

Product Catalog

Large Commercial Split System

Model RAUP - TTV 250 - 620 MBH 5000 - 21000 CFM 50 Hz (R22 & R407C)

MUL-PRC004-E4

RAUP - TTV TABLE OF CONTENTS

Model Number Description (RAUP-TTV)	002
General Data Condensing Units	003
General Data Indoor Units	004
System Performance Matrix	005
Features Summary	006
Outdoor Unit Application Considerations	007
Equipment Selection	800
RAUP Condensing Unit Performance R22	013
RAUP Condensing Unit Performance R407C	021
RAUP Performances Data-R22 (50Hz) - Table	029
RAUP Performances Data-R407C (50Hz) - Table	030
RAUP-TTV System	031
Indoor Unit Fan Performance Data	032
Line Sizing Routing and Component Selection	034
Mechanical Specifications	035
Dimensional Drawing Condensing Unit	036
Dimensional Drawing Indoor Unit	038
Standard Conversion Table	041

Model Number Description (RAUP - TTV)

Unit Model Number Description

The product is identified by a multiple-character model number that precisely identifies a particular type of unit. An explanation is shown below it will enable the owner or Service Engineer to define operation, components and applicable accessories for a specific unit.

Standard Product Model Nomenclature

		P <u>2</u> <u>5</u> <u>0</u> D <u>1</u> C <u>X</u> <u>A</u> <u>S</u> X G 4 5 6 7 8 9 10 11 12 13 14 15									
DIGIT	1,2,3	Remote Condensing Unit / Air-Cooled / Up- Flow									
DIGIT	4	Development Sequence									
DIGIT	5,6,7	Nominal Cooling Capacity [MBH] 250 = 250 400 = 400 600 = 600 300 = 300 500 = 500									
DIGIT	8	Electrical Rating / Utilization Range D = 380-415V / 3Phase / 50Hz									
DIGIT	9	Factory Mounted Control 1 = DOL(4w) Starter (UC2c / UC4c) 4 = DOL (4w) Starter (UC2c / UC4c) c/w Low Ambient Controls. 5 = DOL(4w) Starter (Carel-mCH3) 6 = DOL (4w)Starter (Carel-mCH3) c/w Low Ambient Controls.									
DIGIT	10	Minor Design Sequence C = Modular RAUP Design									
DIGIT	11	Factory Installed Options X = None 1 = Corrosion Resistant Coated Fin									
DIGIT	12	Refrigerant Type A =R22 B =R407C									
DIGIT	13	Operating Ambient S= Standard Ambient (R22 Only) H= High Ambient Option (R22, R407C)									
DIGIT	14	Design Special - LIQUID LINE ACCESSORIES X = None. (c/w Non-Serviceable Filter Drier Only D= Serviceable Filter Drier + Shut-Off Valve Sight Glass + Ship Loose Solenoid Valve									
DIGIT	15	Service Indicator G = Introduction of Carel Controller & Design Special-A									

				au	110									
Т			_	_	_			_	1	_		•		_
1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	7	8	<u>9</u>	10	11	12	13	14	15
D	IGIT	1,2	2	Inc	dool	r Un	nit / (Coc	oling	Only	/			
D	IGIT	3		Air Flow Configuration V = Vertical Discharge										
DIGIT 4,5,6 Nominal Cooling Capacity [MBH] 250 = 250 400 = 400 600 = 60 300 = 300 500 = 500										600				
D	DIGIT 7 Development Sequence													
D	IGIT	8		Electrical Rating / Utilization Range D = 380-415V / 3Phase / 50Hz										
D	IGIT	9		Factory Mounted Control 1 = DOL Starter (less Controls)										
D	IGIT	10)	Ins	stall	ed I	Noto	or k'	W					
										Mtr,	kW			
				Γ	Мо	del	s		St	d.	0)/ Siz	e	
				٦	ΓTV	250)		=	3.7	L	. = 7.	5	
				1	ΓTV	300)/4	00	K =	5.5	Ν	/l = 1	1	
				5	ΓTV	500)		L =	7.5	Ν	l = 1	5	
				٦	ΓTV	600)		M =	= 11	١	l = 1	5	
D	IGIT	[.] 11		Fu	iture	e Us	se							
D	IGIT	12	2	Fu	iture	e Us	se							
D	IGIT	13	3	Fu	Future Use									
D	IGIT	. 14	ļ	Mi	Minor Design Sequence									
D	IGIT	15	5	Se	ervic	e Ir	ndica	ator						

General Data 250 - 620 MBH Condensing Units

Table 1 - General Data 250 - 620 MBH Condensing Units

		RAUP 250	RAUP 300	RAUP 400	RAUP 500	RAUP 600
Performances (1)						
Gross Cooling Capacity [R22] (1)	(kW) / (MBH)	77 / 262	91 / 311	116 / 396	153 / 524	182 / 621
Gross Cooling Capacity [R407C]	(kW) / (MBH)	73 / 248	86 / 295	110/376	146 / 498	173 / 590
Unit Capacity Steps (%)		100 - 50	100 - 50	100 - 75 - 50 - 25	100 - 75 - 50 - 25	100 - 75 - 50 - 2
Total Compressor Power Input (1) STD AMBIEN	- (kW)	23.0	28.0	36.0	47.0	55.0
Total Compressor Power Input (1) HIGH AMBIEN	- (kW)	29.0	34.0	45.0	58.0	67.0
Main Power Supply			400)Vac +/- 10% / 3Ph / 50	OHz	
Sound Power Level	(dB(A)	87	89	89	90	92
Compressor						
Compressor Qty		2	2	4	4	4
Туре				Scroll		
Model		2 x 13T	2 x 15T	2 x (10T + 10T)	2 x (13T + 13T)	2 x (15T + 15T
Speeds Number (RPM)				1 (2900 RPM)		
Unit MCA Amps (4) STD AMBIEN	Г (A)	49	58	75	93	110
Unit MCA Amps (4) HIGH AMBIEN	Г (A)	58	67	87	110	127
RLA / LRA (2) STD AMBIEN	Г (А)	20.5 / 145	24.5 / 175	16.5 / 130	20.5 / 145	24.5 / 175
RLA / LRA (2) HIGH AMBIEN	Г (А)	22.9 / 145	24.2 / 175	20.7 / 130	22.9 / 145	24.2 / 175
Sump Heater (High-Low Amb, option) per Compresso	r (W)	65W - 240Vac	75W - 240Vac	65W - 240Vac	65W - 240Vac	75W - 240Va
iquid and Suction connection						
Suction Connection	brazed	2 1/8" OD	2 1/8" OD	1 5/8" OD	2 1/8" OD	2 1/8" OD
Liquid Connection	brazed	7/8" OD	7/8" OD	7/8" OD	7/8" OD	7/8" OD
Condensing Coil						
Туре			High Effic	ciency Plate Fin (SLIT)) and Tube	
Tube Size / TYPE	(mm)		9.52mn	n (3/8") OD / SMOOTH	BORE	
Height	(mm)	1860	1860	1860	1860	1860
Length	(mm)	1782	1782	1782	1782	1782
Quantity		1	1	2	2	2
Face Area	(m²)	3.3	3.3	6.6	6.6	6.6
Rows STD AMBIEN	Г	2.5	3	2	2.5	3
Rows HIGH AMBIEN	Г	3	4	3	4	4
Fins Per Foot (fpf)		144	144	144	144	144
an / Motor						
Fan Type / Drive Type				Propeller / Direct Drive	Э	
Fan / Motor Qty		2	2	3	4	4
Fan Diameter	(mm) / (in)			711 / 28"		
Speeds Number				1		
Motors kW (2)	kW / hp			0.60kW / 0.8HP		
Motors FLA / LRA (2)	(A)			1.5 / 5.7		
Motor RPM	(rpm)			900		
Init Dimensions						
Height	(mm)	1911	1911	1911	1911	1911
Width	(mm)	1002	1002	1992	1992	1992
Length	(mm)	2264	2264	2264	2264	2264
Weight Uncrated	(kg)	583	593	990	1153	1177
Weight Crated	(kg)	603	613	1025	1188	1212
System Data						
Refrigerant Circuit		1	1	2	2	2
Refrigerant Charge Limit per Circuit	(kg)	25.0	27.0	20.0	25.0	27.0
	(0,	23.0	21.0	20.0	20.0	21.0
Ainimum Outdoor Air Temperature for Mechar						
Standard Ambient Operating Range [5]	F / (C)			59-109 F / (15 - 43C)		
High Ambient Option, Max	F / (C)			115F / (46 C)		

Notes:

[1] at 7deg C SST and 35 deg C Ambient, 400V, Subcooling 8.3K, Superheat 11.1K

[2] Per Motor @ 400V

[3] Per Circuit

[4] Minimum Circuit Ampacity (MCA) is 125% of the largest compressor RLA plus 100% of the other compressor RLA plus the sum of the condenser fan FLA.

[5] High Ambient and Low Ambient Options Available.

[6] Caution advised for high pressure and low pressure trips [5] where the system performance is outside the operating envelope.

General Data 250-620MBH TTV Evaporator Prematched Air Handler

General Data Blower Coil Units 250 - 620 MBH Evaporator Prematched Air Handler TTV 250 TTV 300 TTV 500 TTV 600 TTV 400 **Evaporator Coil** Rows / FPF 3 / 144 3 / 144 3 / 144 4 / 144 4 / 144 Evaporator Rated Air Flow Cfm 7760 9240 12120 15130 18080 15700 Cmh 13180 25700 30720 20590 Configuration Vertical with fan discharge configurations Sq.ft / m² 16.7 / 1.55 19.2 / 1.78 26.2 / 2.44 34.8 / 3.24 37.9 / 3.53 Face Area Tube Material Copper Tube Type Smooth 3/8 / 9.5 0.5 / 12.7 0.5 / 12.7 Tube Size (OD) in / mm 3/8 / 9.5 3/8 / 9.5 No. Of Circuits 1 1 2 2 2 Refrigerant Flow Control TXV Drain Connection Size 1 1/4 1 1/4 1 1/4 1 1/4 in 1 1/4 **Evaporator Fan/Motor** Drive Type Belt RLA / LRA (each) (2) 8 / 42 12/82 12/82 16/104 23 / 153 No of Motors Std. HP (kw) 1-5 (3.7kw) 1-7.5 (5.5kw) 1-7.5 (5.5kw) 1-10 (7.5kw) 1-15 (11kw) 10(7.5) 15(11) Hi Static 15(11) 20(15) 20(15) Diameter of Fan in / mm 15.7 / 400 15.7 / 400 15.4 / 390 17.7 / 450 17.7 / 450 Width of Fan in / mm 12.6/320 12.6 / 320 15.4/390 14.2 / 360 14.2 / 360 No of Fans 1 1 2 2 2 Indoor Fan Type Centrifugal FC Fan Pulley Pitch Diameter 224 224 mm 224 250 250 Air Qty. - Max cfm 8900 10600 13800 16700 21800 - Min cfm 5900 7000 9100 11000 14400 Fan Motor Type TEFC 400V / 3P / 50Hz Std. Fan Speed (Std. Factory Set) 850 900 900 760 760 @ ESP including filters in / Pa 1.1 / 275 0.9 / 225 1.5 / 375 1.1 / 275 1/250Max. Allowable Fan RPM 1100 1100 1200 1000 1000 Motor Pulley Pitch Diameter 140.0 140.0 140.0 132 mm 132 Filter Size (Qty) in (8) 16" x 20" (4) 15" x 20" (6) 16" x 25" (2) 16" x 20" (3) 20" x 20" (2) 15" x 25" (3) 20" x 25" (9) 20" x 25" (6) 16" x 25" (Qty) in (Qty) in (2) 16" x 20" (1) 20" x 25 (1) 16" x 25" (3) 25" x 25" (Qty) in (1) 16 x 25, (2) 5 x 25 Std. 2" Washable (3) 20 x 25, (6) 16 x 25, (3) 25 x 25 (6) 20 x 25 Suction Line OD in 2 1/8" 2 1/8" 1 5/8" 2 1/8' 2 1/8" Liquid Line OD in 7/8' 7/8" 7/8" 7/8" 7/8" 1073/487 1651/749 Approx. Operating Weight 778/353 928 / 421 1510/685 lbs/kg Unit Dimensions HxWxD mm 1219x1808x1040 1372x1808x1040 1520x2088x1040 1653x2596x1275 1777x2596x1275

Trane double walled Quantum Climate Changer Air Handlers are available for semi custom configurations and specialized indoor conditions.

System Performance Matrix

			Systen	n Perfor	mance	Matrix			
		R	22					Condenser	Indoor
MODE	EL	Evaporate	or Airflow	Total Ca	apacity	Sensible	Capacity	Fan Motor	Fan Motor
Outdoor	Indoor	CFM	СМН	MBH	kW	MBH	kW	kW x Qty	kW
RAUP 250	TTV 250	7760	13184	278	81	197	58	0.60 x 2	3.7
RAUP 300	TTV 300	9240	15699	333	98	237	69	0.60 x 2	5.5
RAUP 400	TTV 400	12120	20592	421	123	303	89	0.60 x 3	5.5
RAUP 500	TTV 500	15130	25706	541	159	395	116	0.60 x 4	7.5
RAUP 600	TTV 600	18080	30718	658	193	493	144	0.60 x 4	11

			Systen	n Perfor	mance	Matrix			
		R4	07C					Condenser	Indoor
MODEL		Evaporat	or Airflow	Total Ca	apacity	ity Sensible Capacity		Fan Motor	Fan Motor
Outdoor	Indoor	CFM	СМН	MBH	kW	MBH	kW	kW x Qty	kW
RAUP 250	TTV 250	7760	13184	264	77	187	55	0.60 x 2	3.7
RAUP 300	TTV 300	9240	15699	316	93	225	66	0.60 x 2	5.5
RAUP 400	TTV 400	12120	20592	400	117	288	84	0.60 x 3	5.5
RAUP 500	TTV 500	15130	25706	514	151	375	110	0.60 x 4	7.5
RAUP 600	TTV 600	18080	30718	625	183	468	137	0.60 x 4	11

Capacities based on ambient temperature of 95 F [35 c]. Coil on coil temperature of 80 / 67 F [26 /19 c] EDB/EWB. Rated at 400V / 3P / 50Hz

Capacities are gross and do not include the evaporator fan motor heat deduction

Custom Matches & configuration are available with the Trane Quantum Climate Changer air handler.

Features Summary

Features Summary

Features	Benefits	
Scroll Compressors	 Less vibration and a Quiter Operation Durability / Extended Life Built in dirt saperator to prevent dirt reaching the bearings High volume oil sump prevents excessive oil loss. Comprehensive Compressor Protection for added reliability. Tandem Capability Achieves high part load efficiencies and additional part load control. 	 High emergenc y efficiency ratio and outstanding endurance Advanced & reliable refrigerant & oil management technology for large scroll compressors. Low friction and high volumetric efficiency achieved by ensuring orbiting scrolls, orbit on an oil film that minimizes friction & wear and at the same time ensuring absolute radial tightness. Radial contact is minimized via opposing floating seals.
Smart Controls	 Simple but sophistacated control using microprocessor technology enables: Temperature setpoints and zone temperatures to be fed to the controller for optimized comfort cooling with minimum installation downtime. Diagnose problems accurately and swiftly minimizing downtime. 	 * Preprogrammed compressor sequencing ensures maximum compressor protection against cycling. * Fully factory packaged starters enable the installer to power up, charge pipe and run the system with minimum site electrical installation.
Safeties & Protection	 All condensing units come standard with: High and low pressure safety switches to protect the system against operations outside recommended pressure limits. Reverse rotation protection on compres- sors through safeties that trip the system 	 on high temperature (indirect). Compressor time delays and on-off sequencing logic that is built into the microprocessor algorithm for maximum protection.
Robust Casing	 Stainless Steel & Corossion Resistant Coated external bolts. High efficiency Trane slit fin coils. Weather resisant baked matt polyester powder painted GI panels. 	 Heavy gauge welded steel base with mounting holes. Corossion resistant coated coils as an option.
Modular Installation	 Modular designs allow for side by side installation to save valuable space. 	 Small footprint saves valuable footprint and castly transportation.
Wide Application Envelope	 High and Low ambient options are available for wider operational envelops. 	Standard ambient 15-43C. Hi ambient up to 46C
Pre Matched Compact Air Handlers	 Small foot print Multiple fan arrangements. Vertical or horizontal discharge configurations. Up to 2.5" [625Pa] ESP Baked polyester Powder Painted GI panels for an attractive long lasting finish. 	 Closed cell PE insulation. Double Inlet DoubleWidth Forward curved fans Standard 50mm washable air filters Oversized motor options for higher static operation.
Custom Matched Quantum Climate Changer	 High flexible double walled 25mm or 50mm indoor or outdoor Quantum Climate Changes Air Handler (QCC) 100% fresh air selections possible with the QCC 	 Suitable for back up cooling with chilled water systems.

* Some items are optional and not standard.

