments and observations
provided by different users of the workbench. Both configurations according to the feedback
provided and the measurements registered have proven to be useful when integrated in the
workbench. These results must be interpreted cautiously because of the small number of users
involved in the study. Nevertheless, given that OL yielded the best productivity results in this
pilot study, it will be the feature finally included in future versions of the workbench.

Acknowledgments

Work supported by EU’s 7th Framework Programme (FP7/2007-2013) under grant agreement
287576 (CASMACAT).

References

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H.,
Tomás, J., Vidal, E., and Vilar, J.-M. (2009). Statistical approaches to computer-assisted translation.
Computational Linguistics, 35(1):3–28.

Bertoldi, N., Cattelan, A., and Federico, M. (2012). Machine translation enhanced computer assisted
translation. First report on lab and field tests.

Bertoldi, N., Cettolo, M., and Federico, M. (2013). Cache-based online adaptation for machine translation
enhanced computer assisted translation. In Proc. MT Summit, pages 35–42.

Casacuberta, F., Civera, J., Cubel, E., Lagarda, A. L., Lapalme, G., Macklovitch, E., and Vidal, E. (2009).
Human interaction for high quality machine translation. Communications of the ACM, 52(10):135–138.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society., 39(1):1–38.

Denkowski, M., Dyer, C., and Lavie, A. (2014). Learning from post-editing: Online model adaptation for
statistical machine translation. In Proc. EACL, pages 395–404, Gothenburg, Sweden. Association for
Computational Linguistics.

González-Rubio, J. and Casacuberta, F. (2014). Cost-sensitive active learning for computer-assisted trans-
lation. Pattern Recognition Letters, 37:124–134.

González-Rubio, J., Ortiz-Martı́nez, D., and Casacuberta, F. (2012). Active learning for interactive ma-
chine translation. In Proc. EACL, pages 245–254.

7

Langlais, P. and Lapalme, G. (2002). TransType: development-evaluation cycles to boost translator’s
productivity. Machine Translation, 17(2):77–98.

Neal, R. and Hinton, G. (1999). A view of the EM algorithm that justifies incremental, sparse, and other
variants. Learning in graphical models, pages 355–368.

Ortiz-Martı́nez, D. and Casacuberta, F. (2014). The new thot toolkit for fully automatic and interactive
statistical machine translation. In Proc. EACL, pages 45–48.

Ortiz-Martı́nez, D., Garcı́a-Varea, I., and Casacuberta, F. (2010). Online learning for interactive statistical
machine translation. In Proc. NAACL-HLT, pages 546–554.

Ortiz-Martı́nez, D., Leiva, L. A., Alabau, V., Garcı́a-Varea, I., and Casacuberta, F. (2011). An interactive
machine translation system with online learning. In ACL (System Demonstrations), pages 68–73.

Tiedemann, J. (2009). News from opus - a collection of multilingual parallel corpora with tools and
interfaces. In Proc. RANLP, volume V, pages 237–248.

8

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 9–19
AMTA Workshop. Vancouver, Canada. September 22, 2014

Towards a Combination of Online and Multitask
Learning for MT Quality Estimation:

a Preliminary Study

José G. C. de Souza desouza@fbk.eu
University of Trento, Italy
Fondazione Bruno Kessler, Italy

Marco Turchi turchi@fbk.eu
Matteo Negri negri@fbk.eu
Fondazione Bruno Kessler, Italy

Abstract
Quality estimation (QE) for machine translation has emerged as a promising way to provide
real-world applications with methods to estimate at run-time the reliability of automatic trans-
lations. Real-world applications, however, pose challenges that go beyond those of current QE
evaluation settings. For instance, the heterogeneity and the scarce availability of training data
might contribute to significantly raise the bar. To address these issues we compare two al-
ternative machine learning paradigms, namely online and multi-task learning, measuring their
capability to overcome the limitations of current batch methods. The results of our experiments,
which are carried out in the same experimental setting, demonstrate the effectiveness of the two
methods and suggest their complementarity. This indicates, as a promising research avenue,
the possibility to combine their strengths into an online multi-task approach to the problem.

1 Introduction

Quality estimation (QE) for machine translation (MT) is the task of estimating the quality of a
translated sentence at run-time and without access to reference translations (Specia et al., 2009).

As a quality indicator, in a typical QE setting, automatic systems have to predict either
the time or the number of editing operations (e.g. in terms of HTER1) required by a human
to transform the machine-translated sentence into an adequate and fluent translation. In recent
years, QE gained increasing interest in the MT community as a possible way to: decide whether
a given translation is good enough for publishing as is, inform readers of the target language
only whether or not they can rely on a translation, filter out sentences that are not good enough
for post-editing by professional translators, or select the best translation among options from
multiple MT or translation memory systems.

So far, despite its many possible applications, QE research has been mainly conducted
in controlled laboratory testing scenarios that disregard some of the possible challenges posed
by real working conditions. Indeed, the large body of research resulting from three editions
of the shared QE task organized within the yearly Workshop on Machine Translation (WMT

1The HTER (Snover et al., 2006) measures the minimum edit distance between the MT output and its manually
post-edited version. Edit distance is calculated as the number of edits (word insertions, deletions, substitutions, and
shifts) divided by the number of words in the reference. Lower HTER values indicate better translations.

9

(Callison-Burch et al., 2012; Bojar et al., 2013, 2014)) has relied on simplistic assumptions that
do not always hold in real life. These assumptions include the idea that the data available to
train QE models is: (i) large (WMT systems are usually trained over datasets of 800 or more
instances for training) and (ii) training and test are sampled from the same distribution (WMT
training and test sets are drawn from the same domain and are uniformly distributed).

In order to investigate the difficulties of training a QE model in realistic scenarios where
such conditions might not hold, in this paper we approach the task in situations where: (i)
scarce amounts of training data are available and (ii) training instances come from different
domains. In these two particularly challenging contexts from the machine learning perspective,
we investigate the potential of online and multitask learning methods, comparing them with the
batch methods currently used. Our experiments are carried out over datasets of three different
domains with 1,000 tuples of source, machine translated and post-edited sentences each.

To the best of our knowledge, this represents the first attempt to compare the two learning
paradigms in the MT QE field and within the same experimental setting. The analysis of the
results achieved with the two methods yields interesting findings that suggest, as a promising
research avenue, the possibility to exploit their complementarity.

2 Related Work

State-of-the-art in QE explores different supervised linear or non-linear learning methods for
regression or classification such as, among others, support vector machines (SVM), different
types of decision trees, neural networks, elastic-net, gaussian processes, naive bayes (Specia
et al., 2009; Buck, 2012; Beck et al., 2013; C. de Souza et al., 2014a). Another aspect related to
the learning methods that has received attention is the optimal selection of features in order to
overcome issues related with the high-dimensionality of the feature space (Soricut et al., 2012;
C. de Souza et al., 2013; Beck et al., 2013).

Despite constant improvements, such learning methods have limitations. The main one is
that they assume that both training and test data are independently and identically distributed.
As a consequence, when they are applied to data from a different distribution or domain they
show poor performance (C. de Souza et al., 2014b). This limitation harms the performance of
QE systems for several real-world applications, such as computer-assisted translation (CAT) en-
vironments. Advanced CAT systems currently integrate suggestions obtained from MT engines
with those derived from translation memories (TMs). In such framework, the compelling need
to speed up the translation process and reduce its costs by presenting human translators with
good-quality suggestions raises interesting research challenges for the QE community. In such
environments, translation jobs come from different domains that might be translated by differ-
ent MT systems and are routed to professional translators with different idiolect, background
and quality standards (Turchi et al., 2013). Such variability calls for flexible and adaptive QE
solutions by investigating two directions: (i) modeling translator behaviour (Cohn and Specia,
2013; Turchi et al., 2014) and (ii) maximize the learning capabilities from all the available data
(C. de Souza et al., 2014b).

In this study we experiment with the approaches proposed to address directions (i) and (ii)
under the same conditions and evaluate their performance. We use the best learning algorithm
presented by C. de Souza et al. (2014b) and the online learning protocol for QE presented in
Turchi et al. (2014) and compare their results. In our experiments we use more data than both
studies to perform our experiments (1000 data points) for three different domains and compare
both methods with each other as well as with competitive baselines.

10

3 Adaptive MT QE

Multitask Learning (MTL). In MTL different tasks (domains in our case) are correlated
via a certain structure. Examples of such structures are the hidden layers in a neural network
(Caruana, 1997), shared feature representations (Argyriou et al., 2007), among others. This
common structure allows for knowledge transfer among tasks and has been demonstrated to
improve model generalization over single task learning (STL) for different problems in different
areas. Under this scenario, several assumptions can be made about the relatedness among the
tasks, leading to different transfer structures.

In MTL there are T tasks and each task t ∈ T has m training samples
{(x(t)1 , y

(t)
1), . . . , (x

(t)
m , y

(t)
m)}, with x(t)i ∈ Rd where d is the number of features and y(t)i ∈ R

is the output (the response variable or label). The input features and labels are stacked together
to form two different matrices X(t) = [x

(t)
1 , . . . , x

(t)
m] and Y (t) = [x

(t)
1 , . . . , x

(t)
m], respectively.

The weights of the features for each task are represented byW , where each column corresponds
to a task and each row corresponds to a feature.

min
W

T∑

t=1

||(W (t)X(t) − Y (t))||22 + λl||L||∗ + λs||S||1,2 subject to: W = L+ S (1)

where ||S||1,2 is the group regularizer that induces sparsity on the tasks and ||L||∗ is the
trace norm.

The key assumption in MTL is that tasks are related in some way. However, this assump-
tion might not hold for a series of real-world problems. In situations in which tasks are not
related a negative transfer of information among tasks might occur, harming the generalization
of the model. One way to deal with this problem is to: (i) group related tasks in one structure
and share knowledge among them, and (ii) identify irrelevant tasks maintaining them in a dif-
ferent group that does not share information with the first group. This is the idea of robust MTL
(RMTL henceforth). The algorithm approximates task relatedness via a low-rank structure and
identifies outlier tasks using a group-sparse structure (column-sparse, at task level).

RMTL is described by Equation 1. It employs a non-negative linear combination of the
trace norm (the task relatedness component L) and a column-sparse structure induced by the
l1,2-norm (the outlier task detection component S). If a task is an outlier it will have non-zero
entries in S. Both L and S are matrices that represent T tasks in the columns and d features
in the rows, like W . The trace norm is the sum of singular values computed over the feature

weights and given by ||L||∗ =
r∑

i=1

σi(L) where {σi}ri=1 is the set of non-zero singular values

in non-increasing order and r = rank(L). The l1,2-norm is given by ||S||1,2 =
∑T

t=1 ||st||2
where st is the column representing task t and ||.||2 is the l2-norm (also known as the Euclidean
norm of a vector).

Online Learning. In the online framework, differently from the batch mode, the learning
algorithm sequentially processes a sequence of n instances X = x1, x2, . . . , xn, returning a
prediction ŷt = wt · xt as output at each step. A loss function between ŷt and the true label
yt obtained as feedback is used by the algorithm to update the model. In our experiments
we aim to predict the quality of the suggested translations in terms of HTER. To this aim we
use online learning, in particular, the passive aggressive learning method, which is defined as
follows (adapted from Crammer et al. (2006)):

• Receive X , the vector of features extracted from sentence (source, target) pairs;

11

• Predict ŷt = wt · xt. The prediction ŷt is the estimated HTER score for instance t and wt

is the incrementally learned weights feature vector;

• Receive label yt = [0, 1]. The observed HTER score;

• Compute loss lt for the current instance t. The loss is 0 if |w ·x−y| < ε and |w ·x−y|− ε
otherwise. This is know as the ε-insensitive loss;

• Update w according to wt+1 = wt + sign(yt − ŷt)τtxt where τt is given by lt/||xt||2.

At each step of the process, the goal of the learner is to exploit user post-editions to reduce
the difference between the predicted HTER values and the true labels for the following (source,
target) pairs.

4 Experimental Setting

In this section we describe the data used for our experiments, the features extracted, the set up
of the learning methods, the baselines used for comparison and the evaluation of the models.
The goal of our experiments is to show that the methods presented in Section 3 outperform
competitive baselines and standard QE learning methods that are not capable of adapting to
different domains. We experiment with three different domains of comparable size and evaluate
the performance of the adaptive methods and the standard techniques with different amounts
of training data. The RMTL algorithm described in section 3 is trained with the Malsar toolkit
implementation (Zhou et al., 2012). The online learning algorithm is trained using the AQET
toolkit2 (Turchi et al., 2014). The hyper-parameters for both RMTL and PA algorithms are
optimized using 5-fold cross-validation in a grid search procedure over the training data.

Data. Our experiments focus on the English-French language pair and encompass three very
different domains: newswire text (henceforth News), transcriptions of Technology Entertain-
ment Design talks (TED) and Information Technology manuals (IT). Such domains are a chal-
lenging combination for adaptive systems since they come from very different sources spanning
speech and written discourse (TED and News/IT, respectively) as well as a very well defined
and controlled vocabulary in the case of IT.

Each domain is composed of 1000 tuples formed by the source sentence in English, the
French translation produced by an MT system and a human post-edition of the translated sen-
tence. For each pair (translation, post-edition) we use as labels the HTER score computed with
TERCpp3. For the three domains we use 70% of the data for training (700 instances) and 30%
of the data for testing (300 instances). The limited amount of instances for training contrasts
with the 800 or more instances of the WMT evaluation campaigns and is closer to real-world
applications where the availability of large and representative training sets is far from being
guaranteed (e.g. the CAT scenario).

The TED talks domain is formed by subtitles of several talks in a range of topics pre-
sented in the TED conferences. The complete dataset has been used for MT and automatic
speech recognition systems evaluation within the International Workshop on Spoken Language
Translation (IWSLT). The News domain is formed by newswire text used in WMT translation
campaigns and covers different topics. The sentence tuples for TED and News domains are
taken from the Trace corpus4. The translations were generated by two different MT systems, a
state-of-the-art phrase-based statistical MT system and a commercial rule-based system. Fur-
thermore, the translations were post-edited by up to four different translators, as described in

2http://hlt.fbk.eu/technologies/aqet
3http://sourceforge.net/projects/tercpp/
4http://anrtrace.limsi.fr/trace_postedit.tar.bz2

12

(Wisniewski et al., 2013). The IT texts come from a software user manual translated by a statis-
tical MT system based on the state-of-the-art phrase-based Moses toolkit (Koehn et al., 2007)
trained on about 2M parallel sentences. The post-editions were collected from one professional
translator operating on the Matecat5 (Federico et al., 2014) CAT tool in real working conditions.

Features. For all the experiments we use the same feature set composed of 17 features pro-
posed in Specia et al. (2009) and extracted with the QuEst feature extractor (Specia et al., 2013;
Shah et al., 2014). The set is formed by features that model the complexity of translating the
source sentence (e.g. the average source token length or the number of tokens in the source
sentence), and the fluency of the translated sentence produced by the MT system (e.g. the lan-
guage model probability of the translation). The decision to use this feature set is motivated by
the fact that it demonstrated to be robust across language pairs, MT systems and text domains
(Specia et al., 2009).

Baselines. As a term of comparison, in our experiments we consider two baselines. A simple
to implement but difficult to beat baseline when dealing with regression on tasks with different
distributions is to compute the mean of the training labels and use it as the prediction for each
testing point (Rubino et al., 2013). In our experiments we compute the mean HTER of the
training instances of each domain and use it as prediction for each instance of the in-domain
test set. Hereafter we refer to this baseline as µ.

Since supervised domain adaptation techniques should outperform models that are trained
only on the available in-domain data, we also use as baseline the regressor built only on the
available in-domain data (SVR in-domain). The in-domain baseline system is trained on the
feature set described earlier in Section 4 with an SVM regression (SVR) method using the
implementation of Scikit-learn (Pedregosa et al., 2011). The radial basis function (RBF) kernel
is used for all experiments. The hyper-parameters of the model are optimized using randomized
search optimization process with 50 iterations as described in Bergstra and Bengio (2012) and
used previously for QE in C. de Souza et al. (2013).

Evaluation. The accuracy of the models is evaluated with the mean absolute error (MAE),
which was also used in previous work and in the WMT QE shared tasks (Bojar et al., 2013).
MAE is the average of the absolute difference between the prediction ŷi of a model and the
gold standard response yi (Equation 2). As it is an error measure, lower values indicate better
performance.

