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Process dynamics

In a dynamic system, the values of the variables change with time, and in this chapter

we quantify the well-known fact that “things take time.” We also consider dynamic

modeling, dynamic responses (analysis), dynamic simulation (numerical calculation) and

process control.

11.1 Introduction

Some reasons for considering a system’s dynamics and obtaining dynamic models are:

1. To describe the time behavior of a batch process.
2. To describe the transient response of a continuous process (e.g., dynamic change

from one steady state to another).
3. To understand the dynamics of the process (analysis), for example, as expressed by

the time constant.
4. To develop a “training simulator” for operator training.
5. For “what occurs if” studies, for example, as a tool in a HAZOP analysis (“what

happens if this valve is closed?”).
6. For optimization and control (control structure, tuning of controllers, model-based

control).

Note that when it comes to dynamics, there is no difference between a model for a
batch process a continuous process.

The dynamic models we consider in this chapter are given in the form of differential
equations,

dy

dt
= f(y, u) (11.1)

where u is the independent variable and y the dependent variable, as seen from a
cause-and-effect relationship. With a dynamic model, it is possible, given the system’s
initial state (y(t0) = y0) and given the value of all of the independent variables (u(t)
for t > t0), to compute (“simulate”) the value of the dependent variables as a function
of time (y(t) for t > t0).

Up to now, we have studied steady-state behavior, where time t was not a variable.
The steady-state model f(y, u) = 0 gives the relationship between the variables u and
y for the special case when dy/dt = 0 (“the system is at rest”).

The basis for a dynamic model can be

skoge
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1. Fundamental: From balance equations + physics/chemistry; see the next section
2. Empirical (regression-based): From experimental data (measurements)

Often we use a combination, where the parameters of a fundamental model are
obtained from experimental measurement data.

Comment on notation. The dot notation (Ẋ) is used other places in this book
to indicate rate variables (e.g., ṁ [kg/s] denotes the mass flow rate). However, in
other fields and books, particularly in control engineering, the dot notation indicates
time derivative (that is ṁ ≡ dm/dt). Since we work, in this chapter, with both
time derivatives and rates, we here choose to avoid the dot notation altogether. The
following special symbols are instead used for rates (amount of stream per unit of
time):

• Molar flow rate: F ≡ ṅ [mol/s]
• Mass flow rate: w ≡ ṁ [kg/s]
• Volumetric flow rate: q ≡ V̇ [m3/s]

11.2 Modeling: Dynamic balances

Inventory

Generated OUT
- Lost

Figure 11.1: The balance principle

Here, we show how dynamic models can be derived from the balance equations
for total mass, energy and component mass (mole). This gives, at the same time,
an overview and a review of the material presented in previous chapters. Consider a
system with a well-defined boundary (“control volume”), see Figure 11.1. The starting
point for a fundamental model is the balance equations (see Chapter 2).

Change Inventory
︸ ︷︷ ︸

accumulated in the system

= In − Out
︸ ︷︷ ︸

through the system′s boundary

+ Generated − Loss
︸ ︷︷ ︸

internally in the system

In this chapter, the terms “change,” “in,” “out,” “generated” and “loss” are always
per unit of time. Mathematically, the general balance equation per unit of time is (see
(2.8) on page 42):

dB

dt
= Bin − Bout + Bgenerated − Bloss [

kg

s
,
mol

s
,
J

s
, . . .] (11.2)

Here B is the inventory of the quantity that we are considering (inside the system’s
boundary), dB

dt is the change in the inventory per unit of time, Bin − Bout is net
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supplied through the system’s boundary (with mass flows or through the wall) and
Bgenerated − Bloss is net supplied internally in the system. For conserved quantities
(mass and energy), we have Bgenerated = 0 and Bloss = 0. Component mass (mol) is
not conserved, so we have to include a term for “net generated in chemical reactions,”
which represents the sum of “generated” and “lost.” Similarly, momentum (mechanical
energy) is not conserved and we have to include a friction term.

In principle, the balance equations are easy to formulate, but we need to decide:

1. Which control volume (where do we draw the boundary for the quantity we are
balancing)?

2. Which balance (which quantity are we considering, for example, mass or energy)?

The answer to the last question is typically:

• Interested in mass, volume or pressure: mass balance
• Interested in concentration: component balance
• Interested in temperature: energy balance
• Interested in the interaction between flow and pressure: Mechanical energy balance

(= momentum balance = Bernoulli = Newton’s second law) (in some of the examples
below, we use the static momentum balance where the term for acceleration is
neglected).

11.2.1 Dynamic total mass balance

The total mass balance per unit of time is

dm

dt
= win − wout [kg/s] (11.3)

where m [kg] is the system’s mass (“inventory of mass inside the control volume”),
dm/dt [kg/s] is the change in mass inventory per unit of time and win−wout [kg/s] are
the mass flow rates for for the entering and exiting streams (bulk flow). By introducing
the density, we get

d(ρV )

dt
= ρinqin − ρoutqout [kg/s]

where V [m3] is the system’s volume, qin [m3/s] and qout [m3/s] are the volumetric
flow rates and ρ, ρin and ρout [kg/m3] are the (average) densities.

For liquid-phase systems, it can often be assumed that the density ρ is constant (that
is, ρ = ρin = ρout = constant), and the mass balance becomes a “volume balance”

Constant density :
dV

dt
= qin − qout [m3/s] (11.4)

Quotation marks are here used to show that volume is generally not a conserved
quantity. In practice, it is often the liquid level (or height h [m]) that is of interest.
The relationship between volume and level is V = Ah for a tank with constant cross
section area A [m2], and more generally V =

∫
A(h)dh when A varies with height. We

then get
dV

dt
= A

dh

dt
+ h

∂A

∂h

dh

dt
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where the last term is zero for a constant cross section area A (since ∂A/∂h = 0).
Note that the total number of moles in the system is generally not a conserved

quantity, that is, the total mole balance is

dn

dt
= Fin − Fout + G [mol/s] (11.5)

where G [mol/s] is the net generated number of moles in chemical reactions.

11.2.2 Dynamic component balance

The dynamic component balance can, for an arbitrary component A, be written

dnA

dt
= FA,in − FA,out + GA [mol A/s] (11.6)

(we normally use mole basis, but the component balance can also be written on weight
basis [kg A/s]). Here, nA [mol A] is the inventory (amount) of component A inside
the system’s boundary, FA,in − FA,out [mol A/s] are the molar flow rates of A in the
streams (bulk flow) and GA [mol A/s] is net generated in the chemical reactions. This
can, from (3.7), be calculated from

GA =
∑

j

νA,jξj [mol A/s]

where νA,j is the stoichiometric coefficient for component A in reaction j, and ξj

[mol/s] is the extent of reaction for reaction j. Instead of the extent of reaction, one
can alternatively use the reaction rate, and from (10.7), write

GA =

∫ V

0

∑

j

νA,jrj

︸ ︷︷ ︸

rA

dV [mol A/s] (11.7)

where rj [mol/ m3 s] is the reaction rate for reaction j. Note that we in the dynamic
case usually do not restrict ourselves to independent reactions because this makes
it more difficult to introduce the reaction rate. The reaction rate is a function of
concentration and composition, and generally varies with the position in the reactor
(and therefore the integral in (11.7)).

For example, for a first-order reaction A → B, we can have that

r = k(T )cA [mol A/s m
3
]

Here, we have rA = −r, where the sign is negative because A is consumed in the
reaction and the stoichiometric coefficient is νA = −1. We often assume that the
temperature dependency of the reaction rate constant k follows Arrhenius’ equation

k(T ) = Ae−E/RT

where A is a constant and E [J/mol] is the activation energy. We also introduce

c̄A = nA/V ; cA,in = FA,in/qin; cA,out = FA,out/qout
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where c̄A [mol/m3] is the average concentration of A in the reactor. Similarly, the
average reaction rate is defined r̄A = (

∫
rAdV )/V . Then GA = r̄AV and the

component balance can be written

d(c̄AV )

dt
= cA,inqin − cA,outqout + r̄AV [mol A/s] (11.8)

Here we have used concentration c, but we may alternatively use mole fraction or
weight fraction.

Example 11.1 Ideal continuous stirred tank reactor (CSTR). Here we have perfect
mixing and we do not need to use average values, that is, c̄A = cA and r̄A = rA. Furthermore,
we have that cA,out = cA and the component balance (11.8) is

d(cAV )

dt
= cA,inqin − cAqout + rAV (11.9)

If we, in addition, assume constant density ρ, we can introduce the “volume balance”
(11.4) such that the left side of (11.9) is

d(cAV )

dt
= cA

dV

dt
+ V

dcA

dt
= cA(qin − qout) + V

dcA

dt

The “out term” in (11.9) then drops out and the component balance for a CSTR becomes

V
dcA

dt
= (cA,in − cA)qin + rAV [mol A/s] (11.10)

Note that, with the assumption of constant density, this equation applies even if the reactor
volume V varies.

With a little practice, the balance (11.10) may be set up directly: “The concentration
change in a CSTR is driven by the inflow having a different composition plus the
contribution for chemical reaction.” However, it is generally recommended to start
from equation (11.6).

11.2.3 Dynamic energy balance

The general energy balance (4.10) over a time period ∆t with ∆U = Uf − U0 gives,
as ∆t → 0, the dynamic energy balance:

dU

dt
= Hin − Hout + Q + Ws − pex

dV

dt
[J/s] (11.11)

Here, U [J] is the internal energy for the system (inside the control volume), while
Hin − Hout is the sum of internal energy in the streams plus the flow work that the
streams perform on the system as they are “pushed” in or out of the system. The term
−pex

dV
dt is the work supplied to the system when its volume changes; it is negligible for

most systems. Q [J/s] is supplied heat (through the system’s wall), while Ws [J/s] is
supplied useful mechanical work (usually shaft work, for example, from a compressor,
pump or turbine). Note that there is no term of the kind “heat generated in chemical
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reaction” because the heat of reaction is indirectly included in the internal energy,
and thus in the terms dU/dt, Hin, and Hout.

“Complete” general energy balance. Note that I, as before, have been a bit lazy
when writing the energy balance in the “general” form in (11.11). When necessary,
terms for kinetic and potential energy must be added to U and H , and other work
terms such as electrochemical work Wel must be included. Thus, as stated in the
“energy balance reading rule” on page 4.4:

• Shaft work Ws [J/s] really means Ws + Wel+ other work forms.
• Internal energy U of the system [J] really means E = U + EK + EP + other energy

forms. Here EK is kinetic energy and EP is potential energy of the system.
• Enthalpy H of the in- and outstreams [J/s] really means H + EK + EP + other

energy forms. For a stream, EK = wαv2/2 and EP = wgz, see page 125, where w
[kg/s] is the flow rate.

Energy balance in enthalpy

We usually prefer to work with enthalpy, and introducing U = H − pV in (11.11),
gives

dH

dt
= Hin − Hout + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
︸ ︷︷ ︸

pressure−volume changes

[J/s] (11.12)

Here, H = mh [J] is the enthalpy of the system (inside the control volume), where m
[kg] is system mass and h [J/kg] is its specific enthalpy.

Comments:

1. The term “pressure-volume changes” in (11.12) and (11.13) is often negligible.

• The term is exactly zero (also for gases) for cases with constant pressure and volume.
• The term is exactly zero (also for gases) for cases where the pressure is constant and

equal to the surrounding’s pressure (p = pex=constant).
• Even with varying pressure, the term is approximately zero for liquids and solids,

because the volume V is relatively small for such systems.

However, the term “pressure-volume changes” can be considerable for gases with varying
pressure, for example, for a gas pipeline.

2. We have dH
dt

= m dh
dt

+h dm
dt

and by introducing the mass balance (11.3), the energy balance
on “mass flow basis” becomes

m
dh

dt
= win(hin − h) − wout(hout − h) + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

[J/s] (11.13)

3. All enthalpies must refer to a common reference state. If we use, for example, the elements
at 298 K and 1 bar as the reference, the enthalpy H (or h) is the sum of (1) chemical
formation energy, (2) “latent” phase transition energy (if the phase differs from the
standard state), (3) thermal energy (“sensitive heat cp”), (4) mixing energy and (5)
pressure-correction energy; see page 364.

4. Enthalpy H(T, p, f, nj) [J/kg] is generally a function of temperature T , pressure p, phase
distribution f (where f is fraction of light phase) and composition (nj). The time derivative
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of the enthalpy in (11.12) can then be written

dH

dt
=

∂H

∂T
|{z}

Cp

dT

dt
+

∂H

∂p

dp

dt
+

∂H

∂f
|{z}

∆trsH

df

dt
+
X

j

∂H

∂nj

dnj

dt
(11.14)

This expression may be useful in some cases, but for numerical calculations it is generally
recommended to work directly with H (or U) as the internal variable (“state”) rather
than T ; see page 316 on solving the resulting differential-algebraic equations (DAE).

11.2.4 Energy balance in temperature

Here, we want to derive a differential equation in temperature, dT/dt = · · ·. This gives
insight and is useful for some calculations. The expressions for dT/dt presented below
depend on the following assumptions:

• The enthalpy’s dependency of pressure is neglected, which is reasonable in most
cases.

• The phase distribution in the system and in each stream does not change, which is
reasonable in most cases.

• The enthalpy’s dependency of composition is neglected, which is reasonable in
many cases, for example, if each stream’s composition is constant (actually, this
assumption is not made for the case with chemical reaction in case III).

This means that the three last terms in (11.14) drop out, and the specific enthalpies
in (11.13) are only a function of temperature, that is,

h(T ) = h(Tref) +

∫ T

Tref

cp(T )dT (11.15)

Here h(Tref) is constant, because the composition and phase distribution is constant.
When we put everything into the energy balance (11.13), the contribution from the
reference-terms (h(Tref), hin(Tref), hout(Tref)) will appear as terms for heat of phase
change (e.g., heat of vaporization) or heat of reaction. Let us next consider three cases.