Outdoor Unit Application Considerations

Certain application constraints should be considered when sizing, selecting and installing Trane aircooled condensing units. Unit reliability is dependent upon these considerations. Where your application varies from the guidelines presented, it should be reviewed with the local Trane sales engineer.

Unit Sizing

Intentionally oversizing a unit to assure adequate capacity is not recommended. Erratic system operationand excessive compressor cycling are often a direct result of an oversized condensing unit. In addition, oversized units are ussually more expensive to purchase, install and operate. If oversizing is desired, consider using two units.

Under sized units have nuisance high pressure tripping. Hence it is critical that RAUP installations, have a system matching done on all on coil AHU and RAUP ambient conditions. As ambient conditions and on coil (AHU) conditions impact the system, both extremes need to be modeled to minimise risk. The system matching is even more critical with EBS jobs with unknown AHU loads.

Unit Placement

A base or foundation is not required if the selected unit location is level and strong enough to support the unit's operating weight.

Isolation and Sound Emission

The most effective form of isolation is to locate the unit away from any sound sensitive area. Structurally transmitted sound can be reduced by using spring or rubber isolators. The isolators are effective in reducing the low frequency sound generated by compressors and therefore are recommended for sound sensitive installations. An acoustical engineer should always be consulated on critical applications. For maximum isolation effect the refrigeration lines and electrical conduct should also be isolated. Use flexible electrical conduit. State and local codes on sound emissions should always be considered. Since the environment in which a sound source is located affects sound pressure, unit placement must be carefully evaluated.

Unit Location

Unobstructed flow of condenser air is essential for maintaining condensing unit capacity and operating efficiency. When determining unit placement careful consideration must be given to assure proper air flow across the condenser heat transfer surface. Failure to heed these considerations will result in warm air recirculation and coil air flow starvation, resulting in a high pressure compressor cutoff.

Warm air recirculation occurs when discharge air from the condenser fans is recycled back at the condenser coil inlet. Coil starvation occurs when free air flow to the condenser is restricted.

Both warm air recirculation and coil starvation causes reductions in unit efficiency and capacity. In addition in more severe cases nuisance unit shutdowns will result from excessive head pressures. Accurate estimates of the degree of efficiency and capacity reduction are not possible due to the unpredictable effect of varying winds, temperatures and coil conditions.

In addition, wind tends to further reduce head pressure. Therefore, it is advisable to protect the air-cooled condensing unit from continuous direct winds exceeding 10 miles per hour.

Debris, trash, supplies, etc., should not be allowed to accumulate in the vicinity of the air-cooled condensing unit. Supply air movement may draw debris between coil fins and cause coil starvation. Special consideration should be given to units operating in low ambient temperatures. Condenser coils and fan discharge must be kept free of snow and other obstructions to permit adequate air flow for satisfactory unit operation.

Effect of Altitude On Capacity

Condensing unit capacities given in the performance data tables. At elevations substantially above sea level, the decreased air density will decrease condenser capacity and efficiency. The adjustment factors in Page 10 can be applied directly to the catalog performance data to determine the unit's adjusted performance.

Ambient Considerations

Start up and operation at lower ambients requires sufficient head pressure be maintained for proper expansion valve operation.

At higher ambients, excessive head pressure may result. Standard operating ambients are 15-43°C [15-46°C at High Ambient Mode]. With a low ambient comprising crank case heaters and frequency inverters, operation below 15°C is achievable. Minimum ambient condition are based on still conditions.

Refrigerant Piping

Special consideration must always be given to oil return. Minimum suction gas velocities must always be maintained for proper oil return. Utilize appropriate piping tools lines sizing such as the CDS refrigerant piping program.

Stay within the limits of the recommendations in CDS Refrigerant pipi sizing software.

SYSTEM COMPONENTS

To correctly match a condensing unit with a DX coil, it is important to understand the components of the refrigeration system and their functions. A refrigerant syatem consists of four major major components: the compressor, condenser, expansion device and evaporator. Each of these components shown in Fig.1 must be properly sized and installed in order to operate together and perform correctly.

COMPRESSOR

The function of a compressor is to raise the pressure of the refrigerant gas to a point where the temperature at which the gas will condense is higher than the ambient temperature of the air being used to condense it. For example, if the ambient design air temperature is 100° F, the refrigerant gas will typically be compressed to a pressure where the condensing, or saturation, temperature is $120 - 130^{\circ}$ F.

In scroll compressors, the refrigerant gas is compressed between the faces of two interlocking scrolls, one of which orbits while the other remains stationary.

CONDENSER

An air-cooled condenser typically has one or more heat transfer coils and one or more fans. The fans draw ambient air through the coils, which causes the hot refrigerant gas inside the tubes to condense. The capacity of an aircooled condenser depends upon the temperature and flow rate of the ambient air and the surface area of the coil.

As the high-pressure refrigerant flows through the coil, it begins to condense.but remains at a steady temperature and pressure (for R22) while for R407C the temperature and pressure will change due to the glide of the refrigerant. The ondenser coils are sized such that the refrigerant gas has completely condensed and more heat will be removed from it. This process is known as sub-cooling. Sub-cooling the liquid refrigerant prevents it from flashing back to its vapor state as its pressure drops between the condenser and the expansion device. Sub-cooling also improves the cooling capability of the refrigerant.

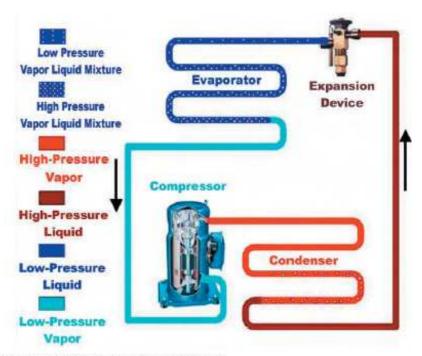


FIG. 1 -MAJOR SYSTEM COMPONENTS

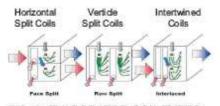


FIG. 2 -EVAPORATOR COIL TYPES

EVAPORATOR

The evaporator coil removes heat from the supply air-stream, cooling the supply air in the process. The evaporator coil generally consists of several rows of copper tubing mechanically bonded to aluminum 9or copper0 heat transfer fins. Depending on the size and capacity of the coil it may consist of one, or several refrigerant circuits (see Fig 2).

A refrigerant distributor on each DX evaporator coil circuit feeds low pressure. low temperature liquid refrigerant to the coil tubes. It is critical that all the distributor tubes are the same length ao the pressure drop across them will be equal and the refrigerant will be evenly distributed to the coil tubes. As the liquid refrigerant passes through the coil tubes, heat is tranferred from the supply air stream to the refrigerant. As heat is added to the liquid refrigerant, it begind to evaporate much like water boiling on a stove. The liquid-vapor mixture remains at a constant temperature and pressure until it completely vaporizes (for R22), while for R407C the temperature and pressure will drop slightly due to the glide of the refrigerant. the coil capacity is determined by the type and amount of refrigerant used, the temperature difference between the air and the liquid refrigerant, and the amount of air passing over the coil.

Once the refrigerant has completely evaporated, its ability to cool the air decrease dramatically. If too little refrigerant is fed to the coil, it will evaporate quickly and the air will not be adequately cooled. If too much refrigerant is fed to the coil it will not evaporate at all and liquid refrigerant will return to the compressor. Direct expansion (DX) evaporator coils are designed to evaporate all refrigerant in the cil and then "superheat" the refrigerant gas in the last row or two of the coil tubes. The refrigerant gas is superheated to ensure it does not condense back to its liquid state in the suction line. Superheat is also used to control the expansion device.

EXPANSION DEVICE

The expansion device controls the flow of liquid refrigerant to the evaporator coil. Trane uses temperature controlled, (thermostatic) expansion valves (TXVs) as shown in Fig. 3. The TXV has two primary components: the valve body and the sensing bulb.

The valve regulates the flow of refrigerant to the evaporator coil. As refrigerant passes through the valve it is adiabatically expanded (that is, without the addition of enegry). This causes the pressure and temperature of the liquid refrigerant to drop, making it suitable for cooling the air.

The amount of refrigerant fed to the coil is based on the cooling load of the supply air and the resultant amount

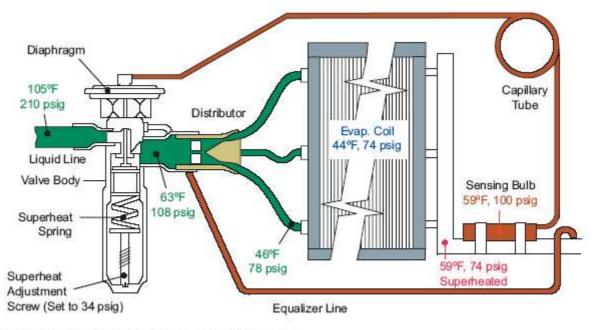


FIG. 3 -THERMAL REXPANSION VALVE (TXV) COMPONENTS

of superheat created. As the cooling load increases, the liquid refrigerant absorbs more heat and evaporates more quickly. This means that more of the evaporator coil is available to superheat the refrigerant vapor and it leaves the coil at a higher temperature. Conversely as the cooling load decreases, the liquid refrigerant does not evaporate as quickly so less superheating occurs nd the refrigerant leaves the coil at a lower temperature.

The sensing bulb attached to the valve is charged with a mix of liquid and vapor refrigerant. this refrigerant must be the same type as that in the system. The refrigerant vapor in the sensing bulb exerts pressure on a diaphragm in the valve body, which causes the valve to open or close.

As the temperature of the superheated suction gas leaving the evaporator rises due to an increase in the cooling load, refrigerant in the sensing bulb evaporates increasing the pressure on the valve diaphragm. The increased pressure causes the valve to open and allows more refrigerant to flow into the coil to meet the higher cooling demand. When the temperature of the suction gas drops due to a decrease in the cooling load the gas in the sensing bulb condenses reducing its pressure on the valve diaphragm. This allows the valve to restrict the flow of refrigerant into the coil until the lowet cooling demand is adequately met.

The valve body contains a superheat spring that keeps everything in balance. By turning a screw in the bottom of the valve the spring can be set for a certain amount of superheat. For example, if the superheat spring is set for 15°F of superheat it will exert a pressure on the valve equal to the pressure the vaporized gas in the sensing bulb will xert on the valve diaphragm when the suction gas is superheated by 15°F. The equalizer line is used to prevent the pressure drop that occurs across the distributor and DX coil from affecting the operation of the expansion valve.

APPLICATION DESIGN CONDITIONS

Before selecting equipment, you must first establish these basic working parameters:

- The design cooling load
- The design outdoor air temperature
- The refrigerant saturated suction temperature

The design-cooling load is typically found on the job schedule. The design outdoor air temperature may also be listed on the job schedule. If the saturared suction temperature (SST) is not known, assume it is in the range of 40° F to 45° F. This represents the standard industry approach.

However, if actual systems operate beyond the recommended SST, high or low pressure cutouts will be activated and point to possible misapplication RAUP Condensing Unit Performance Information

When using a pre-engineered condensing unit, you can use ratings such as those shown in Fig. (RAUP R22), R407C Performance Data) to determine which condensing unit size will satisfy the cooling capacity of the system.

Choose a TXV that matches the tonnage of the evaporator coil it serves

It is recommended to and install one TXV per distributor.

For larger coil capacities, refer to the quantity of circuits in the AHU and total AHU tonnage to determine the number and tonnage & quantity of the TXV

TXV Qty. listed here is based on the assumption that the Evaporator has similar circuits to the RAUP

TXV Selection when matched with an AHU, should be based primarily on the final system capacity

It is critical that the RAUP circuts are equal or less than the AHU circuits

Correction Factor

Altitude Correction Multiplier For Capacity

Altitude (Ft.)	2,000	4,000	6,000	8,000	10,000
Condensing Unit Only	0.982	0.960	0.933	0.902	0.866
Condensing Unit / Air Handling Unit Combination	0.983	0.963	0.939	0.911	0.881
Condensing Unit With Evaporator	0.986	0.968	0.947	0.921	0.891

Cooling Capacity Correction Factor for CFM/CMH, other than standard

%CFM.CFM Variation From Rated	-20	-10	Rated	+10	+20
Total Cooling Capacity Multiplier	0.96	0.98	1.00	1.02	1.03
Sensible Heat Multiplier	0.91	0.96	1.00	1.04	1.08

Note: Calculate total nd sensible capacities in MBH and multiply by above factors to determine revised capacities.

Figure 1. Effect of coil face area on cooling capacity (6-row coil, 500 fpm face velocity)

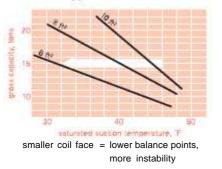
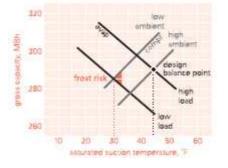



Figure 2. Effect of ambient conditions and load on an air handler and condensing unit

DX Coil Performance Information

The direct expansion (DX) evaporator coil can be selected using the CLCP DX TOPSS program. To select the DX coil, you enter the cooling capacity or the leaving air temperature, and the saturated suction temperature (SST)

SSTs up to 50°F may be be acceptable for certain applicatons but humidity control becomes difficult at these higher SSTs. Likewise design SSTs below 34°F, SST can result in ice building up on the evaporator during periods of reduced load and should be avoided unless provisions are made for periodic coil defrost.

System max SST recommended is 48°F to reduce high pressure risk.

BALANCE POINT CROSS PLOT ILLUSTRATION

A precise system balance point can be obtained by plotting the capacity of the DX coil versus the capacity of the condensing unit ay various saturated temperatures. The point at which the two capacity lines intersect is the system balance point.

The initial balance point of the system occurs where the saturated temperature of the evaporator, intersects with the condensing unit's capacity. Thus, the condensing unit SST and the DX coil SST are equal at this initial balance point without any consideration for suction line penalty.

Missized air handler. It's common pratice to base the selection of the air handler for a split DX system is at a coil face velocity of 500 fpm and then to match coil capacity (with face area now limited by the size of the air-handler cabinet) with the required load. With the trend towards applications that require less airflow per cooling ton, this sizing method leads to the selection of smaller air handlers. Providing the required cooling capacity with a smaller air handler demands colder suction temperature (Figure 1).

As the cooling load decreases and/or the ambient temperature drops the capacities of the compressor and evaporator balance at ever lower suction pressures and temperatures. At such conditions, system operation can become unstable and may eventually result in coil frosting and compressor flooding (Figure 2).

When choosing a DX air handler, it's critical to first determine a coil size that allows the evaporator and compressor capacities to balance at an appropriate suction temperature and pressure. You can then pick an air handler that fits the coil. This approach may appear to result in an oversized air handler, but it achieves a match of indoor and outdoor DX components that can operate more reliably at part-load conditions.

By contrast, when choosing an air handler for a chilled water system, the initial objective is to pick the smallest possible air handler that won't caause water carryover.

Table 1 demonstrates an outcome of these sizing strategies: For comparable systems, the chilled-water air handler usually is smaller-and therefore less costly-than the DX air handler.

General Selection Guide for CLCP DX Coil

Standard Mixed Air Application, where the On-Coil sees a constant air temperature.

- 1. Determine the available condensing unit (CU) capacities the required design capacity. [do not immediately start selecting the Evaporator on CLCP-TOPSS, as direct expansion refrigerant systems are limited to available CU capacity modules, unlike CW AHUS].
- Select the closest CU model/s that match the system design capacity, after reviewing the CU capacity curves at the design ambient.
- 3. Select a capacity that corresponds to the closest design capacity that falls within an acceptable SST of 36F to 48F.
- Input this capacity and the SST into CLCP TOPSS to get your Evaporator coil selection.
- 5. This method allows you to run selections more efficiently to get actual system capacity available w/o the need to plot the evaporator curve, that would required 2 or more plots to form the evaporator plot.

100% Fresh Air Application, in tropical climates.

- 1. Same steps needed as above, EXCEPT that <u>2 selections are</u> required to ensure design and lower ambient temperatures are catered for.
- As the evaporator capacity is now dynamic, subject to ambient condi tions, 2 selections on the same coil is needed. One for design ambient and another for the lowest ambient the evaporator will experience. [eg. 35/29C, and 27/25C]

- 3. The higher/design ambient on the evaporator needs to be plotted against the design ambient condensing curve.
- 4. The lower ambient temperature on the evaporator, needs to be plotted against the CU lowest ambient the region experiences [same db temp at the evaporator], using the selected coil rows/fpf output in the design capacity selection output.
- 5. Same SST ranges need to be considered to ensure no high pressure or frosting/liquid refrigerant flood back issues.

100% FA Selections in 4 season climates.

 Where the system experiences high ambient over 40C and/or low ambient below 15C, there is a need for high ambient options and low ambient options.