MAE =
1

m

m∑

i=1

|ŷi − yi| (2)

In our experiments we compare multiple hypothesis among each other (µ, SVR in-domain,
RMTL and PA) across different training sets sizes. Given these requirements we need to per-
form multiple hypothesis tests instead of paired tests. It has been shown in Demšar (2006) that
for comparisons of multiple machine learning models, the recommended approach is to use a
non-parametric multiple hypothesis test followed by a post-hoc analysis that compares each pair
of hypothesis. For computing the statistical significance we use the Friedman test (Friedman,
1937, 1940) followed by a post-hoc analysis of the pairs of regressors using Holm’s procedure
(Holm, 1979) to perform the pairwise comparisons when the null hypothesis is rejected. All
tests for both Friedman and post-hoc analysis are run with α = 0.05. For more details about
these methods, we refer the reader to Demšar (2006); Garcia and Herrera (2008) which pro-
vide a complete review about the application of multiple hypothesis testing to machine learning
methods.

5www.matecat.com

13

5 Results and Discussion

In this section we describe the experiments made with the models described in Section 3 and
discuss the results. As shown in previous work, using single task learning algorithms with in-
domain training data on a cross-domain setting leads to poor results (C. de Souza et al., 2014b).
In our experiments we run the baselines described in Section 4 and the methods described in
Section 3 on different amounts of training data, ranging from 70 to 700 instances (10% and
100% of the training data, respectively). The motivation is to verify how much training data
is required by the MTL and online methods to outperform the baselines for a target domain.
It is important to remark that MTL approach use the training data of the multiple domains to
jointly learn the models for each domain whereas the online learning protocol used here only
uses in-domain data.

Algorithm 20% 50% 100%
TED

µ 0.2088 0.2091 0.2066
SVR in-domain 0.2063 0.2083 0.2036
RMTL 0.1962 0.2019 0.1990
PA 0.2036 0.1977 0.1943

News
µ 0.1384 0.1386 0.1384
SVR in-domain 0.1533 0.1484 0.1460
RMTL 0.1492 0.1446 0.1433
PA 0.2305 0.2218 0.2200

IT
µ 0.2125 0.2128 0.2125
SVR in-domain 0.2114 0.1959 0.1863
RMTL 0.2082 0.2041 0.2023
PA 0.1917 0.1877 0.1858

Table 1: Average performance of 30 runs of the algorithms on different train and test splits with
20, 50 and 100 percent of training data. The average scores reported are the MAE.

Table 1 presents the results for the three domains with models trained on 20, 50 and 100%
of the training data (140, 350 and 700 instances, respectively). Each method was run on 30
different train/test splits of the data in order to account for the variability of points in each split.
Results for PA are statistically significant w.r.t both baselines for IT (p ≤ 0.016667) and TED
(p ≤ 0.025) but not for News. Results for RMTL are statistically significant w.r.t both baselines
for TED (p ≤ 0.025) and they are not statistically significant for the other two domains.

Both the RMTL and PA algorithms outperform the SVR in-domain and µ baselines for the
TED and IT domains with different amounts of training data. For TED, with as much as 20% of
the training data, RMTL outperforms SVR in-domain (the best performing baseline) by around
4.89%. Training the models with 50 and 100% of the training data PA outperforms all other
models and in particular the SVR in-domain by 5 and 4.5%, respectively. The learning curves
of all algorithms for the TED domain are shown in Figure 1. The learning curves show that
RMTL does very well with very little training data whereas PA performs better as we add more
training data.

Similarly, for the IT domain, PA presents the best performance outperforming the best
performing baselines when trained with 20, 50% of the training data by 9.13 and 4.15% and a
very similar performance when trained with 100% of the training data. It is important to notice

14

Figure 1: Learning curves for the TED domain.

that PA learns in an online fashion over the test data in addition to the training data, as opposed
to the other algorithms presented here.

For the News domain, RMTL outperforms SVR in-domain but it is outperformed by the
µ baseline. One indication that explains why the µ baseline is hard to beat are the distributions
of the HTER scores for the News domain (Table 2). Whereas the three domains present similar
means, the standard deviation of the HTER scores of News is smaller than for IT and TED.
This indicates that every point in the News domain is closer to the mean than in the other two
domains.

Domain Mean Std
IT 0.3620 0.2653
TED 0.3396 0.2446
News 0.3737 0.1859

Table 2: Mean and standard deviation of the distributions of HTER scores for TED, IT and
News domains.

The distribution of data for News shows that different things might be happening in this
data, such as: (i) the different MT systems that compose this domain produce translations of
similar quality (around the mean of 0.3737); (ii) the difficulty of translating the sentences is
homogeneous and (iii) the post-editors tend to agree more. The kernel density estimation of the
labels for the three domains is shown in Figure 2. The News domain presents only one maxima
and has a different shape than the other two domains that present at least two other maximum,
indicating that TED and IT are more alike in terms of label distributions with respect to the
News domain.

The results show that both RMTL and PA improve over in-domain single-task learning
on different domains. The MTL method used in our experiments is capable of transferring
knowledge from different domains whereas the online learning method is capable of training

15

Figure 2: Kernel density estimation of HTER scores for TED, IT and News domains (1000
instances).

incremental models that can leverage also the test data. Interestingly, the results achieved with
the two approaches suggest that they can complement each other if combined. Indeed, online
MTL would make it possible to leverage the positive characteristics of both methodologies for
both for batch and online learning applications of MT QE.

For example, in an application like MT QE for the CAT scenario, we can have an on-
line MTL method that uses the MTL transfer capability to learn more robust models that can
continuously evolve over time accounting for knowledge acquired from post-editors work (the
same setting proposed by Turchi et al. (2014)). Likewise, online MTL can be used to adapt to
new domains (different post-editors, MT systems and text genres) in scenarios in which only a
very limited amount of training labels is available (the scenario described in C. de Souza et al.
(2014b)). An interesting characteristic of the results presented in this work is that both online
and MTL learning require fewer training points than single-task batch learning methods (as
shown in Figure 1). A combination of both techniques might hence lead to further reduction on
the amount of training data needed, depending on the data.

This motivates, as an interesting line of future work, the combination of the two methods.
We believe that significant improvements towards the application of QE in real-world scenarios
could be reached by leveraging the adaptation capability of MTL and the incremental learning
capability of online methods.

6 Conclusion

In this work we presented an evaluation of multitask and online methods capable of learning
models across different domains for MT QE. In our experiments we worked close to a real world
scenario in which the training data is formed by translations generated by different MT systems,
the translations are post-edited by different translators and the texts come from differente text
genres. We compared one multitask (robust MTL) and one online learning method (passive
agressive) with two different competitive baselines.

The results of our experiments show that both MTL and online learning methods produce
better models than single task learning batch models under such difficult conditions. Further-
more, this comparison opens an interesting research direction for MT QE that is to explore on-
line multitask learning methods. Such methods join the information transfer capability intrinsic
to MTL methods with the incremental learning capabilities of online learning methods, enabling
better adaptation capabilities in MT QE applications that require online or batch learning.

16

References

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learning. In Advances in
neural information processing systems, volume 19.

Beck, D., Shah, K., Cohn, T., and Specia, L. (2013). SHEF-Lite: When less is more for
translation quality estimation. In Proceedings of the Eighth Workshop on Statistical Machine
Translation, pages 337–342.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal
of Machine Learning Research, 13:281–305.

Bojar, O., Buck, C., Callison-Burch, C., Federmann, C., Haddow, B., Koehn, P., Monz, C.,
Post, M., Soricut, R., and Specia, L. (2013). Findings of the 2013 Workshop on Statistical
Machine Translation. In Eighth Workshop on Statistical Machine Translation, pages 1–44.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina, P.,
Post, M., Saint-Amand, H., Soricut, R., Specia, L., and Tamchyna, A. (2014). Findings of the
2014 Workshop on Statistical Machine Translation. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 12–58.

Buck, C. (2012). Black Box Features for the WMT 2012 Quality Estimation Shared Task. In
Proceedings of the 7th Workshop on Statistical Machine Translation, pages 91–95.

C. de Souza, J. G., Buck, C., Turchi, M., and Negri, M. (2013). FBK-UEdin participation
to the WMT13 Quality Estimation shared-task. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 352–358.

C. de Souza, J. G., González-Rubio, J., Buck, C., Turchi, M., and Negri, M. (2014a). FBK-
UPV-UEdin participation in the WMT14 Quality Estimation shared-task. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, pages 322–328.

C. de Souza, J. G., Turchi, M., and Negri, M. (2014b). Machine Translation Quality Estimation
Across Domains. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers., pages 409–420.

Callison-Burch, C., Koehn, P., Monz, C., Post, M., Soricut, R., and Specia, L. (2012). Find-
ings of the 2012 Workshop on Statistical Machine Translation. In Proceedings of the 7th
Workshop on Statistical Machine Translation, pages 10–51, Montreal, Canada. Association
for Computational Linguistics.

Caruana, R. (1997). Multitask Learning. Machine learning, 28(28):41–75.

Cohn, T. and Specia, L. (2013). Modelling Annotator Bias with Multi-task Gaussian Processes:
An application to Machine Translation Quality Estimation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, pages 32–42.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal
of Machine Learning Research, 7:1–30.

17

Federico, M., Bertoldi, N., Cettolo, M., Negri, M., Turchi, M., Trombetti, M., Cattelan, A.,
Farina, A., Lupinetti, D., Martines, A., Massidda, A., Schwenk, H., Barrault, L., Blain, F.,
Koehn, P., Buck, C., and Germann, U. (2014). The Matecat Tool. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: System Demonstra-
tions, pages 129–132.

Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the
Analysis of Variance. Journal of the American Statistical Association, 32(200):675–701.

Friedman, M. (1940). A Comparison of Alternative Tests of Significance for the Problem of m
Rankings. The Annals of Mathematical Statistics, 11(1):86–92.

Garcia, S. and Herrera, F. (2008). An Extension on ”Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research,
9:2677–2694.

Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian
Journal of Statistics, 6(2):pp. 65–70.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zenz, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).
Moses: Open source toolkit for statistical machine translation. In ACL 2007 Demo and Poster
Sessions, number June, pages 177–180.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn : Machine Learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Rubino, R., de Souza, J. G. C., and Specia, L. (2013). Topic Models for Translation Quality
Estimation for Gisting Purposes. In Machine Translation Summit XIV, pages 295–302.

Shah, K., Turchi, M., and Specia, L. (2014). An Efficient and User-friendly Tool for Machine
Translation Quality Estimation. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14).

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A Study of Transla-
tion Edit Rate with Targeted Human Annotation. In Association for Machine Translation in
the Americas.

Soricut, R., Bach, N., and Wang, Z. (2012). The SDL Language Weaver Systems in the WMT12
Quality Estimation Shared Task. In Proceedings of the 7th Workshop on Statistical Machine
Translation, pages 145–151.

Specia, L., Cancedda, N., Dymetman, M., Turchi, M., and Cristianini, N. (2009). Estimating the
Sentence-Level Quality of Machine Translation Systems. In Proceedings of the 13th Annual
Conference of the EAMT, number May, pages 28–35.

Specia, L., Shah, K., de Souza, J. G. C., and Cohn, T. (2013). QuEstA translation quality
estimation framework. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 79–84.

Turchi, M., Anastasopoulos, A., de Souza, J. G. C., and Negri, M. (2014). Adaptive Quality
Estimation for Machine Translation. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.

18

Turchi, M., Negri, M., and Federico, M. (2013). Coping with the subjectivity of human judge-
ments in mt quality estimation. In Eighth Workshop on Statistical Machine Translation
(WMT), pages 240–251.

Wisniewski, G., Singh, A. K., Segal, N., and Yvon, F. (2013). Design and Analysis of a Large
Corpus of Post-Edited Translations: Quality Estimation, Failure Analysis and the Variability
of Post-Edition. In Machine Translation Summit XIV, pages 117–124.

Zhou, J., Chen, J., and Ye, J. (2012). MALSAR: Multi-tAsk Learning via StructurAl Regular-
ization.

19

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 20–31
AMTA Workshop. Vancouver, Canada. September 22, 2014

Dynamic Phrase Tables for Machine Translation
in an Interactive Post-editing Scenario

Ulrich Germann
University of Edinburgh
ugermann@inf.ed.ac.uk

Abstract

This paper presents a phrase table implementation for the Moses system that computes phrase
table entries for phrase-based statistical machine translation (PBSMT) on demand by sampling
an indexed bitext. While this approach has been used for years in hierarchical phrase-based
translation, the PBSMT community has been slow to adopt this paradigm, due to concerns
that this would be slow and lead to lower translation quality. The experiments conducted in
the course of this work provide evidence to the contrary: without loss in translation quality,
the sampling phrase table ranks second out of four in terms of speed, being slightly slower
than hash table look-up (Junczys-Dowmunt, 2012) and considerably faster than current im-
plementations of the approach suggested by Zens and Ney (2007). In addition, the underlying
parallel corpus can be updated in real time, so that professionally produced translations can
be used to improve the quality of the machine translation engine immediately.

1 Introduction

In recent years, there has been an increasing interest in integrating machine translation
(MT) into the professional translator’s work flow. With translation memories (TM)
firmly established as a productivity tool in the translation industry, it is a conceptually
obvious extension of this paradigm to include machine translation engines as virtual
TMs in the set-up.

One major obstacle to this integration is the static nature of most machine transla-
tion systems that are currently available for use in production. They cannot adapt easily
to feedback from the post-editor, or integrate new data into their knowledge base on
short notice. In other words, they do not learn interactively from corrections to their
output. Their models and knowledge bases were originally developed and designed for
a batch translation scenario, where resources are first built and then used to translate in
a fully automatic fashion without further intervention. Training the model parameters
is still a slow and computationally very expensive process.

20

This paper presents dynamic phrase tables as an alternative, implemented within the
open-source statistical machine translation (SMT) system Moses (Koehn et al., 2007).1

Rather than simply looking up pre-computed entries from a database, they construct
their entries on the fly by sampling word-aligned parallel data. The underlying cor-
pus can be amended dynamically with low latency, for example by feeding post-edited
output back to the translation server. New additions to the corpus can be exploited for
future translations immediately.

While the underlying mechanisms are not new (cf. Callison-Burch et al., 2005;
Lopez, 2007), the work reported here eliminates two major concerns about the use
of bitext sampling for phrase table entry construction on demand: translation speed
and translation quality. The experimental evaluation shows that in terms of speed,
the sampling phrase table clearly outperforms current implementations of the work by
Zens and Ney (2007). It comes close to the translation speed achievable with the hash-
based compact phrase table implementation of Junczys-Dowmunt (2012). It should
be noted that if translation speed is a serious concern, it is easy to pre-compute and
store or cache phrase table entries for frequently occurring phrases. In terms of transla-
tion quality, the performance of the sampling phrase table is on par with conventional
phrase tables for phrase-based SMT. Among the phrase table implementations that were
evaluated for this work, the sampling phrase table is the only one that allows dynamic
updates to its knowledge base in real time.

2 Conventional phrase tables vs. bitext sampling

2.1 Background

Most machine translation systems used in production today follow the paradigm of
phrase-based statistical machine translation (PBSMT; Koehn et al., 2003). PBSMT
systems typically rely on three distinct models: a language model that judges target-
language fluency of a proposed translation; a translation model that gauges the quality
of the elementary translation pairs that the final translation is composed of; and a dis-
tortion model that models changes in word order between source text and translation.

The units of translation in PBSMT are contiguous sequences of words in the source
text (“phrases”) that are translated into contiguous sequences of words on the target
side. Producing the translation hypothesis left-to-right in the target language, the trans-
lation algorithm selects non-overlapping phrases in arbitrary order from the source and
concatenates the corresponding translations (i.e., target phrases) to produce a translation
hypothesis. Jumps between the source phrases are modelled by the distortion model.

Translation options for source phrases are conventionally stored in a pre-computed
table, which is called the phrase table. Phrase translation scores are computed via
a (log-)linear model over a number of features values associated with the phrase pair
〈s, t〉 in question. In the typical set-up, phrase table entries are evaluated by four feature
1 The code has been added to the Moses master branch at https://github.com/moses-smt/mosesdecoder.

21

functions. In the formulas below, As,t is the phrase-internal word alignment between s
and t. The four feature functions are as follows.

• the conditional phrase-level ‘forward‘ translation probability p (t | s)

• the conditional phrase-level ‘backward‘ translation probability p (s | t)

• the joint ‘lexical forward‘ probability of all target words, given the source phrase
(and possibly a word alignment between the two phrases):

∏|t|
k=0 p (tk | s,As,t).

• the corresponding joint ‘lexical backward‘ probability
∏|s|

k=0 p (sk | t,As,t).

