

O&MBG GENERAL SERVICES

Process Optimization of Wastewater Treatment Plants

David Hackworth, P.E.

September 25, 2013

Many Resources Are Available to Assist You

Water Environment Research Foundation

esearch at a Glance & Executive The Water Environment Research Foundation (WERE) plans to issue our third Request for Proposals (REP) to support

the Energy Production and Efficiency research program. The overarching goal of WERE's Energy program is to Web Seminar Archive: Causes, develop information that will support net energy neutrality at all wastewater facilities that treat flows of five million or ffects, Prevention, and Control of naerobic Digester Foaming EPA has released a new climate and energy strategy guide for local governments, titled "Energy Efficiency in Water

Video Features WERF's Coidestion of Organic Waste roducts with Wastewater Solid

USEPA Energy Management Guidebook

Table of Contents FOREWORD. OVERVIEW 2 to 4 How This Guidebook is Organized.. .5 to 9 Characterization of Your Utility Crosswalk of Plan-Do-Check-Act Approach PLAN SESSION 1: Getting Ready..... ..10 to 18 Module 1: Establish your utility's energy improvement goals Module 2: Secure and maintain management commitment, involvement, and visibility Module 3: Choose an energy "fenceline" Module 4: Establish energy improvement program leadership Module 5: Secure and maintain employee buy-in Module 6: Communicate results SESSION 2: Assessing Current Energy Baseline Status. .19 to 33 Module 1: Benchmark energy efficiency information Module 2: Conduct an energy assessment or baseline audit Module 3: Review legal and other requirements and establish a compliance baseline SESSION 3: Establishing an Energy Vision and Priorities for Improvement... ...34 to 43 Module 1; Develop an energy policy Module 2: Identify activities and operations that consume energy Module 3: Prioritize activities/operations and potential energy improvement efforts SESSION 4: Identifying Energy Objectives and Targets.. .44 to 50 Module 1: Establish energy objectives and targets Module 2: Define performance indicators DO SESSION 5: Implementing Energy Improvement Programs and Building a Management System to Support Them. .51 to 62 Module 1: Develop action plans to implement energy improvements Module 2: Develop management system 'operating controls' to support energy improvements **CHECK & ACT** SESSION 6: Monitoring and Measuring Your Energy Improvement Management Programs......63 to 71 Module 1: Review what you currently monitor and measure for energy Module 2: Determine what else you need to monitor and measure for your priority energy improvement operations Module 3: Develop a plan for maintaining the efficiency of energy equipment Module 4: Review the progress of your energy targets Module 5: Implement actions to adjust or correct when you are not progressing toward your energy goals Module 6: Monitor/reassess compliance status SESSION 7: Maintaining Your Energy Improvement Programs...... ...72 to 76 Module 1: Continue to align energy goals with business/operational goals Module 2: Apply lessons learned Module 3: Expand involvement of management and staff Module 4: Communicate success CONCLUSION. Resources/Tools

APPENDICES

OWSO11C10. Barriers to Biogas Use for Renewable Energy

Energy Production and Efficiency Challenge: Notice of RFP To Be Released

WERF Research to be Showcased at 2013 WEF Conference in Nashville

energy neutral or even net energy producers. Continue reading at TPOMag.com

OWSO11C10a, Reframing the Economics of Combined Heat and Power (CHP) Projects: Fact Sheet This fact sheet addresses the financial metrics that can be used to overcome the economic barriers to combined heat

EPA Releases Guide to Energy Efficiency in Water and Wastewater Facilities for Local Governments

and Wastewater Facilities: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs." Water

and wastewater facilities are among the largest consumers of energy in a community, accounting for 35 percent of

typical U.S. municipal energy budgets. Local governments can reduce their energy costs and greenhouse gas

emissions by working with these facilities to improve the energy efficiency of their new, existing and renovated

Energy is a big item on clean-water plant agendas: More and more plant teams are striving to make their facilities

and power (CHP) projects. It provides a breakdown of payback period, net present value, benefit cost ratio, internal rate of return, and equivalent uniform annual net value and how they apply to CHP project analysis. Also considers

the time value of money, risk analysis, and long-term sustainability. Published by WERF, 8 pages, Printed fact sheet

more gallons per day (mgd)

digestion Click do download

this May

Morea

Products & Tools

and online PDF. (2012)

Improving Economics of Codigestion - via BioCycle

New Paradigms for Energy - via TPO Magazine

buildings and their day-to-day operations. This guide provides comprehensive information for local government staff and policy makers on designing and implementing energy management programs for water and wastewater facilities

(PDF, 1.5 MB) WERF principle investigator David Perry, PhD, discusses why the economics of an organic "waste to energy" facility are strongly dependent on the waste characteristics, and costs of digestion and solids processing after Our Goal WERF researchers will be presenting in the technical sessions on OWSO and Energy research at WEF conferences

Overview – WERF CHEApet Optimization Challenge

operations efficiencies and costs by at least 20%:

- 20% less energy
- 20% more resource recovery
- 20% less solids produced

These goals can be achieved at most WWTPs...