R407C Selections

1. CLCP's TOPSS Software is now equipped with R407C data for you to select R407C coils.

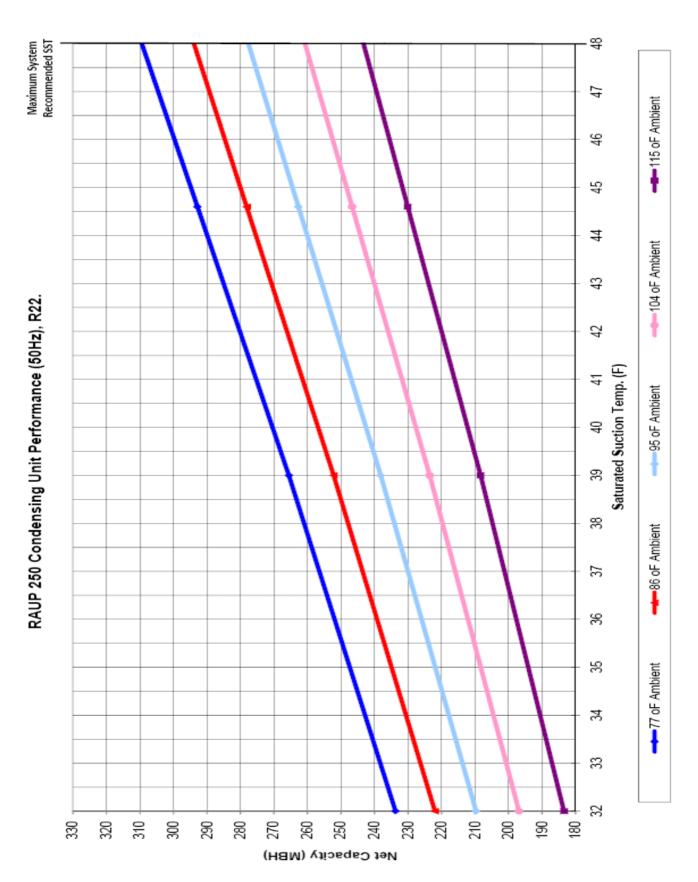
PIPING CONNECTIONS

It is extremely important to know the quantity of FD coil refrigerant distributor units available once the selection is made to ensure yo have the right number of piping connections to the condensing units. Many unnecessary, coil replacements has been initiated due to wrong coil selections on the evaporator that was incompatible with the condensing unit circuits.

- 1. The number of refrigerant distributor units on the evaporator (indoor coil) MUST BE EQUAL OR MORE than the CU circuits. Standard AHU FD Coils have the distributor quantity input in TOPSS.
- 2. For special casing sizes, check with the factory for distributor quantity.

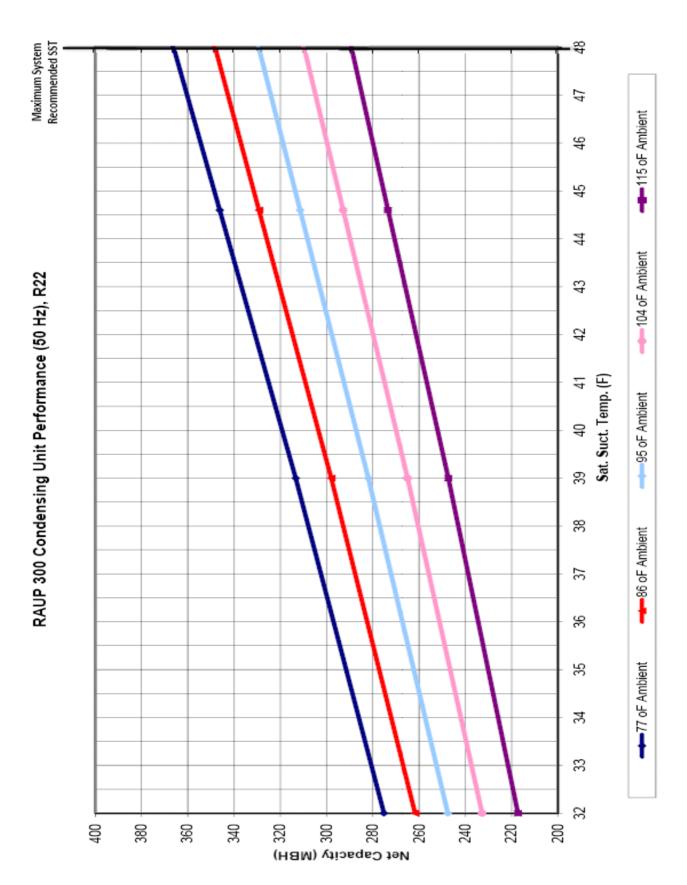
- 3. Manifolding of CU's circuits NOT ALLOWED
- Manifolding of the indoor unit's circuits to match up with a smaller number of condenser unit circuits is permitted.
- One TXV per Distributor unit is recommended, for field installed TXV systems.

Design Special for CLCP-DX Coil:

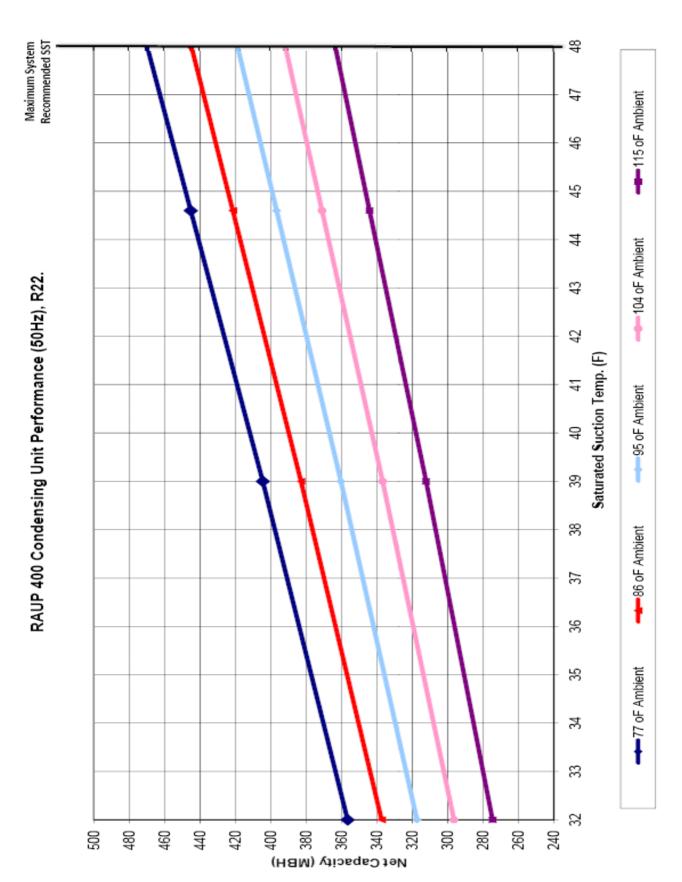

- 1. FD Coil fitted with TXV by factory (called as DX Coil in CLCP Topss), are available as Design Special.
- Distributor/TXV qty shall be optimized by factory under design special process, to simplify the connection between CLCP and CU, (RAUP/TTA), in field.
- 3. Sizing of the TXV should be based on the system capacity per capacity per condensing unit circuit,.
- TXV qty MUST equal or double that of that of the Condensing Unit's circuit number.
- 5. The R22/R407C TXVs used in CLCP are based on a nominal RT, and the modulation range is between 40% - 120%. For example, a nominal 15RT TXV will be able to operate between 6RT and 15RT capacities.
- Always specify the following in the Factory Order Report for CLCP Design Special:
 - 1.CLCP's matching CU model & qty, [eg. 2xRAUP400 to CLCP 030]
 - 2.TXV Size and qty, need to specified in the FOR as a design special.
 - 3. Refer to CLCP Price Book for available TXV sizes.

NOTE : As these are customized units, superheat setting is recommended during T&C on TXVs. Trane CU Models Reference:

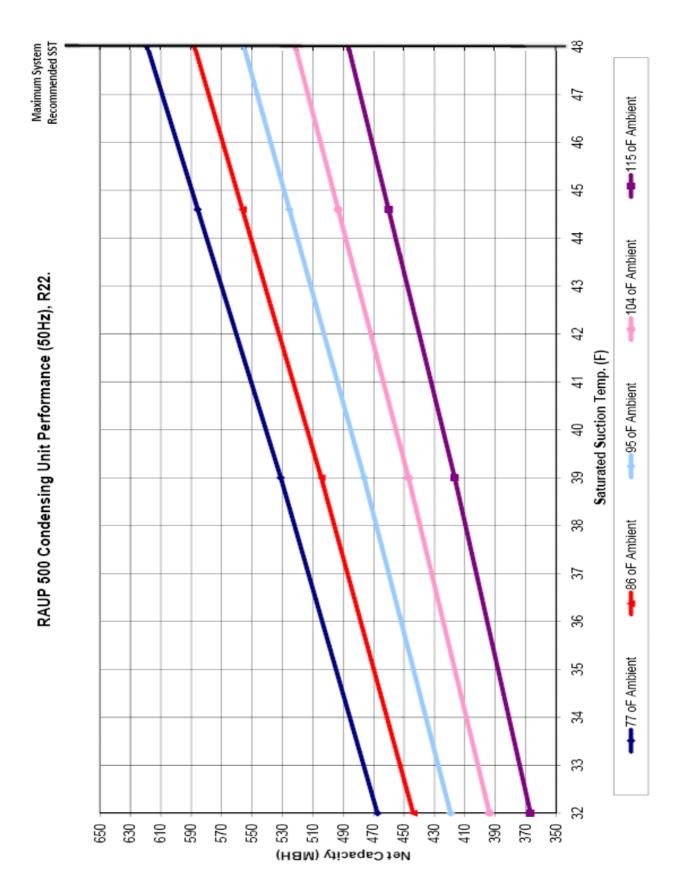
Trane Penang CU Model	Nos of Circuits per unit	Refrigerant Type, available
RAUP250/300	1	R22 / R407c
RAUP400/500/600	2	R22 / R407c



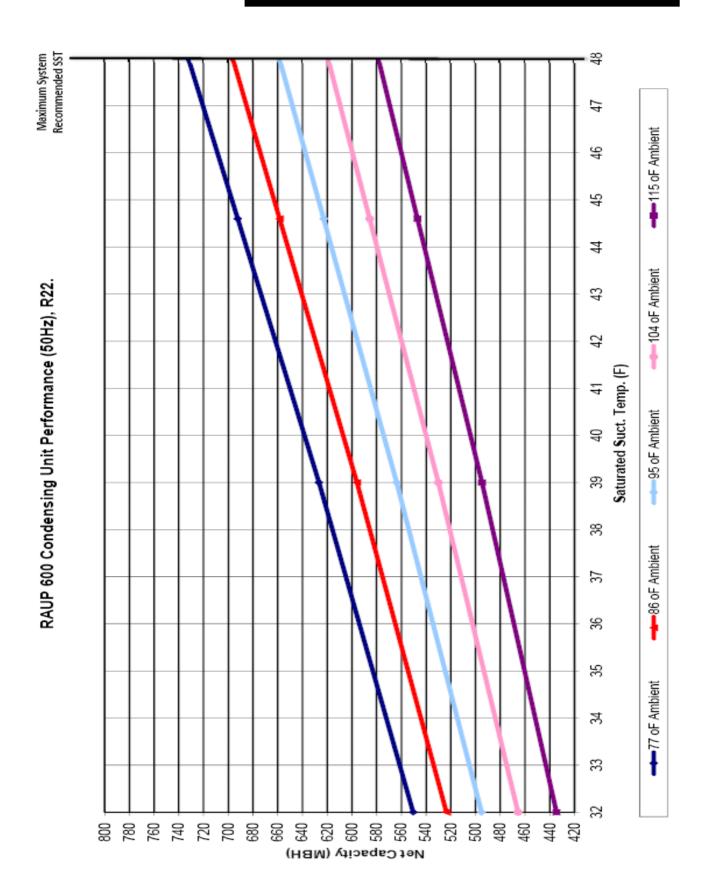
RAUP 250 Condensing Unit Performance R22 (50Hz)



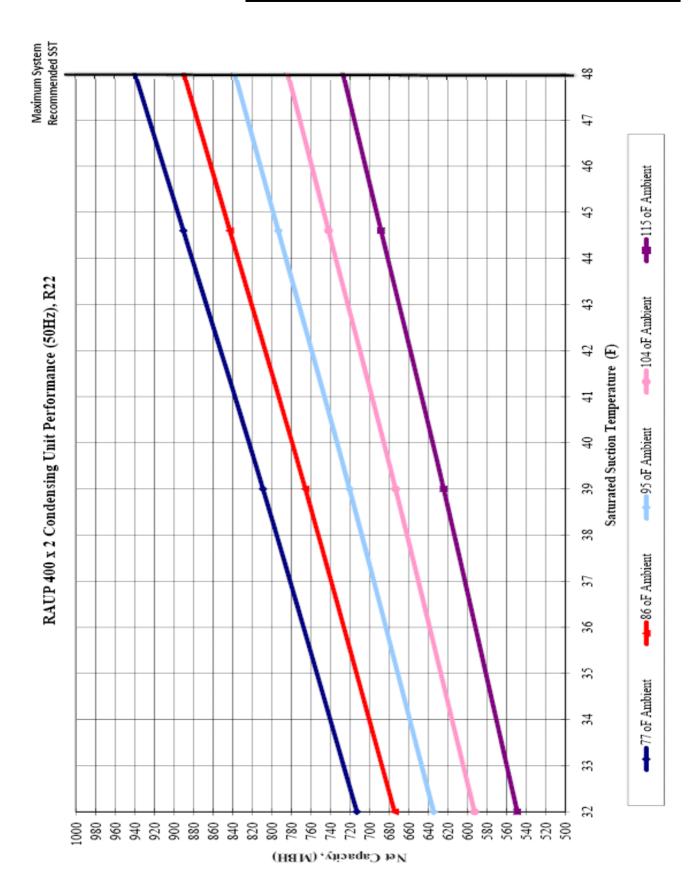
RAUP 300 Condensing Unit Performance R22 (50Hz)



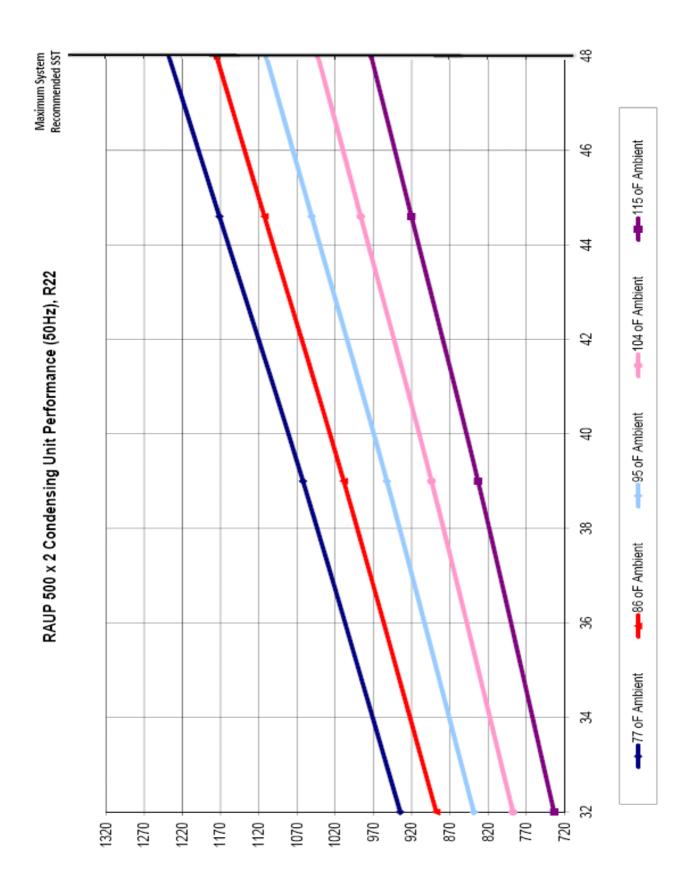
RAUP 400 Condensing Unit Performance R22 (50Hz)



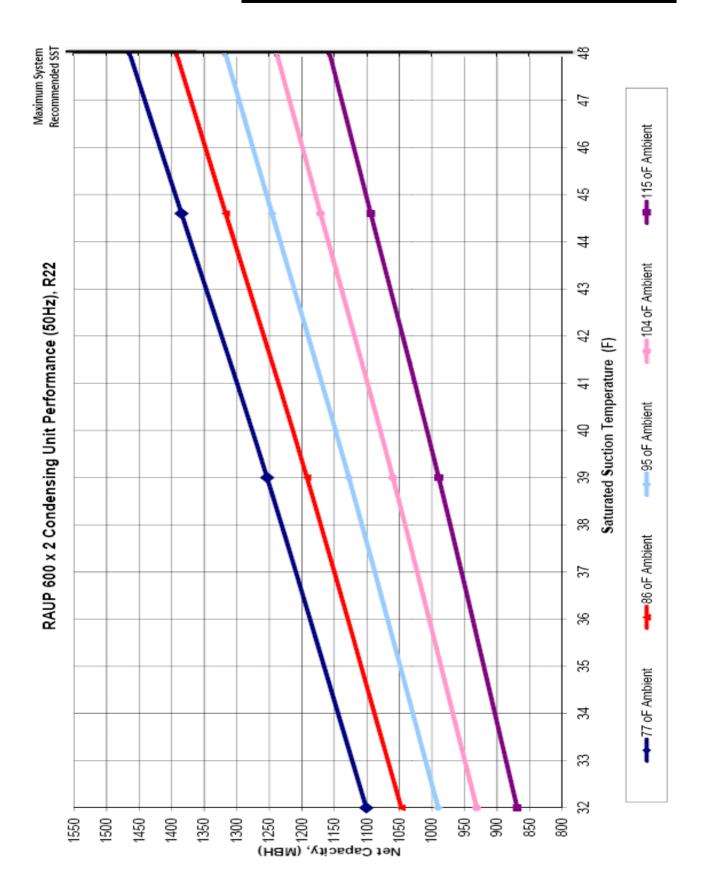
RAUP 500 Condensing Unit Performance R22 (50Hz)