In order to achieve better translations, phrase-level probabilities are typically smoothed
by Good-Turing or Kneser-Ney smoothing (Foster et al., 2006). The underlying counts
and smoothing parameters are computed based on a complete list of phrase pairs ex-
tracted from the word-aligned parallel training corpus.

2.2 Bitext sampling

Except for toy examples, pre-computed phrase tables are typically very large, with the
exact size of course depending on the maximum phrase length chosen and the size of
the underlying corpus. The phrase table used for the timing experiments reported in
Section 3.2, for example, consists of over 90 million distinct pairs of phrases of up to 7
words extracted from a moderately sized parallel corpus of fewer than 2 million parallel
sentences of German-English text.

The large sizes of phrase tables make it impractical to fully load them into memory
at translation time. Fully loaded into memory in the Moses decoder, the phrase table of
the aforementioned system requires well over 100 GB of RAM and takes far beyond an
hour to load. Therefore, phrase tables are usually converted to a disk-based representa-
tion, with phrase table entries retrieved from disk when needed. There are several such
representations (Zens and Ney, 2007; Germann et al., 2009; Junczys-Dowmunt, 2012),
two of which (Zens and Ney, 2007; Junczys-Dowmunt, 2012) have been integrated into
the Moses system.

As an alternative to pre-computed phrase tables, Callison-Burch et al. (2005) sug-
gested to compute phrase table entries on the fly at runtime by extracting and scor-
ing a sample of source phrase occurrences and their corresponding translations from
a pre-indexed bitext. For indexing, they use suffix arrays (Manber and Myers, 1990).
A suffix array is an array of all token positions in a given linear sequence of tokens
(e.g., a text or a DNA sequence), sorted in lexicographic order of the sub-sequence
of tokens starting at the respective position. The use of suffix-array-based bitext sam-
pling in the context of MT has been explored at length by Lopez (2007) as well as
Schwartz and Callison-Burch (2010), especially with respect to Hierarchical Phrase-
based Translation (HPBSMT; Chiang, 2005, 2007).

22

A great advantage of the suffix-array-based approach is that it is relatively cheap and
easy to augment the underlying corpus. To add a pair of sentences to the parallel corpus,
all we need to do is to construct a suffix array for the added material (O(n log n), where
n is the number of tokens in the added material), and then merge-sort the original suffix
array (of length m) with the new suffix array (O(n+m)).

While corpus sampling is common practice in other branches of MT research (es-
pecially HPBSMT, due to the prohibitive size of pre-computed, general-purpose, wide-
coverage rule bases), adoption in the PBSMT community has been slow, apparently2

due to concerns about translation speed and quality.

In the following, I intend to dispel these concerns by presenting experimental re-
sults obtained with an implementation of suffix-array-based phrase tables that sample
the underlying bitext at run time, yet outperform existing disk-based implementations
of conventional phrase tables by a wide margin in terms of speed (despite the greater
computational effort), without any loss in translation quality.

Much of the speed benefit is related to RAM vs. disk access. Word-aligned parallel
corpora are much more compact than fully expanded phrase tables, so we can afford
to keep more of the information in memory, benefiting from access times that can be
several orders of magnitude faster than random access to data stored on disk (Jacobs,
2009).

Moreover, the data structures are designed to be mapped directly into memory,
so that we can rely on the system’s virtual memory manager to transfer the data effi-
ciently into memory when needed. This is much faster than regular file access. Two
of the four implementations evaluated here store all the data on disk by default and
load them on demand (PhraseDictionaryBinary, PhraseDictionaryOnDisk); the other
two (PhraseDictionaryCompact and PhraseDictionaryBitextSampling (this work)) use
memory-mapped files to ensure the fastest transfer possible between disk and mem-
ory. I attribute most of the speed benefits to these implementational choices (see also
Sec. 3.2).

Last but not least, one can alleviate the impact of the computational overhead on
overall translation time by caching frequently occurring entries, so that they must be
computed only once, and perform phrase table look-up in parallel for all source phrases
in a sentence submitted for translation, subject to the number of CPUs available.

The issue of translation quality is less obvious. Despite common misconceptions,
it is not so much a matter of missing translation options due to sampling the bitext in-
stead of taking into account every single source phrase occurrence. The vast majority
of phrases occur so rarely that we can easily investigate every single occurrence. More
frequent words and phrases will often be contained in longer, rarer phrases whose in-
stances we also fully explore. And if there is a rare translation of a very frequent word
that escapes our sampling, it is highly unlikely that this translation would survive the

2 I base this statement on numerous conversations with practitioners in the field.

23

system’s hypothesis ranking process.

On the contrary, it is the rarity of most phrases that causes problems, as maximum
likelihood estimates based on low counts are less reliable — they tend to over-estimate
the true translation probability. As Foster et al. (2006) have shown, smoothing phrase-
level conditional phrase probabilities improves translation performance. My experi-
ments confirm this finding (Table 2).

Both standard methods for smoothing phrase-level translation probabilities in the
phrase table, Good-Turing and Kneser-Ney, require global information about the entire
set of phrasal translation relations contained in the parallel corpus. This information is
not available when we sample. To take the amount of evidence available into account
when estimating phrase translation probabilities, we therefore compute the lower bound
of the confidence interval3 over the true translation probability, at some confidence level
α, based on the observed counts. The more evidence is available, the narrower the
confidence interval.

Another issue is the computation of the useful backward phrase-level translation
probabilities p (source phrase | target phrase). Omitting this feature function seriously
hurts performance (see Line 5 in Table 2). One could, of course, perform a full reverse
look-up for each translation candidate to obtain the inverse translation probability. This
would increase the number of full phrase look-ups operations necessary to construct a
phrase table entry from scratch by a factor equal to the number of translation options
considered for each source phrase (although again, these look-up operations could be
cached). In practice, this is not necessary. To determine the denominator for the back-
ward phrase-level translation probability, we simply scale the number of occurrences of
each translation candidate in the bitext by the ratio of the source phrase sample size to
the total number of source phrase occurrences in the corpus. Retrieving the total num-
ber of occurrences of the translation candidate in the corpus is trivial if we also index
the target side of the corpus with a suffix array: we only need to measure the distance
between the first and the occurrence of the phrase in the suffix array. Since the suffix
array is sorted in lexicographic order of the corresponding suffixes, this distance is the
total number of phrase occurrences.

3 Experiments

Two sets of experiments were conducted to compare bitext sampling to conventional
phrase tables in terms of static performance (without updates), and a third one to asses
the benefits of dynamically updating the phrase table as interactive translation pro-
gresses. The first experiment aimed at determining the quality of translation achievable
with bitext sampling and the best parameter settings; the second focused on translation
speed and resource requirements. Training, tuning and test data for these two exper-
iments were taken from the data sets for the WMT 2014 shared translation task (cf.
Table 1). The language model was a standard 5-gram model with Kneser-Ney smooth-

3 Specifically, the Clopper-Pearson interval (Clopper and Pearson, 1934) as implemented in the Boost C++ library.

24

Table 1: Corpus statistics for the training, development and test data. All corpora were
part of the official data for the shared translation task at WMT 2014 and true-cased for
processing.

of tokens
corpus # of sentences German English

LM train Europarl-v7 2,218,201 60,502,373
News-Commentary-v9 304,174 7,676,138

TM train Europarl-v7 1,920,209 50,960,730 53,586,045
News-Commentary-v9 201,288 5,168,511 5,151,459
total after alignmenta 2,084,594 53,863,321 56,351,895

Tuning Newstest-2013 3,000 64,251 65,602
Testing Newstest-2014 3003 64,498 68,940
a Some sentence pairs were discarded during word alignment

ing; the distortion model was a simple distance-based model without lexicalisation. The
phrase table limit (i.e., the limit on the number of distinct translation hypotheses that
will be considered during translation) was set to 20; the distortion limit to 6. Sampling
was performed without replacement.

3.1 Translation Quality

Table 2 shows the the quality of translation achieved by the various system configura-
tions, as measured by the BLEU score Papineni et al. (2002). The system configura-
tions were identical except for the method used for construction and scoring of phrase
table entries.

Each system was tuned 10 times in independent tuning runs to gauge the influence
of parameter initialisation on overall performance (cf. also Clark et al., 2011). The
95% confidence interval in the second-but-last column was computed with bootstrap
resampling for the median system within the respective group.

The first four systems rely on conventional phrase tables with four feature functions as
described in Sec. 2.1: forward and backward phrase-level conditional probabilities as
well as forward and backward joint lexical translation probabilities. They differ in the
smoothing method used, except for the system in Line 3, which shows that filtering the
phrase table to include only the top 100 entries (according to the forward phrase-level
probability p(t | s)) has no effect on translation quality.

Lines 5 and below are based on bitext sampling. The poor performance in Line 5
illustrates the importance of the phrase-level backward probability. Without it, the per-
formance suffers significantly. Lines 4 and 6 show the benefits of smoothing.

The parameter α in Lines 7 to 9 is the confidence level for which the Clopper-
Pearson interval was computed. Notice the minuscule difference between lines 2/3

25

Table 2: BLEU scores with different phrase score computation methods.

method low high median mean
95% conf.
intervala

runs

1 precomp., Kneser-Ney smoothing 18.36 18.50 18.45 18.43 17.93 – 18.95 10
2 precomp., Good-Turing smoothing 18.29 18.63 18.54 18.52 18.05 – 19.05 10
3 precomp., Good-Turing smoothing, filteredb 18.43 18.61 18.53 18.53 18.04 – 19.08 10
4 precomp., no smoothing 17.86 18.12 18.07 18.05 17.58 – 18.61 10
5 max. 1000 smpl., no smoothing, no bwd. prob. 16.70 16.92 16.84 16.79 16.35 – 17.32 10
6 max. 1000 smpl., no smoothing, with bwd. prob. 17.61 17.72 17.69 17.68 17.14 – 18.22 8
7 max. 1000 smpl., α = .05, with bwd. prob.c 18.35 18.43 18.38 18.38 17.86 – 18.90 10
8 max. 1000 smpl., α = .01, with bwd. prob. 18.43 18.65 18.53 18.52 18.03 – 19.12 10
9 max. 100 smpl., α = .01, with bwd. prob. 18.40 18.55 18.46 18.46 17.94 – 19.00 10

a Confidence intervals were computed via bootstrap resampling for the median system in the group.
b Top 100 entries per source phrase selected according to p (t | s).
c The parameter α is the one-sided confidence level of the Clopper-Pearson interval for the observed counts.

and 8! By replacing plain maximum likelihood estimates with the lower bound of
the confidence interval over the respective underlying translation probability, we can
make up for the lack of global information necessary for Good-Turing or Kneser-Ney
smoothing.

3.2 Speed

Table 3 shows average translation times4 per sentence for four phrase table implemen-
tations in the Moses system. PhraseDictionaryBinary and PhraseDictionaryOnDisk
are implementations of the method described in Zens and Ney (2007). PhraseDic-
tionaryCompact (Junczys-Dowmunt, 2012) is a compressed phrase table that relies on
a perfect minimum hash for look-up. PhraseDictionaryBitextSampling is the suffix
array-based phrase table presented in this paper. Each system was run with 8 threads as
the only processes on an 8-core machine with locally mounted disks, translating 3003
sentences from the WMT 2014 test set. Prior to each run, all file system caches in RAM
were dropped.

When the pre-computed phrase tables are not filtered, the bitext sampler outper-
forms even the hash-based phrase table of Junczys-Dowmunt (2012). This is due to the
cost of ranking very long lists of translation candidates for very frequent source phrases.
Filtering the phrase table off-line to include only the 100 most likely translation candi-
dates for each phrase (based on p(t | s)) leads to a significant speed-up without impact
on translation quality (cf. Line 3 in Table 2).5 Similarly, the speed of the bitext sampler

4 The times shown were computed by dividing the total wall time of the system run by the number of sentences trans-
lated. Translations were performed in 8 parallel threads, so that the average actual translation time for a single sentence
is about 8 times the time shown. Since the bitext sampler is inherently multi-threaded, the fairest form of comparison
was to run the systems in a way that exhausts the host computer’s CPU capacity.

5 I thank M. Junczys-Dowmunt for pointing out to me that phrase tables must be filtered for optimal performance.

26

Table 3: Translation speed (wall time) with different phrase table implementations. The
implementation names correspond to Moses configuration options. Translations were
performed in multi-threaded mode with 8 parallel threads.

type implementation ave. sec./snt
static PhraseDictionaryBinary (Zens and Ney, 2007) 0.879
static PhraseDictionaryOnDisk (Zens and Ney, 2007) 0.717
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012) 0.366
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012), filtereda 0.214
dynamic PhraseDictionaryBitextSampling, max. 1000 samples (this work) 0.256
dynamic PhraseDictionaryBitextSampling, max. 100 samples (this work) 0.228
a max 100 entries per source phrase

can be improved by reducing the maximum number of samples considered, although
this slightly (but not significantly) reduces translation quality as measured by BLEU
(cf. Line 9 in Table 2). Phrase table filtering has no impact on the speed of the other
phrase table implementations.

3.3 Simulated Post-editing

The main goal of this work was to develop a phrase table that can incorporate user
edits of raw machine translation output into its knowledge base at runtime. Since ex-
periments involving real humans in the loop are expensive to conduct, I simulated the
process by translating sentences from an earlier post-editing field trial in English-to-
Italian translation in the legal domain. The training corpus consisted of ca. 2.5 million
sentence pairs (English: ca. 44.6 million tokens, Italian: ca. 45.9 million). Due to the
nature of such studies, the amount of data available for tuning and testing was fairly
small: 564 sentence pairs with 17,869 English and 18,528 Italian tokens for tuning,
and 472 segments with 10,829 tokens of English source text and 11,595 tokens of post-
edited translation into Italian.

Several feature functions were added for use with dynamic updates to the under-
lying bitext. In the following, “background data” means parallel data available prior
to the translation of the first sentence, and “foreground data” the parallel data that is
successively added to the parallel corpus.

• Separate vs. pooled phrase-level conditional translation probabilities (forward and
backward), i.e. the use of distinct feature functions for these probability estimates
based on counts obtained separately from the background and the foreground cor-
pus separately, or feature functions based on pooled counts from two corpora.
Because of the small size of our tuning and test sets, counts were pooled in the
experiments for this work.

• A provenance feature n
x+n , where n is the number of occurrences in the corpus

27

Table 4: Simulated post-editing vs. batch translation for English-to-Italian translation
in the legal domain. For simulated post-editing, counts were pooled.

method low high median mean 95% conf.
intervala runs

conventional, Good-Turing smoothing 29.97 30.93 30.74 30.67 29.16 – 32.37 10
sampled, no updates, no smoothing, rarity pen. 29.84 30.97 30.52 30.43 28.97 – 32.25 10
simulated post-editing, pooled counts,
no smoothing, rarity, provenance

30.63 33.05 31.96 31.88 30.19 – 33.77 10

aConfidence intervals were computed via bootstrap resampling for the median system in the group.

and x > 1 an adjustable parameter that determines the slope of the provenance
reward. The purpose of this feature is to boost the score of phrase pairs that occur
in the foreground corpus.

• A global rarity penalty x
x+n (where x and n mean the same as above) that can

penalise phrase pairs that co-occur only rarely overall.

Results are shown in Table 4. None of the differences are statistically significant. In
light of the small size of the test set, this is hardly surprising. In general, we should
expect the benefit of adding post-edited data immediately to the knowledge base of the
SMT system to vary widely depending on the repetitiveness of the source text, and on
how well the translation domain is already covered by the background corpus.

4 Related Work

User-adaptive MT has received considerable research interest in recent years. Due
to space limitations, we can only briefly mention a few closely related efforts here.
A survey of recent work can be found, for example, in the recent journal arti-
cle by Bertoldi et al. (2014b). Ortiz-Martı́nez et al. (2010), Bertoldi et al. (2014b),
and Denkowski et al. (2014) all present systems that can be updated incrementally.
Ortiz-Martı́nez et al. (2010) present a system that can trained be incrementally from
scratch with translations that are produced in an interactive computer-aided translation
scenario. The work by Bertoldi et al. (2014b) relies on cache-based models that keep
track of how recently phrase pairs in the translation model and n-grams in the language
models have been used in the translation pipeline and give higher scores to recently
used items. They also augment the phrase table with entries extracted from post-edited
translations. The work by Denkowski et al. (2014) is the closest to the work presented
in this paper.6 Working with the cdec decoder (Dyer et al., 2010), they also use suffix ar-
rays to construct phrase table entries on demand. In addition, they provide mechanisms
to update the language model and re-tune the system parameters.