Carbon Heat Energy Assessment Plant Evaluation Tool

Many Resources Are Available to Assist You

Learn about Search Research Review Register for WERE **Publications & Tools Open RFPs** Knowledge Area: Operations Optimization **Our Objective** WERF will demonstrate that our subscriber wastewater facily or solids treatment operations through economically and or energy. cost, and/or environmental footprint in a carbon-con« is as a decision support system Featured Links Latest News Operations Optimization Research at a Glance & Executive Energy Production and Effici aird Request for Proposals (REP) to support The Water Environment R. the Energy Production and L and goal of WERE's Energy program is to Web Seminar Archive: Causes, develop information that will su stewater facilities that treat flows of five million or ffects, Prevention, and Control of more gallons per day (mgd) naerobic Digester Foaming EPA Releases Guide to Energy Effici. water Facilities for Local Governments EPA has released a new climate and . Juide for local governments, titled "Energy Efficiency in Water Video Features WERF's Coand Wastewater Facilities: A Guide to De ⊿id Implementing Greenhouse Gas Reduction Programs." Water idestion of Organic Waste and wastewater facilities are among the lary consumers of energy in a community, accounting for 35 percent of roducts with Wastewater Sol typical U.S. municipal energy budgets. Local governments can reduce their energy costs and greenhouse gas emissions by working with these facilities to improve the energy efficiency of their new, existing and renovated buildings and their day-to-day operations. This guide provides comprehensive information for local government staff and policy makers on designing and implementing energy management programs for water and wastewater facilities CHEA Improving Economics of Codigestion - via BioCycle (PDF, 1.5 MB) WERF principle investigator David Perry, PhD, discusses why the economics of an organic "waste to energy" facility are strongly dependent on the waste characteristics, and costs of digestion and solids processing after digestion. Click do download. WERF Research to be Showcased at 2013 WEF Conference in Nashville Our Goal WERF researchers will be presenting in the technical sessions on OWSO and Energy research at WEF conferences this May New Paradigms for Energy - via TPO Magazine Energy is a big item on clean-water plant agendas. More and more plant teams are striving to make their facilities energy neutral or even net energy producers. Continue reading at TPOMag.com Our Approact Morea Products & Tools OWSO11C10a, Reframing the Economics of Combined Heat and Power (CHP) Projects: Fact Sheet This fact sheet addresses the financial metrics that can be used to overcome the economic barriers to combined heat and power (CHP) projects. It provides a breakdown of payback period, net present value, benefit cost ratio, internal rate of return, and equivalent uniform annual net value and how they apply to CHP project analysis. Also considers

USEPA Energy Management Guidebook

OWSO11C10. Barriers to Biogas Use for Renewable Energy

and online PDF. (2012)

the time value of money, risk analysis, and long-term sustainability. Published by WERF, 8 pages, Printed fact sheet

Benefits of Process Optimization

- Reduce Operating Costs
- Reduce Environmental Impact
- Improve Water Quality/Performance
- Customer Satisfaction
- Operator Satisfaction

Every worthwhile opportunity comes with risks

Risks associated with Process Changes

- Increased costs
- Permit Violations
- Customer Complaints
- Operator Stress

Our goal is to find the appropriate balance of reward/risk.

Step 1- Charter the team (Define project goals and responsibilities)

- Financial Objectives (operational, capital, ROI)
- Risk Tolerance
- Risk Mitigation
- Communication Plan

Step 2 – Collect Data

Power

Demand

- Use
- Power Factor
- Submetering

Chemicals

- Coagulants
- Polymers (coagulant aid and dewatering)
- Odor Control

Process Data

- Influent/Effluent/Process concentrations
- Treatment removal efficiencies
- Sludge yields
- Mass Balances
- Recycle streams

Step 3 – Develop Models and Key Performance Indicators

- Spreadsheet Tools
- Plant Hydraulics
- Process (Biowin, CHEAPET)

