

Siemens Industrial Turbomachinery

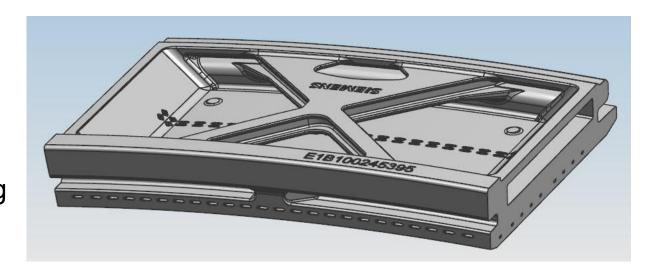
- Industrial gas turbines 5-60 MW
- Aero-derivative gas turbines
 - Core part manufacturing
 - Packaging

Additive Manufacturing at Siemens Industrial Turbomachinery

- Burner tip repair
- Orifice plates
- Burner fronts

Bearbetning för att få slät yta

Efter reparation genom SLM


- Workshop for prototypes and burner tip repair
- New workshop with 5 PBF- laser units for serial production

Additive Manufacturing of heat shields

- Powder Bed Fusion Laser
- Oxidation resistant material
- Evaluation of different cooling channel configurations

- Printed parts to be installed in SGT-800 unit for evaluation
- Potential serial production part

AM validation heat shield were tested using immersion UT

- Testing carried out before machining, coating, and heat treatment
- 15 MHz-0,5" diameter, 2" focus
- High resolution scanning, long testing times

NDT of **AM** products

Work Item Number: 47031 Date: November 17, 2016

Standard Guide for Post-Process Nondestructive Testing of Metal Additively Manufactured Parts Used in Aerospace Applications¹

- Red dye penetrant used for testing of production parts in Finspång
- PCRT included in ASTM standard for AM NDT

TABLE 5.2 Application of NDT during the Life Cycle
of Additive Manufactured Parts ^A

	OI Additive Mail	ulacturet	i i ai io		
METHOD	Product and Process Design and Optimization	In-Process Monitoring	Post- Process Inspection	In-Service Remove and Inspect	In-situ Structural Health Monitoring
CT	X	(720)	Xc	X	257
MET ^B	943		X	X	***
PCRT	X	244	Xc	X	856
PT		377	X	X	1771
RT	220	3444	X	X	-922
TT	775	633	X	X	(222)
UT	***	1446	X	X	300

A Abbreviations used: — = not applicable, CT, = Computed Tomography, MET = Metrology, PCRT = Process Compensated Resonance Testing, PT = Penetrant Testing, RT = Radiographic Testing, TT = Thermographic Testing, UT = Ultrasonic Testing.

TABLE 5.1 General Inspection Capabilities for Selected Conventional Post-Process NDT
Techniques for Additive Manufactured Parts A

METHOD	Material and Flaw Types Detected	Surface or Interior Defect Sensitivity	Global Screening or Detect Location	
СТ	In any solid material, any condition and/or defect affecting X-ray absorption	Surface and subsurface	Detects and images location	
CT, microfocus	In any solid material, any condition and/or defect affecting X-ray absorption	Surface and subsurface	Detects and images location	
MET	In any solid material, any condition and/or defect affecting visible, structured and laser light reflection	Surface	Detects and images location	
PT	Any solid material. Discontinuities - cracks, pores, nicks, others	Surface breaking	Detects and images location	
PCRT	Any solid material. Any defect or condition	Surface and subsurface	Global screening	
RT	In any solid material, any condition and/or defect affecting X-ray absorption	Surface and subsurface	Detects and images location	
П	In any solid material, any condition and/or defect affecting heat conduction	Surface and subsurface	Detects and images location	
UT	In any solid material, any condition and/or defect affecting sound attenuation, propagation, acoustic velocity and/or sensor-part juxtaposition	Surface and subsurface	Detects location	

A Abbreviations used: — = not applicable, CT = Computed Tomography, ECT = eddy current testing, IR = Infrared, PCRT = Process Compensated Resonance Testing, PT = Penetrant Testing, RT = Radiographic Testing, TT = Thermographic Testing, UT = Ultrasonic Testing. Includes in-process and post-process methods using visible light, structured light, lasers, and non-visible wavelengths (IR and near-IR).