I. No reaction and no phase transition

For the case with no reaction and no phase transition, the reference-terms drop out
and (11.13) becomes

mcp(T )
dT

dt
= win

Z Tin

T

cp(T )dT − wout

Z Tout

T

cp(T )dT + Q + Ws −(pex − p)
dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

If we, in addition, assume that the heat capacity is constant (independent of
temperature), the energy balance becomes

mcp
dT

dt
= wincp(Tin − T ) − woutcp(Tout − T ) + Q + Ws −(pex − p)

dV

dt
+ V

dp

dt
| {z }

pressure−volume changes

(11.16)

This is further simplified for an ideal stirred tank (CSTR), where we have Tout = T .
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II. With phase transition

Let us consider a somewhat more complex case with phase transition, where we cannot
use (11.16), because the reference terms h(Tref) do not drop out of the energy balance.

Example 11.2 Phase transition: Energy balance for evaporator.

w

w

out

Figure 11.2: Evaporator for water

We consider an evaporator for water as shown in Figure 11.2. We neglect the mass of gas
compared to the mass of liquid in the system (inside the evaporator). The mass balance is

dm

dt
= win − wout [kg/s]

Since we assume only liquid in the tank, we can neglect the terms with “pressure-volume
changes” (even when the pressure varies). We also have no shaft work (Ws = 0). The energy
balance (11.13) then becomes

m
dh

dt
= win(hin − h) − wout(hout − h) + Q [J/s]

The enthalpy h [J/kg] of the liquid in the tank is only a function of temperature (because the
remaining terms in (11.14) can be neglected or are zero). Thus, we have dh/dt = cpLdT/dt,
where we use cpL [J/K kg] with subscript L to indicate that it is a liquid.

The inflow and the mass in the evaporator have the same composition and phase (liquid).
We then have

hin(Tin) − h(T ) =

Z Tin

T

cpL(T )dT [J/kg]

We assume perfect mixing such that T = Tout. Since the outlet stream is in gas phase, we
then get

hout(T ) − h(T ) = ∆vaph(T ) [J/kg]

where ∆vaph(T ) is the heat of vaporization for water at T (which takes into account the change
in reference due to the phase transition). The energy balance (11.13) for the evaporator then
becomes

mcpL(T )
dT

dt
= win

Z Tin

T

cpL(T )dT − wout∆vaph(T ) + Q [J/s] (11.17)

Note that (11.17) also applies when the mass m in the tank varies with time, because the
mass balance dm

dt
= win − wout was used when deriving (11.13).

Comments.
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1. The heat of vaporization is often given at a temperature Tref (for example, at the normal
boiling point at 1 atm). The heat of vaporization at T can then be found by adding the
following subprocesses: (1) Cooling the liquid from T to Tref , (2) evaporation at Tref , and
(3) heating the gas from Tref to T . We then get

∆vaph(T ) = ∆vaph(Tref) +

Z T

Tref

(cpV − cpL)dT

where ∆vaph(Tref) is the heat of vaporization at temperature Tref , and cpV is the heat
capacity of the steam.

2. Temperature and pressure are related by the equilibrium vapor pressure: p = psat(T ) (see
page 180).

With a little practice, it is possible to formulate energy balances of this kind directly:
We imagine “standing in the tank” (the system) and use the temperature and phase
here as the reference. Then we consider what can be the source of changes in the
system’s temperature. In the example with the evaporator, (11.17) can be derived as
follows:

“The temperature change in the tank (left side) is driven by the inflow
having a different temperature than the tank (first term right side), and
by enthalpy being removed by evaporation (second term) and by heat being
supplied (third term).”

The term for the outlet stream drops out since it has the same temperature as the
tank. More generally, it is recommended to start from the basic equations.

Exercise 11.1 Derive the energy balance for a flash tank with inventory n [mol], feed F
[mol/s], vapor product D [mol/s] and liquid product B [mol/s] (make a flow sheet). Show
that it becomes

nCpL
dT

dt
= FCpL(TF − T ) + D · ∆vapH(T )

What are the units for the quantities in the equation? Which assumptions have been made
when deriving this?

III. With chemical reaction

For cases with chemical reaction, it is usually most convenient to use a molar basis. We
return to (11.12) and introduce H(T, p, nj) =

∑

j njH̄m,j(T, p). Here, H̄m,j [J/mol] is
the “partial molar enthalpy” for component j in the mixture. For cases with negligible
heat (enthalpy) of mixing, we have that H̄m,j = Hm,j, where Hm,j is the molar
enthalpy of pure component j in its actual phase. With this as a starting point, let us
derive the general energy balance in terms of temperature (dT/dt) for a continuous
stirred tank reactor (CSTR).

Example 11.3 Energy balance with temperature for CSTR. We consider an ideal
continuous stirred tank reactor (CSTR) where a chemical reaction takes place (Figure 11.3).
Let us, as an example, consider the reaction 2A → B, but the derivation below is general
and applies to any reaction. The reaction rate is r(T, cA) [mol/s m3], and if we take into
consideration the stoichiometry, the component balances are:

dnA

dt
= FA,in − FA,out + νArV

| {z }

GA

[mol A/s]
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out

out
F

Figure 11.3: Continuous stirred tank reactor (CSTR) with heating

dnB

dt
= FB,in − FB,out + νBrV

| {z }

GB

[mol B/s]

where the stoichiometric coefficients in our example are νA = −2 and νB = 1. We assume
no shaft work and neglect the “pressure-volume contribution.” The energy balance is then

dH

dt
= Hin − Hout + Q [J/s] (11.18)

If we neglect the enthalpy of mixing, the enthalpy can be written

H(T, p, nA, nB) = nAHm,A(T, p) + nBHm,B(T, p) [J]

where Hm,j(T, p) [J/mol] is the molar enthalpy for component j. Here, we choose the elements
in their standard states at 298.15 K and p⊖ = 1 bar as the reference. If we neglect the
pressure’s influence on the enthalpy, we then have

Hm,j(T, p) = H⊖
j (T ) + ∆Htrs [J/mol]

where H⊖
j (T ) = ∆fH

⊖
j (T ) [J/mol] is the standard enthalpy of formation for generating

component i in its standard state at T and 1 bar from the elements at 298 K and 1 bar,
and ∆Htrs is the enthalpy change for the change in reference from the standard state to
actual state (phase). If we assume that there is no phase change, we can then write

H = nAH⊖
A (T ) + nBH⊖

B (T ) [J]

Hin = FA,inH⊖
A (Tin) + FB,inH⊖

B (Tin) [J/s]

Hout = FA,outH
⊖
A (Tout) + FB,outH

⊖
B (Tout) [J/s]

Inserting into the energy balance (11.18) gives

nA

Cp,m,A(T )
z }| {

dH⊖
A (T )

dT

dT

dt
+ nB

Cp,m,B(T )
z }| {

dH⊖
B (T )

dT

dT

dt
+ H⊖

A (T )
dnA

dT
+ H⊖

B (T )
dnB

dT

= FA,inH⊖
A (Tin) + FB,inH⊖

B (Tin) − FA,outH
⊖
A (Tout) − FB,outH

⊖
B (Tout) + Q

We assume perfect mixing such that T = Tout. By inserting the expressions for dnA/dt and
dnB/dt from the mass balance, and rearranging the terms (a bit of a work is needed here...),
we finally derive the energy balance in “temperature form”:

nCp,m
dT

dt
= Fin

Z Tin

T

Cp,m,in(T )dT +
`
−∆rH

⊖(T )
´
rV + Q (11.19)
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(For cases with many reactions, the term
`
−∆rH

⊖(T )
´
rV is replaced by

P

j

`
−∆rH

⊖
j (T )

´
rjV ).

For our reaction 2A → B, we have

∆rH
⊖(T ) =

X

j

νjH
⊖
j = H⊖

B − 2H⊖
A [J/K mol] (11.20)

Furthermore,

n = nA + nB [mol]

Fin = FA,in + FB,in [mol/s]

and the molar heat capacities for the reactor (system) and feed are

Cp,m =
nA

n
Cp,m,A(T ) +

nB

n
Cp,m,B(T ) [J/K mol]

Cp,m,in(T ) =
FA,in

Fin
Cp,m,A(T ) +

FB,in

Fin
Cp,m,B(T ) [J/K mol]

Let us summarize the assumptions that have been made when deriving (11.19):

1. All streams have the same phase.
2. Perfect mixing such that T = Tout.
3. Heat of mixing is neglected.
4. The pressure’s influence on the enthalpy is neglected.

Note that (11.19) applies to the case with varying composition in the reactor and a varying
amount of n (“holdup”) in the reactor. For a more detailed example with dynamic simulation,
see page 311.

With a little experience, it is again possible to directly formulate the energy balance
(11.19) in temperature form for a continuous stirred tank reactor:

“The temperature change in the reactor (left side) is driven by the
difference between the feed and reactor temperatures (first term left side),
by the heat of reaction (second term) and by the supplied heat (third
term).”

Comments.

1. We note that the “heat of reaction” appears as a separate term when we choose to
write the energy balance in the “temperature form” in (11.19).

2. The energy balance in temperature form (11.19) gives interesting insights and is
useful in many situations. However, it is usually simpler for numerical calculations
(dynamic simulation) to stay with the original form (11.11) or (11.12) with U or
H as the state (differential) variables. See page 316 for solving the resulting DAE
equations.

11.2.5 Steady-state balances

The dynamic balances derived above are all in the form dy/dt = f(y, u). We usually
assume that the system is initially “at rest” (steady-state) with dy/dt = 0. The steady-
state (nominal) values for u and y are here indicated by using superscript ∗, and we
have that f(y∗, u∗) = 0.
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11.3 Dynamic analysis and time response

steady state

dynamic

steady state

time

Figure 11.4: Dynamic response in output y to step change in input u

We want to understand what happens when we get an imbalance from the steady-
state, such that the system’s states change with time. For this purpose, let us consider
the following incident (see Figure 11.4):

1. The system is initially “at rest” (steady state).
2. A change in one of the system’s independent variables (”input” u) occurs, for

example, a change in external conditions or a parameter change, such that we get
an imbalance and the system’s dependent variables (states and “outputs” y) change
with time.

3. After a while (actually when t → ∞), the system will eventually approach a new
equilibrium state, where it is again “at rest” (new steady state).

Some examples are

• If we, on a winter’s day, turn on more heat in a room, the temperature will start
rising. The change is largest in the beginning, and “eventually” the temperature
will approach a new steady state value (where again the system is at rest).

• If we push the accelerator (“gas”) pedal of a car, then the car’s speed will increase.
The change is largest in the beginning, and “eventually” the speed will reach a new
steady-state value (where again there is a balance between the forward force from
the engine and the resistance force from the air).

• In a chemical reactor we have a continuous supply of reactant. If we increase
(“disturb”) the concentration of the reactant, the product concentration will also
increase. The change is largest in the beginning, and “eventually” the product
concentration will approach a new steady state value.

In all these cases, we go from one steady state to another, and a steady-state model
is sufficient to calculate the initial and final states. However, we need a dynamic
model to say something about the dynamic response and to quantify what we mean
by “eventually.” By the term response, we mean the time response for the dependent
variable (output) y when we change the independent variable (input) u. In the three
cases mentioned above we have

• Room: u = Q (heating), y = T
• Car: u = w (fuel flow), y = v (speed)
• Reactor: u = cin, y = cout
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Four important responses are (see Figure 11.5):

Step response. This is the response in the dependent variable y to a step change
(persistent change) in the independent variable u. Mathematically, the change
in u is

u(t) =

{
u0 t ≤ t0
u∞ = u0 + ∆u t > t0

}

where ∆u is the magnitude of the step. A step response was considered in the
three cases above.

pulse/impulsestep

impulse

pulse

sinusoidal

time time time time

PRBS

Figure 11.5: Time signals for input u(t)

Impulse response. A pulse is a temporary change of the independent variable u,
and if the duration is very short (negligible) compared to the system’s dynamics,
we have an impulse. The impulse response is the resulting response in y. For a
process engineer, an example of an impulse is to “throw a bucket” of something
into a tank. For a chemist or a medical doctor, an injection with a needle gives
an impulse.

For a flow system, the so-called residence time distribution (RTD) is
actually the concentration impulse response of a non-reacting component.

Frequency response (sinusoidal input). This is the resulting response in y to a
persistent sinusoidal variation in the independent variable u,

u(t) = u0 + ∆u · sin(ωt)

For small changes, we can assume that the system is linear, and the output signal
is also sinusoidal with the same frequency ω:

y(t) = y0 + ∆y · sin(ωt + φ)

The frequency response is characterized by two parameters: The gain ∆y/∆u,
and the phase shift, φ. Both depend on the frequency ω [rad/s], and by varying
the frequency ω, we get information on how the system reacts to quick (ω large)
and slow (ω small) input variations. Frequency analysis is an important tool in
control engineering.

PRBS response. This is the response in y when the independent variable u changes
at “random” times between two given values (PRBS = pseudo-random binary
sequence). This may give a good “dynamic distribution” and is sometimes an
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effective method for obtaining experimental data that can be used for estimating
(=“identify” in control engineering) parameters in an empirical dynamic model
for the relationship between u and y.

The step response is very popular in process engineering because it is simple to
perform, understand and analyze. In the following, we study the step response in
more detail.

11.3.1 Step response and time constant

Figure 11.6: Experimental step response

We consider a system that is initially “at rest,” that is, at steady state with
dy/dt = 0. A step-change then occurs in the independent variable u, which takes
the system away from its initial steady state. We assume that the system is stable
such that it eventually approaches a new steady state. The resulting step response
in y(t) is often characterized by the following three parameters (see Figure 11.6):

(Steady state) Gain k = ∆y(∞)
∆u .