Dewatering Centrifuge Operating Cost Tool							
Centrifune	Yearly Costs Multiplied by	Yearly Costs Multiplied by					
Cake Solids	Dry Tons	Dry Tons					
18.00 \$243 \$245 \$246 \$248 \$249 \$251 \$252 \$254 \$255 \$257 \$258 \$260 \$261 \$263 \$264 \$266 \$267 \$269 \$277 \$272 \$273 \$	Cost/Ton Yearly Cost	Cost/Ton Yearly Cost					
18.25 \$\begin{bmatrix} 244 \$\begin{bmatrix} 244 \$\begin{bmatrix} 248 \$\begin{bmatrix} 248 \$\begin{bmatrix} 250 \$\begin{bmatrix} 251 \$\begin{bmatrix} 251 \$\begin{bmatrix} 250 \$\begin{bmatrix} 251 \$\begin{bmatrix} 250 \$\begin{bmatrix} 251 \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\ \$\	\$203.3 \$1,260,325.22	\$238.2 \$1,476,565.94					
18.50 \$238 \$240 \$241 \$243 \$244 \$246 \$247 \$249 \$250 \$252 \$253 \$255 \$256 \$258 \$259 \$261 \$262 \$264 \$265 \$267 \$268	\$205.0 \$1,271,137.25	\$239.9 \$1,487,377.98					
18.75 \$236 \$237 \$239 \$240 \$242 \$243 \$245 \$246 \$248 \$249 \$251 \$252 \$254 \$255 \$257 \$258 \$260 \$261 \$263 \$264 \$266	\$206.8 \$1,281,949.29	\$241.6 \$1,498,190.01					
19.00 \$233 \$235 \$236 \$238 \$239 \$241 \$242 \$244 \$245 \$247 \$248 \$250 \$251 \$253 \$254 \$256 \$257 \$259 \$260 \$262 \$263	\$208.5 \$1,292,761.33	\$243.4 \$1,509,002.05					
19.25 \$231 \$233 \$234 \$236 \$237 \$239 \$240 \$242 \$243 \$245 \$246 \$248 \$249 \$251 \$252 \$254 \$255 \$257 \$258 \$260 \$261	\$210.3 \$1,303,573.36	\$245.1 \$1,519,814.09					
19.50 \$229 \$231 \$232 \$234 \$235 \$237 \$238 \$239 \$241 \$242 \$244 \$245 \$247 \$248 \$250 \$251 \$253 \$254 \$256 \$257 \$259	\$212.0 \$1,314,385.40	\$246.9 \$1,530,626.12					
19.75 \$227 \$228 \$230 \$231 \$233 \$234 \$236 \$237 \$239 \$240 \$242 \$243 \$245 \$246 \$248 \$249 \$251 \$252 \$254 \$255 \$257	\$213.7 \$1,325,197.43	\$248.6 \$1,541,438.16					
20.00 \$\frac{\$225}{\$226}\$228\$\$229\$\$231\$\$232\$\$234\$\$235\$\$237\$\$238\$\$240\$\$241\$\$243\$\$244\$\$246\$\$247\$\$249\$\$250\$\$252\$\$253\$\$255\$\$	\$215.5 \$1,336,009.47	\$250.4 \$1,552,250.20					
20.25 \$\begin{bmatrix} 2223 \$\begin{bmatrix} 2224 \$\begin{bmatrix} 2229 \$\begin{bmatrix} 2230 \$\begin{bmatrix} 2232 \$\begin{bmatrix}	\$217.2 \$1,346,821.51	\$252.1 \$1,563,062.23					
20.50 \$\begin{smallmatrix} 222 \$smallmat	\$219.0 \$1,357,633.54	\$253.9 \$1,573,874.27					
20.75 \$219 \$220 \$222 \$223 \$225 \$226 \$228 \$229 \$231 \$232 \$234 \$235 \$237 \$238 \$240 \$241 \$243 \$244 \$246 \$247 \$249	\$220.7 \$1,368,445.58	\$255.6 \$1,584,686.30					
21.00 \$217 \$218 \$220 \$221 \$223 \$224 \$226 \$227 \$29 \$230 \$232 \$233 \$235 \$236 \$238 \$239 \$241 \$242 \$244 \$245 \$247	\$222.5 \$1,379,257.62	\$257.3 \$1,595,498.34					
21.25 \$217 \$218 \$220 \$221 \$223 \$224 \$226 \$227 \$229 \$230 \$232 \$233 \$235 \$236 \$238 \$239 \$241 \$242 \$243 \$245	\$224.2 \$1,390,069.65	\$259.1 \$1,606,310.38					
21.50 \$213 \$215 \$216 \$218 \$219 \$221 \$222 \$224 \$225 \$227 \$228 \$230 \$231 \$233 \$234 \$236 \$237 \$238 \$237 \$239 \$240 \$242 \$243	\$225.9 \$1,400,881.69	\$260.8 \$1,617,122.41					
21.75 \$212 \$213 \$215 \$216 \$218 \$219 \$220 \$222 \$223 \$225 \$226 \$228 \$229 \$231 \$232 \$234 \$235 \$237 \$238 \$240 \$241	\$227.7 \$1,411,693.72	\$262.6 \$1,627,934.45					
22.00 \$210 \$211 \$213 \$214 \$216 \$217 \$219 \$220 \$222 \$223 \$225 \$226 \$228 \$229 \$231 \$232 \$234 \$235 \$237 \$238 \$240	\$229.4 \$1,422,505.76	\$264.3 \$1,638,746.49					
22.25 \$208 \$210 \$211 \$213 \$214 \$216 \$217 \$219 \$220 \$222 \$223 \$225 \$226 \$228 \$229 \$231 \$232 \$234 \$235 \$237 \$238	\$231.2 \$1,433,317.80	\$266.1 \$1,649,558.52					
22.50 \$206 \$208 \$209 \$211 \$212 \$214 \$215 \$217 \$218 \$220 \$221 \$223 \$224 \$226 \$227 \$229 \$230 \$232 \$233 \$235 \$236 \$236 \$236 \$236 \$236 \$236 \$236 \$236	\$232.9 \$1,444,129.83	\$267.8 \$1,660,370.56					
22.75 \$206 \$208 \$209 \$211 \$212 \$214 \$215 \$217 \$218 \$220 \$221 \$223 \$224 \$226 \$227 \$29 \$230 \$232 \$233 \$235	\$234.7 \$1,454,941.87	\$269.5 \$1,671,182.59					
23.00 \$203 \$205 \$206 \$208 \$209 \$211 \$212 \$214 \$215 \$217 \$218 \$220 \$221 \$223 \$224 \$226 \$227 \$229 \$230 \$232 \$232	\$236.4 \$1,465,753.91	\$271.3 \$1,681,994.63					
Polymer Dose 20.00 20.50 21.00 21.50 22.00 22.50 23.00 23.50 24.00 24.50 25.00 25.50 26.00 26.50 27.00 27.50 28.00 28.50 29.00 29.50 30.00							
Polymer Dosage Units - Lbs/Dry Ton 39							
To use the tool manipulate the 3 Undesirable Range Disposal Cost/Ton \$33		h					
variables (S30-S32) to reflect actual Adequate Range Polymer Cost/Lb \$2.99							
values. Dry Tons/Year 6200 6200							