Focusing on dynamic adjustment of system parameters (feature function values and
combination weights), Martı́nez-Gómez et al. (2012) investigate various online learn-
ing algorithms for this purpose. Blain et al. (2012) and Bertoldi et al. (2014a) describe
6 Incidentally, Denkowski (personal communication) is using the implementation presented here to port the work of

Denkowski et al. (2014) to the Moses framework.

28

online word alignment algorithms that can produce the word alignments necessary for
phrase extraction.

5 Conclusions

I have presented a new phrase table for the Moses system that computes phrase table
entries on the fly. It outperforms existing phrase table implementations in Moses in
terms of speed, without sacrificing translation quality. This is accomplished by a new
way of computing phrase-level conditional probabilities that takes the amount of evi-
dence available into account and discounts probabilities whose estimates are based on
little evidence. Unlike static conventional phrase tables, sampling-based phrase tables
allow for rapid updates of the underlying parallel corpus and therefore lend themselves
to use in an interactive and dynamic machine translation scenario.

Acknowledgements

This work was supported by the European Union’s 7th Framework Programme
(FP7/2007-2013) under grant agreements 287576 (CASMACAT), 287688 (MATECAT),
and 288769 (ACCEPT). I thank the anonymous reviewers for numerous helpful sug-
gestions.

References

Bertoldi, Nicola, Amin Farajian, and Marcello Federico. 2014a. “Online word alignment for online adap-
tive machine translation.” Workshop on Humans and Computer-assisted Translation, 84–92. Gothen-
burg, Sweden.

Bertoldi, Nicola, Patrick Simianer, Mauro Cettolo, Katharina Wäschle, Marcello Federico, and Stefan Rie-
zler. 2014b. “Online adaptation to post-edits for phrase-based statistical machine translation.” Machine
Translation. Accepted for publication. Preprint.

Blain, Frédéric, Holger Schwenk, and Jean Senellart. 2012. “Incremental adaptation using translation
information and post-editing analysis.” 9th International Workshop on Spoken Language Translation,
229–236. Hong Kong.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. 2005. “Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases.” 43rd Annual Meeting of the Association for
Computational Linguistics (ACL ’05), 255–262. Ann Arbor, Michigan.

Chiang, David. 2005. “A hierarchical phrase-based model for statistical machine translation.” 43rd Annual
Meeting of the Association for Computational Linguistics (ACL ’05), 263–270. Ann Arbor, Michigan.

Chiang, David. 2007. “Hierarchical phrase-based translation.” Computational Linguistics, 33(2):1–28.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. 2011. “Better hypothesis testing for
statistical machine translation: Controlling for optimizer instability.” Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Pa-
pers - Volume 2, 176–181. Stroudsburg, PA, USA.

29

Clopper, C.J. and E.S. Pearson. 1934. “The use of confidence or fiducial limits illustrated in the case of
the binomial.” Biometrika.

Denkowski, Michael, Chris Dyer, and Alon Lavie. 2014. “Learning from post-editing: Online model
adaptation for statistical machine translation.” Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, 395–404. Gothenburg, Sweden.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hendra Se-
tiawan, Vladimir Eidelman, and Philip Resnik. 2010. “cdec: A decoder, alignment, and learning
framework for finite-state and context-free translation models.” Proceedings of the ACL 2010 System
Demonstrations, 7–12. Uppsala, Sweden.

Foster, George F., Roland Kuhn, and Howard Johnson. 2006. “Phrasetable smoothing for statistical ma-
chine translation.” EMNLP, 53–61.

Germann, Ulrich, Eric Joanis, and Samuel Larkin. 2009. “Tightly packed tries: How to fit large models
into memory, and make them load fast, too.” Workshop on Software Engineering, Testing, and Quality
Assurance for Natural Language Processing (SETQA-NLP 2009), 31–39. Boulder, CO, USA.

Jacobs, Adam. 2009. “The pathologies of big data.” Queue, 7(6):10:10–10:19.

Junczys-Dowmunt, Marcin. 2012. “Phrasal rank-encoding: Exploiting phrase redundancy and transla-
tional relations for phrase table compression.” Prague Bull. Math. Linguistics, 98:63–74.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. “Moses: Open source toolkit for statistical machine translation.” 45th
Annual Meeting of the Association for Computational Linguistics (ACL ’07): Demonstration Session.
Prague, Czech Republic.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003. “Statistical phrase-based translation.” Human
Language Technology Conference of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL ’03), 48–54. Edmonton, AB, Canada.

Lopez, Adam. 2007. “Hierarchical phrase-based translation with suffix arrays.” EMNLP-CoNLL, 976–
985.

Manber, Udi and Gene Myers. 1990. “Suffix arrays: A new method for on-line string searches.” Pro-
ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, 319–327.
Philadelphia, PA, USA.

Martı́nez-Gómez, Pascual, Germán Sanchis-Trilles, and Francisco Casacuberta. 2012. “Online adap-
tation strategies for statistical machine translation in post-editing scenarios.” Pattern Recognition,
45(9):3193–3203.

Ortiz-Martı́nez, Daniel, Ismael Garcı́a-Varea, and Francisco Casacuberta. 2010. “Online learning for inter-
active statistical machine translation.” Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, HLT ’10, 546–554.
Stroudsburg, PA, USA.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “Bleu: a method for automatic
evaluation of machine translation.” ACL 2002, 311–318. Philadelphia, PA.

30

Schwartz, Lane and Chris Callison-Burch. 2010. “Hierarchical phrase-based grammar extraction in
joshua: Suffix arrays and prefix tree.” The Prague Bulletin of Mathematical Linguistics, 93:157–166.

Zens, Richard and Hermann Ney. 2007. “Efficient phrase-table representation for machine translation
with applications to online MT and speech translation.” Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL ’07),
492–499. Rochester, New York.

31

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 32–41
AMTA Workshop. Vancouver, Canada. September 22, 2014

Optimized MT Online Learning
in Computer Assisted Translation

Prashant Mathur prashant@fbk.eu
FBK, Trento, Italy
DISI, University of Trento, Italy

Mauro Cettolo cettolo@fbk.eu
FBK, Trento, Italy

Abstract
In this paper we propose a cascading framework for optimizing online learning in machine
translation for a computer assisted translation scenario. With the use of online learning, several
hyperparameters associated with the learning algorithm are introduced. The number of itera-
tions of online learning can affect the translation quality as well. We discuss these issues and
propose a few approaches to optimize the hyperparameters and to find the number of iterations
required for online learning. We experimentally show that optimizing hyperparameters and
number of iterations in online learning yields consistent improvement against baseline results.

1 Introduction
The growing need of globalization has given a boost to the translation and localization industry
where the high quality is guaranteed by human translators. To increase the productivity of
these translators, Computer Assisted Translation (CAT) tools are used which provide access to
translation memories, terminology, built-in spell checkers, dictionaries. A translation memory
is a good source of previously translated segments; however, for new translation tasks, they
are often obsolete. Due to the generalization capability of Machine Translation (MT) systems,
they are employed in the back end of the CAT tools, for providing translation suggestions to
the humans in cases where the translation memory fails. In fact, a seamless integration of SMT
engines in CAT has shown to increase translator’s productivity (Federico et al., 2012).

In state-of-the-art CAT tools, the SMT systems are generally static in nature and cannot
adapt to the corrections posted by the translators. On the contrary, an adaptable SMT system
would be preferable which can learn from the corrections of the post editor and modifies the
statistical models accordingly. The task of learning from user corrections at the sentence level
fits well in the online learning scenario. Online learning is a machine learning task where a
predictor iteratively: (1) receives an input, (2) predicts an output label, (3) receives the correct
output label from a human and, if the two labels do not match, (4) learns from the mistake.

However, the introduction of online learning itself brings two main issues. The first regards
the tuning of the rate of learning, which is typically determined by the value of a number of
parameters of the algorithm, hereafter referred to as hyperparameters;1 optimizing them is then
the first issue. The second problem is the selection of the optimal number of iterations of the
online learning algorithm, i.e. an optimal stopping criterion.

In this paper, we focus on these issues and propose solutions in the context of SMT and
CAT. Our work is an extension of Mathur et al. (2013), where three different hyperparameters
are considered. Here, we are going to investigate techniques for optimizing the same , but in
principle this work could be applied to any arbitrary number of hyperparameters.

1They are so called to distinguish them from the parameters of the models under analysis.

32

The organization of the paper is as follows. Section 2 gives an insight on the background
needed to understand the concepts in the paper. Sections 3 and 4 describe the approaches
we use to enhance the performance of the adaptable SMT system. Section 5 and 6 present
experiments and results, respectively. Section 7 mentions a few related works and is followed
by the conclusions section.

2 Background
Mathur et al. (2013) described an online learning approach for SMT integrated in CAT. In that
paper, a twofold adaptation is proposed: 1) feature adaptation, in which an additional feature
is added to the phrase table for rewarding the recently seen phrase pairs; 2) weight adaptation,
where the log-linear interpolation weights of SMT model are adapted on the fly using MIRA
(Watanabe et al., 2007). The online learning in the CAT framework is performed on the pair
of source sentence and post edit, once the latter is provided by the human translator. From the
implementation point of view, a particular structure where the source sentence is paired with its
post edited translation is passed to the decoder: this activates a single online learning iteration.
To perform multiple iterations, a corresponding number of copies of that structure has to be
passed as input to the decoder.

The aforementioned paper does not deeply investigate the tuning of free parameters in-
volved in that online learning process. In fact, hyperparameters are optimized by means of the
Simplex algorithm, but the same values are then re-used for any possible number of iterations
of the online learning, disregarding the dependence between the number of iterations and the
hyperparameters, which is not a good assumption, as we will see later.

We extend that investigation from two viewpoints. First, we focus on the selection of
better hyperparameters; second, we look for the optimal number of iterations of online learning
required to maximize the performance of an adaptable SMT system.

3 Optimization
The following steps lay the optimization process in a cascaded framework:

1. Baseline SMT models are tuned on the development set.
2. Copies of development set are made such that each copy represents a different number (i)

of iterations of online learning (i ∈ 1..10).
3. The tuned log-linear weights are kept fixed and hyperparameters are tuned by derivate free

optimization (DFO) methods.

The optimal weights are computed by minimizing the error on a held-out parallel development
set by means of MIRA which operates on the N -best list and re-ranks it by changing the log-
linear weights. Since hyperparameters do not affect this N -best list once it is created, there
is no direct way to optimize the hyperparameters on the development set via traditional tuning
methods. An alternative solution needs to be found.

Hyperparameters in SMT models, such as distortion limit and beam size, have been typ-
ically optimized using derivative free optimization (DFO) techniques such as Simplex (Chung
and Galley, 2012) and Hill Climbing (Stymne et al., 2013). Analogously, once we have tuned
the log-linear weights, we keep them fixed and optimize our hyperparameters by means of DFO.
This cascade approach prevents joint optimization over 18 parameters2 which is not feasible us-
ing the DFO techniques because they tend not to converge with so many parameters.

In this paper we focus on three hyperparameters, namely the feature learning rate (FLR),
the weight learning rate (WLR) and the slack variable (SLK). FLR determines the rate of
learning of the additional online feature; WLR and SLK control respectively the learning rate
and the size of the update of the online learning algorithm (MIRA) employed for updating the
log-linear weights. Their optimization is performed with respect to a loss function defined over
an objective MT evaluation metric, by the two DFO techniques described in the following.

214 weights from SMT models, plus 1 additional weight for the online learning feature and 3 hyperparameters.

33

DEV SET

Cluster

1

2

3

4

S
ys-config-X

Iteration1

Iteration2

Iteration3

Iteration4

TEST SET

Predict

1

2

3

4

T
ranslation

Block 1

Block 2

Block X+1

Block X

4 iterations

2 iterations

6 iterations

Figure 1: Clustering (left) / blockwise (right) approaches to find the optimal number of iterations for online learning.

Downhill Simplex Method The Downhill Simplex method, also known as Nelder-Mead
method (Nelder and Mead, 1965), is a technique for minimizing an objective multivariate func-
tion. The method is iterative and approximates a local optimum by using a simplex, that is a
polytope of N + 1 vertices in N dimensions. At each iteration, a new test position is eval-
uated by extrapolating the behavior of the objective function measured at each vertex of the
simplex. The algorithm then chooses to replace one of the vertices with the new test point and
so the search progresses. New test positions are generated so that the simplex is stretched along
promising lines (when the simplex is still far from any optimum) or shrinked towards a better
point (when it is close to a local optimum).

Modified Hill Climbing Hill Climbing is generally used for a single variate function f(x):
it fluctuates the value of the variable x and computes the loss incurred by the function f(x).
Step by step, the method moves the variable towards the direction where the loss incurred is
minimum. We extended the same optimization to multivariate functions f(x1, x2, . . . , xn) by
moving one variable at a time. Moreover, we modified the original hill climbing by initially
allowing the variable to take large steps in the convex space, and then constrain the variable to
take smaller steps, similar to simulated annealing (Kirkpatrick et al., 1983). This allows Hill
Climbing to converge faster than in the standard approach.

Later, we will see that the optimal value of hyperparameters depends on the number of
iterations used for the online learning; therefore, the cascade optimization process is run ten
times with different numbers i of iterations (i ∈ 1..10). Given that hyperparameters are opti-
mized with two derivative free optimizers, a total of twenty different optimal configurations are
available for each SMT system to test.

4 Stopping criteria

Once the optimal values of the log-linear weights and of hyperparameters have been estimated,
next step towards improving the online learning is to find the optimum number of iterations
required to learn. The model resulting from the run of the optimum number of iterations should
ideally outperform the models obtained with a random iteration number and avoid overfitting on
the data. We propose two solutions to find this optimum number: one, named clustering,
needs a pre-processing step on the development set; the other, named blockwise, works on
the evaluation data directly.

Clustering In the clustering approach, as a pre-processing stage, the development set is par-
titioned into k clusters and the optimal number of iterations for each cluster is determined. At
run-time, each test sentence is classified into one of the clusters and the corresponding optimal
number of iterations is used for the online learning for that source sentence and post-edit. The
k-means clustering with random seeding is performed to cluster the development set, using the

34

Euclidean distance as similarity metric;3 bilingual development sentences are clustered on
the basis of the entropy of both source and target sides. Once the development set is clustered,
the optimal number of iterations for each cluster is computed as follows: online learning is run
on each cluster for i ∈ {1 . . . 10} iterations, keeping track of the error rate at each iteration;
each cluster is then associated with the iteration number corresponding to the minimum error
rate. The scheme on the left of Figure 1 represents the clustering approach.

Blockwise In the blockwise approach, the test set is split into blocks of N ∈ {10, 20, 30}
sentences.4 Once the Xth block has been post-edited by the user, the optimal number of itera-
tions (OX) for that block is found, by comparing the error rates yielded by running the online
learning for i iterations and selecting the best performing iteration number. OX is then used to
perform the online learning on each segment (and post-edit) of the X+1th block, till the whole
block is processed. The blockwise method is depicted on the right side of Figure 1.

5 Experimental Setup and Preliminary Analysis

5.1 Data
We evaluated our methods for optimizing the online learning algorithm on three translation
tasks defined over two domains, namely Information Technology (IT) and Legal. The IT test
set is proprietary, involves the translation of technical documents from English into Italian and
has been used in the field test recently carried out under the MateCat project.5 In the Legal do-
main, experiments involved the translation of English documents into either Spanish or French;
training and evaluation sets belong to the JRC-Acquis corpus (Steinberger et al., 2006) so that
the effectiveness of the proposed approaches is assessed also on publicly available data.

Since our methods regard the adaptation of MT models, the potential impact strictly de-
pends on how much the considered text is repetitive. For measuring that text feature, we use the
repetition rate proposed by Bertoldi et al. (2013). Statistics of the parallel sets of both source
and target side along with the repetition rates are reported in Table 1.

Domain Set #srcTok srcRR #tgtTok tgtRR

ITen→it

Train 57M na 60M na
Dev 3.7K 7.65 4K 7.61
Test 3.4K 34.33 3.7K 33.90

Legalen→es

Train 56M na 62M na
Dev 3K 24.09 3.5K 24.47
Test 11K 20.67 12.5K 20.07

Legalen→fr

Train 63M na 70M na
Dev 3K 23.52 3.7K 23.42
Test 11K 20.67 13K 20.92

Table 1: Statistics of the parallel data along with the corresponding repetition rate (RR).

5.2 Reference Systems
The SMT systems are built using the Moses toolkit (Koehn et al., 2007). Domain specific train-
ing data is used to create translation and lexical reordering models. 5-gram language models for
each task, smoothed through the improved Kneser-Ney technique (Chen and Goodman, 1998),
are estimated by means of the IRSTLM toolkit (Federico et al., 2008) on the target side of the
training parallel corpora. The weights of the log-linear interpolation of MT models are opti-
mized using the MIRA (Watanabe et al., 2007) implementation provided in the Moses toolkit.