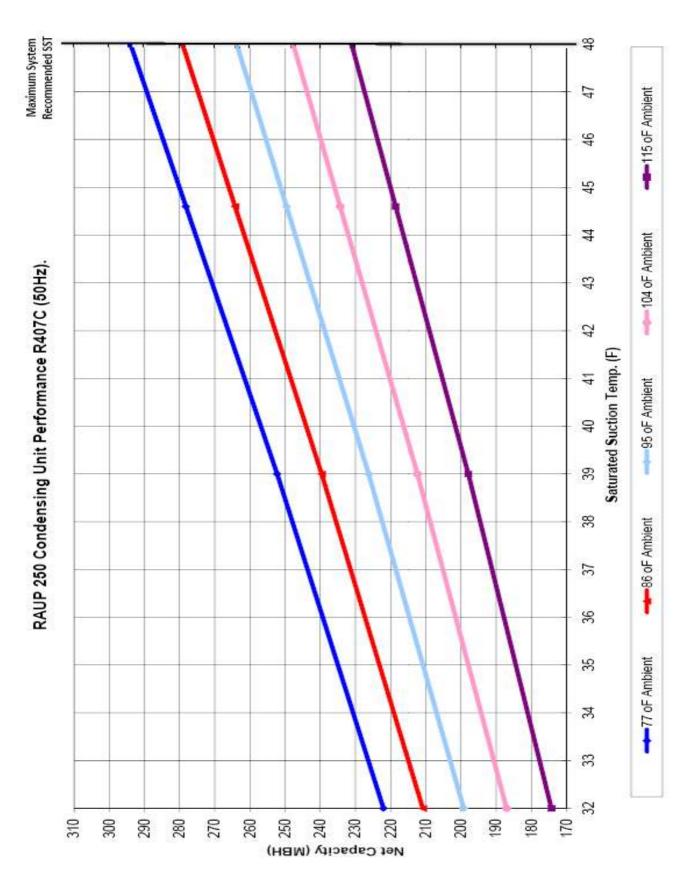
RAUP 600 Condensing Unit Performance R22 (50Hz)



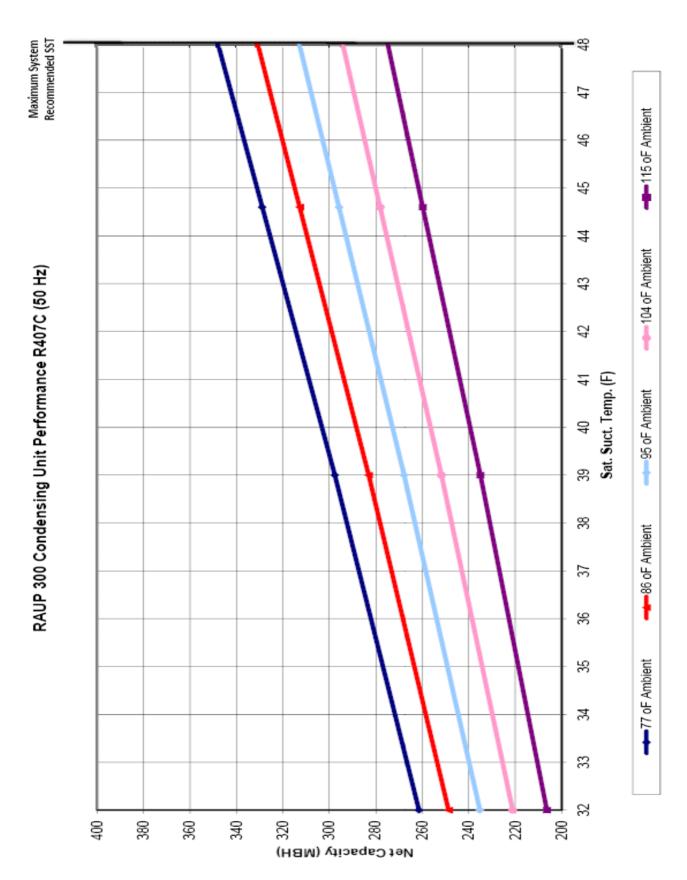
RAUP 400 x 2 Condensing Unit Unit Performance R22 (50Hz)



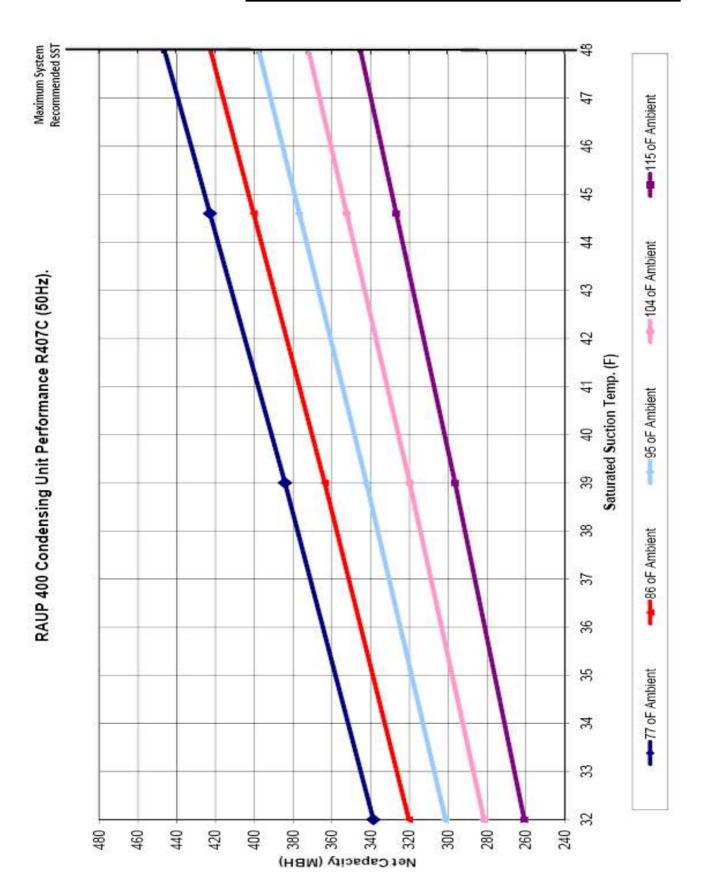
RAUP 500 x 2 Condensing Unit Performance R22 (50Hz)



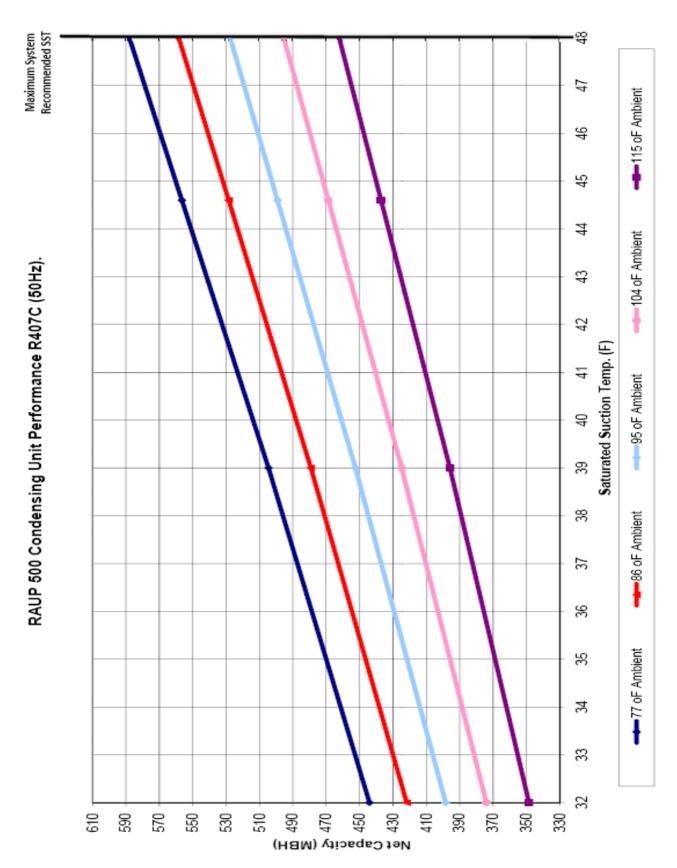
RAUP 600 x 2 Condensing Unit Performance R22 (50Hz)



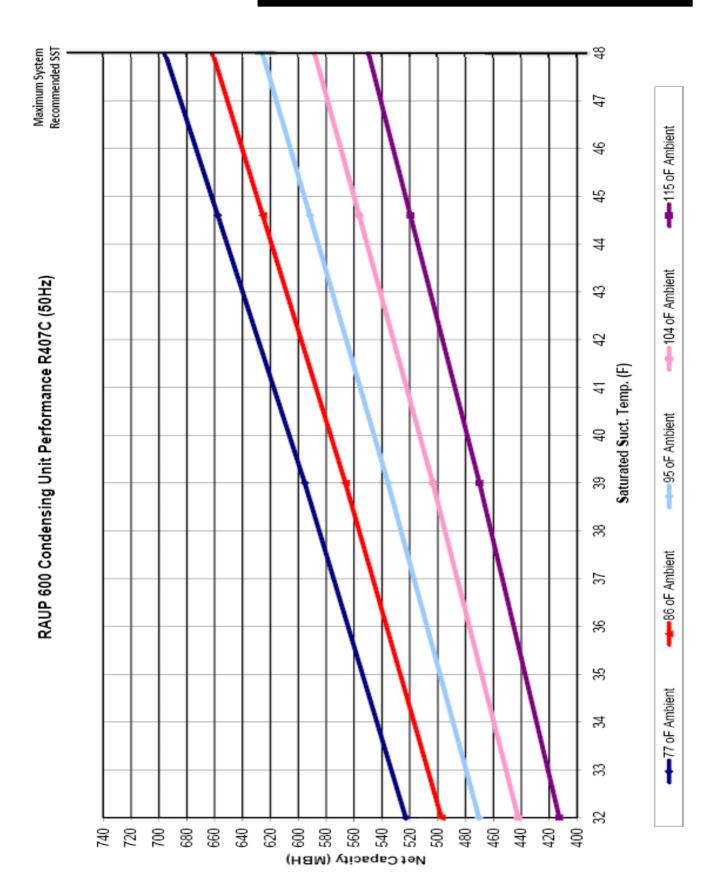
RAUP 250 Condensing Unit Performance R407C (50Hz)



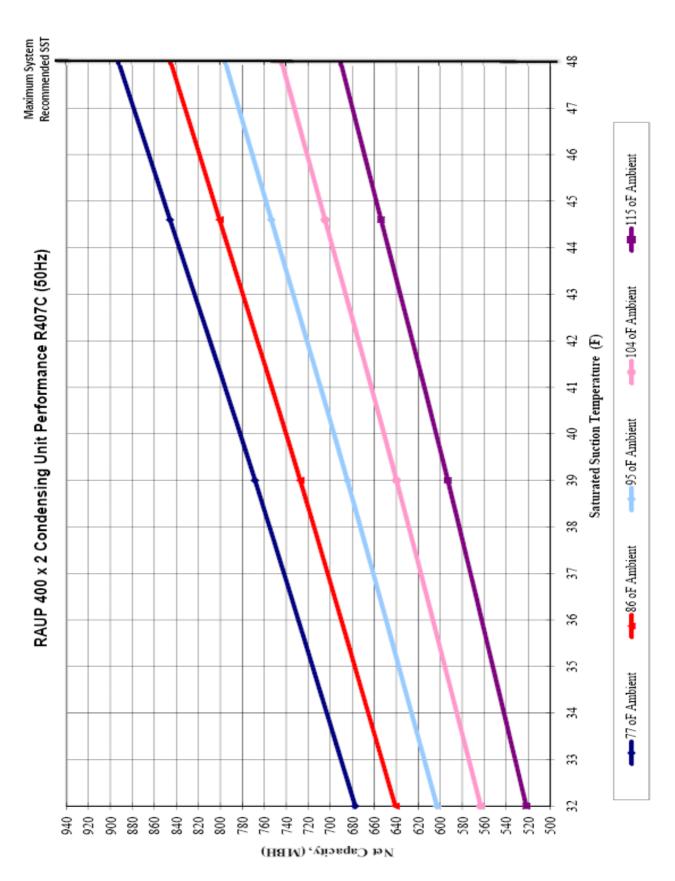
RAUP 300 Condensing Unit Performance R407C (50Hz)



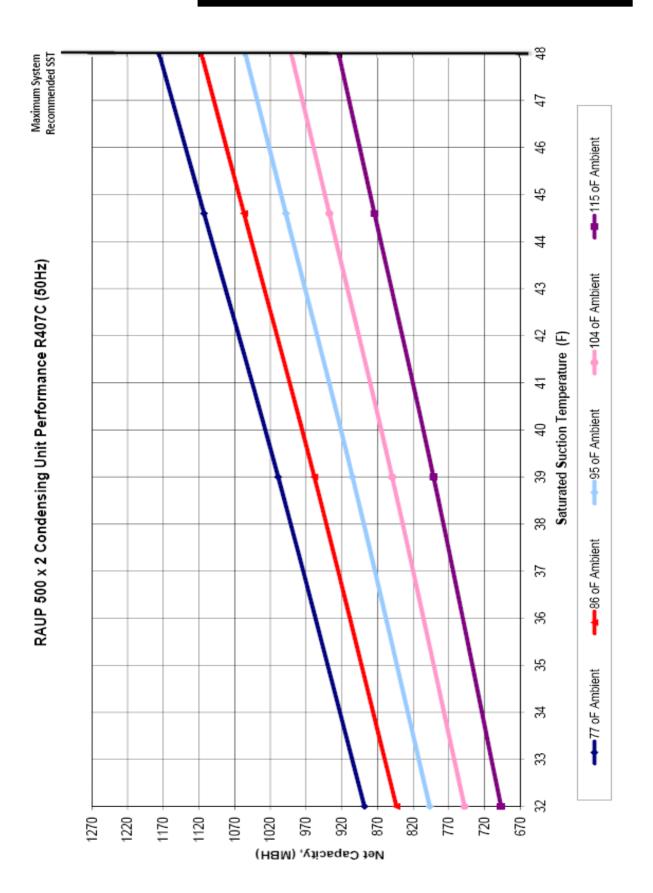
RAUP 400 Condensing Unit Performance R407C (50Hz)



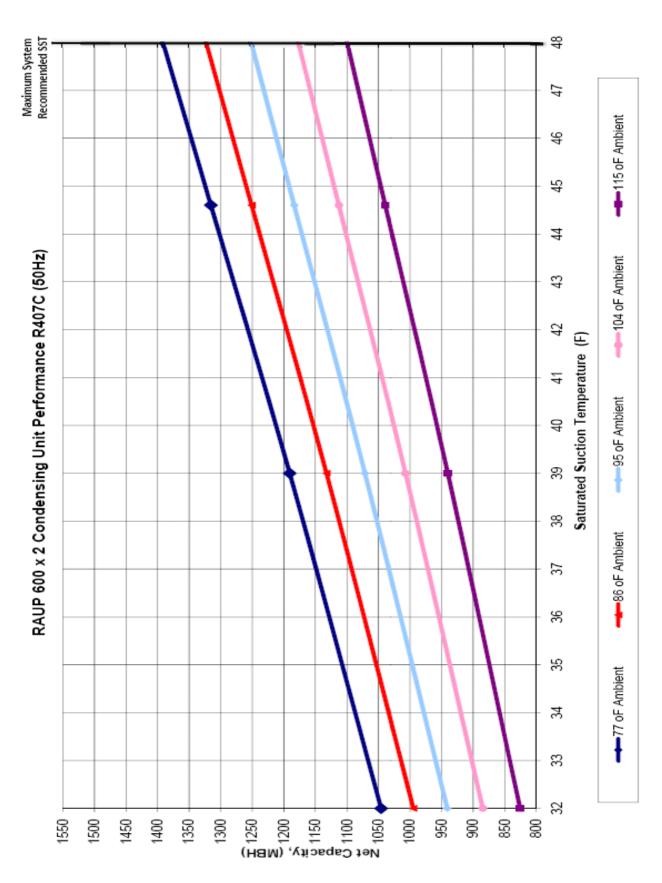
RAUP 500 Condensing Unit Performance R407C (50Hz)



RAUP 600 Condensing Unit Performance R407C (50Hz)