Process Model Example

Develop Holistic Approach

Review current operation and maintenance practices NOT JUST " ELECTRICAL"

Baseline information on all aspects of the facilities from:

- Process data and permit limits
- Electrical usage and rate structures
- Chemical usage and cost
- Assets
- HVAC systems
- Storage capacities
- Solids handling
- Natural gas or Bio gas usage

Step 3 (cont) - Key Performance Indicators

KPI Summary Sheet WWTP

Table 1 Basis Line Values WWTP

Parameter	Base Line Value	Discription
Flow ML/Year	17468.241	Base Q Annual
Flow ML/Year	8433	Base Q PO4 6 month
cBOD (mg/l)	254.42	Base Line cBOD
TSS (mg/l)	378.76	Base Line TSS
PO4 (mg/l)	7.39	Base Lin
WWTP Power kWh/ML	599.11	Bar
kWh/ kg cBod	1	
kWh/ kg TSS		0 ¹¹
Ratio kg TSS/kg cBOD		
		ent
kg cBOD (annual)		<u>set</u> <u></u>
kg TSS (Annual)	citie A	
	cper cfur	
kg PO4 (6 Summer months)	. <u></u>	Base Line kg PO4
	est ide	
Alum usage kg/ML		Base Line Alum Flow usage KPI
Alum usage kg/ mg/l PO4	5.42	Base Line Alum load usage KPI
eee	an	
Wet Tonnes of Solids / Ton cBOD	2.7213	Base Ine Tonnes of Solids/Ton cBOD KPI
	3 11	
wet Tonnes of Solids / Ton TSS	1.82790	Base Ine Tonnes of Solids/ Ton TSS KPI
kg Dewatering-Polymer/kg cBOD	6.889543139	
kg inickening-Polymer/kg cBOD	1.119923703	Base line kg I-Polymer / kg CBOD KPI
kg Dewatering-Polymer/kg ISS	4.627855047	Base line kg D-Polymer / kg ISS KPI
kg Thickening-Polymer/kg TSS	0.752276959	Base line kg 1-Polymer / kg TSS KPl

CH2MHILL

Step 4 – Indentify Opportunities and Prepare Business Case Evaluations

- Operational change
- Minor Capital Improvement
- Major Capital Improvement

Business Case Evaluation

- Capital Costs
- Operational and Maintenance Costs
- Risks
- Non Economic Benefits

Example WERF Tool to assist in BCE

Evaluates alternatives and associated benefits and costs in planning and early design stages