3The Cosine distance was also tested: it performed similarly to the Euclidean distance, but Euclidean
distance gave better quality of clusters than Cosine.

4In real texts, we can assume that bunches of some tens of segments (e.g. 10-30) are linguistically coherent such
that an adaptation scheme can be effectively applied.

5http://www.matecat.com

35

Performance is reported in terms of BLEU (Papineni et al., 2002) and TER (Snover et al., 2006).
Details on the tested SMT systems follow:

Baseline The static baseline system does not perform any online learning, hence there are no
hyperparameters involved in the system.

Def-Param-*x Online learning systems using default values of hyperparameters and running
1, 5 and 10 iterations of online learning. These systems provide a reference for assessing the
usefulness of estimation of the optimal number of iterations vs. the use of a pre-defined num-
ber of iterations. The default values of the hyperparameters are FLR=0.1, WLR=0.05 and
SLK=0.001, which yield reasonable performance in preliminary investigations.

5.3 Optimization of the Hyperparameters
Having tuned the log-linear weights, the following systems are built:

Opt-Param-*x Online learning systems with hyperparameters optimized by means of either
Simplex or Hill Climbing techniques of Section 3.

Figure 2 shows the convergence of the DFO methods over their number of iterations6,
while keeping fixed the number of iterations of the online learning (just one, i.e. 1×) and the
log-linear weights.

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

B
LE

U

DFO #iterations

Simplex
HillClimbing

Figure 2: Simplex vs. Modified Hill Climber on the
Legal/en→fr test set, with 1× iteration of the online
learning algorithm.

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

 1 2 3 4 5 6 7 8 9 10
0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

W
LR

/F
LR

SL
K

online learning #iterations

WLR
FLR
SLK

Figure 3: Optimal values of hyperparameters computed
by the Simplex for different iteration numbers of the online
learning algorithm (IT/en→it task).

From the figure, we can argue that the Simplex attempts many parameter values performing
quite differently, and finally converges to an optimum. Hill Climbing converges to the optimum
faster, but on the other side it seems to explore a smaller portion of the search space. For assess-
ing the guess, we tried to change the starting seeds of the two optimizers: Simplex still found
the same optimum, while Hill Climbing failed even with 50 iterations, confirming our intuition.
For this reason, in Opt-Param-*x systems we are only going to provide results obtained using
hyperparameters optimized via Simplex.

Figure 3 shows the optimal value of hyperparameters as a function of the number of itera-
tions of the online learning algorithm. Apart a general and reasonable tendency to define smaller
updates when more iterations are performed, it is worth to note that the optimal hyperparameter
values do change with the number of iterations, again confirming our intuition.

As described in Section 3, tuning of hyperparameters was performed for different numbers
of iterations of online learning, resulting in 10 different configurations for each DFO algorithm.

5.4 Online Learning Stopping Criteria
At the end of the optimization stage, 10 optimal configurations for each of the two DFO tech-
niques are available for testing. In both DFOs, a TER-based loss function is employed, since

6These are the iterations required by Simplex/HillClimbing to converge.

36

clusters/blocks can be too small to allow the reliable computation of BLEU values. A total of
20 optimized systems are then run to look for the optimal number of iterations of the online
learning to be used on the test sets: this optimal number is found on the development set with
the clustering technique, directly on the test set with the blockwise technique.

Clustering As already mentioned, we first partition the development set using k-means clus-
tering, where k takes values in {2, 4, 6, 8, 10, 12}. In principle, we can increase k but that would
decrease the size of the clusters with the risk of data overfitting. The development set of the IT
task consists of 300 sentences, i.e. 300 data points, hence for consistency purposes we set the
maximum value of k to

⌊
2
√
300/2

⌋
= 12 for all tasks.7

For each cluster, we pick the configuration8 which performs best on the development set;
the test sentences that are assigned to that cluster are then translated with the chosen optimal
configuration.

Figure 4 reports the average number of iterations of online learning required by the clus-
tering technique to converge for different values of k. It is shown that the larger the number of
clusters, the faster the convergence of the online learning algorithm; this is because the online
learner has less to learn from small clusters, even performing more and more iterations.

Blockwise In the blockwise approach the number of iterations is optimized directly (but fair)
on the test set. The optimal number for a given block is found once its post-edits are available
and is used for the translation of the following block; this step is iterated for all blocks. In other
words, number of iteration of online learning on the current block is decided by optimizing
the number of iterations on the previous block. For the first block of the test set, the optimal
configuration on the development set is considered.

Anyway, two main issues arise: 1) which system configuration should we use for the first
block? 2) what should be the size of the block? We decided on the following. First, the optimal
number of iterations for a block is found by comparing the 10× 2 configurations optimized on
the development set. This is analogous to what we do in the clustering approach.

Secondly, for testing their effect on the number of iterations, different sizes of the block
(10, 20, 30 sentences) are tried. Figure 5 shows how the block size affects the optimal number
of online learning iterations for one of the considered tasks.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

av
er

ag
e

on
lin

e
le

ar
ni

ng

#i
te

ra
tio

ns

#clusters

Simplex
HillClimbing

Figure 4: Average number of iterations of the online
learning algorithm per number of clusters for the two
optimizers (Legal/en→fr task).

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

on
lin

e
le

ar
ni

ng

#i
te

ra
tio

ns

sentence index

BS-10
BS-20
BS-30

Figure 5: Effect of varying the block size on the number
of iterations of the online learning algorithm (IT/en→it).

7Rule of thumb according to Mardia et al. (1980).
8These configurations are not compared all together at once; instead, we separately compare the 10 configurations

for each DFO method.

37

6 Results

Reference Table 2 collects results from the baseline and online learning systems mentioned
in Sections 5.2 and 5.3.

System
IT en→it Legal en→fr Legal en→es

BLEU TER BLEU TER BLEU TER
Baseline 46.73 31.97 33.69 51.49 35.65 50.04

Def-Param-1x 46.27 31.23 34.28 50.31 35.28 48.07
Def-Param-5x 42.61 34.90 33.04 51.51 32.13 51.12

Def-Param-10x 39.18 37.66 34.34 50.25 31.08 52.74
Opt-Param-1x 46.56 31.41 34.24 50.34 35.38 48.34
Opt-Param-5x 44.48 33.28 33.32 50.87 32.68 50.82

Opt-Param-10x 47.11 31.41 34.25 50.47 34.61 48.78

Table 2: MT scores for all tasks of the following systems: baseline; online learning with default values of hyperpa-
rameters; online learning with optimized values of hyperparameters by means of Simplex. Online learning is performed
for fixed numbers of iterations (1,5,10).

The online learning system with 10× iterations and optimized hyperparameters outper-
forms the baseline by 0.5 to 1 BLEU/TER points on both IT/en→it and Legal/en→fr tasks. On
the Legal/en→es task, the best performance is obtained by performing 1 iteration of the online
learning, that allows to clearly beat the baseline by 1.70 TER points (48.34 vs. 50.04).

In two out of three tasks (en→it and en→es), the performance of the systems with default
parameters decreases rapidly as the number of iterations increases, because the parameters are
not tuned properly on the held-out dev set. This confirms our assumption that the value of
hyperparameters plays an important role on system performance. In the Legal en→fr system,
incidently the default value of hyperparameters is close to the optimized one and hence perfor-
mance are pretty similar in the two setups ([Def|Opt]-Param-*x), better than the baseline by
around 0.5 BLEU points and 1 TER point when online learning is iterated either 1 or 10 times.

Table 3 collects results of systems with hyperparameters optimized on the basis of the
optimal number of online learning iterations, as determined by means of the two investigated
techniques (blockwise and clustering). As a first general consideration, apart few exceptions,
Simplex is more effective than Hill Climbing in optimizing hyperparameters; therefore, in the
following discussion, we focus on it.

stopping IT en→it Legal en→fr Legal en→es
technique simplex hill climbing simplex hill climbing simplex hill climbing

setup BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER
10 46.80 31.43 46.31 31.48 34.64 50.18 33.68 49.95 34.99 48.87 34.16 49.31

si
ze

20 46.30 31.81 46.11 31.96 34.98 49.63 34.47 49.66 35.64 48.33 34.44 48.70

bl
oc

k

30 45.42 32.42 46.40 31.71 34.78 50.68 34.30 51.13 35.68 48.67 34.63 48.64
2 46.80 30.95 46.33 31.28 34.90 50.75 35.02 50.80 36.13 47.78 36.30 47.82
4 45.99 32.09 46.07 31.33 35.09 50.24 35.24 50.71 36.05 47.89 36.05 47.74
6 46.41 31.08 46.06 31.48 34.66 50.52 34.40 50.59 35.71 48.07 35.86 47.77cl

us
te

rs

8 46.03 31.81 45.76 31.68 35.07 50.58 35.06 50.78 35.75 48.23 36.11 47.76
10 44.98 32.67 46.32 31.31 35.12 50.62 35.23 50.94 36.08 47.56 35.69 47.87

nu
m

be
ro

f

12 46.23 31.74 46.79 30.77 35.15 50.62 35.07 50.74 36.34 47.74 35.58 47.93

Table 3: Results of the blockwise/clustering techniques on the three considered tasks, by varying the block
size/number of clusters. Performance of the two DFO methods is reported.

38

Blockwise The upper part of the table reports results employing the blockwise technique. On
the IT/en→it task, the blockwise system (block size 10) outperforms the baseline in terms of
TER and gives comparable performance to the optimized system (with 10x iterations). To note
that this same quality is obtained more efficiently: in fact, since for each block no more than
10 iterations are performed (and less likely, according to Figure 5), on an average it is expected
that the global cost on the whole test set is lower than the cost of the Opt-Param-10x system,
where 10 iterations are performed on each sentence of the test set.

On the Legal/en→fr task, the blockwise system (block size 20) outperforms the baseline as
well as the best performing online learning system with fixed number of iterations (Def-Param-
10x) by 1.86 and 0.62 TER points, respectively. However, the size of the block yielding the
highest performance differs between the two domains; that is probably because the IT test set
is a collection of different technical documents which makes it rather heterogeneous, while the
Legal test sets, being from single documents, are much more homogeneous, allowing the use of
larger blocks.

On the Legal/en→es task, the block size does not impact significantly on the performance
of the online learning system; although there is no BLEU gain in comparison to the baseline
system, TER improves by up to 1.71 points (48.33 vs. 50.04, when block size is set to 20).

Clustering Concerning the clustering technique, results are shown in the bottom part of Ta-
ble 3. Similarly to the blockwise method, for the IT/en→it we do not see any BLEU gain, while
TER improves the baseline by even more than 1 point (30.95 vs. 31.97).

For the Legal/en→fr task, an increase of about 1.5 BLEU points is observed for most of
the cluster sizes. Even in terms of TER, the number of cluster (and then the cluster size) seems
not to affect much the scores, which lower the baseline TER (51.49) by around 1 point.

A behavior similar to IT/en→it is observed in the Legal/en→es task: minimal impact of
the cluster size, small BLEU improvements (no more than 0.7 points), larger TER gains (even
more than 2 points).

Summarizing, we see consistent improvements of TER, but not of BLEU. A possible ex-
planation is the use of TER as the error metric for finding the optimal iterations of online
learning for the blocks and the clusters.In fact, the size of clusters is too small to allow the reli-
able computation of the BLEU, but optimizing TER favors short sentences, which lower BLEU
through the brevity penalty.

7 Related Work
Online learning for SMT has emerged as a hot topic over the last decade (Nepveu et al., 2004;
Hardt and Elming, 2010; Ortiz-Martı́nez et al., 2010; Martı́nez-Gómez et al., 2012; Denkowski
et al., 2014). Nevertheless, to our knowledge, optimizing the number of iterations of online
learning has not been previously studied in the context of SMT integrated in CAT tools. There-
fore, this is the first work towards a fully optimized MT online learning system for CAT.

The most notable work in the field of optimization of hyperparameters in MT is that by
Chung and Galley (2012) where the decoder is integrated with a minimizer so that they can op-
timize the values of free parameters such as beam size and distortion limit. This minimizer runs
derivative free optimization techniques, such as Powell and Nelder-Mead methods, to optimize
log-linear weights as well as the hyperparameters. They also argue that this integrated mini-
mizer measures the true error rate whereas MERT minimizes the artificial error rate computed
on a N -best list. Their use of DFO methods pushed us to adopt the same.

Later, Stymne et al. (2013) focused on using the distortion limit (DL) in the document
level decoder Docent (Hardmeier et al., 2013). Their system provides better BLEU scores
when there is a soft constraint on the DL (i.e. DL is tunable) rather than a hard constraint (DL
not tunable). This experiment further supports the optimization of MT parameters in order to
gain performance.

Learning of hyperparameters has been a widely studied topic in machine learning. Grid
search, random search (Bergstra and Bengio, 2012), Gaussian process (Snoek et al., 2012) are
only a few methods that have been used in the past for hyperparameter optimization. Gradient-

39

based hyperparameter learning algorithms have been proposed for a variety of supervised learn-
ing models such as neural networks (Larsen et al., 1996). In our case, the evaluation of the loss
function is a costly procedure which requires the translation of the whole development set: the
application of the above approaches can then be unfeasible unless we use Racing or Lattice
based decoding (Chung and Galley, 2012).

8 Conclusion

We have shown that online learning can be effectively integrated into MT for CAT by following
a cascaded framework where one first optimizes the extra parameters involved with the learning
algorithm, and then find the optimal number of iterations of online learning required on the test
set. We experimented with two derivative free optimization techniques, namely Simplex and
Hill Climbing, and showed their convergence. Two techniques, Blockwise and Clustering, are
instead proposed to find the optimal number of iterations. After an extensive set of experiments
we can conclude that the clustering technique performs better than the blockwise one when the
test set is homogeneous in nature, otherwise the blockwise with small blocks is preferable.

Acknowledgements

This work was supported by the MateCat project (grant agreement 287688), which is funded by
the EC under the 7th Framework Programme.

References

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(Feb):281–305.

Bertoldi, N., Cettolo, M., and Federico, M. (2013). Cache-based online adaptation for machine
translation enhanced computer assisted translation. In Proc. of MT Summit, pp. 35–42, Nice,
France.

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard University.

Chung, T. and Galley, M. (2012). Direct error rate minimization for statistical machine transla-
tion. In Proc. of WMT, pp. 468–479, Montréal, Canada.

Denkowski, M., Dyer, C., and Lavie, A. (2014). Learning from post-editing: Online model
adaptation for statistical machine translation. In Proc. of EACL, pp. 395–404, Gothenburg,
Sweden.

Federico, M., Bertoldi, N., and Cettolo, M. (2008). IRSTLM: An open source toolkit for han-
dling large scale language models. In Proc. of Interspeech, pages 1618–1621, Brisbane,
Australia.

Federico, M., Cattelan, A., and Trombetti, M. (2012). Measuring user productivity in machine
translation enhanced computer assisted translation. In Proc. of AMTA, San Diego, US-CA.

Hardmeier, C., Stymne, S., Tiedemann, J., and Nivre, J. (2013). Docent: A document-level
decoder for phrase-based statistical machine translation. In Proc. of ACL: System Demon-
strations, pp. 193–198, Sofia, Bulgaria.

Hardt, D. and Elming, J. (2010). Incremental re-training for post-editing SMT. In Proc. of
AMTA, Denver, US-CO.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220:671–680.

40

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).
Moses: Open source toolkit for statistical machine translation. In Proc. of ACL, Companion
Volume of the Demo and Poster Sessions, pp. 177–180, Prague, Czech Republic.

Larsen, J., Hansen, L. K., Svarer, C., and Ohlsson, M. (1996). Design and regularization of
neural networks: The optimal use of a validation set. In Proc. of IEEE Signal Processing
Society Workshop, pp. 62–71, Kyoto, Japan.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1980). Multivariate analysis. Academic Press.

Martı́nez-Gómez, P., Sanchis-Trilles, G., and Casacuberta, F. (2012). Online adaptation
strategies for statistical machine translation in post-editing scenarios. Pattern Recogn.,
45(9):3193–3203.

Mathur, P., Cettolo, M., and Federico, M. (2013). Online learning approaches in computer
assisted translation. In Proc. of WMT, pp. 301–308, Sofia, Bulgaria.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer
Journal, 7(4):308–313.

Nepveu, L., Lapalme, G., Langlais, P., and Foster, G. (2004). Adaptive language and translation
models for interactive machine translation. In Proc. of EMNLP, pp. 190–197, Barcelona,
Spain.