^B Includes post-process methods using visible light, structured light, and lasers.

^c Suitable for Design Complexity Group 5 parts.

Process Compensated Resonance Testing, PCRT

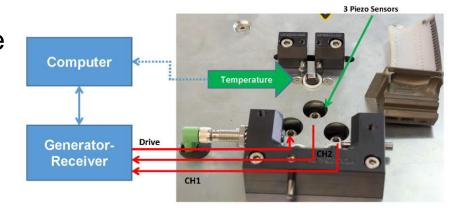
Based on two ASTM standards

- Vibrant NDT is the main (only?)
 supplier of equipment and services
- Not to be confused with Impulse testing

ASTM E2534 - 15 0

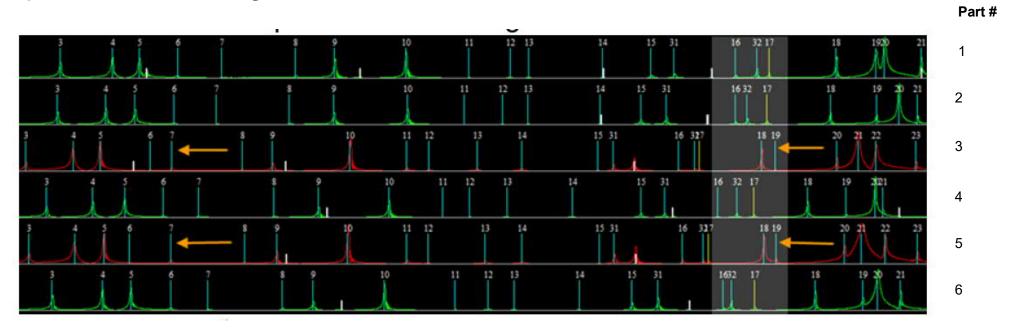
Standard Practice for Process Compensated Resonance Testing Via Swept Sine Input for Metallic and Non-Metallic Parts

ASTM E3081 - 16 @


Standard Practice for Outlier Screening Using Process Compensated Resonance Testing via Swept Sine Input for Metallic and Non-Metallic Parts

Process Compensated Resonance Testing, PCRT

- Measurement of patterns of multiple resonance frequencies in 1kHz – 20MHz range
- Resonant frequencies are determined by the dimensions and material properties of the whole component



- PCRT is not a focused inspection but is instead a full body inspection
- "Black box" testing: No operator interpretation, test is Go/No-go

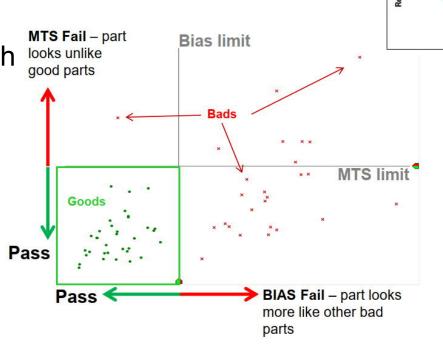
Process Compensated Resonance Testing, PCRT

 The multi-frequency pattern can be used for defect detection and/or process monitoring

X

× Outliers

PASS/FAIL


Population

X

Average Resonance Frequency

Process Compensated Resonance Testing, PCRT

- Z-score can be used to rate the resonant frequencies
- For targeted PASS/FAIL testing, VIPR score which is based on known good and bad parts should be used