Evaluates "what-if" scenarios including Sensitivity Analyses

Estimates GHG emissions and carbon foot print evaluation

Facilitates discussions with regulatory agencies and project stake holders

- MS Excel Based Tool with Built-In Worksheets
 - Regional temperature and emission factors
 - Volatile solids reduction model
 - •Parametric costs
 - Process and cost analysis functions
 - Internal combustion engines (ICE)
 - Gas turbines
 - Microturbines
 - Stirling Engines
 - Fuel cells

Step 5 – Prioritize and Develop Implementation Plan

Priorities

- Priority 1 Recommended to achieve majority of energy savings
- Priority 2 Would provide additional energy savings but have a longer pay back period
- Priority 3 Would provide for fine tuning of process and some additional power savings

Implementation Plan

- Category I—Immediate
- Category II—Short Term 1-3 years or
- Category III—Long Term 3-5 years

Opportunities for Energy Efficiency

High Energy Using Operations	Energy Savings Measures	High Energy Using Operations	Energy Savings Measures		
Pumping	 Reduce load Manage load Water to wire efficiency Pump selection Automated control 	Lighting	 Motion sensors T5 low and high bay fixtures Pulse start metal halide Indirect fluorescent Comprehensive control for large buildings 		
Aeration	 Fine bubble Improved surface aerators Premium motors High efficiency motor drive Blower Control Automatic DO control 	Heating, Ventilation, Air Conditioning (HVAC)	 Water source heat pumps Custom incentives for larger units Low volume fume hoods Occupancy controls Heat pump for generator oil sump 		

CH2MHILL.

Understand Your Power Bill

Power Bill Components:

Demand Ratchet Demand Use Power Factor Fuel Time of Use

Meet with your local power provider to understand your rate structure and develop strategies to reduce costs

IP&L BILLING INFORMATION (PROVIDED BY IP&L)

MEHC01M RATE DEPARTMENT	MES-DE	MAND HI	S Т О R Y	01/24/2013 10.55.19
ACCOUNT 1540826	ACC-NAME WASTE	WATER SOUTHPORT	AWT	RAY91LJ
SERVICE 275330	RDG-DIST 13 MT	RS 06 RATE H1	STATUS AC	SNOTE
3800 W SOUTHPORT R	RD, INDIANAPOLI	S IN 46217		
KWH-MTR 0004987	READ-BY 0	CONNCT-DT 08/	26/2011 RATE-EFE	FCT-DT 02/01/1983
Τ	AX-EXEMPT-CD	CONN-LOAD	8607 CONN-LTNG	G-LOAD
R-DATE ACT-DEM BIL	-DEM BIL-KWH	PF% RATE FUE	L OTHER-ADJ	TOT-NET-BIL CODE
011813 7244	7244A 3528000	96 H1 .020	4030 .0072130	243,701.42
121812 5302	5541T 3169600	95 H1 .020	4030 .0073080	210,060.67
111612 6429	6429A 3192000	96 H1 .017	9450 .0066180	209,702.27
101812 6254	6254A 3080000	98 H1 .017	9450 .0066180	202,202.98
091912 7388	7388A 3438400	97 H1 .017	9450 .0066180	229,985.66
081812 6544	6544A 3427200	97 H1 .017	.0066180	218,999.96
071912 5470	5514T 3147200	98 H1 .017	3810 .0066180	195,929.50
062012 6012	6012A 3673600	99 H1 .017	3810 .0064300	222,941.73
051912 6797	6797A 3371200	100 H1 .019	8380 .0064300	225,607.86 A
041812 7352	7352A 3931200	94 H1 .019	8380 .0064300	259,613.65
031712 6559	6559A 3382400	91 H1 .019	8380 .0063220	227,100.57
021712 7001	7001A 3337600	92 H1 .017	4590 .0063220	221,169.07
012012 6758	6758A 4065600	95 H1 .017	4590 .0063220	249,223.44
121711 6848	6848A 3472000	94 H1 .017	4590 .0056690	222,295.69
111711 6042	6042A 2587200	96 H1 .017	3670 .0056690	174,920.47
101811 6000	6000A 2497600	96 H1 .017	3670 .0056690	170,645.59

Energy Savings – Operational Changes

Demand Management – Shed equipment during peak energy use.

Energy Reduction– Monitor DO in aeration basins and maintain at 2 mg/l or less

Time of Use – Consider shifting activities during night shift

Develop benchmarks and closely monitor

Energy Savings – Minor Capital Improvements

- Demand Management Automation routines to shed non vital equipment
- Energy Reduction Automated DO control for aeration basins
- Power Factor Install capacitor banks to increase PF

Energy Savings – Major Capital Replacements

- **Replace Aeration Diffusers**
- Replace Blowers
- Replace Pumps
- Replace Motors
- Install Cogeneration System
- System Wide (real time) Energy Optimization Systems

Cogeneration and Fog Project At F. Wayne Hill WRC In Gwinnett County, Ga

CH2M HILL worked in partnership with Gwinnett County DWR on the implementation of a cogeneration and FOG receiving facility at the F. Wayne Hill WRC and assisted in the identification in up to \$8.5 million in funding from grant sources.