Ortiz-Martı́nez, D., Garcı́a-Varea, I., and Casacuberta, F. (2010). Online learning for interactive
statistical machine translation. In Proc. of HLT-NAACL, pp. 546–554, Los Angeles, US-CA.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for automatic
evaluation of machine translation. In Proc. of ACL, pp. 311–318, Philadelphia, US-PA.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. In Proc. of NIPS, pp. 2951–2959, Lake Tahoe, US-NV.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation
edit rate with targeted human annotation. In Proc. of AMTA, pp 223–231, Boston, US-MA.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., and Varga, D.
(2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In
Proc. of LREC, pp. 2142–2147, Genoa, Italy.

Stymne, S., Hardmeier, C., Tiedemann, J., and Nivre, J. (2013). Tunable distortion limits and
corpus cleaning for SMT. In Proc. of WMT, pp. 225–231, Sofia, Bulgaria.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007). Online large-margin training for
statistical machine translation. In Proc. of EMNLP, pp. 764–773, Prague, Czech Republic.

41

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 42–50
AMTA Workshop. Vancouver, Canada. September 22, 2014

1

Behind the Scenes in an Interactive Speech Translation System

Mark Seligman, Ph.D. Mike Dillinger, Ph.D.

Spoken Translation, Inc. Spoken Translation, Inc.

1100 West View Drive 1100 West View Drive

Berkeley, CA 94705 Berkeley, CA 94705

mark.seligman@spokentranslation.com mike@mikedillinger.com

Abstract

This paper describes the facilities of Converser for

Healthcare 4.0, a highly interactive speech translation

system which enables users to verify and correct speech

recognition and machine translation. Corrections are

presently useful for real-time reliability, and in the

future should prove applicable to offline machine

learning. We provide examples of interactive tools in

action, emphasizing semantically controlled back-

translation and lexical disambiguation, and explain for

the first time the techniques employed in the tools’

creation, focusing upon compilation of a database of

semantic cues and its connection to third-party MT

engines. Planned extensions of our techniques to

statistical MT are also discussed.

1 Introduction

Multiple applications for spoken language

translation (SLT) or automatic interpreting are now

in use – SpeechTrans, Jibbigo, iTranslate, and

others. SLT projects are in operation at several

large communications companies, including

Google and Facebook. However, widespread use

remains in the future for serious use cases like

healthcare, business, emergency relief, and law

enforcement, despite demonstrably high demand.

The essential problem is that, despite dramatic

advances during the last decade, both speech

recognition and translation technologies are still

error-prone. While the error rates may be tolerable

when the technologies are used separately, the

errors combine and even compound when they are

used together. The resulting translation output is

often below the threshold of usability when

accuracy is essential. As a result, present use is still

largely restricted to use cases – social networking,

travel – in which no representation concerning

accuracy is demanded or given.

The speech translation system discussed here,

Converser for Healthcare 4.0, applies interactive

verification and correction techniques to this

essential problem of overall reliability.

First, users can monitor and correct the speech

recognition system to ensure that the text which

will be passed to the machine translation

component is completely correct. Typing or

handwriting can be used to repair speech

recognition errors.

Next, during the machine translation (MT)

stage, users can monitor, and if necessary correct,

one especially important aspect of the translation –

lexical disambiguation.

The system’s approach to lexical

disambiguation is twofold: first, we supply a back-

translation, or re-translation of the translation.

Using this paraphrase of the initial input, even a

monolingual user can make an initial judgment

concerning the quality of the preliminary machine

translation output. Other systems, e.g. IBM’s

MASTOR (Gao, Liang, et al., 2006), have also

employed re-translation. Converser, however,

exploits proprietary technologies, outlined below,

to ensure that the lexical senses used during back-

translation accurately reflect those used in forward

translation.

In addition, if uncertainty remains about the

correctness of a given word sense, the system

supplies a proprietary set of Meaning Cues™ –

synonyms, definitions, etc. – which have been

42

2

drawn from various resources, collated in a

database (called SELECT™), and aligned with the

respective lexica of the relevant MT systems. With

these cues as guides, the user can monitor the

current, proposed meaning and when necessary

select a different, preferred meaning from among

those available. Automatic updates of translation

and back-translation then follow.

The initial purpose of these techniques is to

increase reliability during real-time speech

translation sessions. Equally important, however,

they can also enable even monolingual users to

supply feedback for off-line machine learning to

improve the system. Until now, only users with

some knowledge of the output language have been

able to supply such feedback, e.g. in Google

Translate.

Previous papers (Seligman and Dillinger 2013,

2012, 2011, 2008, 2006a, 2006b, Dillinger and

Seligman 2004a, 2004b) have reported on the user-

facing design and use of the facilities just

described. Here we provide updated examples of

interactive facilities and explain for the first time

how they were constructed.

For orientation, Section 2 of this paper will

review Converser’s current interactive facilities.

Section 3 explains the implementation of the

system’s back-translation and Section 4 does the

same for its lexical disambiguation facilities. We

conclude in a final section.

Converser has been pilot tested successfully at a

San Francisco medical center, part of a very large

healthcare organization (Seligman and Dillinger,

2011). Evaluation results concerning system

accuracy and usability are discussed below.

Negotiations concerning continued use are

ongoing with the host of the pilot and with another

large Bay Area hospital system.

2 The Converser System

We now briefly illustrate Converser’s approach

to interactive automatic interpretation. We describe

Version 4.0, italicizing new interface elements.

Converser adopts rather than creates its speech

and translation components, adding value through

the interactive interface elements to be explained.

Nuance, Inc. supplies cloud-based speech

recognition, modified by a third party for access

via desktops; rule-based English↔Spanish

machine translation is supplied by Word Magic of

Costa Rica; and text-to-speech is again provided

by Nuance.

Depending on the platform, the system can

offer up to four input modes: speech, typing,

handwriting, and touchscreen. Since we want to

illustrate the use of interactive correction for

speech recognition as well as machine translation,

we assume that the user has clicked on the round

red Mic Button to activate the microphone (Figure

1). (Starting with the 4.0 release, no voice training

or profile creation is required for either language.)

Still in Figure 1, notice the Traffic Light Icon

and two Earring Icons. These are used to switch

Verification Mode on and off for translation and

speech recognition, respectively. Both icons are

currently green, indicating “Full speed ahead!”

That is, verification has been temporarily switched

off: the user has indicated that it is unnecessary to

pre-check either ASR or MT before transmitting

the next utterance, preferring speed to accuracy.

Just prior to the figure’s snapshot, the user said,

“San Jose is a pleasant city.” Since verification had

been switched off for both ASR and MT, these

functioned without interruption. The speech

recognition result appeared briefly (and in this case

correctly) in the Input Window. Immediately

thereafter the Spanish translation result (also

correct in this case) appeared in the right-hand

section of the Transcript Window, and was

immediately pronounced via text-to-speech.

Meanwhile, the original English input was

recorded in the left-hand section of the transcript.

Also on the English side of the transcript and

just below the original English input is a specially

prepared back-translation:
1
 the original input was

translated into Spanish, and then retranslated back

into English. Techniques to be explained in Section

3 ensure that the back-translation means the same

as the Spanish. Thus, even though pre-verification

was bypassed for this utterance in the interest of

speed, post-verification via the transcript was still

enabled. (The Transcript Window, containing

inputs from both English and Spanish sides and the

associated back-translations, can be saved for

record-keeping. Inclusion of back-translation is

new to Version 4.0. Participant identities can

optionally be masked for confidentiality.)

Using this back-translation, the user might

1 Proprietary, and branded as Reliable Retranslation™.

43

3

conclude that the translation just transmitted was

inadequate. In that case, or if the user simply wants

to rephrase this or some previous utterance, she

can click the Rewind Button (round, with

chevrons). A menu of previous inputs then appears

(not shown). Once a previous input is selected, it

will be brought back into the Input Window,

where it can be modified using any available input

mode – voice, typing, or handwriting. In our

example sentence, for instance, pleasant could be

changed to boring; clicking the Translate Button

would then trigger translation of the modified

input, accompanied by a new back-translation.

In Figure 2, the user has selected the yellow

Earring Icon, specifying that the speech

recognition should “proceed with caution.” As a

result, spoken input remains in the Input Window

until the user explicitly orders translation. Thus

there’s an opportunity to make any necessary or

desired corrections of the ASR results. In this case,

the user has said “This morning, I received an

email from my colleague Igor Boguslavsky.” The

name, however, has been misrecognized as “Igor

bogus Lovsky.” Typed or handwritten correction

can fix the mistake, and the Translate Button can

then be clicked to proceed.

Just prior to Figure 3, the Traffic Light Icon

was also switched to yellow, indicating that

translation (as opposed to speech recognition)

should also “proceed with caution”: it should be

pre-checked before transmission and

pronunciation. This time the user said “This is a

cool program.” Since the Earring Icon is still

yellow, ASR results were pre-checked and

approved. Then the Translation Verification

Panel appeared, as shown in the figure. At the

bottom, we see the preliminary Spanish translation,

“Éste es un programa frío.” Despite the best efforts

of the translation program to determine the

intended meaning in context, “cool” has been

mistranslated – as shown by the back-translation,

“This is a cold program.”

Another indication of the error appears in the

Meaning Cues Window (third from the top),

which indicates the meaning of each input word or

expression as currently understood by the MT

engine. Converser 4.0 employs synonyms as

Meaning Cues, compiled using techniques to be

explained in Section 4. (In the future, pictures,

definitions, and examples may also be used.) In the

present case, we see that the word “cool” as been

wrongly translated as “cold, fresh, chilly, …”.

To rectify the problem, the user double clicks

on the offending word or expression. The Change

Meaning Window then appears (Figure 4), with a

list of all available meanings for the relevant

expression. Here the third meaning for “cool” is

“great, fun, tremendous, …”. When this meaning

has been selected, the entire input is retranslated.

This time the Spanish translation will be “Es un

programa estupendo” and the translation back into

English is “Is an awesome program.” The user may

accept this rendering, despite the minor

grammatical error, or may decide to try again.

The Traffic Light and Earring Icons help to

balance a conversation’s reliability with its speed.

Reliability is indispensible for serious applications

like healthcare, but some time is required to

interactively enhance it. The icons let users

proceed carefully when accuracy is paramount or a

misunderstanding must be resolved, but more

quickly when throughput is judged more

important. This flexibility, we anticipate, will be

useful in future applications featuring automatic

detection of start-of-speech: in Green Light Mode,

ASR and translation will proceed automatically

without start or end signals and thus without

demanding the user’s attention, but can be

interrupted for interactive verification or correction

as appropriate. Currently, in the same mode, for

inputs of typical length (ten words or less), the

time from end of input speech to start of translation

pronunciation is normally less than five seconds on

a 2.30 GHz Windows 7 desktop with 4.00 GB

RAM, and faster in a pending cloud-based version.

Statistics have not yet been compiled to

determine how many corrections are typically

needed to obtain translations which users consider

satisfactory. However, in a survey performed by an

independent third party during the abovementioned

pilot project at a national healthcare organization,

when 61 users (staff and patients) were asked

whether the system met their needs, 93%

responded either Completely or Mostly.

Translation was judged accurate by 90%; and the

system (Version 3.0, in which verification was still

mandatory) was found easy to use by 57%.

Unfortunately, these results have been published

only in internal reports marked confidential.

44

4

Translation Shortcuts. The Converser system

includes Translation Shortcuts™ – pre-packaged

translations, providing a kind of translation

memory. When they're used, re-verification of a

given utterance is unnecessary, since Shortcuts are

pre-translated by professionals (or, in future

versions of the system, verified using the system's

feedback and correction tools). Access to stored

Shortcuts is very quick, with little or no need for

text entry. Shortcut Search can retrieve a set of

relevant phrases given only keywords or the first

few characters or words of a string. (If no Shortcut

is found to match the input text, the system

seamlessly gives access to broad-coverage,

interactive speech translation.) A Translation

Shortcuts Browser is provided (on the left in

Figure 1), so that users can find needed phrases by

traversing a tree of Shortcut categories, and then

execute them by tapping or clicking. Shortcuts are

fully discussed in (Seligman and Dillinger, 2006a).

Symmetry. Identical facilities are available for

Spanish speakers: when the Spanish flag is clicked,

all interface elements – buttons and menus,

onscreen messages, Translation Shortcuts,

handwriting recognition, etc. – change to Spanish.

Having surveyed the Converser interface, we

now go on to look behind the scenes, discussing

the system’s specially controlled back-translation

and its lexical disambiguation facilities.

3 Back-translation

Back-translation – translation from the target

language back into the source language – suggests

itself as a way to show users how accurately an

input has been translated. However, the technique

has until now been of limited use because mistakes

can occur during backward translation which bear

no relation to any errors made during the original,

forward translation. The forward and backward

translations, in other words, are normally separate

and unrelated processes. For this reason, automatic

back-translation has remained more a source of

amusement than a useful indicator of translation

accuracy. Converser aims to make back-translation

more useful for verification by forging a closer

relationship between the forward and backward

translation processes.

To illustrate, assume that the user wants to

translate the ambiguous English word bank into

Spanish. Of course, the word can mean “bank as in

money,” “bank as in river,” “bank of switches,”

etc. (Figure 5). However, the worse problem for

back-translation is that the respective Spanish

translations for some of these meanings are

themselves ambiguous. For example, the word

banco, which would be appropriate for the “money

bank” meaning, also has the meaning “bench.”

Accordingly, semantically uncontrolled back-

translation can fail as follows: the user says

“bank,” intending the “money bank” meaning; the

translation system gives the correct translation

banco (whether through skill or luck); the system

is asked for a revealing back-translation; and it

brightly and misleadingly responds, bench. No

good: the translation was in fact what the user

wanted, but the back-translation erroneously

indicated otherwise, since the uncontrolled system

had forgotten the forward translation by the time

the back-translation was requested.

Converser addresses the problem by

remembering which meaning of bank was used

during the forward translation and forcing reuse of

the same meaning during backward translation. If

the “money bank” meaning was used, leading to a

translation of banco, then that meaning – right or

wrong – will be used during back-translation as

well, leading to such translations as financial

institution, cash repository … or to the original

input, bank. In the latter case, uncertainty about the

translation accuracy would remain; but two

recourses are on hand. First, the system can be

directed to avoid the original input during back-

translation if any synonyms are available.

However, when this strategy was experimentally

applied to whole utterances, wordy or unnatural

paraphrases often resulted. The second remedy is

to make use of Meaning Cues for lexical

disambiguation. By examining the synonyms of

bank, the user can determine which meaning has

actually been translated. Back-translation thus

provides an initial check on translation meaning,

sufficient in many cases; and when ambiguity

remains, the Meaning Cues remain as a fallback.

We have found this second solution to be the more

helpful till now. Further experiments with the

synonym-based solution may be resumed in the

future.

But how is “same meaning” represented in the

system, whether it is used to synchronize forward

45

5

and backward translation or to find synonyms that

can be substituted for original terms during

backward translation? We now make use of an MT

engine whose lexicon elements are Meaning IDs

(MIDs) – semantic elements comparable to the

synsets (synonym sets) of WordNet (Miller, 1995;

Fellbaum et al, 1998). Thus during back-translation

or synonym substitution, the system can enforce

re-use of specific MIDs. (MIDs are illustrated in

Figure 6 as e.g. MID#567122-567127.) Later in the

paper, we’ll comment on comparable techniques

for statistical machine translation (SMT) systems.

4 Lexical Disambiguation

In Section 2, we illustrated Converser’s facility

for lexical disambiguation using Meaning Cues.

The cues are not part of the third-party MT engine

itself, but are added by Converser as a bridge

between that engine and the user. This section

explains how the addition is accomplished.

The explanation will refer to the rule-based

machine translation engine presently in use; but

again, we’ll sketch below how the procedures can

be extended to statistical engines.

As mentioned, the main lexicon of our engine is

composed of Meaning IDs or MIDs, semantic

elements comparable to WordNet’s synsets.

However, while these unique identifiers are

suitable for programming, they remain opaque to

human readers, as seen on the left of Figure 6.

Hence there is a need to elucidate their meanings

for those readers. Many suitable cues are available

in the public domain – synonyms, pictures,

examples, definitions, and others. The problem is

to associate these with the lexicon’s opaque

symbols.

The first step toward this link-up is to collect

relevant cues. We then sort collected cues into

semantic groups, using techniques described in

(Seligman et al 2004). In essence, we define and

exploit best-match metrics for grouping purposes,

for instance in terms of maximum intersection

among such elements of interest as synonym sets

or definitions. The result is a proprietary database

called SELECT, a collection of Meaning Cue

Groups, as seen on the right of Figure 6.