(Effective) Delay θ – the time it takes before y “takes off” in the “right” direction.
Thus, ∆y(θ) ≈ 0.

Time constant τ – additional time it takes to reach 63% of the total change in y
(that is, ∆y(τ + θ) = 0.63∆y(∞)).

Here

• ∆u = u(∞) − u(t0) – magnitude of step change in u
• t0 – time when step change in u occurs (often t0 = 0 is chosen)
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• ∆y(t) = y(t) − y(t0) – the resulting change in y
• y(t0) = y0 – initial (given) steady state
• y(∞) – final (new) steady state

The value of ∆y(∞) = y(∞)− y(t0), and thereby of the steady state gain k, can be
determined from a steady state model, if one is available.

The cause of the delay (time delay) θ may be a transport delay (for example a pipe)
or a delay in a measurement, but in most cases it represents the contribution from
many separate dynamic terms that, altogether, give a response that resembles a delay
(hence the term “effective” delay).

The time constant τ characterizes the system’s dominant “inertia” against changes.
It is defined as the additional time (after the time delay) it takes the variable to reach
63% (more precisely, a fraction 1 − e−1 = 1 − 0.3679 ≈ 0.63, see below) of its total
change. Why do we not let the time constant be the time it takes to reach all (100%)
of its change? Because it generally take an infinitely long time for the system to reach
exactly its final state, so this would not give a meaningful value.

The values of the parameters k, τ and θ are independent of the size of the step
(independent of the value of ∆u), provided the step ∆u is sufficiently small such that
we remain in the “linear region.” On page 301, we show how we can derive a linear
model.

11.3.2 Step response for first-order system

The basis for the definition of τ given above is the simplest case with one linear
differential equation (first-order system). Here, we study this system in more detail.
A first-order system can be written in the following standard form

τ
dy

dt
= −y + ku , y(t0) = y0 (11.21)

where

• u is the independent variable (input)
• y is the dependent variable (output)
• τ is the time constant
• k is the gain

We now assume that

1. The system is “at rest” at time t0 with dy/dt = 0, that is, for t ≤ t0 we have u = u0

and y0 = ku0.
2. The independent variable u changes from u0 to a constant value u = u0 + ∆u at

time t0.

As proven below, the solution (“step response”) can then be written as

y(t) = y0 +
(

1 − e−t/τ
)

k∆u (11.22)

or
∆y(t)
︸ ︷︷ ︸

y(t)−y0)

= ∆y(∞)
︸ ︷︷ ︸

y(∞)−y0

(

1 − e−t/τ
)

(11.23)
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Initial slope crosses final value at (time constant)

of change 

time

Figure 11.7: Step response for first-order system

(you should try to remember this one). k is the steady state gain, and when t → ∞ we
have e−t/τ → 0 and the system approaches a new steady state where ∆y(∞) = k∆u.
Notet that the exponential term 1 − e−t/τ describes how fast the system approaches
its new steady state, and as a function of the non-dimensional time t/τ we have:

t/τ 1 − e−t/τ Value Comment

0 1 − e0 = 0
0.1 1 − e−0.1 = 0.095
0.5 1 − e−0.5 = 0.393
1 1 − e−1 = 0.632 63% of change is reached after time t = τ
2 1 − e−2 = 0.865
3 1 − e−3 = 0.950
4 1 − e−4 = 0.982 98% of change is reached after time t = 4τ
5 1 − e−5 = 0.993
∞ 1 − e−∞ = 1

The time response is plotted in Figure 11.7. We note that at time t = τ (the time
constant), we have reached 63% of the total change, and after four time constants, we
have reached 98% of the change (and we have for all practical purposes arrived at the
new steady state). Note also from Figure 11.7 that the initial slope of the response (at
time t = 0) goes through to the point (τ, y(∞)). This can be shown mathematically
from (11.23):

dy

dt
= (y(∞) − y0)

1

τ
e−t/τ ⇒

(
dy

dt

)

t=0

=
y(∞) − y0

τ
(11.24)

This means that the response y(t) would reach the final value y(∞) at time τ if it
continued unaltered (in a straight line) with its initial slope.

Comments.
1. As seen from the proof below, (11.23) applies also to cases where the system is not

initially at rest. This is not the case for (11.22).
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2. For cases where τ is negative, the system is unstable, and we get that y(t) goes to infinity
when t goes to infinity.

3. From (11.24) and ∆y(∞) = k∆u, we derive that

1

∆u

„
dy

dt

«

t=0

=
k

τ
(11.25)

This means that the initial slope k′ of the “normalized” response ∆y(t)/∆u is equal to the

ratio k/τ , i.e., k′ , k/τ .

Proof: Step response for a first-order system

Consider a first-order system in standard form, (11.21),

τ
dy

dt
= −y + ku; y(0) = y0 (11.26)

where both τ and ku are constant. There are many ways of solving the linear differential equation
(11.26). We can for example use separation of variables and derive

dy

y − ku
= −dt

τ

Integration gives
Z y

y0

dy

y − ku
=

Z t

0
−dt

τ
⇒ ln

y − ku

y0 − ku
= − t

τ

and we get the general solution

y(t) = ku + e−t/τ (y0 − ku)

We subtract y0 from both sides and get

y(t) − y0 =
“

1 − e−t/τ
”

(ku − y0) (11.27)

Since e−t/τ → 0 as t → ∞, we have that y(∞) = ku, and by introducing deviation variables

∆y(t) , y(t) − y(0) (11.28)

we find that (11.27) can be written in the following general form

∆y(t) = ∆y(∞)
“

1 − e−t/τ
”

(11.29)

We have so far not assumed that the system is “at rest” at t = t0, but let us do this now. We then
have at t = t0 that dy/dt = 0, which gives

y0 = ku0

and (11.27) gives for a system that is initially at rest:

∆y(t)
| {z }

y(t)−y0

=
“

1 − e−t/τ
”

k ∆u
|{z}

u−u0

(11.30)

Example 11.4 Concentration response in continuous stirred tank
We consider the concentration response for component A in a continuous stirred tank

without chemical reaction (see Figure 11.8). We assume constant liquid density ρ and constant
volume V . The system is assumed to be at rest at t = 0. We want to find the step response
for t > 0 given the following data

V = 5m3; q = 1m3/h
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residence time

Figure 11.8: Continuous stirred tank without reaction

cA,in =


c0 = 0.9 kmol/m3 t ≤ 0
c∞ = 1.0 kmol/m3 t > 0

ff

Solution. With constant density and constant volume, the mass balance gives that the
volumetric inlet and outlet flow rates are equal, qin = qout = q. We further assume perfect
mixing in the tank such that cA,out = cA. The component balance for A in the tank is then
[mol A/s]

d

dt
(cAV ) = qcA,in − qcA (11.31)

With constant volume V this gives

V

q

dcA

dt
= −cA + cA,in (11.32)

This is in standard form (11.21) with

u = cA,in; y = cA

and

k = 1; τ =
V

q

[m3]

[m3/s]
= [s]

Here, V/q [s] is the residence time for mass in the tank, that is, the time constant in this
case equals the residence time. From (11.22), the solution of (11.32) (the step response) is
given by

cA(t) = c0 +
“

1 − e−t/τ
”

∆cA,in (11.33)

where ∆cA,in = c∞ − c0 = 0.1 kmol/m3. At time t = 0, we then have that cA(0) =
c0 = 0.9 kmol/m3, and concentration rises such that it is, at time t = τ = 5 h (the
residence time), cA = 0.9 +

`
1 − e−1

´
· 0.1 = 0.963 kmol/m3, and at time t = ∞,

cA(∞) = 0.9 + 0.1 = 1 kmol/m3 (as expected).

11.3.3 Additional examples of step responses for first-order
systems

Here, we consider some relatively simple examples with only one differential equation
which give first-order step responses (Figure 11.7).

Example 11.5 Temperature dynamics in continuous stirred tank. Consider the
continuous process in Figure 11.9 where a liquid stream of 1 kg/s (constant) flows through a
mixing tank with constant volume 1.2 m3. The density of the liquid is 1000 kg/m3 (constant)
and the heat capacity is 4 kJ/kg K. Perfect mixing in the tank is assumed.
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residence time

Time

Figure 11.9: Temperature dynamics in continuous stirred tank without reaction

The process is initially operated at steady state such that the inlet temperature Tin is 50oC
and the outlet temperature Tout = T is 50oC (so we assume no heat loss). Suddenly, the
temperature of the inflow is changed to 60 oC (step change). The outlet temperature will also
“eventually” reach 60 oC. The question is: What is the time constant, that is, how long does
it take before the temperature in the tank (and outlet stream) has increased by 0.63·10 = 6.3oC
to 56.3 oC?

Solution. Since the mass in the tank is constant, the mass balance gives wout = win =
w = 1 kg/s. The energy balance (11.12) for the tank is (liquid)

dH

dt
= Hin − Hout [J/s]

With the assumption of constant heat capacity cp, this gives

mcp
dT

dt
= wcp(Tin − T )

or equivalently
m

w

dT

dt
= −T + 1 · Tin

With y = T and u = Tin we see that this is in standard form (11.21) with

τ =
m

w
=

ρV

w
=

1000 · 1.2

1
= 1200 s; k = 1

In other words, it will take τ = 1200 s = 20 min (the residence time m/w) before the outlet
stream’s temperature reaches 56.3 oC (and it will take an infinitely long time before it reaches
60 oC).

Note that the time constant also for this example equals the residence time. This is true for
changes in both concentration and temperature for a continuous stirred tank without reaction
or heating.

Example 11.6 Temperature dynamics in continuous stirred tank with heat
exchange.

Consider the same example as above, where the inlet temperature is changed from 50
oC (initial steady state) to 60 oC, but we have heating (see Figure 11.10) such that the
temperature in the tank is 70 oC (initial steady state). We consider the response and determine
the time constant for the following two cases:

1. An electric heater is used such that the supplied heat Q is independent of the temperature
T in the tank.

2. We have a heat exchanger with condensing stream on the hot side. The supplied heat is
Q = UA(Th − T ) where Th (hot side temperature) is constant at 110 oC.



292 CHEMICAL AND ENERGY PROCESS ENGINEERING

changes from 50°C to 60°C

time

constant

Figure 11.10: Continuous stirred tank with heating

Solution. The energy balance (11.12) becomes [J/s]

mcp
dT

dt
= wcp(Tin − T ) + Q

At the initial steady state (dT/dt = 0), we have (before the change in Tin)

Q = −wcp(Tin − T ) = −1 kg/s · 4000 J/kg K · (50 − 70)K = 80000J/s = 80 kW

1. For the case when Q is independent of T , transformation to the standard form (11.21)
gives that the time constant is τ = m/w = 1200 s (residence time), and that the gain from
Tin to T is k = 1, that is, the steady-state temperature rise in the tank is 10 oC, that is,
it will eventually rise to 80 oC.

2. For the case where Q depends on T , the energy balance becomes

mcp
dT

dt
= wcp(Tin − T ) + UA(Th − T ) (11.34)

and transformation to the standard form (11.21) gives

τ =
mcp

wcp + UA
; k =

wcp

wcp + UA

The time constant τ and the gain k are both smaller than in case 1. The reason is that
the heat exchanger counteracts some of the temperature change (“negative feedback”).
For numerical calculations, we need to know the value of UA. We have UA = Q/(Th−T ),
and from the initial steady state data, we find UA = 80 ·103/(110−70) = 2000 W/K. The
time constant and the gain are then

τ =
mcp

wcp + UA
=

1200 · 4000
1 · 4000 + 2000

= 800 s; k =
4000

4000 + 2000
= 0.67

that is, the temperature in the tank only increases by 6.7 oC to 76.7 oC – while in case 1
with an electric heater it increased by 10 oC.

Although k and τ are different, we note that k′ = k/τ = 1/1200 is the same in both cases,
and since from (11.25) limt→0∆T ′(t) = (k/τ ) ·∆Tin, this means that the initial responses are
the same (see also Figure 11.10). This is reasonable also from physical considerations, since
the “counteracting” negative feedback effect from the heat exchanger only comes in after the
tank temperature T starts increasing which leads to a reduction in Q = UA(Th − T ).
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Example 11.7 Dynamics of cooking plate. Let us consider a cooking plate with mass
m = 1 kg and specific heat capacity cp = 0.5 kJ/kg K. The cooking plate is heated by
electric power and the supplied heat is Q1 = 2000 W. The heat loss from the cooking plate is
UA(T − To) where T is the cooking plate’s temperature, To = 290K is the temperature of the
surroundings, A = 0.04m2 and U is the overall heat transfer coefficient. If we leave the plate
unattended, then we find that T → 1000K when t → ∞. What is the time constant for the
cooking plate (defined as the time it takes to obtain 63% of the final temperature change)?

Solution. This is a closed system without mass flows and shaft work, and since the cooking
plate is solid, we can neglect energy related to pressure-volume changes. The energy balance
(11.12) around the cooking plate (the system) gives

dH

dt
= Q

Here, there are two contributions to the supplied heat Q, from electric power and from heat
loss, that is,

Q = Q1 − UA(T − To)

The enthalpy of the cooking plate is a function of temperature, that is, dH/dt = mcpdT/dt.
The energy balance becomes

mcp
dT

dt
= Q1 − UA(T − To) (11.35)

In order to determine the overall heat transfer coefficient U , we use the steady state
temperature T ∗ = 1000K. At steady state, the energy balance is 0 = Q1 − UA(T ∗ − To)
and we find

U =
Q1

A(T ∗ − To)
=

2000

0.04(1000 − 290)
= 70.4 [W/m2 K]

We assume that the overall heat transfer coefficient U is constant during the heating. The
dynamic energy balance (11.35) is then a linear first-order differential equation which can be
written in standard form

τ
dT

dt
= −T + ku (11.36)

where
τ =

mcp

UA
= 177.5 s

and

ku =
1

UA
|{z}

k1

Q1
|{z}

u1

+ 1
|{z}

k2

· T0
|{z}

u2

In other words, we find that it takes time t = τ = 177.5 s (about 3 min) to obtain 63% of the
final change of the cooking plate’s temperature.