Energy Savings - Plant Compressed Air Systems

Baseline

- Compress and dry air used for Pneumatic
 Primary Sludge Pumps and other controls
- Maintenance issues with compressor cooling system
 - Required 500,000 gpd of potable (softened water)
 - New close loop heat exchanger with air cooled or reclaim water
- Recommended Action Plan
 - Re-size new air compressor (25% of original) which allows air cooled unit
 - Savings/Benefits: 50% overall power costs, no softened water required, minimal maintenance
 - Allows resizing and possible elimination of air gap tank and associated pumps

Energy Savings (cont)

System Wide (real time) Energy Optimization Systems

Resulting from groundbreaking advances in combined use of genetic algorithms and artificial neural networks, ENCOMS identifies in realtime the optimal operational control settings that will best meet not only the current demands but also the projected ones along the operating horizon (typically 24 hours) at maximum cost savings, taking account of the electricity rate structure, system operational constraints, and demand projections. The real-time control process operates continually and is updated at periodic intervals by SCADA data and new demand forecasts.

Comparison of monthly operating costs

ENCOM: Energy Cost Minimization System

Case Studies - 20% saving

Evaluate multiple factors to evaluate projects

				RANKING and CRITERIA												
Location	Activity	Energy Source	Current Annual Cost	Impacts On Operation	Maturity & Reliability	Cost To Implement	Permitting Challenges	Level Of Complexity	Funding Avail.	Net Energy Production	Criteria Air Pollutants	Co2 Emissions	Safety & Health	Return On Invest.	Minimize Biogas Flaring	Total Score
Omohundro WTP	Project 1	Electrical	\$10,000	1	4	2	5	3	2	2	3	3	4	5	2	36
Omohundro WTP	Project 2	Electrical	\$25,000	5	2	3	3	2	3	2	1	1	2	3	0	27
Omohundro WTP	Project 3	Natural Gas	\$16,000	2	3	5	1	1	4	2	3	0	2	2	3	28
Omohundro WTP	Project 4	Natural Gas	\$65,000	4	4	3	3	3	2	2	5	3	4	2	3	38
KR Harrington WTP	Project 1	Natural Gas	\$30,000	1	4	3	2	3	5	5	2	2	1	3	1	32
KR Harrington WTP	Project 2	Electrical	\$12,000	4	2	1	2	2	5	2	1	4	3	2	2	30
												_				
Biosolids Fac.	Project 1	Electrical	\$32,000	4	4	5	5	3	4	4	4	5	3	3	5	49
Biosolids Fac.	Project 2	Electrical	\$53,000	3	2	4	2	2	1	1	0	3	3 ^{24_M}	800_PM_01	4	27
Biosolids Fac.	Project 3	Natural Gas	\$5,000	2	3	2	3	1	1	2	2	2	3	3	4	28
Biosolids Fac.	Project 4	Digester Gas	\$0	5	5	4	4	3	5	4	5	5	4	5	5	54
Central WWTP	Project 1	Electrical	\$18,000	4	2	2	3	3	4	2	1	2	1	1	2	27
Central WWTP	Project 2	Electrical	\$24,000	2	4	3	4	5	2	3	2	1	3	4	5	38
Central WWTP	Project 3	Electrical	\$54,000	4	1	2	3	2	3	5	4	4	3	2	3	36
Control W/WTP	Project /	Natural Cae	\$8,000	2	4	5	Λ	2	3	3	3	2	2	2	1	36

Solids Handling – Operational Changes

- Dewatering polymer optimization
- Continuously evaluate best deal for disposal
- Process Changes (SRT/Digestion)
- Develop benchmarks and closely monitor

Solids Handling – Capital Improvements

Replace Solids Process Technology

- Replace Dewatering Equipment
- WERF LCAMER (Life Cycle Assessment Manager for Energy Recovery) tool