The remaining task is to map or align every

group of semantic cues with an appropriate MID,

if one can be found, in the current machine

translation lexicon. A successful mapping, as

portrayed in Figure 6, will for instance associate

MID#567123 with the Meaning Cue Group

containing cues for bank in the money sense, while

MID#567124 maps to bank in the river sense, and

so on. Three such associations are represented by

arrows in the figure. The techniques for

automating MID-to-cue-group mappings are

described in (Seligman et al 2004). Groupings and

mappings are checked by linguists, so the overall

process of adding Meaning Cues to the native MT

engine can be described as semi-automatic.

Statistical machine translation. When

extending these techniques to statistical MT

engines, we plan to proceed as follows:

 Begin with a standard SMT phrase table, in

which each line represents a source language term

and a possible translation. Employ a paraphrase

extraction tool to create a secondary table in which

each line is a source language term and one

possible synonym. Consolidate such synonym

lines to compose synsets, or synonym sets. Finally,

collect synsets related to a given word or

expression to yield sets of synsets, equivalent to

sets of Meaning Cues seen in the Change

Meaning Window of Figure 4. These can be

presented to users as described above to enable

word meaning choices. Once a preferred meaning

has been selected, e.g. for cool, a new translation

can be generated by modifying translation

probabilities during decoding, or by re-ranking

candidate translations following decoding.

(Temporary data structures can be used to avoid

premature alteration of permanent ones. However,

temporary results can eventually be integrated into

master structures to improve translation results.)

To create meaning-preserving back-translations

of an input sentence in an SMT context, we first

identify, for each word or expression in the input,

the meaning (represented as a synset) used in the

forward translation. To make this identification,

we observe the currently proposed translation of

the current word. For example, it might be English

cool, provisionally translated as frio. We compose

a synset containing English synonyms for cool

which according to the translation table can

likewise be translated as frio. Then, armed with the

meaning (synset) of every expression in the input

sentence, we exploit the techniques just explained

to force a new meaning-preserving translation.

46

6

5 Conclusions

The first purpose here has been to give an

updated view of the toolset for highly interactive

speech translation in Converser for Healthcare 4.0,

with emphasis upon lexical disambiguation. We’ve

illustrated the new interface’s handling of several

examples, involving the Rewind Button, icons for

switching Verification Mode on and off for speech

recognition and translation, the Verification

Panel, and the Change Meaning Window.

The second goal has been to give a look

backstage: we’ve explained in outline how

semantically controlled back-translation and

Meaning Cues have been implemented, with a

look-ahead toward their extension into statistical

machine translation.

Future work will feature actual implementation

of interactive SMT, enabling interactive spoken

language translation among many more languages.

Acknowledgments

The authors thank the many participants in the

development of Converser for Healthcare and look

forward to thanking by name the organization

which sponsored a pilot project for Converser.

References

Mike Dillinger and Mark Seligman. 2004a. “System

Description: A Highly Interactive Speech-to-speech

Translation System.” Association for Machine

Translation in the Americas (AMTA-04).

Washington, DC, September 28 – October 2, 2004.

Mike Dillinger and Mark Seligman. 2004b. “A highly

interactive speech-to-speech translation system.” In

Proceedings of the VI Conference of the Association

for Machine Translation in the Americas.

Washington, D.C., September-October, 2004.

Christiane Fellbaum, ed. 1998. WordNet: An Electronic

Lexical Database. Cambridge, MA: MIT Press.

Yuqing Gao, Gu Liang, Bowen Zhou, Ruhi Sarikaya,

Mohamed Afify, Hong-Kwang Kuo, Wei-zhong Zhu,

Yonggang Deng, Charles Prosser, Wei Zhang, and

Laurent Besacier. 2006. “IBM MASTOR system:

multilingual automatic speech-to-speech translator.”

In HLT-NAACL 2006: Proceedings of the Workshop

on Medical Speech Translation. New York, NY, June,

2006.

George Miller. 1995. “WordNet: A Lexical Database

for English.” Communications of the AMC, Vol. 38,

No. 11:39-41.

Mark Seligman, Mike Dillinger, Barton Friedland, and

Gerald Richard Cain. 2014. “Method and Application

for Cross-lingual Communication.” US Patent 7, 539,

619, Application for Continuation 13797628.130326.

Mark Seligman and Mike Dillinger. 2013. “Automatic

Speech Translation for Healthcare:: Some Internet

and Interface Aspects.” TIA (Terminology and

Artificial Intelligence) 2013: Proceedings of the

Workshop on Optimizing Understanding in

Multilingual Hospital Encounters. Paris, France,

October 30, 2013.

Mark Seligman and Mike Dillinger. 2012. “Spoken

Language Translation: Three Business

Opportunities.” Association for Machine Translation

in the Americas (AMTA-12). San Diego, CA,

October 28 – November 1, 2012.

Mark Seligman and Mike Dillinger. 2011. “Real-time

Multi-media Translation for Healthcare: a Usability

Study.” Proceedings of the 13
th
 Machine Translation

Summit. Xiamen, China, September 19-23, 2011.

Mark Seligman and Mike Dillinger. 2008. “Rapid

Portability among Domains in an Interactive Spoken

Language Translation System.” COLING 2008:

Proceedings of the Workshop on Speech Processing

for Safety Critical Translation and Pervasive

Applications. Manchester, UK, August 23, 2008,

pages 40-47.

Mark Seligman and Mike Dillinger. 2006a. “Usability

Issues in an Interactive Speech-to-Speech Translation

System for Healthcare.” HLT/NAACL-06:

Proceedings of the Workshop on Medical Speech

Translation. NYC, NY, June 9, 2006.

Mark Seligman and Mike Dillinger. 2006b. “Converser:

Highly Interactive Speech-to-speech Translation for

Healthcare.” HLT/NAACL-06: Proceedings of the

Workshop on Medical Speech Translation. NYC,

NY, June 9, 2006.

Mark Seligman, Mike Dillinger, Barton Friedland, and

Gerald Richard Cain. 2004. “Method and Application

for Cross-lingual Communication.” US Patent 7, 539,

619.

Alexander Waibel. 2012. http://innovation.mfg.de/en/

news-and-features/simultaneous-translation-

university-without-language-barriers-1.11379

47

7

Figure 1: Earring and Traffic Light Icons are green: “Full speed ahead!”

Figure 2: Earring Icon is yellow: “Proceed with caution!”

48

8

Figure 3: Verification Panel, with a lexical disambiguation error in This is a cool program.

Figure 4: The Change Meaning Window, with four meanings of cool.

49

9

Figure 5: Translation and erroneous back-translation of bank.

Figure 6: Mapping between MIDs in an MT lexicon and Meaning Cues in the SELECT database.

50

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 51–60
AMTA Workshop. Vancouver, Canada. September 22, 2014

Predicting Post-Editor Profiles from the
Translation Process

Karan Singla karan.singla@students.iiit.ac.in
International Institute of Information Technology, Hyderabad, India
David Orrego-Carmona davidorregocarmona@gmail.com
Intercultural Studies Group, Universitat Rovira i Virgili, Tarragona, Spain
Ashleigh Rhea Gonzales ashleigh.gonzales@gmail.com
Department of Linguistics, Simon Fraser University, Burnaby, Canada
Michael Carl mc.ibc@cbs.dk
Copenhagen Business School, Copenhagen, Denmark
Srinivas Bangalore srini@research.att.com
AT&T Labs-Research, Bedminster, USA

Abstract

The purpose of the current investigation is to predict post-editor profiles based on user be-
haviour and demographics using machine learning techniques to gain a better understanding of
post-editor styles. Our study extracts process unit features from the CasMaCat LS14 database
from the CRITT Translation Process Research Database (TPR-DB). The analysis has two main
research goals: We create n-gram models based on user activity and part-of-speech sequences
to automatically cluster post-editors, and we use discriminative classifier models to character-
ize post-editors based on a diverse range of translation process features. The classification and
clustering of participants resulting from our study suggest this type of exploration could be
used as a tool to develop new translation tool features or customization possibilities.

1 Introduction

While significant strides have been made in statistical machine translation (MT) technology, the
quality of fully automated MT systems is still a distant second to the quality of human trans-
lations. However, with the increasing demand for translation in the global market, the balance
between quality and cost of translation is a trade-off many translation companies face. Human-
in-the-loop translation techniques1 aim to strike a balance between human and machine factors
to optimize productivity. While the need for a human in the translation process loop is widely
acknowledged, the possible techniques for improving the efficiency of the translator is largely
open. In the ongoing CasMaCat project (Alabau 2013), there have been several techniques
explored within the user interface designed for the translator to correct the MT output, such
as automatic correction of the output based on the changes made by the post-editor, automatic
replacement terminology when the post-editor corrects a term and active retraining of the MT
model based on the changes made by the post-editor.

The task of post-editing is cognitively demanding; thus, it is expected that the post-editing
tool factors in significantly to maximize end-user experience. A personalized post-editing tool

1also known as human-assisted MT, machine-assisted human translation and interactive MT

51

that caters and adapts to a user’s work style is bound to improve productivity metrics. To
this end, we investigate techniques that help identify the post-editor behaviour profile using a
multitude of factors tracked during the post-editing process. We study this process as a sequence
of activity events that enable us to identify individual profiles. From the emergent patterns,
we are then able to cluster post-editors into subgroups based on the commonalities of their
individual process sequences. Our main motivation is that a higher level of granularity in the
units that are analyzed would provide a more detailed account of the post-editing process. The
identification of different post-editing styles and the definition of patterns in those styles at a
fine-grained level provide insights for (a) the development and adaptation of translation tools,
(b) classification of individual translators based on non-process factors (translator experience,
translator personality, time constraints, etc.) and (c) the most salient skills required of post-
editors, which can later be applied to translator training.

For the current study, we exploit the activity data tracked during the post-editing sessions
to infer clustering and classification models. We investigate a range of machine learning (ML)
techniques and validate the learned clusters against demographical metadata provided by the
post-editors to demonstrate the veracity of the inferred models.

2 Related Work

The identification of translator and post-editor styles is an active field in Translation Process Re-
search (TPR). To understand factors affecting translation workflow, researchers have explored
activity data to identify patterns and define style taxonomies. This provides us with an un-
derstanding into the cognitive processes involved in translation tasks: It generates user-based
knowledge for software development by considering the effects of training and experience (Carl
and Schaeffer, forthcoming). However, no such study has applied a machine learning (ML) ap-
proach. Rather, the most widespread method to study translator style is the segmentation of the
translation process into a limited number of subphases that broadly correspond to a preparation
phase, a typing phase and a revision phase.

To identify factors and improve translation tools to better support users, Carl et al. (2011)
establishes three phases in the translation process: Initial orientation, translation drafting and
revision. Within each phase, the study further identifies different possible behaviours. Each
translation phase and behaviour poses separate challenges, so a better choice of task support
options for each phase can greatly benefit the end user.

Schrijver et al. (2009) also identifies three phases in the translation process: Pre-writing,
writing and post-writing phase. The aim of the study is to explore transediting – the overlapping
of translation and editing activities Stetting 1989. Considering the differences between the
translation process and the transediting process, they configure two translation methods that
vary dependent on where the first word of the target text originates. The second, more detailed
method identifies nuances that prove important for the completion of the task and the product’s
adequacy with regards to the client’s requirements.

Targeting post-editing specifically, Mesa-Lao (2013) suggests six steps that comprise the
post-editing cycle, and identifies four cycles that are more common among post-editors, defining
a more specific taxonomy for categorizing post-editing processes. Variation in post-editing
styles is found to be dependent on the type of computer-assisted translation (CAT) tool GUI and
the type of post-editor, which serves as an indicator of user adaptation to different conditions.

Lastly, Martı́nez-Gómez et al. (2014) employ a ML approach to translator activity se-
quence data to identify translator expertise. Surveying 800 translation sessions of an earlier
version of the TPR database, they classify translators based on process features related to gaze
fixations and keystroke activity. Notably, instead of defining translation activity subphases, their
approach is to classify sequences of translation events (fixations and keystrokes) into distinct

52

activities to model the translation sessions. The error rate reduces when the analysis operates
under the hypothesis of translator certification, and significantly when tasked with identifying
translators’ years of experience. In contrast with the current study, they focus on the prediction
of expertise and years of experience, rather than the identification of translator profiles.

For the current research objectives, we implement generative and discriminative ML mod-
els to analyze the activity sequences in post-editing sessions. Profiling translators and post-
editors based on fine-grained units of activity hint at different underlying cognitive processes
that occur during translation; this analysis would provide grounds for further and deeper studies
of the cognitive dimension of the translation process. The fact that our methods help identify
relevant features for the post-editors classification can also provide the statring point to obtain
actionable insights for developing better CAT tools.

3 Data

The data for the current study was extracted from the CasMaCat (Alabau 2013) longitudinal
study (LS14) carried out during a six week period between April and May 2014 (CRITT TPR
Database2). The training and adaptation factors are the most neglected aspects in post-editing
research. Few TPR studies have addressed this issue (cf. Massey and Ehrensberger-Dow 2013),
although it is commonly explored in research dealing with the development of translation com-
petence and translator training in general (Pacte 2009, Göpferich 2009).

The LS14 study is the first of its kind that implements a longitudinal approach to assess
how post-editors adapt to different GUI designs and work environments. The data collection
includes five post-editors employed with a translation agency in Madrid, Spain. Participants
used the CasMaCat workbench to perform the post-editing tasks (Ortiz-Martı́nez et al. 2012).
Each week, each participant translated four texts under two conditions – Two texts with tra-
ditional post-editing (TPE) and two texts under interactive post-editing (IPE), which provides
post-editors with real-time translation suggestions to aid in task completion – for a total of 24
texts and 120 translations sessions. All participants were native speakers of Spanish and trans-
lated from English into Spanish. The raw logging data included in the LS14 study is mainly
derived from the post-editors’ translation activities, extracted under the method detailed in Carl
and Schaeffer (2013). Eye-tracking data was also collected for all post-editors, but only for the
first and last weeks of the experiment, so only one-third of the files includes gaze data.

In order to identify the post-editor profiles and to conduct a benchmark study using ML
techniques, we focus our analyses on the information logged in the post-editing session. We
include three types of segmentation information derived from process unit file conventions ex-
tracted from the LS14 TPR-DB3): Activity units (CU), production units (PU), and translation
segments (SG), which are detailed below.

CUid Session Time Dur TTseg Type Label
83 PE1 P1 480671 1839 1255 8 CU83-S:1255-T:8-D:1839
84 PE1 P1 482510 163 1255 4 CU84-S:1255-T:4-D:163
85 PE1 P1 482673 8202 1255 8 CU85-S:1255-T:8-D:8202
86 PE1 P1 490875 1526 1255 4 CU86-S:1255-T:4-D:1526

Table 1: Activity unit (CU) of post-editing activities from Participant 1 (PE1) in Segment 1255

2CRITT Translation Process Research (TPR) Database http://bridge.cbs.dk/platform/?q=node/18
3Carl and Schaeffer (2013) offer a detailed account of the data annotation methods and the different units used in

the CRITT TPR Database

53

3.1 Activity Units (CU)
Features from the activity units serve as a baseline of user translation processes. The sequences
within the translation session is a segmentation of typing, reading or pause activity recordings.
We employ a dichotomous model: Activity is categorized as either Translation activity (Type
4) or No Activity (Type 8) to follow the conventions of Carl and Schaeffer (2013). To achieve
finer-grained distinctions in the activity profile, we refine the activity labels with duration in-
formation of each event resulting in five additional classes centered around the median duration
(in milliseconds). Furthermore, Part-of-speech (PoS) sequences extracted from the target text
(TT) files are aligned with the CU data. There are in 68 unique PoS tags identified for Spanish
in LS14, derived from TrEd/Treex (Pajas 2004, Popel and Žabokrtský 2010).

3.2 Production Units (PU)
Each production unit represents a coherent sequence of typing activity and includes information
about the duration of the unit, duration of the preceding pause, number of edits, insertions and
deletions, tokens involved in the source text and target text and average cross values. Cross
values are the “relative local distortion of the reference text with respect to the output text, and
indicate how many words need to be consumed in the reference to produce the next token(s) in
the output” (Carl and Schaeffer 2013). A PU boundary is defined by a time lapse of more than
one second between successive keystrokes.

3.3 Translation Segments (SG)
Translation segments provide sequence information of aligned source and target text segments
detailing the segment production duration, character length, insertions and deletions and gaze
data, when available. Average word entropy, cross values, perplexity, and source text literality
were also calculated and appended to this file type, given the level of segmentation that our
analysis required.