Example 11.8 Response of thermocouple sensor in coffee cup. Temperature is
often measured with a thermocouple sensor based on the fact that electric properties are
affected by temperature. We have a thermocouple and a coffee cup and perform the following
experiments:

1. Initially, we hold the thermocouple sensor in the air (such that it measures the air
temperature).

2. We put the thermocouple into the coffee (and keep it there for some time so that the
thermocouple’s temperature is almost the same as the coffee’s temperature).

3. We remove it from the coffee (the temperature will decrease and eventually approach the
temperature of air – actually, it may temporarily be lower than the air temperature because
of the heat required for evaporation of remaining coffee drops).
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Figure 11.11: Thermocouple

TAKE OUT THERMOCOUPLE

PUT IN THERMOCOUPLE

Figure 11.12: Coffee cup experiment

Task 1. What happens? Sketch the expected temperature response.
Solution: The result of an actual experiment performed by the author is shown in

Figure 11.12. We see that the response is similar to a standard first-order response. However,
it is striking that the response is much quicker when we put the sensor into the coffee (time
constant about 0.3 s) than when we remove it (time constant about 7s).

Task 2. Can you explain this? Formulate a dynamic model and find an analytical
expression for the time constant.

Solution: Since we want to find the response in temperature, we need to formulate an
energy balance, and since it is the thermocouple’s temperature, the energy balance should be
around the thermocouple. The general energy balance is given in (11.12). Since there are
no streams, we have that Hin − Hout = 0. There is also no shaft work (Ws = 0), and the
contribution from “pressure-volume changes” can be neglected. The energy balance (11.12)
around the thermocouple is then simply

dH

dt
= Q

Here, dH/dt = mcpdT/dt where m is the mass of the thermocouple and T its temperature.
The supplied heat to the thermocouple from the surroundings is

Q = UA(To − T )

The energy balance then becomes

mcp
dT

dt
= UA(To − T ) (11.37)
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where

• T – temperature of thermocouple [K]
• To – temperature of surroundings (coffee or air) [K]
• m – mass of thermocouple [kg]
• cp(T ) – specific heat capacity of thermocouple [J/kg K]
• A – area of thermocouple [m2]
• U – heat transfer coefficient from surroundings to thermocouple [W/m2 K]

(11.37) can be rewritten as
mcp

UA

dT

dt
= To − T

With y = T and u = To this is in standard form (11.21) with

τ =
mcp

UA
; k = 1 (11.38)

(note that we get the same expression for the time constant as for the cooking plate in
Example 11.7). At steady state, dT/dt = 0, and we have as expected that T = To. Thus,
following a step in the surrounding’s temperature To, the thermocouple’s temperature T
should exponentially (with time constant τ) approach To, and this is indeed confirmed by
the experiment.

Some comments on coffee cup experiment

1. The time constant is independent of the temperatures T and To (this is not immediately
obvious for someone who does not know any process dynamics).

2. The time constant τ is constant if cp and U are constant (this seems to be a reasonable
assumption during each of the two experiments).

3. The time constant was observed to be 7s/0.3s = 23 times larger when the thermocouple was
removed from the coffee. Since τ =

mcp

UA
where mcP /A is constant, this must be (provided

our theory is correct) because U is about 23 times higher when the thermocouple is in the
coffee than when it is in air. This seems reasonable because heat transfer is usually much
better to liquid than to gas.

4. In general, we desire a fast measurement, that is, we want the time constant τ to be small
for the sensor. This is obtained by reducing the thermocouple’s heat capacity mcp [J/K],
and making a design such that UA [W/K] is large. In order to protect the thermocouple,
it is often placed in a pocket, which is not favorable because it increases the mass m and
also reduces U . We can reduce this effect by choosing a pocket material with a small heat
capacity mcp (but at the same time with a good conductivity) and designing the pocket
such that the outer area A is as large as possible.

Final comment on comparison of coffee cup experiment with theory

Being good engineers, we are very eager to compare our experimental results with theoretical
calculations. I used a cylindrical thermocouple, that is,

V

A
=

(π/4)D2L

πDL
=

1

4
D

where D = 1.6 mm, ρ = 2700 kg/m3 and cp = 800 J/kg K (aluminium). We can from (11.38)
calculate the overall heat transfer coefficient U (SI units):

U =
V ρcp

Aτ
=

1

4

Dρcp

τ
=

864

τ
[using SI units]
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Here, I found experimentally τ = 0.3s (coffee, that is, water) and τ = 7s (air), which gives
U = 2880 W/m2 K (water) and U = 123 W/m2 K (air). Immediately, the value 2880 W/m2

K seems very high, because it is similar to values we find in heat exchangers with forced
convection, and here we have natural convection. Let us compare with theoretical values for
natural convection to air and water. For natural convection,1 Nu = 0.5(Gr ·Pr)0.25, where
the non-dimensional groups Nu, Gr and Pr are defined as

Nu =
hD

k
; Pr =

cpµ

k
; Gr =

gβ∆TD3

(µ/ρ)2

Inserting and rearranging gives

h = 0.5

„
k3cpρ2gβ

µ

«0.25

·
„

∆T

D

«0.25

where k is the thermal conductivity, β the thermal expansion coefficient and µ the
viscosity of the fluid. We use the following physical and transport data:

Air : k = 0.027
W

K m
; cp = 1000

J

kg K
; µ = 1.8 · 10−5 kg

m s
; ρ = 1.2

kg

m3
;β =

1

T
= 0.003

1

K

Water : k = 0.7
W

K m
; cp = 4200

J

kg K
;µ = 10−3 kg

m s
; ρ = 1000

kg

m3
;β = 0.001

1

K

We then find for natural convection (SI units)

Air : h = 1.31 ·
„

∆T

D

«0.25

Water : h = 173 ·
„

∆T

D

«0.25

Note from this that with natural convection, the heat transfer coefficient h to water is more
than 100 times higher than to air. If we use D = 10−3 m and ∆T = 10 K (mean temperature
difference between coffee and air; the exact value is not that important since it is raised to
the power 0.25) we get

`
∆T
D

´0.25
= 10 (SI units) and if we assume U ≈ h (that is, we assume

that the heat conduction inside the thermocouple is very fast), we estimate theoretically that
U = 13.1 W/m2K (air) and U = 1730 W/m2K (water). We see that the theoretical U-
value for water (1730 W/m2 K) is quite close to the experimental (2880 W/m2 K), while the
theoretical U-value for air (13.1 W/m2 K) is much lower than the experimental (123 W/m2

K) estimated from the experiment. The reason for this is probably remaining water droplets
on the thermocouple which evaporate and improve the heat transfer for the case when we
remove the thermocouple from the coffee.

Example 11.9 Mass balance for filling a bathtub without plug. Here, we consider
the dynamics for the volume (level) in a bathtub with no plug, see Figure 11.13. The model
can also describe the dynamics of the outflow for a tank or the change in the water level in a
lake following a rainfall. We consider a rectangular bathtub with liquid volume V = Ah where
A [m2] is the base of the tub and h [m] is the liquid height. We assume that the density ρ is
constant.

The control volume (boundary) for the system is the whole bathtub, and the inventory of
mass is m = ρV [kg]. Mass is a conserved quantity, and from (11.3) we get that

dm

dt
= win − wout [kg/s] (11.39)

1 For more details on this, and in general on modeling and balance equations, see: R.B. Bird, W.E.
Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, 1960.
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.

τ

Laminar outflow:

Turbulent outflow:

out

Figure 11.13: Bathtub without plug

and with the assumption of constant density we get the “volume balance”

dV

dt
= qin − qout [m3/s] (11.40)

This equation describes the volume change in a bathtub while it is filled or emptied. With a
plug, we have qout = 0, and the process is a “pure integrator,” that is, there is no natural
feedback that counteracts the increase in V . However, here we consider the case with no plug,
and there is a “natural negative feedback,” because qout is a function of amount of water in
the bathtub, that is, qout increases when the liquid height h increases. We have from the static
momentum balance (= mechanical energy balance):2

1. Laminar flow exit: qout = klh
2. Turbulent flow exit: qout = kt

√
h

The flow pattern is probably turbulent, but for simplicity let us assume laminar flow.
1. Laminar outflow. Inserting V = Ah into the “volume balance” gives

d(Ah)

dt
= A

dh

dt
= qin − klh [m3/s] (11.41)

This is a first-order differential equation in h(t) that can be rearranged into the standard form
(11.21),

τ
dh

dt
= −h + k · qin

Thus, we have τ = A/kl and k = 1/kl and the solution is

h(t) =
1

kl

„

1 − e−
klt

A

«

qin (11.42)

We find that h(t) increases with time, most sharply at first, but then the increased level (h)
results in a larger outflow, and we eventually reach (for t → ∞) at a balance point (steady
state) where q∗out = qin and h no longer increases. The steady-state value, h∗, t = ∞ is from
(11.42)

h∗ = h(∞) =
qin

kl
(11.43)

2 The outlet stream of the bathtub is driven by the pressure difference ρgh over the hole where
the water exits. At steady state this pressure difference equals the friction pressure drop, i.e.,
∆pf = ρgh. From fluid mechanics (see page 243) we have ∆pf ∼ q for laminar flow and ∆pf ∼ q2

for turbulent flow, and it follows that q ∼ h (laminar) and q ∼
√

h (turbulent).
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• We can alternatively derive (11.43) from the steady state mass balance, qin = qout [m3/s].
Here, qout = klh and (11.43) follows.

• The time constant is τ = A/kl. Here, the steady-state flow rate is q∗ = klh
∗(= q∗out = q∗in),

that is, kl = q∗/h∗, and it follows that

τ =
A

kl
=

Ah∗

q∗
=

V ∗

q∗

which equals the residence time of the bathtub. However, so that you won’t think that the
time constant always equals the residence time, please note that for turbulent outflow the
time constant is twice the residence time; this is shown on page 302.

The following example illustrates that the dynamics of gas systems are usually very
fast. This is primarily because of a short residence time, but it is usually further
amplified by small relative pressure differences.

Example 11.10 Gas dynamics. A large gas tank is used to dampen flow rate and pressure
variations. Derive the dynamic equations and determine the time constant for the pressure
dynamics. We assume for simplicity that the inlet and outlet flow rates of the tank are given
by Fin = c1(pin − p) [mol/s] and Fout = c2(p − pout) [mol/s] where the “valve constants” c1

and c2 are assumed to be equal (c1 = c2 = c).

out

out
residence time outin

Figure 11.14: Gas dynamics

Solution. The mass balance is

dn

dt
= Fin − Fout [mol/s]

We assume constant volume V and ideal gas,

n =
pV

RT

The mass balance then gives:

V

RT

dp

dt
= c(pin − p) − c(p − pout)

This equation can be used to compute p as a function of pin, pout and time. Rearranged into
standard form (11.21), we see that the time constant is

τ =
V

2cRT
=

n

2cp
(11.44)

From the steady-state mass balance we get p∗ = (p∗
in + p∗

out)/2, so at steady state

F ∗ = F ∗
in = F ∗

out = c · p∗
in − p∗

out

2

Substituting the resulting value for c into (11.44) gives

τ =
n∗

2cp∗
=

1

4
· n∗

F ∗
· p∗

in − p∗
out

p∗
(11.45)
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that is, the time constant is 1/4 of the residence time, n/F , multiplied by the relative pressure
difference, (pin − pout)/p. For gas systems, both these terms are usually small, which explains
why the pressure dynamics are usually very fast.

For example, with p∗
in = 10.1 bar, p∗ = 10 bar and p∗

out = 9.9 bar we get

τ =
1

4
· n∗

F ∗
· 10.1 − 9.9

10
=

1

4
· 1

50
· n∗

F ∗

that is, the time constant for the pressure dynamics in the tank is only 1/200 of the (already
small) residence time.

Example 11.11 First-order reaction in batch reactor (or in beaker)

Figure 11.15: Reaction in beaker

Consider a beaker where component A reacts according to the first-order irreversible
reaction A → B. Derive the equation that describes the concentrations dynamics when
temperature is assumed constant.

Solution. There are no inlet and outlet streams, so the component balance for the beaker
is

d(cAV )

dt
= rAV [mol A/s] (11.46)

where rA is the reaction rate for “generation” of component A, which for a first-order reaction
is rA = −kcA [mol A/m3, s], where k [s−1] is constant since the temperature is constant. If
we, in addition, neglect changes in the volume, we get

dcA

dt
= −kcA (11.47)

which gives a first-order response cA(t) = cA(0)e−t/τ with time constant τ = 1/k (note that
k here is the reaction rate constant and not the gain). We note that cA → 0 when t → ∞,
that is, the final steady state has complete conversion of A.

Comment. This is a batch process, so the system is not initially at steady state. However,
this is not a requirement, and (11.47) can be solved when we know the initial concentration
cA(0) at the start of the experiment.

Exercise 11.2 ∗ Evaporator. Take another look at the evaporator in Example 11.2
(page 280). What is the time constant for the temperature response?

Exercise 11.3 First-order reaction in CSTR. Consider a continuous stirred tank
reactor (CSTR) where component A decomposes in a first-order irreversible reaction A → B
with reaction rate r = (−rA) = kcAV [mol A/s]. (Note that k here is the reaction rate
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constant and not the process gain). The feed concentration is cA,F . Derive the equation that
describes the concentration dynamics when temperature is assumed constant. Find the time
constant and gain for the response.