RAUP 400 x 2 Condensing Unit Performance R407C (50Hz)



RAUP 500 x 2 Condensing Unit Performance R407C (50Hz)

RAUP 600 x 2 Condensing Unit Performance R407C (50Hz)

RAUP Performance Data - R22 (50Hz)

Gross Cooling Capacities - RAUP 250 R22 Refrigerant

46 C (115 F)

46 C (115 F)

46 C (115 F)

46 C (115 F)

			Outdoor Ambient Temperature											
Saturated Suction		25 C (77 F)		30 C (86 F)		35 C (95 F)		40 C (104 F)		46 C (115 F)				
Temperature		Capacity		Capacity		Capacity		Capacity		Capacity				
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)			
0	32	68.4	234	65.0	222	61.4	210	57.6	197	53.7	183			
2	36	73.7	252	70.0	239	66.1	226	62.0	212	57.8	197			
4	39	77.8	266	73.9	252	69.7	238	65.6	224	61.0	208			
6	43	83.3	285	79.1	270	74.7	255	70.2	240	65.4	223			
8	46	87.6	299	83.2	284	78.6	268	73.8	252	68.8	235			
10	50	93.5	319	88.8	303	83.9	286	78.8	269	73.5	251			

7C SST / 35C Amb. 76.7 261.8175 25.25

Gross Cooling Capacities - RAUP 300 R22 Refrigerant

Outdoor Ambient Temperature Saturated Suction 25 C (77 F) 30 C (86 F) 35 C (95 F) 40 C (104 F) 46 C (115 F) Capacity Temperature Capacity Capacity Capacity Capacity (MBH) (MBH) (MBH) (MBH) (MBH) (kw) С F (kw) (kw) (kw) (kw) 217 32 80.6 275 76.6 262 72.5 248 68.2 233 0 63.6 2 36 86.9 297 82.6 282 78.2 267 73.5 251 68.6 234 4 39 91.7 313 87.3 298 82.6 282 77.6 265 72.4 247 93.6 88.6 303 83.0 284 77.8 266 6 43 98.4 336 320 354 98.5 336 93.2 318 87.6 299 81.8 280 46 103.6 8 10 50 110.7 378 105.2 359 99.5 340 93.6 320 87.4 299

> 7C SST / 35C Amb. 90.9 310.38 28.9

Gross Cooling Capacities - RAUP 400 R22 Refrigerant

					nt Tempera	ture					
Saturated Suction		25 C (77 F)		30 C (86 F)	35 C (9	35 C (95 F)		104 F)	46 C (115 F)	
Temperature		Capacity		Capa	acity	Capa	Capacity		icity	Capacity	
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	104.4	357	98.8	337	92.9	317	86.8	296	80.4	275
2	36	112.3	384	106.3	363	100.0	342	93.5	319	86.6	296
4	39	118.4	405	112.1	383	105.5	362	98.6	337	91.4	312
6	43	126.8	433	120.0	410	113.0	386	105.6	361	98.0	335
8	46	133.2	455	126.1	431	118.7	405	111.0	379	103.0	352
10	50	141.8	484	134.3	459	126.4	432	118.3	404	109.8	375

7C SST / 35C Amb. 115.8 395.535 39.5

Gross Cooling Capacities - RAUP 500 R22 Refrigerant

						Outdo	or Ambier	nt Tempera	ture		
Saturated	d Suction	25 C (77 F)	30 C (86 F)	35 C (95 F)	40 C (104 F)	46 C	(115 F)
Temp	erature	Capa	icity	Capa	acity	Сара	city	Capa	icity	Cap	acity
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	136.9	468	130.0	444	122.8	419	115.3	394	107.4	367
2	36	147.4	503	140.0	478	132.2	452	124.1	424	115.6	395
4	39	155.5	531	147.7	504	139.5	476	130.9	447	122.0	417
6	43	166.6	569	158.3	541	149.5	511	140.3	479	130.9	447
8	46	175.2	599	166.4	568	157.2	537	147.6	504	137.6	470
10	50	186.9	638	177.5	606	167.7	573	157.5	538	147.0	502
			7C S	ST / 35C A	mb.	153.3	523.635	50.5			

153.3 523.635

Gross Cooling Capacities - RAUP 600 R22 Refrigerant

						Outdo	or Ambier	nt Tempera	ture		
Saturated	d Suction	25 C (77 F)	30 C (86 F)	35 C (9	95 F)	40 C (104 F)	45 C	(113 F)
Temp	erature	Capa	acity	Capa	acity	Capa	city	Capa	icity	Cap	acity
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	161.2	550	153.3	524	145.0	495	136.3	466	127.2	435
2	36	173.8	594	165.2	564	156.3	534	147.0	502	137.2	469
4	39	183.5	627	174.5	596	165.1	564	155.2	530	144.9	495
6	43	196.9	672	187.2	640	177.2	605	166.0	567	155.5	531
8	46	207.2	708	197.0	673	180.4	637	175.2	599	163.7	559
10	50	221.3	756	210.4	719	199.0	680	187.2	639	174.9	597

7C SST / 35C Amb. 181.8 620.76 57.8

= Grosss Total Capacity Capacity

P.I. HP

1 P

=

=

Compressor Power Input rated at 400V/50Hz High Pressure Gauge Low Pressure Gauge =

Pressures and power output here are calculated and subject to variation depending on site conditions.

46 C (115 F)

RAUP Performance Data - R407C (50Hz)

Gross Cooling Capacities - RAUP 250 R407C Refrigerant

					Outd	oor Ambie	nt Tempera	ature			
Saturate	d Suction	25 C (77 F)	30 C (86 F)	35 C (9	95 F)	40 C (104 F)	46 C	(115 F)
Temp	erature	Capa	acity	Capa	city	Capa	city	Capa	icity	Cap	acity
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	65.0	222	61.7	211	58.3	199	54.8	187	51.0	174
2	36	70.0	239	66.5	227	62.8	215	58.9	201	54.9	188
4	39	73.9	252	70.2	240	66.2	226	62.2	212	57.9	198
6	43	79.2	270	75.2	257	71.0	243	66.7	228	62.2	212
8	46	83.2	284	79.0	270	74.7	255	70.1	239	65.4	223
10	50	88.8	303	84.3	288	79.7	272	74.8	256	69.8	239

7C SST / 35C Amb. 248.726625 72.8 25.25

Gross Cooling Capacities - RAUP 300 R407C Refrigerant

Outdoor Ambient Temperature Saturated Suction 25 C (77 F) 30 C (86 F) 35 C (95 F) 40 C (104 F) 46 C (115 F) Temperature Capacity Capacity Capacity Capacity Capacity (MBH) F (MBH) (kw) (MBH) (MBH) (MBH) С (kw) (kw) (kw) (kw) 0 32 76.6 261 72.8 249 68.9 235 64.8 60.4 206 221 36 82.5 282 78.5 268 74.2 254 69.8 238 65.2 223 2 4 39 87.2 298 82.9 283 78.4 268 73.7 252 68.8 235 6 43 93.5 319 88.9 304 84.1 287 78.9 269 73.9 252 8 46 98.4 336 93.6 320 88.5 302 83.2 284 77.8 266 105.1 359 83.1 10 50 100.0 94.5 304 284 341 323 88.9

> 86.3 294.861 28.9 7C SST / 35C Amb.

Gross Cooling Capacities - RAUP 400 R407C Refrigerant

					Outd	oor Ambie	nt Tempera	ature			
Saturate	d Suction	25 C (77 F)	30 C (86 F)	35 C (9	95 F)	40 C (104 F)	46 C	(115 F)
Temp	erature	Capa	acity	Capa	acity	Capa	city	Capa	icity	Cap	acity
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	99.2	339	93.8	320	88.3	301	82.5	282	76.4	261
2	36	106.7	364	101.0	345	95.0	325	88.8	303	82.3	281
4	39	112.5	384	106.5	364	100.2	342	93.7	320	86.8	297
6	43	120.4	411	114.0	389	107.3	367	100.3	343	93.1	318
8	46	126.5	432	119.8	409	112.7	385	105.4	360	97.8	334
10	50	134.7	460	127.6	436	120.1	410	112.4	384	104.3	356

7C SST / 35C Amb. 110.0 375.75825 39.5

Gross Cooling Capacities - RAUP 500 R407C Refrigerant

					Outd	oor Ambie	nt Tempera	ature			
Saturated	Suction	25 C (77 F)	30 C (86 F)	35 C (9	95 F)	40 C (104 F)	46 C	(115 F)
Tempe	erature	Capa	icity	Capa	acity	Capa	city	Сара	icity	Cap	oacity
С	F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
0	32	130.0	444	123.5	422	116.7	398	109.5	374	102.1	349
2	36	140.0	478	133.0	454	125.6	429	117.9	403	109.8	375
4	39	147.7	505	140.3	479	132.5	453	124.4	425	115.9	396
6	43	158.3	541	150.4	514	142.0	485	133.3	455	124.3	425
8	46	166.5	569	158.1	540	149.3	510	140.2	479	130.7	447
10	50	177.6	606	168.6	576	159.4	544	149.7	511	139.7	477

7C SST / 35C Amb. 145.7 497.45325

Gross Cooling Capacities - RAUP 600 R407C Refrigerant

				Out-d	oor Ambia	nt Tompor	aturo			
				Ouia	Sidma 100	nt rempera	alure			
Suction	25 C (77 F)	30 C (86 F)	35 C (9	95 F)	40 C (*	104 F)	46 C (115 <u>.</u> F)
rature	Capa	acity	Capa	city	Capa	city	Capa	icity	Cap	acity
F	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)	(kw)	(MBH)
32	153.1	523	145.6	497	137.7	470	129.5	442	120.9	413
36	165.1	564	157.0	536	148.5	507	139.6	477	130.3	445
39	174.3	595	165.8	566	156.8	536	147.4	504	137.6	470
43	187.1	639	177.9	608	168.3	575	157.7	539	147.7	505
46	196.9	672	187.2	639	177.1	605	166.5	569	155.5	531
50	210.2	718	199.9	683	189.1	646	177.8	607	166.1	567
	rature F 32 36 39 43 46	rature Capa F (kw) 32 153.1 36 165.1 39 174.3 43 187.1 46 196.9	Capacity F (kw) (MBH) 32 153.1 523 36 165.1 564 39 174.3 595 43 187.1 639 46 196.9 672	Capacity Capa F (kw) (MBH) (kw) 32 153.1 523 145.6 36 165.1 564 157.0 39 174.3 595 165.8 43 187.1 639 177.9 46 196.9 672 187.2	Suction 25 C (77 F) 30 C (86 F) rature Capacity Capacity F (kw) (MBH) (kw) (MBH) 32 153.1 523 145.6 497 36 165.1 564 157.0 536 39 174.3 595 165.8 566 43 187.1 639 177.9 608 46 196.9 672 187.2 639	Suction 25 C (77 F) 30 C (86 F) 35 C (87 F) rature Capacity Capacity	Suction 25 C (77 F) 30 C (86 F) 35 C (95 F) rature Capacity Capacity Capacity Capacity F (kw) (MBH) (kw) (MBH) (kw) (MBH) 32 153.1 523 145.6 497 137.7 470 36 165.1 564 157.0 536 148.5 507 39 174.3 595 165.8 566 156.8 536 43 187.1 639 177.9 608 168.3 575 46 196.9 672 187.2 639 177.1 605	Capacity Capacity	Suction 25 C (77 F) 30 C (86 F) 35 C (95 F) 40 C (104 F) rature Capacity Capacity Capacity Capacity Capacity F (kw) (MBH) (kw) (MBH) (kw) (MBH) (kw) (MBH) 32 153.1 523 145.6 497 137.7 470 129.5 442 36 165.1 564 157.0 536 148.5 507 139.6 477 39 174.3 595 165.8 566 156.8 536 147.4 504 43 187.1 639 177.9 608 168.3 575 157.7 539 46 196.9 672 187.2 639 177.1 605 166.5 569	Suction 25 C (77 F) 30 C (86 F) 35 C (95 F) 40 C (104 F) 46 C (rature Capacity Capacity

7C SST / 35C Amb. 172.7 589.722 57.8

Grosss Total Capacity

=

 Capacity
 =
 Grosss rotal Capacity

 P.I.
 =
 Compressor Power Input rated at 400V/50Hz

 HP
 =
 High Pressure Gauge

 LP
 =
 Low Pressure Gauge

 Pressures and power output here are calculated and subject to variation depending on site conditions.

30

40.5

46 C (115 F)

RAUP - TTV System

For ease of selection, 5 pre selected systems with indoor units TTV are available as in the following performance table

		ΡŇ	শ্র্ম -	8 R 8 ·	图 85 图 ·	444.	55 85 ·		RN PI	888.	西的 市、	888°	444 ·	848.	
			89 tis 88	866	888	109 113 119	14 15 16		H KW	878	ta 25 G	8888	101 101	140 134	
	9	MBH M	200 191 191	240 230 228	908 294 ·	- 20 M 23	505 480 481	104 (40)	MBH	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	228 219 217	8 R 8	1965 - 1966 -	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		88	88E	282	割白湯	8 8 5	語な問		NN N	882	R 28 28	₿₿Ë	5 <u>5</u> 28	萨爾茲	
		MBH	82.52.52 ·	206 239 317	ege 626 66e ·	484 487 514	95 86 EZ ·		MBH TC	227 249 ·	12 100 100	341 380 381	441 483 483	- 536 536 536	
	h	αŇ	555,	গ্র ম গ্র	建筑建,	ଟ୍ଟ୍ଟ୍	888.		щŅ	222.	ধ হয় শ	波波波·	444.	888.	1
		E N	8 IS 8	883	888	18 18 18	20 2 5 2 5		RN H	876	888	888	3 2 2	14 12 12 13 14 14 14 15 14 14 15 14 14 15 15 14 15 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
	88	MBH	205 195 197	247 237 237	500 명 ·	416 385 387	- 493 493	88	SCH MBH	8月日 -	72 52 53	88 R 88 ·	98. 55 ·	481 124 188	
73		NN.	27. PP. 10	888	8 H H	57 (ž. 52	51 28 EE		kW	222	2 8 R	49 8	観話道	155 175 183	
Outdoor Ambient F (C)		MBH	- 23 80 FZ	10 m m m m m m m m m m m m m m m m m m m	- 401 - 421	490 515 641 515	- 88 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Outdoor Ambient F (C)	MBH TC	- 284 247	98.00 H ·	동품을·	465 514 514	188 188 289	
door Am		₫Š	565 ·	888.	888 ·	888.	888.	door Am	ЧŇ	6 E 6 ·	888.	888.	ASA ·	경 참 상 ·	
0ut		H NA	885	258	88 SS 68	<u>888</u>	帮き	Out	SCH KW	8 is is	Rists	16 16	119 114 114	147 142 141	
	8	MBH	212 206 ·	261 241 241	327 313 314	426 410 409	528 512 508	96 (30)	MBH	12 <u>15</u> 15 v	228 229 1822 -	311 298 208	405 390 -	- 486 486	eat.
		KW.	8 8 3	8538	117 128 129	医强度	84 66 FR		kW.	22.25	98 88 GG	13 13 13	97 92 92 97 92 92	5 8 F	n motor h
		MBH	14 E. S	197 208 218 233	399 423 442	513 540 908	· 866		MBH TC	52 M 62 ·	187 197 - 207	- 420 420	488 540 -	· 524	iorator fai
	H	чŅ	t: ± ± ↓	其名花石	888.	888 ·	육 육 육 ·		нŅ	555 ·	なおおお	888.	m gg m ·	888 ·	n for evag
		×	ಪಹಹ	***	8 % S	888	<u>部 改 祖</u>		¥N,	5 8 8	* 3 3	888	118 118	151 141 143	deductio
	75 24	MBH	218 209 207	贫民产居	985 100 100	440 478 - 478	545 - 545 545 - 545 - 545	76 (24)	NBH	207 198 197	26.65 6 ·	£888.	418 397 389	615 493 488 ·	nclude a polate.
		W	883	3887	<u>888</u>	¢₿₿	8 8 8		kW	8 ≅ ≎	b ⊗ 8	5 <u>5</u> 5	85 tõ 18	128 128 138	oss and do not include a deduction for evaporator fan motor heat. ed. Da not extrapolata.
		NBH 12	92 80 1 7 -	73 73 73 73 73 73 73 73 73 73 73 73 73 7	419 444 462	88 H S ·	· 14 88		MBH TO	- 28 M 29	- 26 39 -	88 17 89 ·	- 550 580 582 582	588 ·	gross an wed. Do
			植物物的	9 월 9 8	₩₩₽ 8	92 単章 R	植物 間 23		ت س	9 월 9 8	推销 間刻	9 8 9 8	14 19 19 81	≌ ≞ ₽ R	is allo
~	Col Tam	EDB EMB	29,92	19 15 15 15 74 15 15 15	38.65	19 19 19 19	11111	VC Coll Tem	F C F	19 19 19 19 19	5365	19 19 19 19 19	29.22	19 19 12	All Capacities are gr Interpolation is allow
LA R2	δ		****	3 N N N	****	31258	<u>7888</u>	E S	_ · ·	3 X 5 8	****	3 X 5 R	****	31253	1
NCE DAT	Evap	<u> </u>	代で888	8843	また88	8843	₩≈88	CE DAT/		8842	まで 28 88	8833	代72888	8843	01665015
SYSTEM PERFORMANCE DATA R22	Indoor Unit	CFM	7780	9240 4.4	12120 5.7	15130 7.1	18080 8.5	ERFORMAN Indoor Unit	CFM	77B0 3.7	9240 4.4	12120 6.7	16130 7.1	18080 8.5	Gross Total Capacity Sanabla Capacity Power Imput, kW Compressors
SYSTEM P	Indoor	Chit.	TTV 260	TTV 300	TTV 400	TTV 500	TTV 800	SYSTEM PERFORMANCE DATA R407C hdoor hdoor Unit Evep. On Col	Unit	TTV 250	TTV 300	TTV 400	TTV 500	TTV 600	Gross Total Capacity Banabla Capacity Power Imput, KW Co
	Outdoor	Ē	RAUP 260	RAUP 300	RAUP 400	005 driv'e	RAUP 800	Outdoor	Inu	RAUP 250	RAUP 300	RAUP 400	RAUP 500	RAUP BOD	P SC T