LCAMER OUTPUT

	Internal Combustion Engine		Gas Turbine	Micro Turbine	Fuel Cell
	(W/O FOG)	(With FOG)	(With FOG)	(With FOG)	(With FOG)
CAPEX (\$) for Cogen (including replacements)	\$5.54M	\$6.91M	\$6.41M	\$8.85M	\$25.39M
CAPEX (\$) for FOG Receiving Facility	0	\$4.08M	\$4.08M	\$4.08M	\$4.08M
OMEX (\$/yr) for Biogas System & Natural Gas	\$562K	\$762K	\$536K	\$572K	\$1.32M
OMEX (\$/yr) for FOG Receiving Facility	6 0	\$145K	\$145K	\$145K	\$145K
Revenue (\$/yr) from Electricty Savings ⁽¹⁾	\$870K	\$1.17M	\$723K	\$766K	\$1.23M
Revenue (\$/yr) from FOG Receipts	0	\$850K	\$850K	\$850K	\$850K
Payback Period (years)	18	9.9	11.8	14.4	47.9
(1) - Estimated @ \$0.	07/KWh				_Metro_PM_01

Chemical Savings - Operational

- Develop benchmarks and closely monitor
- Frequent calibration checks
- Tune Control Loops

Chemical Savings - Capital

- New Disinfection System (i.e UV, onsite hypo generation)
- Improved Chemical Mixing (i.e water champs or statiflo)
- Chemical Feed Modifications
- New Odor Control (ie. Biofilters)

Plant Flow Rate (MGD)	Daily Hypochlorite Usage (gallons)	Daily Bisulfite Usage (gallons)	Hypoch Cost Pe	lorite r Dav	Bisulfite Cost Per Dav		Seasonal Chemical Costs	UV Power Requirement (kW)	UV	Cost Per Dav	UV Lamp Replacement	Sei	asonal UV Costs	Savi	Annual ings w/ UV
60	1785	231	\$	1,153	\$ 296	\$	333,737	138.4	\$	199.30	\$ 130,000	\$	175,838	\$	157,899
70	2083	269	\$	1,345	\$ 347	\$	389,360	161.5	\$	232.51	\$ 130,000	\$	183,478	\$	205,882
80	2380	307	\$	1,538	\$ 397	\$	444,983	184.5	\$	265.73	\$ 130,000	\$	191,117	\$	253,865
90	2678	346	\$	1,730	\$ 447	\$	500,605	207.6	\$	298.94	\$ 130,000	\$	198,757	\$	301,848
100	2975	384	\$	1,922	\$ 496	\$	556,228	230.7	\$	332.16	\$ 130,000	\$	206,397	\$	349,831
110	3273	423	\$	2,114	\$ 546	\$	611,851	253.7	\$	365.38	\$ 130,000	\$	214,036	\$	397,815
120	3570	461	\$	2,306	\$ 596	\$	667,474	276.8	\$	398.59	\$ 130,000	\$	221,676	\$	445,798
130	3868	499	\$	2,499	\$ 645	\$	723,097	299.9	\$	431.81	\$ 130,000	\$	229,316	\$	493,781
140	4165	538	\$	2,691	\$ 695	\$	778,719	322.9	\$	465.02	\$ 130,000	\$	236,956	\$	541,764
150	4463	576	\$	2,883	\$ 745	\$	834,342	346.0	\$	498.24	\$ 130,000	\$	244,595	\$	589,747
	Assumptions														
	Cost per kW Ho	our (average o	xost)					\$ 0.06							
	Cost per Gallon	Hypo (histori	cal)					\$ 0.65							
	Cost per Gallon	Bisulfite (esti	imated)					\$ 1.29							
	Annual Disinfec	tion Season (days)					230							
	Bisulfite dose p	er 1 mg/ICIR	lesidual					1.46							
	Max UV Lamp Replacment Cost (estimated from T		om Trojan (uote)	\$ 130,000									
	UV Power consumption kW/MGD treated				\$ 2.31										
	Hypochlorite fee	ed rate, mg/l (historical)					4.5							

Process Changes

Consider Holistic Effects of Any Process Changes

Variables:

- Units in service
- Processes In Service
- MCRT/SRT
- •Solids Processing Objectives

Example

NSU - Configuration	Available	Current	Alt. No. 4
Aeration Basins	2.0	2.0	1.0
Aerobic Digesters	4	4	4

NSU - Process	Current	Alt. No. 4	Range	Typical
Cake Solids, % -	15.5	15.9	15-23	18
Polymer Use, lbs/ton -	20.0	20.0	8-20	10
Run Time, hrs/d -	8.0	8.0		

NSU - Performance	Actual	Current	Alt. No. 4	Range	Typical
SRT, days	=	26.0	9.8	10-30	15
HDT wo/RAS, hrs.	=	43.9	18.9	8-36	12
Clarifier Slds Loading, Lbs/D/SF	=	15.3	19.7	5-24	12
Belt Press Hydraulic Loading, gpd/U	=	98848	112892	57k-115K	
Belt Press Solids Loading, lbs/d/U	=	7672	9483	4.8k-9.6k	
Solids Produced lbs/da	y 3222.0	3260.7	4702.1		
Solids Produced cy/day	= 12.6	12.8	17.9		