11.3.4 Time response for more complex systems

In the previous section, we considered in detail the step response for systems with
only one differential equation which can be written in “standard” form τdy(t)/dt =
−y(t) + k u(t). This gave rise to a first-order response. Although many systems can
be written (or approximated) by a first-order response, it must be emphasized that
the responses are generally far more complex.

time

Tin ToutTout

Tin

T

Tin

Figure 11.16: Temperature response for stirred tank with bypass

• Even for systems with only one linear differential equation, the response can be
different from that described above, either because the system is non-linear or
because the response has a “direct term,” that is, the equation can be written
in the form

τdx(t)/dt = −x(t) + ku(t); y(t) = c · x(t) + d · u(t)

where the d 6= 0 gives a “direct term” from u to y (see for example Figure 11.16
which shows the response of a stirred tank with bypass).

• If we have two first-order systems in series, for example two stirred tanks, the
total response will be second-order, and if we have n first-order systems in a series,
the total response is nth-order. The response for such higher-order systems will
usually have a “flatter” initial response (see Figure 11.22, page 309), and is often
approximated as an effective time delay.

• We will also have a higher-order response if the model consists of several coupled
differential equations, for example, an adiabatic reactor with coupled material and
energy balance (see Figure 11.24, page 312).

The analytic expression for the time response of higher-order system is usually
rather complicated, and often there is no analytical solution. However, by linearizing
the system, as discussed in the next section (Section 11.4), it is possible to use effective
mathematical tools for analyzing the system, for example, by computing the system’s
“poles” (=eigenvalues = −1/time constant) and “zeros.” The most important tool
for analyzing more complex systems is nevertheless “dynamic simulation,” that is,
numerical solution of the equations. This is discussed in Section 11.5.
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Exercise 11.4 (a) Derive the model for the stirred tank with bypass shown in Figure 11.16
and (b) find an analytical expression for the time response.

11.4 Linearization

Consider a dynamic model
dy

dt
= f(y, u) (11.48)

This model is linear if the function f(y, u) is linear, which means that if we double
the change in u (or in y) then the change in f is doubled. In general our models are
nonlinear, but we are often interested in studying the response of small changes in u,
and we can then use a linearized model. The most important use of linearized models
is in control engineering, where the objective of the control is indeed to keep y close
to its desired value (that is, ∆y is indeed small) such that the assumption of linear
model often holds well.

Let y∗ and u∗ denote the values of y and u at the operating point ∗ (or along the
nominal trajectory y∗(t)) where we linearize the model. This is often a steady-state
point but does not need to be. A first-order Taylor-series expansion (“tangent
approximation”) of the function f(y, u), where we neglect the second-order (with
∆u2, ∆y2, ∆u∆y) and higher-order terms, gives a linearized approximation

f(y, u) ≈ f(y∗, u∗)
︸ ︷︷ ︸

f∗

+

(
∂f

∂u

)∗

∆u +

(
∂f

∂y

)∗

∆y

︸ ︷︷ ︸

∆f

(11.49)

where ∆u = u − u∗ and ∆y = y − y∗ represent the deviations from the nominal
operating point. The approximation is exact for small values of ∆u and ∆y. Further,
we have that

d∆y

dt
=

d(y − y∗)

dt
=

dy

dt
− dy∗

dt
︸︷︷︸

f∗

For the non-linear model (11.48) we have then derived a linearized model in
deviation variables,

d∆y

dt
= ∆f =

(
∂f

∂y

)∗

︸ ︷︷ ︸

a

∆y +

(
∂f

∂u

)∗

︸ ︷︷ ︸

b

∆u (11.50)

where the coefficients a and b denote the local derivatives with respect to y and u,
respectively. Comparing this with the standard form for first-order systems in (11.21),

τ
d∆y

dt
= −∆y + k∆u

we find

τ = −1

a
; k = − b

a
Thus, linearized models can be used to determine the time constant τ .
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Example 11.12 Linearized model for turbulent outflow of tank. This is a
continuation of Example 11.9 (page 296) where we considered laminar outflow of a bathtub.
For case 2 with turbulent outflow, qout = kt

√
h, the “volume balance” (11.41) for filling the

bathtub becomes

A
dh

dt
= qin − kt

√
h = f(h, qin) [m3/s] (11.51)

Here, the function f is non-linear in h. Linearizing f and introducing deviation variables
gives, see (11.50),

A
d∆h

dt
= ∆f = ∆qin − kt

1

2
√

h∗
∆h

Comparison with the standard form with y = ∆h and u = ∆qin gives τ = 2
√

h
∗
A/kt, where

from (11.51), kt = q∗/
√

h∗ and q∗ is the steady state flow. Further rearrangement of the
expression for the time constant gives

τ = 2

√
h
∗
A

kt
= 2

h∗A

q∗
= 2 · V ∗

q∗

That is, the time constant is two times the residence time (while it was equal to the residence
time with laminar outflow). In other words, we can, by comparing the experimental time
constant with the residence time, predict whether the outflow is laminar or turbulent. Also
note that the steady state gain k = ∆h(∞)/∆qin = 2h∗/q∗ for turbulent flow is twice that of
laminar flow.

Comment. Note that the initial response for h(t) (expressed by the slope k′ = k/τ) is
the same for both cases, k′ = k/τ = 1/A. This is reasonable since the outlet flow (where
the difference between turbulent and laminar flow lies) is only affected after the level starts
changing.

or

Turbulent
    or laminar?

Figure 11.17: Student anxious to check the outflow from a sink

Exercise 11.5 Experiment at home. You should check whether the outflow from your
sink is laminar or turbulent by comparing the time constant τ of the dynamic response in
sink level with the residence (holdup) time τh = V/q:

1. With the plug out, adjust the inflow such that the level is at a steady state where the sink
is a little more than half full.

2. Reduce the inflow and record the level response (use a ruler and read off the level at regular
intervals). From this experiment estimate the time constant τ (when 63% of the steady-
state change is reached). This assumes that the area A is reasonably constant in the region
between the two steady-state levels.
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3. Temporarily lead the water somewhere else (but keep the same flow), for example, into a
bucket, such that the sink is emptied. Put in the plug and let again the water flow into the
sink. Measure the time it takes to fill the tank to its previous level. This is the residence
time τh = V/q.

4. If τ ≈ τh, the outflow is laminar, and if τ ≈ 2τh, it is turbulent. (Note that it is possible,
but not very likely, that you get a transition from turbulent to laminar flow when q is
reduced).

5. Another way of checking whether the flow is laminar or turbulent is to find the residence
time τh for two different steady state levels (see point 3); if the flow is laminar, then
τh = A/kl is independent (!) of the level h, but if the flow is turbulent, then τh =

√
hA/kt

increases with the square root of the level.

Multivariable and higher-order systems. We have above assumed that we have
a scalar model with one input variable u and one output variable y. It is, however,
easy to generalize the linearization to the multi-dimensional case where the coefficients
(derivatives) A = ∂f/∂y and B = ∂f/∂u become matrices. The model in deviation
variables is then

d∆y

dt
= A∆y + B∆u

∆u: vector of independent variables (inputs or disturbances)

∆y: vector of dependent state variables (often denoted x)

(Note that we, for simplicity, have not introduced separate symbols for vectors, but
we could for clarity have written u and y).

The concept of time constant is less clear in the multivariable case, but we can
instead compute the eigenvalues λi of the matrix A:

• We find that the “time constants” τi = −1/λi(A) appear in the linearized time
response which contains the term e−t/τi . For the scalar case with only one equation
(A = a = scalar), the eigenvalue of A equals a, and we find τ = −1/a.

• The system is (locally) stable if and only if all eigenvalues of A have a negative real
part (i.e., the eigenvalues are in the left-half complex plane).

11.5 Dynamic simulation with examples

By the expression “dynamic simulation,” we mean “numerical solution (integration)
of the system’s differential equations as a function of time.”

We consider a dynamic system described by the differential equations

dy

dt
= f(y, u)

where

1. The initial state y(t0) = y0 is known (we need one for every differential equation).
2. The independent variables u(t) are known for t > t0.
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Using “dynamic simulation,” we compute numerically y(t) for t > t0 by integrating
the above equation,

y(t) = y0 +

∫ t

t0

f(y(t), u(t))dt

(strictly speaking, this should be y(t) = y0+
∫ t

t0
f(y(τ), u(τ))dτ but we are a bit sloppy

to simplify the notation).

Figure 11.18: Euler integration

The simplest method is Euler integration, see Figure 11.18, where we assume that
the derivative f(y, u) is piecewise constant over a time interval ∆t. If we are at time
t, then the value of y at time t + ∆t is

y(t + ∆t) = y(t) +

∫ t+∆t

t

f(y, u)dt ≈ y(t) + f(y, u)∆t

where f(y, u) is the local derivative (tangent) at time t. We repeat this at time t + ∆t
and so on, as explained next.

Algorithm for Euler integration:

1. Start at t = t0 with a known initial state y0).
2. Compute the derivative f = f(y(t), u(t)) at time t.
3. Euler approximation: Assume the derivative f is constant over the period ∆t and

compute y(t + ∆t) ≈ y(t) + f · ∆t.
4. Stop if t ≥ tfinal; otherwise set t := t + ∆t and y(t) := y(t + ∆t) and go to step 2.

The algorithm is best understood by considering an example.3

Example 11.13 Euler integration: Concentration response for tank.
Consider the continuous stirred tank in Figure 11.19 with the following given data:

• V = 5 m3 = constant
• q= 1 m3/min (assumed constant)

3 The unit for time (t) is minutes [min] in almost all examples in this chapter.
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Figure 11.19: Stirred tank without reaction

• Step change in cAi =


0.9 kmol/m3, t ≤ 0

1.0 kmol/m3, t > 0
• Ideal mixing and constant density is assumed.

The component balance d(cAV )/dt = qcAi − qcA [kmol A/s] is rearranged to:

dcA

dt
=

q

V
(cAi − cA) = f(cA)

For t ≤ 0, we assume the system is at steady state and the component balance gives
cA = cAi = 0.9 kmol/m3 (the initial value for cA). The exact solution of the differential
equation for t ≥ 0 is from (11.22)

cA(t) = 0.9 + 0.1 · (1 − e−t/5)

where the time constant is τ = V/q = 5 min (residence time).
Let us compare this with Euler integration using ∆t = 0.1 min, which is a relatively small

step compared to the time constant of 5 min. The steps of the algorithm are:

1. At t = t0 = 0 set cA(t) = 0.9.
2. With cAi = 1 (constant), we have for t ≥ 0:

f(cA) =
q

V
(cAi − cA) = 0.2(1 − cA)

3. Euler approximation: Value of cA at time t + ∆t is:

cA(t + ∆t) ≈ cA(t) + f(cA) · ∆t = cA + 0.2(1 − cA) · 0.1 = 0.98cA(t) + 0.02

4. Set the value for cA(t + ∆t) to cA(t) and go to step 2.

We then get:

Euler Exact
t cA(t) f(cA) = 0.2(1 − cA) f · ∆t cA(t + ∆t) cA(t + ∆t)

≈ cA(t) + f · ∆t

0+ 0.9 0.02 0.002 0.902 0.90198
0.1 0.902 0.0196 0.00196 0.90396 0.90392
0.2 0.90396 0.0192 0.00192 0.90588 0.90582
0.3 0.90588 0.0188 0.00188 0.90776 0.90768
...

...
...

...
...

...
5.0 0.9636 0.0073 0.00073 0.9643 0.9628
...

...
...

...
...

...
20.0 0.9982 0.0004 0.00004 0.9982 0.9982
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We see, as expected, that Euler integration gives a numerical error; see also
Figure 11.20. This error can be reduced by reducing the step length ∆t, but this
increases the computational effort and if it becomes too small it may conflict with
the accuracy of the computer. On the other hand, if ∆t gets too large, the Euler
integration may go unstable.

There are many possible improvements to Euler integration

• Higher-order method: Include more terms in the Taylor-series expansion for y (Euler
assumes y ≈ y0 + f∆t).

• Introduce step length control (adjusting ∆t during integration).
• Use an implicit solution that avoids the possible instability, for example, implicit

Euler:
y(t + ∆t) ≈ y(t) + f (y(t + ∆t), u(t + ∆t)) · ∆t

which has to be solved with respect to y(t + ∆t).

Examples of MATLAB routines which include improvements of this kind are ode45

and ode15s (the latter is recommended for most problems).

Euler integration with MATLAB

We continue Example 11.13. First, we write the following MATLAB routine to
compute the derivative dcA/dt = f(cA) (and save it in the file conctank.m):

function DYDT=f(t,y)
% This is file conctank.m
% Concentration response of tank with no reaction
% inlet: Time t and state vector y
% OUTPUT: derivatives DYDT
%
% Usage with odeeuler: [T,Y]=odeeuler(@conctank,[0 10],0.9,0.1)
% Usage with ode15s: [T,Y]= ode15s(@conctank,[0 10],0.9)
% Plot results: plot(T,Y)
%
% I. Data (parameters and independent variables)
V=5; % tank volume
q=1; % volumetric flow rate
tau=V/q; % residence time
cai=1; % inlet concentration for t>0
% II. Extract present value of states
ca=y; % tank concentration
% III. Evaluate derivatives of states
f= (cai - ca)/tau;
DYDT=f;

We note that the routine that calculates the derivative (in this case conctank.m)
generally contains the following parts:

I. Data (given values for parameters and independent variables u).

II. Extract variables from the state vector y (in this example there is only
one state so the “vector” y has only one element). It is recommended that the
variables be given physical names in order to enhance the readability of the code,
for example ca=y.