Indoor Unit Fan Performance Data

vapor	ator Fo	r Perf	orman	ice - T	TV 250)											Englis	sh Un
								al Stat	ic Pres	sure (i								
	0.5		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2.0	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHI
6207	634	1.9	661	2.0	713	2.3	764	2.5	812	2.8	860	3.1	907	3.4	953	3.7	999	4.1
6760	662	2.2	687	2.3	736	2.7	784	2.8	831	3.1	876	3.5	919	3.8	961	4.1	1002	4.4
7760	725	3.1	748	3.3	791	3.5	834	4.0	876	4.2	917	4.4	958	4.8	999	5.2	1036	5.5
7880	732	3.2	755	3.4	798	3.6	840	4.1	881	4.3	922	4.6	963	4.9	1003	5.3	1040	5.7
9010	805	4.5	825	4.7	866	5.1	903	5.3	941	5.9	977	6.3	1013	6.5	1049	6.8	1065	7.1
9460	835	5.1	855	5.3	894	5.8	931	6.1	967	6.5	1001	7.0	1036	7.3	1071	7.7	1105	8.0
																		SI Ur
								al Stat	ic Pres	sure (F								
	125		149		199		249		299		349		398		448		498	
CMS	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	k٧٨
2.9	634	1.4	661	1.5	713	1.7	764	1.9	812	2.1	860	2.3	907	2.5	953	2.8	999	3.1
3.2	662	1.6	687	1.7	736	2.0	784	2.1	831	2.3	876	2.6	919	2.8	961	3.1	1002	3.3
3.7	725	2.3	748	2.5	791	2.6	834	3.0	876	3.1	917	3.3	958	3.6	999	3.9	1036	4.1
3.7	732	2.4	755	2.5	798	2.7	840	3.1	881	3.2	922	3.4	963	3.7	1003	4.0	1040	4.3
1.0							000	4.0	941	4.4	977	4.7	4040	4.9	1049	5.1	1065	5.3
4.3	805	3.4	825	3.5	866	3.8	903						1013					
4.5	835	3.8	855	4.0	894	4.3	931	4.6	967	4.4	1001	4.7 5.2	1013	4.9 5.4	1049	5.7	1105	
4.5 Std. Mo	835 tor is 5ł	3.8 hp (3.7	855 'kVV).	4.0 High \$	894 Static (4.3 Option		4.6	967								1105	6.0
4.5 Std. Mo	835	3.8 hp (3.7	855 'kVV).	4.0 High \$	894 Static (4.3 Option	931 is 10hp	4.6) (7.5k)	967	4.9	1001							6.0
4.5 Std. Mo	835 tor is 5ł	3.8 hp (3.7	855 'kVV).	4.0 High \$	894 Static (4.3 Option	931 is 10hp	4.6) (7.5k)	967 /V)	4.9	1001						1105	6.0
4.5 Std. Mo	835 tor is 51 ator Fo	3.8 hp (3.7	855 'kVV). forman	4.0 High \$	894 Static (TV 300	4.3 Option	931 is 10hp Extern	4.6) (7.5k)	967 M) ic Pres	4.9	1001 n. wg)		1036		1071		1105 Englis	6.0 sh Ur
4.5 Std. Mo	835 tor is 5 ator Fo 0.5	3.8 hp (3.7 r Perf	855 (kW). forman	4.0 High S I ce - T	894 Static (TV 30(0.8	4.3 Option D	931 is 10hp Extern 1.0	4.6) (7.5k) al Stat	967 //) ic Pres 1.2	4.9 sure (i	1001 n. wg) 1.4	5.2	1036	5.4	1071	5.7	1105 Englis	6.0
4.5 Std. Mo	835 tor is 5H ator Fo 0.5 RPM	3.8 hp (3.7 r Perf BHP	855 (kVV). (orman 0.6 RPM	4.0 High S ICE - T BHP	894 Static (TV 30(0.8 RPM	4.3 Option D BHP	931 is 10hp Extern 1.0 RPM	4.6) (7.5k) al Stat BHP	967 M) ic Pres 1.2 RPM	4.9 sure (i BHP	1001 n. wg) 1.4 RPM	5.2 BHP	1036 1.6 RPM	5.4 BHP	1071 1.8 RPM	5.7 BHP	1105 Englis 2.0 RPM	6.0 sh Ur BHF 5.1
4.5 Std. Mo Svapor CFM 7440	835 tor is 51 ator Fo 0.5 RPM 692	3.8 hp (3.7 r Perf BHP 2.7	855 (kVV). 0.6 RPM 717	4.0 High \$ ice - T BHP 2.9	894 Static (TV 300 0.8 RPM 762	4.3 Option D BHP 3.2	931 is 10hp Extern 1.0 RPM 807	4.6 (7.5k) al Stat BHP 3.5	967 M) ic Pres 1.2 RPM 851	4.9 sure (i BHP 3.8	1001 n. wg) 1.4 RPM 894	5.2 BHP 4.0	1036 1.6 RPM 936	5.4 BHP 4.4	1071 1.8 RPM 976	5.7 BHP 4.7	1105 Englis 2.0 RPM 1016	6.0 sh Ur BHF
4.5 Std. Mo Evapor CFM 7440 7880	835 tor is 51 ator Fo 0.5 RPM 692 719	3.8 np (3.7 r Perf BHP 2.7 3.1	855 (kVV). 0.6 RPM 717 743	4.0 High 9 ICE - T BHP 2.9 3.3	894 Static (TV 300 0.8 RPM 762 786	4.3 Option 0 BHP 3.2 3.5	931 is 10hp Extern 1.0 RPM 807 829	4.6 (7.5k) al Stat BHP 3.5 4.0	967 //) ic Pres 1.2 RPM 851 870	4.9 sure (i BHP 3.8 4.3	1001 n. wg) 1.4 RPM 894 911	5.2 BHP 4.0 4.5	1036 1.6 RPM 936 952	5.4 BHP 4.4 4.8	1071 1.8 RPM 976 992	5.7 BHP 4.7 5.2	1105 Englis 2.0 RPM 1016 1030	6.0 sh Ur BHF 5.1 5.6
4.5 6td. Mo Vapor CFM 7440 7880 9000	835 tor is 51 ator Fo 0.5 RPM 692 719 790	3.8 np (3.7 r Perf BHP 2.7 3.1 4.4	855 (kW). 0.6 RPM 717 743 810	4.0 High S Ince - T BHP 2.9 3.3 4.5	894 Static (TV 300 0.8 RPM 762 786 852	4.3 Option 0 BHP 3.2 3.5 5.0	931 is 10hp Extern 1.0 RPM 807 829 890	4.6) (7.5k) al Stat BHP 3.5 4.0 5.2	967 M) ic Pres 1.2 RPM 851 870 927	4.9 sure (i BHP 3.8 4.3 5.6	n. wg) 1.4 RPM 894 911 964	5.2 BHP 4.0 4.5 6.2	1036 1.6 RPM 936 952 1000	5.4 BHP 4.4 4.8 6.4	1071 1.8 RPM 976 992 1036	5.7 BHP 4.7 5.2 6.6	1105 Englis 2.0 RPM 1016 1030 1072	6.0 sh Ur BHF 5.1 5.8 7.0
4.5 Std. Mo Vapor CFM 7440 7880 9000 9240 10130	835 tor is 5 ator Fo 0.5 RPM 692 719 790 806	3.8 np (3.7 r Perf BHP 2.7 3.1 4.4 4.7	855 kW). 0.6 RPM 717 743 810 825	4.0 High S ice - T BHP 2.9 3.3 4.5 4.9	894 Static (TV 300 0.8 RPM 762 786 852 866	4.3 Option 0 BHP 3.2 3.5 5.0 5.3	931 is 10hp Extern 1.0 RPM 807 829 890 904	4.6) (7.5k) al Stat BHP 3.5 4.0 5.2 5.6	967 //) ic Pres 1.2 RPM 851 870 927 940	4.9 sure (i BHP 3.8 4.3 5.6 6.0	1001 n. wg) 1.4 RPM 894 911 964 977	5.2 BHP 4.0 4.5 6.2 6.5	1036 1.6 RPM 936 952 1000 1012	5.4 BHP 4.4 4.8 6.4 6.8	1071 1.8 RPM 976 992 1036 1047	5.7 BHP 4.7 5.2 6.6 7.1	1105 Englis 2.0 RPM 1016 1030 1072 1082	6.0 sh Ur 5.1 5.8 7.0 7.4
4.5 Std. Mo Vapor CFM 7440 7880 9000 9240	835 tor is 51 ator Fo 0.5 RPM 692 719 790 806 865	3.8 np (3.7 r Perf BHP 2.7 3.1 4.4 4.7 6.0	855 (kW). 0.6 RPM 717 743 810 825 882	4.0 High S ice - T BHP 2.9 3.3 4.5 4.9 6.1	894 Static (TV 300 0.8 RPM 762 786 852 866 919	4.3 Option 0 BHP 3.2 3.5 5.0 5.3 6.5	931 is 10hp 1.0 RPM 807 829 890 904 956 1023	4.6 (7.5k) al Stat BHP 3.5 4.0 5.2 5.6 7.0 9.0	967 M) ic Pres 1.2 RPM 851 870 927 927 940 990 1057	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6	1001 n. wg) 1.4 RPM 994 911 964 977 1023 1088	5.2 BHP 4.0 4.5 6.2 6.5 7.7	1036 1.6 RPM 936 952 1000 1012 1057	5.4 BHP 4.4 6.8 8.3	1071 1.8 RPM 976 992 1036 1047 1089	5.7 BHP 4.7 5.2 6.6 7.1 8.8	1105 Englis 2.0 RPM 1016 1030 1072 - -	6.0 sh Ur 8HF 5.1 5.6 7.0 7.4
4.5 Std. Mo Vapor CFM 7440 7880 9000 9240 10130	835 tor is 5 ator Fo 0.5 RPM 692 719 790 806 865 924	3.8 np (3.7 r Perf BHP 2.7 3.1 4.4 4.7 6.0	855 kW). 0.6 RPM 717 743 810 825 882 958	4.0 High S ice - T BHP 2.9 3.3 4.5 4.9 6.1	894 Static (0.8 RPM 762 786 852 866 919 990	4.3 Option 0 BHP 3.2 3.5 5.0 5.3 6.5	931 is 10hp 1.0 RPM 807 829 890 904 956 1023 Extern	4.6 (7.5k) al Stat BHP 3.5 4.0 5.2 5.6 7.0 9.0	967 M) ic Pres 1.2 RPM 851 870 927 940 990 1057 ic Pres	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6	n. wg) 1.4 RPM 894 911 964 977 1023 1088 Pa)	5.2 BHP 4.0 4.5 6.2 6.5 7.7	1036 1.6 RPM 936 952 1000 1012 1057 1118	5.4 BHP 4.4 6.8 8.3	1071 1.8 RPM 976 992 1036 1047 1089 -	5.7 BHP 4.7 5.2 6.6 7.1 8.8	1105 Englis 2.0 RPM 1016 1030 1072 1082 -	6.0 sh Ur 5.1 5.8 7.0 7.4
4.5 Std. Mo CFM 7440 7880 9000 90240 10130 11260	835 tor is 51 ator Fo 0.5 RPM 692 719 790 806 865 924 125	3.8 np (3.7 r Perf 2.7 3.1 4.4 4.7 6.0 8.0	855 (kW). 0.6 RPM 717 743 810 825 882 958 958	4.0 High 5 ice - T 8HP 2.9 3.3 4.5 4.9 6.1 8.2	894 Static (0.8 RPM 762 786 852 866 919 990	4.3 Dption BHP 3.2 3.5 5.0 5.3 6.5 8.5	931 is 10hp Extern 1.0 RPM 807 829 890 904 956 1023 Extern 249	4.6 (7.5k) al Stat BHP 3.5 4.0 5.2 5.6 7.0 9.0 al Stat	967 M) ic Pres 1.2 RPM 851 870 927 940 990 1057 ic Pres 299	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6 sure (f	n. wg) 1.4 RPM 894 911 964 977 1023 1088 Pa) 349	5.2 BHP 4.0 4.5 6.2 6.5 7.7 9.9	1036 1.6 RPM 936 952 1000 1012 1057 1118 398	5.4 BHP 4.4 4.8 6.4 6.8 8.3 10.2	1071 1.8 RPM 976 992 1036 1047 1089 - 448	5.7 BHP 4.7 5.2 6.6 7.1 8.8 -	1105 Englis 2.0 RPM 1016 1030 1072 - 1082 - -	6.0 sh Ui 5.1 5.8 7.0 7.4 - -
4.5 Std. Mo Vapor CFM 7440 7880 9000 9240 10130 11260 CMS	835 tor is 51 ator Fo 0.5 RPM 692 719 790 806 806 865 924 125 RPM	3.8 np (3.7 r Perf BHP 2.7 3.1 4.7 6.0 8.0 8.0	855 (kW). 0.6 RPM 717 743 810 825 882 958 958 149 RPM	4.0 High 5 CCE - T BHP 2.9 3.3 4.5 6.1 8.2 6.1 8.2	894 Static (0.8 RPM 762 786 852 866 919 990 199 RPM	4.3 Dption BHP 3.2 3.5 5.0 5.3 6.5 8.5 8.5	931 is 10hp Extern 1.0 RPM 807 829 890 904 956 1023 956 1023 Extern 249 RPM	4.6 (7.5k) al Stat BHP 3.5 4.0 5.6 7.0 9.0 al Stat kW	967 M) ic Pres 1.2 RPM 851 870 927 940 990 1057 ic Pres 299 RPM	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6 sure (f	n. wg) 1.4 RPM 894 911 964 977 1023 1088 Pa) 349 RPM	5.2 BHP 4.0 4.5 6.2 6.5 7.7 9.9	1036 1.6 RPM 936 952 1000 1012 1057 1118 398 RPM	5.4 BHP 4.4 4.8 6.4 6.8 8.3 10.2 kW	1071 1.8 RPM 976 992 1036 1047 1089 - 448 RPM	5.7 BHP 4.7 5.2 6.6 7.1 8.8 -	1105 Englis 2.0 RPM 1016 1030 1072 1082 - - - - - - - - - - - - - - - - - - -	6.0 sh Uu BH 5.1 5.0 7.0 7.4 - - - - - - - - - - - - - - - - - - -
4.5 Std. Mo Vapor 7440 7880 9020 9240 10130 11260 11260 CMS 3.5	835 tor is 51 0.5 RPM 692 719 790 806 865 924 125 RPM 692	3.8 np (3.7 Perf 2.7 3.1 4.4 6.0 8.0 8.0 8.0	855 (kW). 0.6 RPM 717 743 810 825 882 958 958 149 RPM 717	4.0 High 5 CCE - T 2.9 3.3 4.5 4.9 6.1 8.2 8.2 kWV 2.2	894 Static (0.8 RPM 762 786 852 866 919 990 199 RPM 762	4.3 Dption BHP 3.2 3.5 5.0 5.3 6.5 8.5 8.5 8.5	931 is 10hp Extern 1.0 RPM 807 829 890 904 956 1023 904 956 1023 807	4.6 (7.5k) al Stat BHP 3.5 4.0 5.6 7.0 9.0 al Stat kW 2.6	967 M) ic Pres 1.2 RPM 851 870 927 940 1057 ic Pres 299 RPM 851	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6 sure (f kW 2.8	n. wg) 1.4 RPM 991 964 977 1023 1088 29 1088 29 349 RPM 894	5.2 BHP 4.0 4.5 6.2 6.2 6.2 7.7 9.9 9.9 8.9	1036 1.6 RPM 936 952 1000 1012 1057 1118 398 RPM 936	5.4 BHP 4.4 4.8 6.8 8.3 10.2 kW 3.3	1071 1.8 RPM 976 992 1036 1047 1089 - 448 RPM 976	5.7 BHP 4.7 5.2 6.6 7.1 8.8 - - - - - - - - - - - -	1105 Englis 2.0 RPM 1016 1030 1072 1082 - - - - 498 RPM 1016	6.0 sh Ui 5.1 5.2 7.4 7.4 - - SI Ui KW 3.8
4.5 Std. Mo CFM 7440 7880 9000 9240 10130 11260 11260 	835 tor is 51 0.5 RPM 692 719 790 806 865 924 924 125 RPM 692 719	3.8 np (3.7 Perf 2.7 3.1 4.4 4.7 6.0 8.0 8.0 8.0 8.0	855 (kW). 0.6 RPM 717 743 810 825 882 958 958 958 149 RPM 717 743	4.0 High 5 0 ce - T 2.9 3.3 4.5 6.1 8.2 6.1 8.2 kWV 2.2 2.5	894 Static (0.8 RPM 762 786 852 866 919 990 199 RPM 762 786	4.3 Dption BHP 3.2 3.5 5.0 5.3 6.5 8.5 8.5 8.5 kWV 2.4 2.6	931 is 10hp Extern 1.0 RPM 807 829 890 904 956 1023 1023 Extern 249 RPM 807 829	4.6 (7.5k) al Stat BHP 3.5 4.0 5.2 5.2 5.2 5.2 9.0 9.0 al Stat kWV 2.6 3.0	967 M) ic Pres 1.2 RPM 851 870 927 940 990 1057 1057 ic Pres 299 RPM 851 870	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6 \$ure (f kW 2.8 3.2	n. wg) 1.4 RPM 991 964 977 1023 1088 203 1088 203 1088 203 897 349 894 911	5.2 BHP 4.0 4.5 6.2 6.2 6.5 7.7 9.9 9.9 8.9 8.0 3.4	1036 1.6 RPM 936 952 1000 1012 1057 11118 398 RPM 936 952	5.4 BHP 4.4 4.8 6.4 6.4 6.4 6.4 6.4 6.3 10.2 10.2 kW 3.3 3.6	1071 1.8 RPM 976 992 1036 1047 1089 - 1089 - 448 RPM 976 992	5.7 BHP 4.7 5.2 6.6 7.1 8.8 - - - - - - - - - - - - - - - - - -	1105 Englis 2.0 RPM 1016 1030 1072 1082 - - - - - - - - - - - - - - - - - - -	6.0 sh Ui 5.1 5.2 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
4.5 Std. Mo Vapor 7440 7880 9020 9240 10130 11260 11260 CMS 3.5	835 tor is 51 0.5 RPM 692 719 790 806 865 924 125 RPM 692	3.8 np (3.7 Perf 2.7 3.1 4.4 6.0 8.0 8.0 8.0	855 (kW). 0.6 RPM 717 743 810 825 882 958 958 149 RPM 717	4.0 High 5 CCE - T 2.9 3.3 4.5 4.9 6.1 8.2 8.2 kWV 2.2	894 Static (0.8 RPM 762 786 852 866 919 990 199 RPM 762	4.3 Dption BHP 3.2 3.5 5.0 5.3 6.5 8.5 8.5 8.5	931 is 10hp Extern 1.0 RPM 807 829 890 904 956 1023 904 956 1023 807	4.6 (7.5k) al Stat BHP 3.5 4.0 5.6 7.0 9.0 al Stat kW 2.6	967 M) ic Pres 1.2 RPM 851 870 927 940 1057 ic Pres 299 RPM 851	4.9 sure (i BHP 3.8 4.3 5.6 6.0 7.3 9.6 sure (f kW 2.8	n. wg) 1.4 RPM 991 964 977 1023 1088 29 1088 29 349 RPM 894	5.2 BHP 4.0 4.5 6.2 6.2 6.2 7.7 9.9 9.9 8.9	1036 1.6 RPM 936 952 1000 1012 1057 1118 398 RPM 936	5.4 BHP 4.4 4.8 6.8 8.3 10.2 kW 3.3	1071 1.8 RPM 976 992 1036 1047 1089 - 448 RPM 976	5.7 BHP 4.7 5.2 6.6 7.1 8.8 - - - - - - - - - - - -	1105 Englis 2.0 RPM 1016 1030 1072 1082 - - - - 498 RPM 1016	6.0 sh U BH 5.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