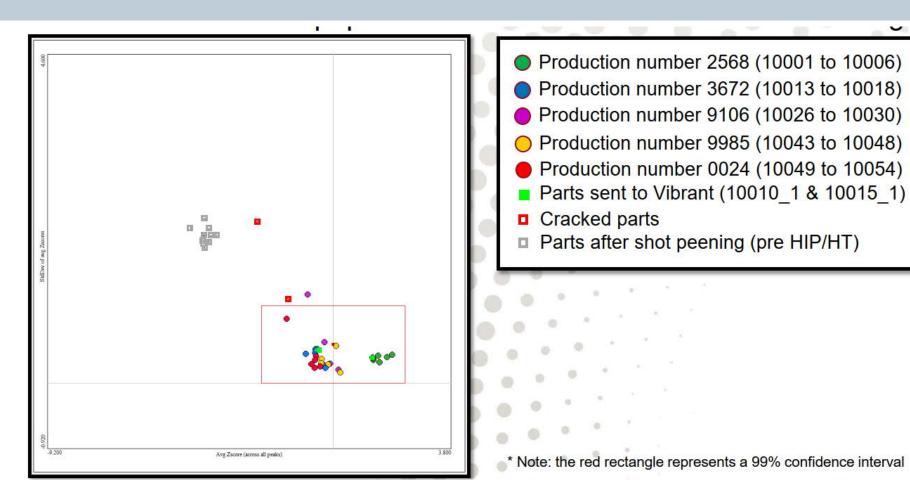
Unrestricted © Siemens Industrial Turbomachinery AB

PCRT of **AM** heat shields, overview

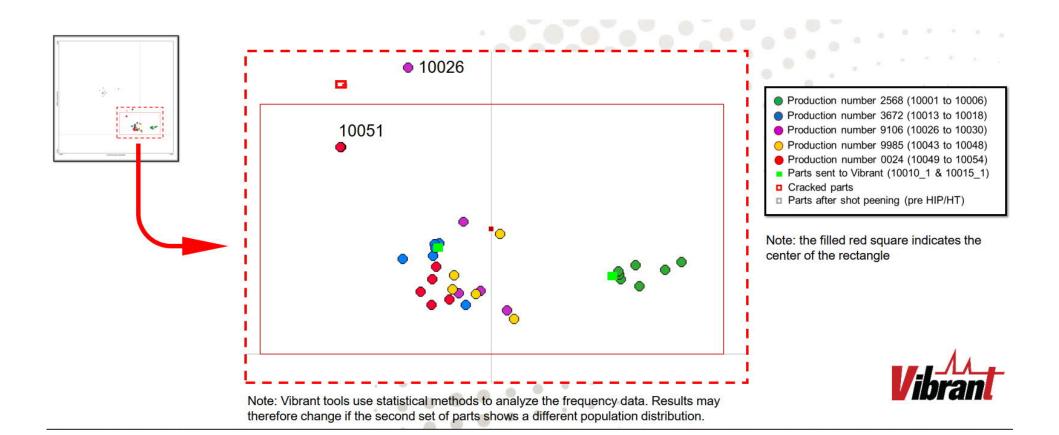
Two heatshields were sent to Vibrant in Germany for design and testing

of PCRT fixture

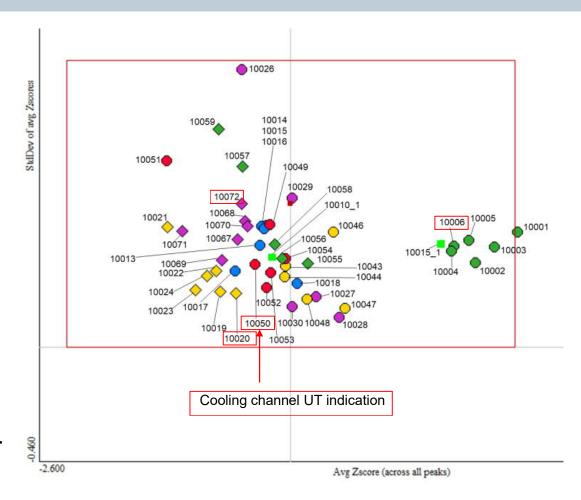
• PCRT equipment sent to Finspång for data collection on printed parts


PCRT of AM heat shields, setup and scope

- Temperature and mass of each heatshield was recorded
- 78 useable resonance frequencies in the range
 1kHz to 66 kHz were identified
- Time required for complete sweep: <5 min
- 47 production parts from 8 batches were tested
- Two parts with visual cracking were also tested