4 Experiments and Results

TPR-db LS14

MetadataTarget Text Activity Units Segments Production Units

Generative Modelling Discriminative Modelling

PoS sequences

Language Models

Perplexity Scores

Clustering Models

Feature Extraction

Data Normalization

Process Unit
Repository

Decision Trees
n-grams MLP

Random Forest

Feature Selection

Classification Models

Activity sequences

Algorithms

Figure 1: Basic pipeline of the study: Generative and discriminative models.

54

Category Feature Description

all
Participant participant identifier
Dur duration of the unit

CU

Type type of activity unit
dur cu duration of activity units
TokS number of source tokens in the segment
TokT number of target tokens in the segment
PoS part of speech tag

CU, SG
LenS character length of source segment
LenT character length of target segment

SG

Nedit number of edits of the segment
LenMT character length of the machine translation segment

Kdur
duration of coherent keyboard activity excluding keystroke
pauses greater than or equal to five (5) seconds

Fdur
duration of segment production time excluding keystroke
pauses greater than or equal to 200 seconds

Mins Number of manually generated insertions
Mdel Number of manually generated deletions
Ains Number of automatically generated insertions
Adel Number of automatically generated deletions
STent average word translation entropy of the segment
PP perplexity score of the segment based on STent
STlit source text literality
FixS number of fixations on the source text unit
FixT number of fixations on the target text unit
GazeS total gaze time on source text unit
GazeT total gaze time on target text unit
STcr2 cross value of source text token
TTcr2 cross value of target text token

SG, PU

CrossS cross value of source token
CrossT cross value of target token
STseg source segment identifier
TTseg target segment identifier

PU

Time timestamp of the event
ParalS percentage of parallel source text reading activity during unit production
ParalT percentage of parallel target text reading activity during unit production
Linear degree of linear editing
Pause duration of production pause before typing onset

Table 2: Master process unit feature list

4.1 Toolkits
We use the Waikato Environment for Knowledge Analysis, WEKA 3.6 (Hall et al. (2009)) open-
source toolkit for data mining and machine learning. Using several machine learning algorithms
provided by the toolkit, we train various classification models. For the generative models, we
use the SRI Language Modeling (SRILM) Toolkit (Stolcke 2002).

4.2 Claustering Post-Editors
Using the SRILM toolkit, we build n-gram models on Activity Unit sequences and target text
PoS sequences of each post-editor. We use perplexity values as scores in a k-mean clustering to
find similarity between post-editors, and then validate these clusters using the metadata.

Clustering Based on Activity Unit Sequences
The original CU files included in the TPR database contain eight types of activities. However,
this classification of activity labels depends on the gaze information, which unfortunately is not

55

available across all points in our data. As such, we map the original eight categories into two:

• Type 4 (Translation activity, T4): Activity units as defined by a sequence of coherent
typing, which may also include gaze information; and,
• Type 8 (No Activity, T8): Boundary between two activity units defined as a pause of

1000ms or more without any keyboard activity.

Under this modified categorization, because there are now only two types of activity, translation
activity (Type 4) is always followed by a pause (Type 8). This creates a model in which only
two transitions are possible (T4-T8-T4 or T8-T4-T8). Therefore, we further subdivide Type 4
and Type 8 into five categories based on the duration of these events: Five buckets centered on
the median duration, further partitioning the activity and pause units into five subgroups. Table
3 illustrates the generated sequences considering the duration of the translation and pause units.
We create a standard trigram language model on the activity sequences of each post-editor. The

P01 T4,1 T8,3 T4,1 T8,2 T4,5 ...
P02 T8,2 T4,3 T8,4 T4,1 T8,1 ...
...
P05 T4,1,, T8,3 T4,2 T8,5 T4,2 ...

Table 3: Sample user participant activity sequences bucketed by duration

language model of one post-editor is then used to calculate the perplexity scores of the activity
sequences for all the other post-editors. Perplexity, PP , is often used for measuring the fit of
a language model to a corpus of sequences. It can be interpreted as the average number of
tokens that can be produced by a model at each point in the sequence. For a test set with tokens
W = w1, w2, ..., wn, the perplexity of a trigram model on the test set is

PPW =
∏

P (wi | wi−1, wi−2)
− 1

n

where it can be noted that perplexity is normalized by the number of tokens in the test sequence.
Table 4 shows the perplexity scores of each post-editors language model on the other post-

editor’s activity sequences. It illustrates that the diagonal contains the smallest perplexity value
since the dataset is the same as the one used to create the model.4

PE1 LM PE2 LM PE3 LM PE4 LM PE5 LM
PE1 4.09526 4.3195 4.62186 4.84951 4.39231
PE2 4.30064 4.06063 4.41296 4.60593 4.40357
PE3 4.63742 4.39636 4.06999 4.30479 4.85385
PE4 4.47429 4.29059 3.99274 3.80005 4.88682
PE5 4.00879 4.09205 4.46445 4.81527 3.80372

Table 4: Perplexity scores for the Activity sequence LM model for all post-editors

We use the perplexity values as distance costs in a k-means clustering algorithm to produce
two (k = 2) clusters. We obtain the following clusters: Cluster1{PE1, PE2, PE5} and
Cluster2{PE3, PE4}. When looking for possible explanations in the metadata, we found
that cluster1 includes the most experienced post-editors. Based on the findings provided by
this clustering, it seems to be the case that experienced post-editors produce similar kinds of
activity sequences in contrast with the activity sequences of inexperienced post-editors.

4However, an exception as seen in Table 4, PE 3’s activity model has a higher perplexity score on PE 3’s sequence
compared to that on PE 4’s activity sequence.

56

Clustering Based on Target Text Part-of-Speech Sequences
We extract the PoS sequences for each segment in the target text and created a n-gram language
model for each post-editor (PE). Then we use this model to calculate the perplexity values of the
language model for all other post-editors to measure the appropriateness of the model. Using the
perplexity scores as distance metrics, we grouped the post-editors into two clusters by applying
standard k-means clustering: Cluster1{PE1, PE3, PE5} and Cluster2{PE2, PE4}. To
account for this clustering, we compare the results with the participant metadata. We find that
Post-Editor 2 and Post-Editor 4 share a very negative response to the post-editing approach,
whereas the other three participants did not indicate such apprehension towards the task. Con-
sidering our data, this seems to indicate that post-editors with similar negative response towards
post-editing tend to have similar activity patterns.

4.3 Discriminating Post-Editors

Unlike generative modelling which clusters the post-editors based on their shared characteris-
tics, discriminative modelling is done to determine if the ML models are able to identify the
five post-editors based on their activity profiles. We carry out tests on the three types of data
mentioned in Section 3: activity units, productions units and translation segments. We segment
the data to analyze the effect of the GUI (traditional post-editing and interactive post-editing) in
the analyses. We apply various ML algorithms with 10-fold cross validation for classification,
but find that “multilayer perceptron” and “classification via regression” perform best for this
task of identifying the post-editors. The baseline accuracy is 20% given that there are the same
number of samples for the five participants.

Algorithm Traditional PE Interactive PE Combined

Activity Unit Profile
Multilayer Perceptron 40.58 % 35.51 % 41.54 %
Classification via Regression 42.37 % 36.82 % 42.72 %

Production Unit Profile
Multilayer Perceptron 44.67 % 39.82 % 37.06 %
Classification via Regression 45.83 % 47.69 % 46.48 %

Translation Segment Profile
Multilayer Perceptron 42.88 % 46.93 % 44.45 %
Classification via Regression 44.64 % 47.51 % 45.71 %

Table 5: Results for the 5-way classification task to discriminate post-editors based on activity,
production and translation segments profiles created at the segment level.

Activity Unit Profile
Table 5 shows results obtained from frequencies of unigrams and bigrams of activities as fea-
tures for discriminating post-editors. It illustrates that the model is able to discriminate post-
editors better when they use the traditional PE GUI, with 42.37% accuracy, compared to 36.82%
in the Interactive PE environment. However, when the data is combined using the GUI as an
additional feature, accuracy of the model remains almost the same at 42.72%.

Production Unit Profile
We create a features matrix using the PU features described in Table 2 to identify post-editors.
In the matrix, all text dependent features have been normalized using LenS (character length of
source sentence) to ensure that the system is not biased by differences in the length of the text.
Considering there are multiple production units for each segment, and that the number of PUs
vary per post-editor, we make a sparse vector to group together the different production units
of each segment. As shown in Table 5, we achieve 46.48% accuracy while using the entire data
set with GUI as a feature. When dividing the data set depending on the GUI, we achieve an

57

accuracy of 47.69% and 45.83% with the system discriminating post-editors in the traditional
and interactive enabled GUI, respectively.

Translation Segment Profile

Translation segments have some features overlapping with production unit profiles as detailed in
Table 2. Nevertheless, in this file, all the information is cumulative for a segment and dependent
on the text, while in the production unit files, the information is created based on the post-
editors’ typing bursts. When testing the combined dataset including the data from the two
GUIs, the model has an accuracy of 45.71%. When running the tests independently for the two
GUIs, the TPE dataset achieves 44.64% of accuracy, while the IPE dataset reaches 47.51% of
accuracy.

4.4 Feature Analysis

To serve as a clearer visualization of the features identified as salient by the classifiers, we
present in Figure 2 a detail of a decision tree learned using a J4.8 classifier. The most relevant
features to classify post-editors are related to different types of duration (Fdur, Kdur, Dur) and
the post-editors’ typing activity (Mins, Nedit).

1: Fdur

2: Mins 17: Mins

18: Kdur

25: Fdur

19: Kdur

22: Nedit

26: Fdur

29: Mins

3: Fdur

10: Mins

4: Kdur

7: Mins

11: Dur

14: Kdur

<359.68 ≥359.68

<0.58
≥0.58

<180.11
≥180.11

<664.62
≥664.62

<0.31
≥0.31

<213.97
≥213.97

<0.51 ≥0.51

Figure 2: Decision tree of salient features from Translation Segments (SG)

5 Discussion

In this paper, we test the hypothesis that events that make up the translation process provide
enough information for the individualization of post-editor profiles. By using machine learning
models, we are able to not only find the post-editors’ profiles, but also cluster and discriminate
between post-editors. Classifying post-editors based on activity microunits, either dependent
on the text or on the individual user, provides interesting results that are worth exploring in
translation studies and computer science. However, since only a few post-editors participated
in this pilot collection, the current study should be considered only as an initial exploration of
such methods on translation process data. Considering our initial results, it would be beneficial
to explore how additional features on a different segmentation level affect the models, and to
what degree, if at all. For example, information related to user personality, user training and
experience, testing conditions, genre of the text and other qualitative features can be added to
the existing models to explore non-activity factors.

58

6 Conclusion

Computer assisted translation remains a progressive field of research, and there is an ever-
growing interest in providing translators and post-editors with better software tools to facilitate
their work and increase productivity. Identifying how translators interact with the tools and gain
insights into features that have an impact on their performance can help in the development of a
new generation of translation tools. TPR aims at uncovering the cognitive process that unfold in
the translator’s mind while performing the translation tasks. Although our sample is undoubt-
edly limited consisting of data from five participants only, our results can serve as indicator
of an avenue that starts providing interesting consideration that could be further explored at a
bigger and more comprehensive scale. The insights brought forth from this study are gathered
under the goal of performance improvement through different channels: (1) Providing better
tools and (2) uncovering training needs. The empirical methods of the current study provide the
foundation for further exploration of the translation process in order to satisfy the needs in those
areas. We believe our methods of user participant profiling can be adapted and extrapolated to
analyze different translation processes and provide researchers with solid findings for multiple
applications in the field.

7 Acknowledgments

This work was supported by EU’s 7th Framework Program (FP7/2007-2013) under grant agree-
ment 287576 (CASMACAT).

References

Alabau, V. (2013). Web technologies in casmacat. Interactive machine translation. Speech & Eye-Tracking
Enabled CAT (SEECAT). Copenhagen, Denmark,.

Carl, M., Dragsted, B., and Jakobsen, A. (2011). A Taxonomy of Human Translation Styles. Translation
Journal, 16(2):n.p.

Carl, M. and Schaeffer, M. J. (2013). The CRITT Translation Process Research Database v1.4.
http://bridge.cbs.dk/resources/tpr-db/TPR-DB1.4.pdf.

Carl, M. and Schaeffer, M. J. (forthcoming). Processes of Literal Translation and Post-editing.

Göpferich, S. (2009). Towards a model of translation competence and its acquisition: the longitudinal
study ’transcomp. In Göpferich, S., Jakobsen, A. L., and Mees, I. M., editors, Behind the Mind:
Methods, Models and Results in Translation Process Research, Copenhagen Studies in Language 37,
pages 11–37. Copenhagen.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The weka data
mining software: An update. SIGKDD Explorations, 11(1).

Martı́nez-Gómez, P., Minocha, A., Huang, J., Carl, M., Bangalore, S., and Aizawa, A. (2014). Recognition
of Translator Expertise using Sequences of Fixations and Keystrokes. In Qvarfordt, P. and Hansen,
D. W., editors, Proceedings of Symposium on Eye Tracking Research and Applications, pages 299–302,
New York, USA.

Massey, G. and Ehrensberger-Dow, M. (2013). Evaluating translation processes: opportunities and chal-
lenges. In Kiraly, D., Hansen-Schirra, S., and Maksymski, K., editors, New Prospects and Perspec-
tives for Educating Language Mediators, Translation Studies Series 10, pages 157–180. Gunter Narr,
Tübingen.

59

Mesa-Lao, B. (2013). Eye-tracking Post-editing Behaviour in an Interactive Translation Prediction Envi-
ronment. In Proceedings of the 17th European Conference on Eye Movements, Lund, Sweden.

Ortiz-Martı́nez, D., Sanchis-Trilles, G., Casacuberta, F., Alabau, V., Vidal, E., Benedı́, J.-M., González-
Rubio, J., Sanchis, A., and González, J. (2012). The CASMACAT Project: The Next Generation
Translator’s Workbench. In Proceedings of the 7th Jornadas en Tecnologı́a del Habla and the 3rd
Iberian SLTech Workshop (IberSPEECH), page 326–334.

Pacte (2009). Results of the validation of the pacte translation competence model: Acceptability and
decision making. Across Languages and Cultures, 10(2):207–230.

Pajas, P. (2004). Tred tree editor. http://ufal.mff.cuni.cz/tred/.

Popel, M. and Žabokrtský, Z. (2010). Tectomt: Modular nlp framework. In Lecture Notes in Computer
Science, Vol. 6233, Proceedings of the 7th International Conference on Advances in Natural Language
Processing (IceTAL 2010), pages 293–304, Berlin/Heidelberg. Springer.

Schrijver, I., van Vaerenbergh, L., and van Waes, L. (2009). Transediting in students’ translation processes.
Artesis VT working papers, 1:1–31.

Stetting, K. (1989). Transediting: A new term for coping with the grey area between editing and trans-
lating. In Caie, G., Haastrup, K., and Arnt Lykke Jakobsen, e. a., editors, Proceedings from the Fourth
Nordic Conference for English Studies, pages 371–382, Copenhagen: University of Copenhagen.

Stolcke, A. (2002). SRILM – an extensible language modeling toolkit. In Proceedings of ICSLP, volume 2,
pages 901–904, Denver, USA.

60

Author Index

Alabau, Vicent, 1

Bangalore, Srinivas, 51

C. de Souza, José G., 9
Carl, Michael, 1, 51
Casacuberta, Francisco, 1

Dillinger, Mike, 42
Dragsted, Barbara, 1

García-Martínez, Mercedes, 1
Germann, Ulrich, 20
Gonzales, Ashleigh Rhea, 51
González-Rubio, Jesús, 1

Mathur, Prashant, 32
Mauro, Cettolo, 32
Mesa-Lao, Bartolomé, 1

Negri, Matteo, 9

Orrego Carmona, David, 51
Ortiz-Martínez, Daniel, 1

Petersen, Dan Cheung, 1

Sanchis Trilles, Germán, 1
Seligman, Mark, 42
Singla, Karan, 51

Turchi, Marco, 9

61

	Program
	Integrating Online and Active Learning in a Computer-Assisted Translation Workbench
	Towards a Combination of Online and Multitask Learning for MT Quality Estimation: a Preliminary Study
	Dynamic Phrase Tables for Machine Translation in an Interactive Post-editing Scenario
	Optimized MT Online Learning in Computer Assisted Translation
	Behind the Scenes in an Interactive Speech Translation System
	Predicting Post-Editor Profiles from the Translation Process