Evapora	ator Fo	r Perf	orman	ice - T	TV 400)											Englis	sh Unit
							Extern	al Stat	ic Pres	sure (i	n. wg)							
	0.5		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2.0	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
9680	609	2.9	737	3.2	799	3.6	861	4.0	918	4.4	971	4.8	1021	5.2	1068	5.6	1115	6.2
10140	631	3.3	754	3.5	812	3.9	873	4.4	930	4.8	983	5.2	1032	5.8	1078	6.2	1124	6.6
11260	687	4.3	798	4.6	854	4.9	906	5.4	960	5.9	1014	6.4	1062	6.9	1108	7.4	1152	7.9
12120	730	5.2	835	5.4	887	5.9	937	5.9	986	6.8	1036	7.4	1085	8.0	1131	8.6	1175	8.9
12390	744	5.5	847	5.8	897	6.2	947	6.7	994	7.2	1043	7.8	1093	8.3	1139	8.9	1182	9.4
13520	802	6.8	900	7.1	943	7.6	990	8.2	1035	8.7	1078	9.3	1123	9.8	1169	10.5	1213	11.1
14670	863	8.6	954	8.9	996	9.4	1035	9.9	1079	10.6	1154	11.3	1200	12.1	-	-	-	-
																		SI Unit
							Extern	al Stat	ic Pres	sure (F	⊃a)							
	125		149		199		249		299		349		398		448		498	
CMS	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW	RPM	kW
4.6	609	2.2	737	2.4	799	2.7	861	3.0	918	3.3	971	3.6	1021	3.9	1068	4.2	1115	4.6
4.8	631	2.5	754	2.6	812	2.9	873	3.3	930	3.6	983	3.9	1032	4.3	1078	4.6	1124	4.9
53	687	32	798	3.4	854	37	906	4.0	960	44	1014	48	1062	52	1108	5.5	1152	59

990

1057

5.4

1023

1088

1036

1043

1078

1154

5.5

5.8

6.9

8.4

1085

1093

1123

1200

6.0

6.2 7.3

9.0

5.7

7.4

1057

1118

6.2

7.6

1089

1131

1139

1169

6.4

6.6

7.8

1175

1182

1213

6.6

7.0

8.3

6.6

5.2

956

1023

937

947

990

4.4

4.6

5.7 6.1 7.4 5.3 954 6.9 6.4 6.6 996 1035 1079 863 Std. Motor is 7.5hp (5.5kW). High Static Option is 15hp (11kW)

4.0

4.3

887

897

943

4.6 919 6.1 990

6.1

Std. Motor is 7.5hp (5.5kW). High Static Option is 15hp (11kW)