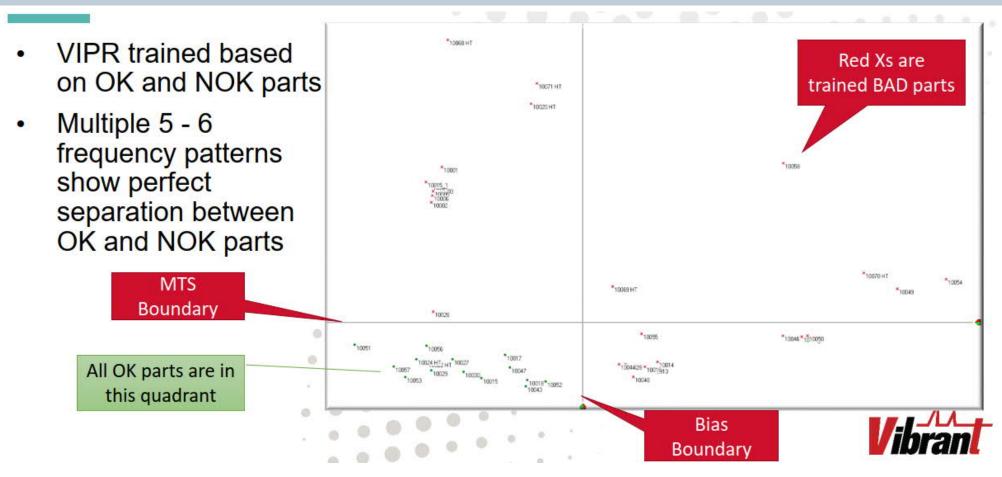

PCRT of AM heat shields, initial Z-score results

Unrestricted © Siemens Industrial Turbomachinery AB


PCRT of AM heat shields, initial Z-score results

PCRT of AM heat shields, final Z-score results

- Data from 22 frequencies
- Cracked and pre-HT parts not included
- The red rectangle represents a confidence interval of 99%
- Several batches are tightly grouped
- Parts in batch 2568 were 2,4% heavier

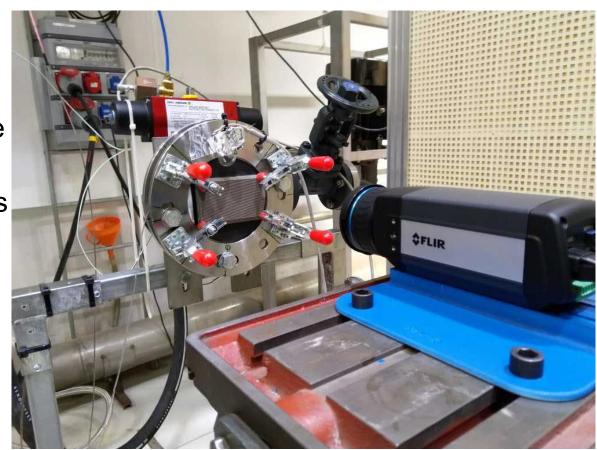


PCRT of AM heat shields, final Z-score results

- Parts with defect cooling channels could not be identified using Z-score
- Heat shield 10026 was sectioned for metallographic examination but no defects except the ceeling channel cracks were found
- Vibrant requested information about good and bad parts for VIPR training
- Due to misunderstandings, all parts that were not used for the engine test-were considered not OK for the VIPR training. Some of these did not pass the flow test, but this was due to machining debris introduced after PCRT...

PCRT of AM heat shields, VIPR score results. Heat shields chosen for turbine use=OK. All other heat shields NOK

SIEMENS



Conclusions

- Vibrant NDT were very cooperative and professional, providing equipment, expertise and experience for the PCRT technique
- The PCRT technique requires a statistically significant number of good and bad parts, which might be difficult to obtain if the AM process is stable
- It is essential to provide correct input regarding good and bad parts to the VIPR training!

Additional testing: Comparative Cooling Test Rig

- Predefined transient
- Response of the surface temperature
- Core displacement, blocked channels
- Long term comparison