III. Evaluate the derivative, that is, compute function f (which s returned to the
MATLAB integration routine).
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In addition, we need a program that computes the numerical solution (“performs
the integration”). Below is a simple program for Euler integration which is saved
in the file odeeuler.m:

function [tout,yout]=odeeuler(odefile,tspan,y0,H)
% This is the function odeeuler.m
% Simple integration routine written by SiS in 1998
% Usage: [T,Y]=odeeuler(@F,TSPAN,Y0,H)
% for example: [T,Y]=odeeuler(@conctank,[0 10],0.9,0.1)
%
% T - solution time vector.
% Y - solution state (output) vector.
% F - filename with diff.eqns. (see also help ode15s).
% TSPAN = [initial_time final_time}
% Y0 - initial state vector
% H - integration step size
%
t0=tspan(1); tfinal=tspan(2);
% Initialize
tout=t0; yout=y0; neq=length(y0); t=t0; y=y0;
% Integrate
while t < tfinal,
t=t+H;
f=feval(odefile,t,y);

for i=1:neq,
y(i)=y(i)+H*f(i);
end

tout=[tout;t]; yout=[yout; y];
end

We can now use MATLAB to compute the concentration response using Euler
integration:

>> [T,Y]=odeeuler(@conctank,[0 1],0.9,0.1)

T =
0

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000
1.1000

Y =
0.9000
0.9020
0.9040
0.9059
0.9078
0.9096
0.9114
0.9132
0.9149
0.9166
0.9183
0.9199
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>> [T,Y]=odeeuler(@conctank,[0 20],0.9,0.1); % semicolon avoids output to the screen
% The result is compared with the more exact solution with ode15s:
>> [T1,Y1]=ode15s(@conctank,[0 20],0.9);
>> plot(T,Y,T1,Y1,’--’) % see plot in Figure

Figure 11.20 compares the results of the Euler integration with a more accurate
and effective integration method (ode15s in MATLAB). The difference is small in
this case.
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Figure 11.20: Concentration response with odeeuler (solid) and ode15s (dashed) for a
tank.

Example 11.14 Three tanks in series. This is an extension of Example 11.13, where we
had a feed of 1 m3/min to a large tank of V1 = 5 m3. We add two smaller tanks with volume
V2 = V3 = 1.5m3 (Figure 11.21).

Figure 11.21: Three tanks in a series

The component balance for the “old” tank (tank 1) gives

dcA

dt
=

q

V1
(cAi − cA1) = f1(cA1, cAi)
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The component balances for the new tanks 2 and 3 give

dcA2

dt
=

q

V2
(cA1 − cA2) = f2(cA1, cA2)

dcA3

dt
=

q

V3
(cA2 − cA3) = f3(cA2, cA3)

For t ≤ 0, steady-state conditions are assumed and the component balances give cA1 = cA2 =
cA3 = cAi = 0.9 kmol/m3 (which is the initial value for the three states). The dynamic
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Figure 11.22: Concentration response for three tanks in series

response is shown in Figure 11.22. Note the typical second-order response for cA2, which
starts “flat,” that is, the first derivative is initially zero. For cA3, the initial response is even
“flatter” since the second derivative is also initially zero.

Here, we used the following routine to compute the derivatives (saved in file conctank3.m):

function DYDT=f(t,y)
% This is file conctank3.m
% INPUT: Time t and state vector y
% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@conctank3,[0 15],[0.9 0.9 0.9])
%
% I. Data (parameters and independent variables)
V1=5; % volume tank 1
V2=1.5; % volume tank 2
V3=1.5; % volume tank 3
q=1; % volumetric flow rate
tau1=V1/q; tau2=V2/q; tau3=V3/q; % residence time
cai=1; % inlet concentration for t>0
% II. Extract present value of states
ca1=y(1); % concentration big tank 1
ca2=y(2); % concentration small tank 2
ca3=y(3); % concentration small tank 3
% III. Evaluate derivatives of states
f1= (cai - ca1)/tau1;
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f2= (ca1 - ca2)/tau2;
f3= (ca2 - ca3)/tau3;
DYDT=[f1; f2; f3];

Example 11.15 Isothermal continuous stirred tank reactor (CSTR).
In an isothermal continuous stirred tank reactor (CSTR) with constant volume V , two

reactions take place

A → B; r1 = k1cA

B → C; r2 = k2cB

Data: cAF = 10 kmol/m3 (feed concentration), cBF = 0 kmol/m3, cCF = 0 kmol/m3,
V = 0.9 m3, q = 0.1 m3/min, k1 = 1 min−1, k2 = 1 min−1.

Task: Plot the responses of cA and cB to a step increase in q of 20%.
Solution. Component balances for A, B and C give

d

dt
(cAV ) = qcAF − qcA − k1cAV

d

dt
(cBV ) = 0 − qcB + k1cAV − k2cBV

d

dt
(cCV ) = 0 − qcC + k2cBV

The steady-state concentrations are found by setting the time derivatives to 0. We find

c∗A =
qcAF

q + k1V
= 1 kmol/m3

c∗B =
k1V

q + k2V
c∗A = 0.9 kmol/m3

c∗C =
k2V

q
c∗B = 8.1 kmol/m3
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Figure 11.23: Concentration response for isothermal CSTR after a step increase in flowrate
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The resulting time response is shown in Figure 11.23. We observe, as expected, a typical
“first-order” response for cA with time constant V/(q + k1V ) = (0.9/(0.12 + 1 · 0.9)) min =
0.88 min. The response for cB is however not a typical second-order response – we have a
so-called inverse response where cB initially drops (it is not so easy to see) and then reverses
and ends up with a steady state increase from 0.90 to 1.034 kmol/m3. The reason is that an
increase in the feed rate initially lowers cB because of the dilution effect. However, in the long
run the lower residence time results in less B being consumed in the reaction B → C.

Here, we used the following MATLAB routine in order to compute the derivative of the
three concentrations (state variables):

function DYDT=f(t,y)
% This is file cstr3.m
% INPUT: Time t and state vector y
% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@cstr3,[0 5],[1.0 0.9 8.1])
%
% I. Data (parameters and independent variables)
cAF=10; cBF=0; cCf=0; % inlet concentrations
V = 0.9; % reactor volume (constant)
q = 0.1*1.2; % 20% increase in q
k1 = 1; k2 = 1; % rate constants
% II. Extract present value of states
cA=y(1);
cB=y(2);
cC=y(3);
% III. Evaluate derivatives of states
f1= (q*cAF - q*cA - k1*cA*V) /V;
f2= (q*cBF - q*cB + k1*cA*V - k2*cB*V) /V;
f3= (q*cCf - q*cC + k2*cB*V) /V;
DYDT=[f1; f2; f3;];

Let us now take a look at some more complicated examples where the temperature
varies and we also need to use the energy balance.

Example 11.16 Exothermic CSTR with cooling.
In a continuous stirred tank reactor (CSTR) with constant volume V and cooling, we have

the exothermic reversible reaction A ⇌ B. The component balances for A and B give

V
dcA

dt
= qcAF − qcA − rV [mol A/min]

V
dcB

dt
= qcBF − qcB + rV [mol B/min]

where the reaction rate is r = k1cA − k2cB [mol/m3 min]. The energy balance (11.19) gives

ρV cp
dT

dt
= ρqcp(TF − T ) + rV (−∆rH

⊖(T )) + Q [J/min]

where the “supplied” heat by cooling is Q = UA(Tc−T ). The reactor feed cAF = 10 kmol/m3,
cBF = 0 and TF = 300K, and the cooling temperature is Tc = 430K. We assume that the
heat capacity and heat of reaction ∆rH

o are independent of temperature.
The remaining data are as given in the MATLAB file cstrT.m (see below). By using a

long simulation time (10000 min) in MATLAB, the steady state values in the reactor are
numerically determined to be

c∗A = 2.274 kmol/m3; c∗B = 7.726 kmol/m3; T ∗ = 444.0 K
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Figure 11.24: Temperature response for exothermic CSTR to a 20% feedrate increase

Increasing the feed rate q by 20% (from 0.10 to 0.12 m3/min) (by editing the file cstrT.m;
try yourself !) gives a drop in the steady-state temperature from 444.0 K to 441.9 K. The
dynamic response is shown in Figure 11.24, and we note that we have a rather strange
response. The temperature first drops (because we supply more cold feed), but then it rises
because more reactant is converted and the reaction is exothermic. This is not an inverse
response because the response does not cross its original value.

If we increase the feed rate q by 50% (to 0.15 m3/min; try yourself !), we find that the
temperature drop is so large that the reaction “extinguishes” (that is, the reactor becomes
unstable), and the temperature drops all the way down to 348.7 K, which is much lower than
the “cooling” temperature (try yourself !).

Further simulations. (1) With a very large (infinite) reactor volume, we approach
chemical equilibrium and the steady-state reactor temperature is 453.4 K (independent of q,
but you may need to run for a very long time). (2) Removing the cooling gives an equilibrium
temperature of 461.0 K (“adiabatic temperature rise”). (3) If the cooling is removed at normal
conditions the reactor temperature is 453.5 K (rather than 444.0 K). (Try this and other
changes yourself ! It is easy with the MATLAB program; and if you think it is too much work
to write it yourself then you can get it from the author’s home page).

function DYDT=f(t,y)
% This is file cstrT.m
% INPUT: Time t and state vector y

% OUTPUT: derivatives DYDT
% Usage with ode15s: [T,Y]= ode15s(@cstrT,[0 50],[2274 7726 444.0])
% Plot: plot(T,Y(:,3))

% All in SI units except time which is in minutes.
% I. Data (parameters and independent variables)
cAF=10000; % feed concentration of A [mol/m3]
cBF=0; % feed concentration of B [mol/m3]
TF=300; % feed temperature [K]
V = 0.9; % reactor volume [m3]
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q = 0.10; % volumetric flow rate [m3/min] (CAN CHANGE, e.g., to 0.12)
dhr= -80e3; % Heat of reaction [J/mol]
cp= 4.e3; % specific heat capacity [J/kg K]
rho = 1000; % mean density [kg/m3]
U = 1000*60; % overall heat transfer coefficient [J/min,m2,K]
A = 5; % heat transfer area [m2]
Tc = 430; % cooling temperature [K]
k1_400 = 0.1; % rx1: rate constant at 400K [1/min]
k2_400 = 0.001; % rx2: rate constant at 400K [1/min]
E1 = 60e3; % rx1: activation energy [J/mol]
E2 = E1 - dhr; % rx2: activation energy [J/mol]
R = 8.31; % gas constant [J/K mol]
% II. Extract present value of states
cA=y(1);
cB=y(2);
T=y(3);
% IIIa. Intermediate calculations
k1 = k1_400 * exp(-(E1/R) * (1/T - 1/400));
k2 = k2_400 * exp(-(E2/R) * (1/T - 1/400));
r = k1*cA - k2*cB;
Q = U*A*(Tc-T);
% IIIb. Evaluate derivatives of states
Vdcadt = q*cAF - q*cA - r*V; % [mol A/min]
Vdcbdt = q*cBF - q*cB + r*V; % [mol B/min]
mcpdTdt = rho*q*cp*(TF-T) + r*V*(-dhr) + Q; % [J/min]

f1 = Vdcadt/V;
f2 = Vdcbdt/V;
f3 = mcpdTdt / (rho*cp*V);

DYDT=[f1; f2; f3];

In the above example, we assumed that the heat capacities and the heat of reaction
were independent of temperature. For the more general cases, it is recommended that
the energy balance is written in its original form with U (or H) as a state, and that T is
found numerically from the implicit algebraic equation U = U0(T, p, ni), as described
for the flash tank in Example 11.18.

Exercise 11.6 Second-order reaction in CSTR Consider a continuous stirred tank
reactor (CSTR) where component A decomposes in a second-order irreversible reaction
2A → B with reaction rate r = rB = kc2

AV [kmol/s]. The following steady state data are
given: V ∗ = 30 m3 (constant), q∗ = 0.5 m3/s, c∗AF = 4 kmol/m3 , c∗BF = 0 kmol/m3 (feed),
c∗B = 1 kmol/m3 (product and tank).

(a) Derive the equations that describe the concentration dynamics when the temperature
and volume are assumed constant.

(b) Use the steady state data to determine c∗A and the reaction rate constant k.
(c) Linearize the model and determine an expression for the time constant for the

concentration response for component A in the nominal working point.
(d) Sketch the expected response cA(t) (in product/tank) when we at t = 0 throw in some

catalyst such that k is doubled. (For calculations by hand you can for example use Euler
integration of the balance for component A with ∆t = 5 s). What is the new steady state
value of cA? What is the time constant?

Distillation examples

Example 11.17 Dynamics of distillation column (Figure 11.25). In a distillation
column, the components are separated based on their difference in volatility, and multiple
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stages and countercurrent flow are used to enhance this. Here, we look at a very simple
distillation column with only three equilibrium stages (a reboiler, a feed stage, and a stage
above the feed) plus a total condenser. We separate a binary mixture with a constant relative
volatility of 4.78. The MATLAB file dist.m given below should be self-explainable. In order
to find the steady state column profile, we simulate for a very long time. We then find the
following mole fractions of the lightest component on the four stages (including the total
condenser):

xss =

0.0998 0.3160 0.6536 0.9002

That is, we have about 10 mol% light component in the bottom product and about 90 mol% in
the top product. The subsequent response to a step in the feed rate F by 20%, with constant
reflux (L) and boilup (V ), is shown in Figure 11.25. We note that the responses are close to
first-order, in spite of the fact that we have four coupled differential equations.