NSU - Costs	_	Actual
CHEMICALS	\$	15,431
CONTRACT HAULING COSTS	\$	161,280
ELECTRICITY	\$	401,047
Total	\$	577,758

Alt. No. 4	Savings
\$ 22,009	\$ (6,578)
\$ 228,750	\$ (67,470)
\$ 323,261	\$ 77,786
\$ 574,020	\$ 3,738

Evaluate Best Case and Worst Case Scenarios

Current Strategy

- One Large Oxidation Ditch
- Three Aerobic Digesters

Alternative No. 3

- One Small Oxidation Ditch
- Two Aerobic Digesters

		No. 3							
	Cur	rent	Best Case	Savings					
CHEMICALS	\$	9,843	\$ 7,209	\$ 2,635					
CONTRACT HAULING COSTS	\$	103,893	\$ 101,740	\$ 2,153					
ELECTRICITY	\$	207,815	\$ 125,924	\$ 81,891					
	Total \$	321,551	\$ 234,873	\$ 86,679					

	Current	Worst Case	Savings
CHEMICALS	\$ 9,843	\$ 9,536	\$ 308
CONTRACT HAULING COSTS	\$ 103,893	\$ 121,128	\$(17 <i>,</i> 235)
ELECTRICITY	\$ 207,815	\$ 127,437	\$ 80,378
	Total \$ 321,551	\$ 258,101	\$ 63,450

Consider Holistic Operational Affects

- Based on analysis Alternative No. 4 shows the lowest overall operating cost. However, the analysis shows that using only one small oxidation ditch will not provide the horse-power requirements to meet oxygen demands. Therefore this alternative is not viable.
- Alternative No. 3 is the lowest cost viable option and meets all design criteria.
- Increased process control and monitoring will be critical to success (higher frequency of testing, added testing locations, effective wasting program).
- Monitoring of all cost related factors such as quantities, dosages, and unit cost of chemicals and biosolids disposal.
- A control procedure for operating with only two aerobic digesters must be develop and staff trained on how it should be implemented.
- Due to increase sludge production the belt press will have to be operated daily for 8 hours.

WERF CHEApet Tool basics

Provides mass, energy and thermal balances as well as carbon footprint (GHG emissions)

Tool Platform - Static whole wastewater & STP plant simulator

Tool Delivery - Online (internet) tool hosted by WERF

MS Excel[™] Based

It will be available to WERF subscribers

 You can download your inputs and outputs but not the tool

Home Overview CHEApet Tutorials Documentation								
Y FACILITY PROFILE(S)								
:	elect from	options to review/	edit, copy, reset exi	sting scenario or	start a new sc	enario.		
1	Cey:							
	Open: E	dit existing scenari	o and/or run CHEA	pet.				
	Reset: G	to back to Setup an	d choose new setti	ngs for this scena	ario.			
	Clone: C	Creates an exact cop	y of this scenario.	e				
	New Sci	enano: Set up a nev	v scenario. Limit of i	nve.				
Scenario	Name	Secondary Treatment	Secondary Process	Complexity	Unit Of Measure			
versio	n 2	BC	В	Advanced	1	Open	Clone	Reset
versio	n 2	BC	В	Advanced	1	Open	Clone	Reset
asdfase	lfsdf	BC	В	Advanced	1	Open	Clone	Reset
versio	n 2	BC	В	Advanced	1	Open	Clone	Reset
erwerrwe	weww	BC	В	Advanced	1	Open	Clone	Reset
			New Scer	iano				

CH2MHILL.

WERF CHEApet - Unit Processes

Biological Treatment Options

8 Processes with either MBR or Secondary Clarifier

- Nitrification
- MLE
- 4 Stage Bardenpho
- Anaerobic- Aerobic (A/O)
- Anoxic-Anaerobic-Aerobic (A2/O)
- University Cape Town (UCT)
- 5 Stage Bardenpho
- Johannesburg

- Carbon Footprint/Greenhouse Gas Options
 - Local Government Operations Protocol (LGOP)
 - Australian Approach
 - "Informal" Approach

CHEApet Facility Data Input

Summary

- Utilize WERF and network with other utilities to identify opportunities to optimize your plants
- Work with power company to understand your bill and idenitify ways to reduce costs
- When making changes, evaluate risks and look for unintended consequences
- Work with chemical suppliers to find more cost effective ways to solve the problem
- Develop benchmarks and monitor process data
- Develop Business Case Evaluation Process to prioritize capital projects based on payback and noneconomic benefits
- Many financing options available but understand benefits and risks

O&MBG GENERAL SERVICES

CH2MHILL.