Figure 11.25: Concentration response for distillation column

function DXDT = f(t,x)
% This is the file dist.m
% Distillation column with reboiler (stage 1), a feed stage (stage 2),
% ... a stage above this (stage 3) and a total condenser (stage 4)
% Assumptions; Binary mixture with constant alfa and constant molar flows
% Molar holdup on all stages is 1 kmol (M=1)
% States x : vector of liquid mole fractions of light component on the stages
% Usage:
% x0 = [0.5, 0.5, 0.5, 0.5]; % initial states (not steady-state)
% [T,X] = ode15s(@dist,[0 1000],x0) % First simulate to t=1000 (steady-state)
% xss = X(length(X),:) % Save the steady-state mole fractions
% [T,X] = ode15s(@dist,[0 20],xss) % Run new simulation (e.g change F=1.2)

% I. Data (parameters and independent variables)
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% Assume constant relative volatility
alfa = 4.78;

% Feed rate [kmol/min] and feed composition (may change this)
F=1.0; zF=0.5;

% Flows in the column [kmol/min] (feed liquid; constant molar flows)
V=3.55; V1=V; V2=V; V3=V;
L=3.05; L4=L; L3=L; L2=L+F;
% Assume constant condenser and reboiler holdup (perfect level control):
D=V3-L4; B=L2-V1;

% II. Extract present value of states
% ..... Not needed here since x is the state which is already a good name

% IIIa. Intermediate calculations
% Vapor-liquid equilibrium (constant relative volatility)
y(1) = alfa*x(1)/(1+(alfa-1)*x(1));
y(2) = alfa*x(2)/(1+(alfa-1)*x(2));
y(3) = alfa*x(3)/(1+(alfa-1)*x(3));
y(4)=x(4); % total condenser

% IIIb. Evaluate derivatives of states
% Component balances (assume constant stage holdups M1=M2=M3=M4=1 [kmol])
DXDT(1) = L2*x(2)-V1*y(1)-B*x(1);
DXDT(2) = L3*x(3)+V1*y(1)-L2*x(2)-V2*y(2)+F*zF;
DXDT(3) = L4*x(4)+V2*y(2)-L3*x(3)-V3*y(3);
DXDT(4) = V3*y(3)-L4*x(4)-D*x(4);

% Change vector DXDT to a column vector (MATLAB requires this..).
DXDT=DXDT’;

The above routine does not make use of MATLAB’s vector calculation features.
However, below is given an excerpt from a more general routine which uses vectors.
Note that we use element-by-element operators *. and ./ to multiply and divide
vectors. This code also allows for variable stage holdup M(i), which is important if
the model is to be used for control purposes. It is simple to change the number of
stages NT in the column.

% From code for general distillation column dynamics
% Vapor-liquid equilibria
i=1:NT-1; y(i)=alpha*x(i)./(1+(alpha-1)*x(i));

% Need algebraic for computing L(i) (e.g., Francis weir)
% and V(i) (e.g., constant molar flows or ‘‘valve" equation)
% ..... but these are not given here.

% Column mass balances
i=2:NT-1;
dMdt(i) = L(i+1) - L(i) + V(i-1) - V(i);
dMxdt(i)= L(i+1).*x(i+1) - L(i).*x(i) + V(i-1).*y(i-1) - V(i).*y(i);

% Correction for feed at the feed stage
% The feed is assumed to be mixed into the feed stage
dMdt(NF) = dMdt(NF) + F;
dMxdt(NF)= dMxdt(NF) + F*zF;

% Reboiler (assumed to be an equilibrium stage)
dMdt(1) = L(2) - V(1) - B;
dMxdt(1)= L(2)*x(2) - V(1)*y(1) - B*x(1);
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% Total condenser (no equilibrium stage)
dMdt(NT) = V(NT-1) - LT - D;
dMxdt(NT)= V(NT-1)*y(NT-1) - LT*x(NT) - D*x(NT);

% Compute the derivative for the mole fractions from d(Mx) = x dM + M dx
i=1:NT;
dxdt(i) = (dMxdt(i) - x(i).*dMdt(i) )./M(i);

% Output
DYDT=[dxdt’;dMdt’];

Systems with algebraic equations (DAE system)

In the above examples, all the model equations were differential equations. Actually,
we had some algebraic expressions, e.g., the reaction rate constant as function
of temperature, but these were explicit in the (dynamic) state variables y1, i.e.,
y2 = f(y1, u), such that they could easily be evaluated (using IIIa. Intermediate

calculations in the MATLAB code).
However, more generally, one will in addition to the differential equations

dy1

dt
= f1(y1, y2, u) (11.52)

also have “implicit” algebraic equations of the form

0 = f2(y1, y2, u) (11.53)

where y2 are the extra algebraic variables. Three approaches of dealing with systems
with both differential and algebraic equations (DAE systems) are:

1. Eliminate the algebraic variables y2 by substituting relationships for them into
the differential equations (which is actually what we do with the “intermediate
calculations” in the above examples). This approach does not generally work for
all the equations, but it should be used to some extent to reduce the number
of variables. However, you should avoid that things get too complicated, because
otherwise the code becomes difficult to read and you will make errors.

2. Use a separate “equation solver” for the algebraic equations f2 = 0,
which is “inside” an ordinary differential equation (ODE) solver (integrator). This
approach is common, but may be ineffecient in terms of computing time.

3. Use a DAE-solver that solves the differential and algebraic equation
simultaneously. The equation set is then written in the form

M
dy

dt
= f(y, u)

where the “mass matrix” M is a square matrix that tells the solver which equations
are algebraic. Usually, M is a diagonal matrix with 1’s on the diagonal for
differential equations and 0’s for algebraic equations. This is a general approach
and complicated “fixes” are avoided.

To illustrate the three approaches, consider a dynamic flash. We derive differential
equations (and dynamic states) from the dynamic balances for component mass and
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energy. The energy balance has internal energy U (or enthalpy H) as the “natural”
differential variable (dynamic state):

dU/dt = FhF (T, . . .) − GhG(T, . . .) − LhL(T, . . .)

where, as indicated, the enthalpies hF , hG and hL are (explicit) functions of
temperature T . In addition, we have the algebraic equations, which mostly are
associated with the vapor-liquid equilibrium (VLE). Again, these algebraic equations
do not depend explicitly on U , but rather on temperature T , etc. As discussed above,
there are three approaches to overcome this:

1. In simple cases, we can eliminate U as a state variable by substituting its
dependency on T and other variables into dU/dt, and rewrite the energy balance
with T as a state (dT/dt = · · ·). This approach was used in all the previous
examples, but generally it will not work, or at least be very cumbersome, see (11.14).
For the flash example, it will not work because U depends on the phase distribution
f and we lack an expression for df/dt in (11.14).

2. In general, with internal energy U and the component holdups as state variables,
we can solve an “UV -flash” to compute the temperature, pressure and phase
distribution. Here, we make use of the fact that the total volume V of the flash
tank is fixed. The UV flash must performed as a separate “intermediate”
calculation, which requires a separate solver, in addition to the solver for the
differential equations (integrator). This approach may require a long computation
time because of the nested loops.

3. The recommended approach, used in the example below, is to use a DAE solver
(ode15s in our case) to solve the flash equations and the differential equations
simultaneously. However, also here we should use “intermediate calculations”
(elimination; approach 1) to reduce the number of algebraic equations, for example,
for computimg physical properties. For each remaining algebraic equation, we
need an associated (algebraic) state variable, which should be chosen such that
algebraic equations in the “intermediate calculations” depend explicitly on the
state variables. In many cases, we need the temperature T in the “intermediate
calculations,” so it is recommended to choose T as a (algebraic) state variables. In
summary, it recommended to include both U and T in the state vector, by using
the following DAE set

dU

dt
= f1(T, ni, . . .)

0 = U − U0(T, ni, . . .)
︸ ︷︷ ︸

f2

This corresponds to including U in the differential variables y1 and T in the
algebraic variables y2 in (11.52)-(11.53).

We next consider an example with a flash tank where we use the simultaneous DAE
approach.

Example 11.18 Adiabatic flash. We have an adiabatic flash tank with feed stream F
[mol/s], vapor product G [mol/s] and liquid product L [mol/s]. The feed consists of methanol
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G

y

Figure 11.26: Adiabatic flash tank

(1) and ethanol (2). The mole fractions of the light component in the three streams are
denoted z (feed), y (vapor) and x (liquid), respectively. The feed is assumed to be liquid and
the pressure p0 downstream the tank (which must be lower than the bubble point pressure
of the feed to get flashing) is assumed given; see Figure 11.26. The vapor/liquid equilibrium
(VLE) is assumed to be ideal and follow Raoult’s law.

For a system with Nc components, we can generally set up Nc mass balances (we choose
to use 1 total mass balance, and Nc − 1 component balances) and 1 energy balance (11.11);

dn

dt
= F − G − L

dni

dt
= Fzi − Gyi − Lxi (i = 1, . . . , Nc − 1)

dU

dt
= FhF − GhG − LhL

Here n [mol] is the total holdup in the tank (in both phases), ni [mol i] is the holdup of
component i in the tank (in both phases) and U [J] is the internal energy in the tank. We
have assumed, in the energy balance, that the volume of the tank Vtot is constant, such that
pex

dVtot
dt

= 0. This gives Nc + 1 differential equations, corresponding to Nc + 1 dynamic
state variables (n, ni, U). However, in addition we generally have a large number of algebraic
equations, which may require us to add algebraic state variables, at least if the algebraic
equations are implicit.

First, we have the following algebraic relationships for mass and energy holdups

n = nG + nL

ni = nG yi + nL xi (i = 1, . . . Nc − 1)

U = nG hG + nL hL − pVtot

where nG and nL is the amount of gas and liquid (the phase distribution) in the tank.
Furthermore, we have algebraic expressions for hG(T, p, xi) and hV (T, p, yi) [J/mol], for G
(e.g., valve equation G = kg(p− p0)), for L (e.g., level control equation L = kL(V −V0)), for
the VLE (from which we can compute p and yi from T and xi), for the gas holdup nG (e.g.,
ideal gas law), etc. For details, see the MATLAB code below, which should be self-explainable.
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It is possible to set up all of these equations as one large equation set (and solve with a DAE
solver), but this gives many algebraic variables. In practice, we want to reduce the number of
algebraic equations (and the corresponding number of state variables) by inserting any explicit
algebraic relationships into the differential equations, as we did earlier using “intermediate
computations.” There are many ways of doing this, and it will depend on which variables we
select as the algebraic state variables.

For the present flash example, we select T and VL (liquid volume) as the algebraic state
variables, in addition to the three dynamic state variables n, n1 and U . With this choice, all
the algebraic equations are explicit in the state variables, except for two algebraic equations
for n and U (which are implicit in VL and T ). For details see the MATLAB file flash.m

below. Note that the mass matrix M has 0’s on the last two diagonal entries, to signal that
the last two equations are algebraic rather than differential.

The steady-state solution is, as before, found by simulating the dynamic response for a long
time (unfortunately, it is not allowed in MATLAB to set the mass matrix M = 0, which in
principle should have been OK). We find at steady state

n = 100.4e3 mol, n1 = 48.1e3 mol, U = 5.02e8 J, T = 344.5 K, VL = 5.02 m3

We start from this steady-state when performing further simulations. The liquid feed rate is
0.1 m3/s (2012 mol/s), so the residence time in the flash tank is about 50 s. The dynamic
response in the flash tank temperature T to a step increase in the feed temperature Tf from
400K to 440 K is shown in Figure 11.27. This corresponds to an increase in feed enthalpy.
Note that the feed is liquid, and the feed pressure (20 bar) is above the bubble point. There is
a fast initial temperature increase from 344.5 K to about 345.1 K, related to a fast pressure
increase (from p = 1.03 bar to 1.05 bar), followed by a slow temperature increase towards
345.3 K at the new steady state, related to the composition change in the liquid phase (from
x1 = 0.479 to 0.467 at the new steady state). The increase in vapor flow is from G = 302
mol/min to 533 mol/s at the new steady state. The MATLAB file used for this simulation is
given below.
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Figure 11.27: Adiabatic flash: temperature response after step in the feed enthalpy
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function F=f(t,y)
% This is file flash.m
% INPUT: Time t and state vector y
% OUTPUT: Right hand side of DAE set: M dy/dt = f(y)
% States n=y(1); n1=y(2); U=y(3); T=y(4); VL=y(5);
% Usage with ode15s:
% options = odeset(’mass’,diag([1 1 1 0 0]));
% y0 = [100.4e3 48.1e3 5.02e8 344.5 50.17]
% [t,y]= ode15s(@flash,[0 100],y0,options)
% Plot temperature: plot(t,y(:,4))

% All in SI units
% I. Data (parameters and independent variables)
% Data for: 1-methanol, 2-ethanol
A1=8.08097; B1=1582.271; C1=239.726; % Antoine psat1 [mmHg] w/ T [C] (T-range: 15C - 84C)
A2=8.11220; B2=1592.864; C2=226.184; % Antoine psat2 [mmHg] w/ T [C] (T-range: 20C - 93C)
cpl1=80; cpl2=131; cpv1=44; cpv2=65; % heat capacity [J/K mol]
T0=298.15; hvap01=38000; hvap02=43000; % heat of vap. at T0 [J/mol]
Vl1= 40.7e-6; Vl2=58.7e-6; % liquid molar volumes [m3/mol]
R=8.13; % J/mol K

% Feed data
q=0.1; % m3/s
z1=0.5; % mol1/mol
Tf=1.1*400; % K (increase from 400K to 440K)
p0=1e5; % N/m2 (=1 bar downstream pressure)
Vf = z1*Vl1 + (1-z1)*Vl2; % m3/mol (molar volume feed)
F = q/Vf; % mol/s (feed rate)

% Total tank volume
Vtot = 10; % m3

% Valve constant and controller gain
kg=0.1; kl=100e3; % note that the P-controller gain kl is large

% II. Extract present value of states
n=y(1); % total holdup in tank (both phases) [mol]
n1=y(2); % component 1 holdup in tank (both phases) [mol1]
U=y(3); % total internal energy (both phases) [J]
T=y(4); % temperature (same in both phases) [K]
VL=y(5); % liquid volume [m3]

% IIIa. Intermediate calculations
% VLE
x1 = n1/n;
p1s=10.^(A1-B1/(T-273.15+C1))/750e-5; % psat1 from Antoine [N/m2]
p2s=10.^(A2-B2/(T-273.15+C2))/750e-5; % psat2 from Antoine [N/m2]
p1 = x1*p1s; % partial pressure component 1 [N/m2]
p2 = (1-x1)*p2s; % partial pressure component 2 [N/m2]
p = p1+p2; % pressure = sum of partial pressures [N/m2]
y1 = p1/p; % vapor fraction component 1 [mol1/mol]
Vm = x1*Vl1 + (1-x1)*Vl2; % molar volume (liquid phase) [m3/mol]

% Phase distribution
VG = Vtot - VL; % gas volume [m3]
nL = VL / Vm; % liquid holdup [mol]
nG = p*VG / (R*T); % gas holdup (ideal gas law) [mol]

% Enthalpies [J/mol] (Ref.state: pure liquid at T0)
hF = [z1*cpl1 + (1-z1)*cpl2] * (Tf-T0);
hL = [x1*cpl1 + (1-x1)*cpl2] * (T -T0);
hG = [y1*cpv1 + (1-y1)*cpv2] * (T -T0) + y1*hvap01 + (1-y1)*hvap02;
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% Vapor and liquid flow
G = kg*(p-p0); % simple valve equation for outflow of gas [mol/s]
VLs = Vtot/2; % Setpoint level (volume): keep 50% liquid in tank [m3]
L = kl*(VL-VLs); % Level controller with proportional gain kl [mol/s]

% IIIb. Evaluate right hand side of DAE-set: M dy/dt = f(y)
f1 = F - G - L; % =dn/dt Dynamic: Overall mass balance
f2 = F*z1 - G*y1 - L*x1; % =dn1/dt Dynamic: Component 1 mass balance
f3 = F*hF - G*hG - L*hL; % =dU/dt Dynamic: Energy balance
f4 = U + p*Vtot - hL*nL - hG*nG; % = 0 Algebraic: Internal energy U
f5 = n - nG - nL; % = 0 Algebraic: Total holdup n
F = [f1; f2; f3; f4; f5];

Finding the steady-state. Above, the steady state was found by simulating the dynamic
response for a long time. Alternatively, one may find the steady-state directly, for example,
using the function fmincon in MATLAB:

yss = fmincon(’1’,y0,[],[],[],[],[],[],@flashss)

where the file flashss.m is identical to flash.m (above) except that the first line is changed
to function [c,ceq]=f(y) and the following line is added at the end: c=[]; ceq=F;.

Remark 1 Removing or adding algebraic state variables. In the MATLAB code given
above, we have two algebraic state variables (T and VL), but actually we can get rid of VL as
a state variable if we do a little work. This follows because the holdup equations are simple,
so we can combine them (including n = nG + nL which MATLAB solved using f5 in the
code above), and derive an explicit expression for VL as a function of n, p, Vtot and Vm (try
yourself, it is easy!). In the MATLAB code above, we then replace the line VG = Vtot - VL
by the following two lines of “intermediate calculations”:

VG = (Vtot-n*Vm)/(1 - (p*Vm)/(R*T));
VL = Vtot - VG;

We now have only 4 state variables, so we delete the algebraic equation f5 = n - nG - nL

at the end. Of course, we also need to change the mass matrix and the call to ode15s. The
final result is of course the same as before.

The main problem when we reduce the number of state variables is that the equations get
a bit more messy and it is easy to make mistakes. For this reason, we often choose to add
“unnecessary” state variables in the problem. This also makes plotting the results easier, as
MATLAB stores all the state variables. For example, if we want to plot pressure, then we can
simply add a “dummy” state variable (pdummy=y(6);) together with a “dummy” algebraic
equation (f6= p - pdummy;).

Remark 2 Fixing pressure and index problem. In the model of the flash tank given
in the MATLAB code above, we let the pressure vary dynamically, but from the very quick
initial rise in temperature in Figure 11.27 it follows that the pressure dynamics are very
fast. In such cases it might be tempting to say that the pressure is fixed by introducing the
algebraic equation p = p0 (f6 = p-p0;) and an additional state variable G (and omitting
the valve equation for G). This is in principle OK, but it turns out that the integration
routine ode15s is unable to solve this – we get an error message: “This DAE appears to

be of index greater than 1.” An “index problem” is often an indication of a non-physical
assumption (in this case, it is not physically possible to keep the pressure p constant), and
the problem can often be avoided by rewriting the equations, and/or avoiding non-physical
assumptions.
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11.6 Process control

Automatic feedback control is widely used in the process industry, and the
instrumentation and control system typically represents 30% of the investments in
a plant. For each process variable y that one wants to control one needs

• a measurement of the process variable (y),
• an independent manipulated variable u (usually a valve) that influences y.

We use the following notation

• CV = controlled variable (y, “output”)
• MV = manipulated variable (u, “input”, independent variable)
• DV = disturbance variable (d, independent variable that we cannot influence)

The MV should have a “direct” and large effect on the CV (with fast dynamics and
a small delay or inverse response). The idea of control is to adjust the MV (u) such
that the CV (y) is kept close to its desired setpoint ys, in spite of disturbances d, that
is, we want a small control error,

e(t) = y(t) − ys

We use negative feedback, where the sign of the control action is opposite the
sign of the process. This implies that the MV (u) is adjusted such that it counteracts
changes in the CV (y). A well-known feedback controller from daily life is the on/off
controller used in thermostats, where the heat is the MV and temperature is the CV.
The on/off controller is simple, but it gives large MV changes (between max and
min), and fluctuations in the CV (temperature) are unavoidable. This is undesirable,
so in the process industry one normally uses the proportional-integral-derivative (PID)
controller with algorithm

u(t) = u0 − Kc

(

e(t) +
1

τI

∫ t

0

e(t)dt + τD
de(t)

dt

)

(11.54)

We see that the MV-change away from its nominal value (u − u0) is a weighted sum
of the present value of the error e (the P-term), the integral of the error e (the I-term)
and the derivative of the error e (the D-term). The PID controller has three adjustable
parameters:

• Gain Kc

• Integral time τI [s]
• Derivative time τD [s]

The proportional term is usually the most important, and a large value of Kc results
in a faster initial response. The integral action causes the MV to change until the
error e(t) is zero, that is, we get no steady state off-set. A small value of the integral
time τI [s] results in the controller returning faster to steady state. For this reason,
the integral time is often called the “reset time.” The derivative term can give faster
responses for some processes, but it often gives “nervous control” with large sensitivity
to measurement noise. For this reason, a PI controller (with τD = 0) is most common.
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There are also other variants of the PID controller, for example, the cascade form,
but the differences are usually small for practical purposes. One should, however, note
that the vendors use different names and definitions for the three PID parameters.
For example, some vendors use the integral gain KI = Kc/τI and the derivative gain
KD = KcτD. Others use the “proportional band” 100/Kc, and “reset rate” 1/τI .

The main problem with negative feedback is that we can get instability if we over-
react (if Kc is too large or τI is too small) such that we get variations that grow over
time.

On-line tuning. Finding good control parameters (“tunings”) is not as simple
as one may believe. A common (and serious) mistake is to use the wrong sign for
Kc, which usually causes the system to drift to an operating point with a fully open
or fully closed valve. Tuning is often performed “on-line” using trial-and-error. One
usually starts with a controller with a low gain (Kc) and with no integral action
(τI = ∞). Kc is then gradually increased until either (a) the control performance to
disturbances and set-point changes is acceptable, (b) the MV change is too large or
(c) the system starts oscillating. If the system starts oscillating, then Kc is reduced
by approximately a factor 2 or more. Next, one gradually reduces the integral time τI

until (a) the settling time (back to the set-point) is acceptable or (b) the system starts
oscillating. If the system oscillates, then τI is increased by a factor of approximately 2
or more compared to the value that gave oscillations. If the response is too slow then
one may try introducing derivative time τD, which can be increased until (a) the MV
changes become too nervous or (b) the system starts oscillating. If the system starts
oscillating, then τD is reduced with approximately a factor 2 or more compared to the
value that gave oscillations.

Model-based tuning for fast response. Alternatively, model-based tuning is
used. The response (without control) from the MV (u) to the CV (y) is recorded
and then approximated as a first-order response with a delay, that is, one obtains
the model parameters k, τ and θ (see page 286). The following SIMC4 PI-tunings are
recommended

Kc =
1

k

τ

τc + θ
; τI = min{τ, 4(τc + θ)} (11.55)

Here, the “closed-loop” response time τc [s] is the only tuning parameter. A smaller τc

gives a faster response for the CV, but one may get oscillations and the MV-changes
are larger. In order to avoid oscillations and have good robustness (with a good margin
to instability), it is recommended to choose τc larger than the effective delay, that is,
τc ≥ θ.

If the response is dominant second order, meaning that the response is well
approximated by a second-order response with τ2 > θ, then a substantial improvement
can sometimes be obtained by adding derivative action, provided there is not too much
measurement noise. The response is then approximated by a second-order model with
parameters k, τ, τ2 and θ. For a PID controller on cascade form, Kc and τI are then as
given in (11.55) (but note that the parameter values will change because θ is smaller
when we use a second-order model) and the derivative time is

τD = τ2 (11.56)

4 S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning,” J. Process
Control, Vol. 13 (2003), 291–309.
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Note that this is for a so-called cascade PID-form. To get the corresponding PID-
parameters for the “ideal” PID form in (11.54), compute the factor α = 1 + τD/τI ,
and multiply Kc and τI by α, and divide τD by α.

Conservative tuning for smooth response. The tuning procedure outlined
above is often time consuming, and as a starting point the following minimum
(“conservative”) gain can be used5

|Kc,min| =
|u0|

|ymax|
(11.57)

where |u0| is the MV change required to counteract the largest expected disturbance
and |ymax| is the largest accepted CV deviation. In industry, the variables have often
already been scaled such that |u0| ≈ |ymax| (for example equal to 1) and we get
|Kc,min| ≈ 1. Indeed, this is a common factory setting for the gain. In addition, it is
crucial that the sign of Kc is chosen correctly – remember that the control is supposed
to counteract and not intensify changes in the CV. As a conservative starting point
for the integral time, τI = τ can be chosen, where τ is the dominant time constant for
the effect of the MV on the CV.

Example 11.19 Control of exothermic CSTR. This is a continuation of Example 11.16
(page 311). We want to keep the reactor temperature y = T approximately constant at
ys = 444K. We assume that the reactor temperature can be measured and that we can affect
y = T by changing the coolant temperature u = Tc. The objective is to design a feedback
PI-controller with y = T as the controlled variable (CV) and u = Tc as the manipulated
variable (MV). We consider, as before, an increase in the feed rate of 20% (from 0.10 to
0.12 m3/min) – this is the “disturbance” to the process. Without control, we have found that
the reactor temperature T will eventually drop to 441.9 K, but with PI control the MV will
counteract the disturbance such that CV = T returns to its desired value (setpoint) of 444 K;
see Figure 11.28.

To tune the controller, we obtained first, without control, the response from the cooling
temperature (MV, u) to the reactor temperature (CV, y). This response (not shown in
Figure 11.28) can be closely approximated as a first-order response (without time delay θ)
with gain k = ∆y(∞)/∆u ≈ 0.5 and time constant τ ≈ 7 min. For example, this is obtained
by simulating a small step in Tc (for example, by changing Tc from 430 to Tc=431 and setting
q=0.1 in the MATLAB code on page 312), but it can also be found analytically by linearizing
the model. We chose the closed-loop response time to be τc = 3 min (a lower value gives a
faster response, but with larger changes in the MV Tc). From (11.55), this gives the PI-settings

Kc =
1

0.5

7

3 + 0
= 4.7, τI = min{7, 12} = 7 min

.
The response with control is shown in Figure 11.28. We see that the temperature y = T

returns to its setpoint Ts = 444 K after about 9 minutes (about three times τc). The simulation
was performed by adding the following lines after point II in the MATLAB code on page 312:

% PI-CONTROLLER: u = u0 - Kc*e - (Kc/taui)*eint, where deint/dt = e
% Note: (1) The integrated error eint is introduced as an extra state: eint = y(4)
% (2) The process ‘‘output" (CV) yreg is in this case the reactor temperature T
% (3) The process ‘‘input" (MV) u is in this case the cooling temperature Tc
yreg = T; yregs= 444; e=yreg-yregs; u0 = 430; eint=y(4); Kc=4.7; taui=7;
u = u0 - Kc*e - (Kc/taui)*eint;
Tc = u;

5 S. Skogestad, “Tuning for smooth PID control with acceptable disturbance rejection,” Ind. Eng.
Chem. Res., Vol. 45, 7817-7822 (2006).
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Figure 11.28: Exothermic CSTR with and without control: Temperature response after a
20% increase in feed flow rate

and by changing the last line to: DYDT=[f1; f2; f3; e];. The modified code is saved in the
file cstrTpi.m and can be run by entering:

[T,Y]= ode15s(@cstrTpi,[0 50],[2274 7726 444.0 0]);.

11.7 Summary

Typically, the following steps are involved for the derivation and analysis of a dynamic
model:

1. Formulate the relevant dynamic balance equations. The main problem is often:
Which balance? Which control volume?

2. Use steady state data (obtained at the nominal operating point) to determine any
missing parameters in the dynamic model equations.

3. Linearize and analyze the model.
4. Find the dynamic response by solving the dynamic equations (“dynamic

simulation”).
5. The model can, also, be used to design the control system, for example, to tune a

PID controller.