4.9

6.3

4.8 5.3

865

924

730

744

802

3.9

4.1

5.1

835

847

900

5.7

5.8

6.4

4.5

6.0 958

882

986

994

1035

5.1

5.4

6.5

4.4

5.0

Indoor Unit Fan Performance Data

vapora	tor Fo	r Perf	orman	ice - T	TV 50)	_ ·	1.01															Englis	h U
								al Stat	ic Pres	sure (i														
	0.5		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2.0		2.2		2.4		2.5	
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	B
2060	479	2.6	509	2.9	570	3.5	638	4.5	698	5.5	745	6.3	787	6.9	826	7.6	865	8.2	904	8.9	943	9.6	963	9
2780	489	2.9	516	3.2	574	3.7	634	4.6	702	5.8	754	6.8	796	7.6	834	8.2	871	8.9	907	9.6	944	10.3	963	11
13940	511	3.5	536	3.8	587	4.4	638	5.0	695	6.0	758	7.4	808	8.5	849	9.4	885	10.2	920	10.9	953	11.6	970	1
15130	532	4.2	556	4.5	602	5.1	651	5.8	697	6.5	751	7.6	810	9.1	859	10.4	899	11.5	934	12.3	967	13.2	983	1
16260	553	5.0	577	5.3	622	6.0	664	6.6	710	7.4	753	8.1	802	9.3	858	10.9	907	12.4	947	13.7	982	14.7	998	1
17420	577	5.9	601	6.2	642	6.9	682	7.6	722	8.4	766	9.2	805	10.0	850	11.1	902	12.8	951	14.6	992	16.0	1010	1
8310	597	6.6	619	7.0	658	7.7	698	8.5	734	9.2	775	10.0	815	10.9	854	11.8	897	13.1	945	14.7	991	16.6	-	
							Eutom	al Ctat	ia Draa	//	7-1												5	SI I
	105		1.40		100			al Stat	ic Pres	sure (I			200.4		440.0		400		E 40		707 C		C22 C	
- MO	125	1.5.07	149	1.5.07	199 DDM	13.07	249	1.5.07	298.8	1.5.07	348.6	1.5.07	398.4	13.07	448.2	13.07	498	1.5.07	548	13.07	597.6	13.07	622.5	
CMS 5.7	RPM	<u>k₩</u>	RPM	k₩	RPM 570	kW	RPM coo	k₩	RPM	k₩	RPM	k₩ 4.7	RPM	k₩ ∠1	RPM	k₩	RPM	k₩ c.4	RPM	k₩	RPM	k₩	RPM	
	479	1.9	509	2.2		2.6	638	3.4	698	4.1	745	4.7	787	5.1	826	5.7	865	6.1	904	6.6	943	7.2	963	-
<u>6.0</u> 6.6	489 511	2.2	516 536	2.4	574 587	2.8 3.3	634	3.4 3.7	702 695	4.3	754 758	<u>5.1</u> 5.5	796 808	<u>5.7</u> 6.3	834 849	6.1	871 885	6.6 7.6	907 920	7.2	944	7.7	963 970	!
		2.6		2.8			638									7.0		7.6 8.6			953			
7.1	532	3.1	556	3.4	602	3.8	651	4.3	697	4.9	751 753	5.7	810	6.8	859	7.8	899		934	9.2	967	9.9 11.0	983	
7.7 8.2	553 577	3.7	577 601	4.0	622 642	4.5 5.2	664 682	4.9 5.7	710 722	5.5 6.3		6.1	802	6.9	858 850	<u>8.1</u> 8.3	907 902	<u>9.3</u> 9.6	947 951	10.2	982		998	
0.2 8.6		4.4		<u>4.6</u> 5.2						<u>6.9</u>	766	6.9	805	7.5		0.3 8.8				10.9	992	11.9	1010	
	597	4.9	619		658	5.7	698 is 20hp	6.3	734	6.9	775	7.5	815	8.1	854	0.0	897	9.8	945	11.0	991	12.4		
apora	itor Fo	r Perf	orman	ice - T	TV 60)																	Englis	h
apora		r Perf		ice - T)		al Stat	ic Pres 1.2	sure (i			1.6		1.8		2.0		2.2		2.4			
	itor Fo 0.5 RPM	r Perf	orman 0.6 RPM	ice - T BHP	TV 600) BHP	Extern 1.0 RPM	al Stat	ic Pres 1.2 RPM	sure (i BHP	n. wg) 1.4 RPM	BHP	1.6 RPM	BHP	1.8 RPM	BHP	2.0 RPM	BHP	2.2 RPM	BHP	2.4 RPM	BHP	Englis 2.5 RPM	
FM	0.5		0.6		0.8		1.0		1.2	```	1.4	BHP 8.5		BHP 9.9		BHP 11.4		BHP 12.6		BHP 13.6			2.5	{
:FM 4460	0.5 RPM	BHP	0.6 RPM	BHP	0.8 RPM	BHP	1.0 RPM	BHP	1.2 RPM	BHP	1.4 RPM		RPM		RPM		RPM		RPM		RPM	BHP	2.5 RPM	
EFM 4460 4900	0.5 RPM 569	BHP 5.0	0.6 RPM 592	BHP 5.3	0.8 RPM 635	BHP 5.9 6.3 7.3	1.0 RPM 682 689 705	BHP 6.6 7.0 8.0	1.2 RPM 728 733 749	BHP 7.4	1.4 RPM 777	8.5	RPM 832	9.9	RPM 882	11.4 11.8 12.1	RPM 923	12.6	RPM 959	13.6 14.2 15.5	RPM 992	BHP 14.5	2.5 RPM 1008	[
FM 4460 4900 5960	0.5 RPM 569 579	BHP 5.0 5.3	0.6 RPM 592 602	BHP 5.3 5.7	0.8 RPM 635 643	BHP 5.9 6.3 7.3 8.5	1.0 RPM 682 689	BHP 6.6 7.0 8.0 9.2	1.2 RPM 728 733	BHP 7.4 7.8	1.4 RPM 777 777	8.5 8.6	RPM 832 831	9.9 10.1	RPM 882 885	11.4 11.8	RPM 923 929	12.6 13.1	RPM 959 966	13.6 14.2	RPM 992 999	BHP 14.5 15.2	2.5 RPM 1008 1015	[
FM 4460 4900 5960 7030	0.5 RPM 569 579 605	BHP 5.0 5.3 6.3	0.6 RPM 592 602 625	BHP 5.3 5.7 6.6	0.8 RPM 635 643 667 691 714	BHP 5.9 6.3 7.3	1.0 RPM 682 689 705 727 727	BHP 6.6 7.0 8.0 9.2 10.6	1.2 RPM 728 733 749	BHP 7.4 7.8 8.9	1.4 RPM 777 777 789	8.5 8.6 9.6	RPM 832 831 831	9.9 10.1 10.6	RPM 882 885 881	11.4 11.8 12.1 12.7 14.0	RPM 923 929 932	12.6 13.1 13.9	RPM 959 966 977	13.6 14.2 15.5	RPM 992 999 1014	BHP 14.5 15.2 16.8	2.5 RPM 1008 1015 -	[
FM 4460 4900 5960 7030 3090 3160	0.5 RPM 569 579 605 631 658 686	BHP 5.0 5.3 6.3 7.4 8.6 9.9	0.6 RPM 592 602 625 651 677 705	BHP 5.3 5.7 6.6 7.7 9.0 10.4	0.8 RPM 635 643 667 691 714 739	BHP 5.9 6.3 7.3 8.5 9.8 11.2	1.0 RPM 682 689 705 727 751 775	BHP 6.6 7.0 8.0 9.2 10.6 12.1	1.2 RPM 728 733 749 765 785 808	BHP 7.4 7.8 8.9 10.0 11.3 12.9	1.4 RPM 777 777 789 806 821 840	8.5 8.6 9.6 10.9 12.2 13.7	RPM 832 831 831 843 860 876	9.9 10.1 10.6 11.7 13.2 14.7	RPM 882 885 881 882 895 912	11.4 11.8 12.1 12.7 14.0 15.7	RPM 923 929 932 928	12.6 13.1 13.9 14.2	RPM 959 966 977 977	13.6 14.2 15.5 16.1	RPM 992 999 1014 -	BHP 14.5 15.2 16.8	2.5 RPM 1008 1015 - -	
FM 4460 4900 5960 7030 3090 3160 0220	0.5 RPM 569 579 605 631 658 686 713	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4	0.6 RPM 592 602 625 651 677 705 732	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9	0.8 RPM 635 643 667 691 714 739 765	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8	1.0 RPM 682 689 705 727 751 751 775	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7	1.2 RPM 728 733 749 765 785 808 832	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6	1.4 RPM 777 789 806 821 840 862	8.5 9.6 10.9 12.2 13.7 15.4	RPM 832 831 831 843 860	9.9 10.1 10.6 11.7 13.2	RPM 882 885 881 881 882 895	11.4 11.8 12.1 12.7 14.0	RPM 923 929 932 932 931	12.6 13.1 13.9 14.2 15.1	RPM 959 966 977 977 973	13.6 14.2 15.5 16.1 16.6	RPM 992 999 1014 -	BHP 14.5 15.2 16.8 -	2.5 RPM 1008 1015 - - -	[
FM 1460 1900 5960 7030 3090 3160 0220 1280	0.5 RPM 569 579 605 631 658 658 686 713 740	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1	0.6 RPM 592 602 625 651 677 705 732 759	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6	0.8 RPM 635 643 667 691 714 739 765 792	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5	1.0 RPM 682 689 705 727 751 775 799 823	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7 15.4	1.2 RPM 728 733 749 765 785 808	BHP 7.4 7.8 8.9 10.0 11.3 12.9	1.4 RPM 777 789 806 821 840 862 886	8.5 8.6 9.6 10.9 12.2 13.7	RPM 832 831 831 843 860 876	9.9 10.1 10.6 11.7 13.2 14.7	RPM 882 885 881 882 895 912	11.4 11.8 12.1 12.7 14.0 15.7	RPM 923 929 932 928 931 945	12.6 13.1 13.9 14.2 15.1 16.6	RPM 969 966 977 977 973	13.6 14.2 15.5 16.1 16.6	RPM 992 999 1014 - -	BHP 14.5 15.2 16.8 - -	2.5 RPM 1008 1015 - - -	
2FM 4460 4900 5960 7030 8090 9160 0220 1280	0.5 RPM 569 579 605 631 658 686 713	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4	0.6 RPM 592 602 625 651 677 705 732	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9	0.8 RPM 635 643 667 691 714 739 765	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8	1.0 RPM 682 689 705 727 751 751 775	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7	1.2 RPM 728 733 749 765 785 808 832	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6	1.4 RPM 777 789 806 821 840 862	8.5 9.6 10.9 12.2 13.7 15.4	RPM 832 831 831 843 860 876 876	9.9 10.1 10.6 11.7 13.2 14.7 16.3	RPM 882 885 881 882 895 912 927	11.4 11.8 12.1 12.7 14.0 15.7 17.4	RPM 923 929 932 928 931 945	12.6 13.1 13.9 14.2 15.1 16.6	RPM 959 966 977 977 973 -	13.6 14.2 15.5 16.1 16.6 -	RPM 992 999 1014 - - -	BHP 14.5 15.2 16.8 - - -	2.5 RPM 1008 1015 - - - - -	
2FM 4460 4900 5960 7030 3090 3160 3220 1280	0.5 RPM 569 579 605 631 658 658 686 713 740	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1	0.6 RPM 592 602 625 651 677 705 732 759	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6	0.8 RPM 635 643 667 691 714 739 765 792	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5	1.0 RPM 682 689 705 727 751 775 775 799 823 838	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7 15.4 16.5	1.2 RPM 728 733 749 765 785 808 832 856	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4	1.4 RPM 777 789 806 821 840 862 886 -	8.5 9.6 10.9 12.2 13.7 15.4	RPM 832 831 831 843 860 876 876	9.9 10.1 10.6 11.7 13.2 14.7 16.3	RPM 882 885 881 882 895 912 927	11.4 11.8 12.1 12.7 14.0 15.7 17.4	RPM 923 929 932 928 931 931 945 -	12.6 13.1 13.9 14.2 15.1 16.6	RPM 959 966 977 977 973 -	13.6 14.2 15.5 16.1 16.6 -	RPM 992 999 1014 - - - -	BHP 14.5 15.2 16.8 - - -	2.5 RPM 1008 1015 - - - - - - - - -	
2FM 4460 4900 5960 7030 8090 9160 0220 1280	0.5 RPM 569 579 605 631 658 686 713 740 756	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1	0.6 RPM 592 602 625 651 677 705 732 759 775	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6	0.8 RPM 635 643 667 691 714 739 765 792 808	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5	1.0 RPM 682 689 705 727 751 775 799 823 838 838	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7 15.4 16.5	1.2 RPM 728 733 749 765 785 808 832 856 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4	1.4 RPM 777 789 806 821 840 862 886 - - -	8.5 9.6 10.9 12.2 13.7 15.4	RPM 832 831 843 843 860 876 893 -	9.9 10.1 10.6 11.7 13.2 14.7 16.3	RPM 882 885 881 882 912 927 -	11.4 11.8 12.1 12.7 14.0 15.7 17.4	RPM 923 929 932 928 931 945 - -	12.6 13.1 13.9 14.2 15.1 16.6	RPM 959 966 977 977 973 - - - -	13.6 14.2 15.5 16.1 16.6 -	RPM 992 999 1014 - - - - -	BHP 14.5 15.2 16.8 - - -	2.5 RPM 1008 1015 - - - - - - - - - - - - -	
2FM 4460 4900 5960 7030 8090 9160 0220 1280 1900	0.5 RPM 569 579 605 631 658 686 713 740 756	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 775	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6	0.8 RPM 635 643 667 691 714 739 765 792 808	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6	1.0 RPM 682 689 705 727 751 775 799 823 838 838 Extern 249	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5	1.2 RPM 728 733 749 765 785 808 832 856 - ic Pres 298.8	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (f	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 9.6 10.9 12.2 13.7 15.4 17.3	RPM 832 831 843 860 876 893 - - - 398.4	9.9 10.1 10.6 11.7 13.2 14.7 16.3 -	RPM 882 885 881 882 995 912 927 - - - - -	11.4 11.8 12.1 12.7 14.0 15.7 17.4 -	RPM 923 929 932 931 945 - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - -	RPM 959 966 977 977 973 - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - -	RPM 992 1014 - - - - - - 597.6	BHP 14.5 15.2 16.8 - - - - -	2.5 RPM 1008 1015 - - - - - - - - - - - - -	51
CFM 4460 5960 7030 8090 9160 0220 1280 1280	0.5 RPM 569 579 605 631 658 686 713 740 756 712 RPM	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 kW	0.6 RPM 592 602 625 651 677 705 732 759 775 775 775 775 775 775 775	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 kW	0.8 RPM 635 643 667 691 714 739 765 792 808 808 199 RPM	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 kW	1.0 RPM 682 689 705 727 751 775 799 823 838 838 Extern 249 RPM	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 al Stat	1.2 RPM 728 733 749 765 785 808 832 856 - ic Pres 298.8 RPM	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (F	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 9.6 10.9 12.2 13.7 15.4 17.3 -	RPM 832 831 843 860 876 893 - - - 398.4 RPM	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - -	RPM 882 885 881 882 912 927 - - - 448.2 RPM	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - -	RPM 923 929 932 931 945 - - - - - - 498 RPM	12.6 13.1 13.9 14.2 15.1 16.6 - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - -	RPM 992 999 1014 - - - - - 597.6 RPM	BHP 14.5 15.2 16.8 - - - - - -	2.5 RPM 1008 1015 - - - - - - - - - - - - - - - - - - -	
2FM 4460 5960 7030 8090 9160 0220 1280 1280 1280 1280 1280 1280 506.8	0.5 RPM 569 605 631 658 686 713 740 756 713 740 756 8PM 569	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.2	0.6 RPM 592 602 625 651 677 705 732 759 775 149 RPM 592	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 kW 4.0	0.8 RPM 635 643 667 691 714 739 765 792 808 808 199 RPM 635	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 kW 4.4	1.0 RPM 682 689 705 727 751 775 799 823 838 838 838 Extern 249 RPM 682	BHP 6.6 7.0 8.0 9.2 10.6 12.1 13.7 15.4 16.5 kW 4.9	1.2 RPM 728 733 749 765 785 808 832 856 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (f kW 5.5	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - -	RPM 832 831 843 860 876 893 - - - 398.4 RPM 832	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 912 927 - - - 448.2 RPM 882	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - 498 RPM 923	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - 597.6 RPM 992	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - - - - - - - - - - - - - - - -	51
CFM 4460 4900 5960 7030 8090 9160 0220 1280 1900 1280 1900	0.5 RPM 569 605 631 658 686 713 740 756 713 756 8 RPM 569 579	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 775 775 775 775 775 775 775 775	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 kW 4.0 4.3	0.8 RPM 635 643 667 714 739 765 792 808 808 199 RPM 635 643	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 kW 4.4	1.0 RPM 682 689 705 727 751 779 823 838 Extern 249 RPM 682 689	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 x kW 4.9 5.2	1.2 RPM 728 733 749 765 808 832 866 - 298.8 RPM 728 733	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (f kW 5.5 5.8	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - 398.4 RPM 832 831	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 912 927 - - 448.2 RPM 882 885	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - 498 RPM 923 929	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - 597.6 RPM 992 999	BHP 14.5 15.2 16.8	2.5 RPM 1008 1015 - - - - - - - - - - - - - - - - - - -	
EFM 4460 4900 5960 7030 3090 3160 0220 1280 1900 220 1280 1900 5.MS 6.8 7.0 7.5	0.5 RPM 569 605 631 658 686 713 740 756 125 RPM 569 579 605	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 775 149 RPM 592 602 625	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 kW 4.0 4.3 4.9	0.8 RPM 635 643 667 714 739 765 792 808 199 RPM 635 643 667	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 kW 4.4 4.7 5.4	1.0 RPM 682 689 705 727 751 775 799 823 838 838 838 838 838 849 849 849 849 849 849 849 849 849 84	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 kW 4.9 5.2 6.0	1.2 RPM 728 733 749 765 785 808 832 866 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (f kW 5.5 5.8 6.6	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - - 398.4 RPM 832 831 831	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 912 927 - - - - - - - - - - - - - - - - - - -	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - 5 622.5 RPM 1008 1015 - - - - - - - - - - - - -	51
EFM 4460 4900 5960 7030 3090 2220 1280 1280 1280 1280 1280 5.8 5.8 7.0 7.5 3.0	0.5 RPM 569 605 631 668 686 713 740 756 713 756 8PM 569 579 605 631	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 775 775 775 775 802 602 602 625 651	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 kW 4.0 4.3 4.9 5.7	0.8 RPM 635 643 667 691 714 739 765 792 808 808 808 808 808 808 808 808 808 80	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 kW 4.4 4.7 5.4 6.3	1.0 RPM 682 689 705 727 751 775 823 838 838 838 838 838 838 849 849 849 849 862 689 705 727	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 x kW 4.9 5.2 6.0 6.9	1.2 RPM 728 733 749 765 808 832 856 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (I \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - 398.4 RPM 832 831 831 843	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 882 912 927 - - - 448.2 RPM 882 885 881 882	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6	RPM 959 966 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8	2.5 RPM 1008 1015 - - - - - - - - - - - - - - - - - - -	
CFM 4460 4900 5960 7030 9160 0220 1280 1280 1280 1280 1280 1280 5.8 5.8 7.0 7.5 8.0 8.5	0.5 RPM 569 605 631 658 686 713 740 756 713 756 825 829 579 605 631 658	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 775 749 8PM 592 602 625 651 677	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 kW 4.0 4.3 4.9 5.7 6.7	0.8 RPM 635 643 667 714 739 765 792 808 199 RPM 635 643 667 691 714	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 15.6 kW 4.4 4.7 5.4 6.3 7.3	1.0 RPM 682 689 705 727 751 775 823 838 838 838 838 838 838 849 829 689 705 727 751	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 kW 4.9 5.2 6.0 6.9 7.9	1.2 RPM 728 733 749 765 808 832 856 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (f 5.5 5.8 6.6 7.5 8.4	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - - 398.4 RPM 832 831 831 843 860	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 882 995 912 927 - - - 448.2 RPM 882 885 881 882 885	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - 5 622.5 RPM 1008 1015 - - - - - - - - - - - - -	51
CFM 4460 5960 7030 8090 9160 0220 1280 1280 1280 1280 1280 7.0 7.5 8.0 8.5 9.0	0.5 RPM 569 579 605 631 658 686 713 740 756 713 756 725 RPM 569 579 605 631 658 686 686	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1 14.7 5.5 6.4 7.4	0.6 RPM 592 602 625 651 677 705 732 759 775 749 8PM 592 602 625 651 677 705	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 14.6 4.3 4.9 5.7 6.7 7.8	0.8 RPM 635 643 667 714 739 765 792 808 199 RPM 635 643 667 691 714 739	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 15.6 kW 4.4 4.7 5.4 6.3 7.3 8.4	1.0 RPM 682 689 705 727 751 775 823 838 838 Extern 249 RPM 682 689 705 727 751 775 775 799 775 799 705 705 705 705 705 705 705 705	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 kW 4.9 5.2 6.0 6.9 7.9 9.0	1.2 RPM 728 733 749 765 785 808 832 866 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (I \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - - 398.4 RPM 832 831 831 831 843 860 876	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 882 995 912 927 - - - 448.2 RPM 882 885 881 882 885 881 882 895 912	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - 5 622.5 RPM 1008 1015 - - - - - - - - - - - - -	51
CFM 4460 5960 7030 8090 9160 0220 1280 1900 1280 1900 5.8.8 7.0 7.5 8.0 8.5 9.0 9.5	0.5 RPM 569 605 631 668 686 713 740 756 713 756 828 829 605 631 658 686 688 688 713	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 749 8PM 592 602 625 651 677 705 732	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 14.6 4.3 4.9 5.7 6.7 7.8 8.9	0.8 RPM 635 643 667 714 739 765 792 808 199 RPM 635 643 667 691 714 739 765 714 739 765	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15	1.0 RPM 682 689 705 727 751 775 823 838 838 Extern 249 RPM 682 689 705 727 751 775 799 705 799 705 799 705 799 705 799 705 705 705 705 705 705 705 705	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 al Stat kW 4.9 5.2 6.0 6.9 7.9 9.0 10.2	1.2 RPM 728 733 749 765 808 832 856 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (I \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - - - - - - - - - - - - - - - - - -	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 882 995 912 927 - - - - - - - - - - - - - - - - - - -	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - 959 966 977 977 977 973 - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - 5 622.5 RPM 1008 1015 - - - - - - - - - - - - -	51
CFM 4460 5960 7030 8090 9160 0220 1280 1280 1280 1280 1280 7.0 7.5 8.0 8.5 9.0	0.5 RPM 569 605 631 668 686 713 740 756 713 756 829 605 631 658 686 686 688 688 713 740	BHP 5.0 5.3 6.3 7.4 8.6 9.9 11.4 13.1 14.1 14.1 14.1 14.1 14.1 14.1	0.6 RPM 592 602 625 651 677 705 732 759 775 8PM 592 602 625 651 677 705 732 759 725 732	BHP 5.3 5.7 6.6 7.7 9.0 10.4 11.9 13.6 14.6 14.6 14.6 4.3 4.9 5.7 6.7 7.8 8.9 10.2	0.8 RPM 635 643 667 714 739 765 792 808 199 RPM 635 643 667 691 714 739 765 792 705 714 739 765 792 705 705 705 705 705 705 705 705	BHP 5.9 6.3 7.3 8.5 9.8 11.2 12.8 14.5 15.6 15.6 kW 4.4 4.7 5.4 6.3 7.3 8.4	1.0 RPM 682 689 705 727 751 775 799 823 838 Extern 249 RPM 682 689 705 727 751 775 823 838 838	BHP 6.6 7.0 9.2 10.6 12.1 13.7 15.4 16.5 kW 4.9 5.2 6.0 6.9 7.9 9.0	1.2 RPM 728 733 749 765 808 832 866 -	BHP 7.4 7.8 8.9 10.0 11.3 12.9 14.6 16.4 - sure (I \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1.4 RPM 777 789 806 821 840 862 886 - - - - - - - - - - - - -	8.5 8.6 9.6 10.9 12.2 13.7 15.4 17.3 - - - - - - - - - - - - - - - - - - -	RPM 832 831 843 860 876 893 - - - 398.4 RPM 832 831 831 831 843 860 876	9.9 10.1 10.6 11.7 13.2 14.7 16.3 - - - - - - - - - - - - - - - - - - -	RPM 882 885 881 882 995 912 927 - - - 448.2 RPM 882 885 881 882 885 881 882 895 912	11.4 11.8 12.1 12.7 14.0 15.7 17.4 - - - - - - - - - - - - - - - - - - -	RPM 923 929 932 931 945 - - - - - - - - - - - - - - - - - - -	12.6 13.1 13.9 14.2 15.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 959 966 977 977 973 - - - - - - - - - - - - - - - - - - -	13.6 14.2 15.5 16.1 16.6 - - - - - - - - - - - - - - - - - -	RPM 992 999 1014 - - - - - - - - - - - - - - - - - - -	BHP 14.5 15.2 16.8 - - - - - - - - - - - - - - - - - - -	2.5 RPM 1008 1015 - - - - 5 622.5 RPM 1008 1015 - - - - - - - - - - - - -	

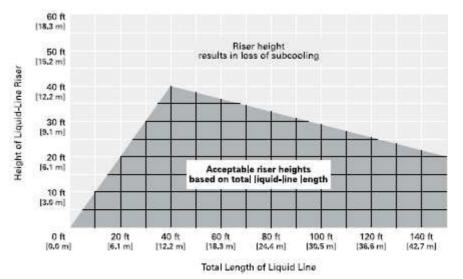
Notes

To determine power of the motor to be installed, the following correction factors have to be applied to the fan Shaft Absorbed hp.

Fan Motor hp = Absorbed Fan Shaft hp x Correction Factor

Correction Factor = 1.2 for Absorbed Fan Shaft < 10kW (13.4hp)

Correction Factor = 1.15 for Absorbed Fan Shaft > 10kW (13.4hp)


Fan Motor Heat (MBH) = 2.55 x BHP

Data Includes pressure drop due to filters and wet coil.

Line Sizing, Routing and Component Selection

Note: Preselected liquid-line diameters independent of line length or rise, within the premissible guidelines, for properly charged RAUP units in normal air-conditioning applications.

Routing. Install the liquid line with a slight slope in the direction of flow so that it can be routed with the suction line.

A height limitation exits for liquid lines that include a liquid riser because of the loss of subcooling that accompanies the pressure loss in the height of the liquid column, Figure 2 depicts the permissible rise in the liquid line (that is, without excessive loss of subcooling). Again, system designs outside the application envelope of the RAUP unit require Trane review

Insulation

The liquid line is generally warmer than the surrounding air, so it does not require insulation. In fact, heat loss from the liquid line improves system capacity because it provides additional subcooling.

Components

Liquid-line refrigerant components necessary for a successful job include a filter drier, access port, moistureindicating sight glass, expansion valve(s), and ball shutoff valves.

Riser height limitations defined in this chart assume that the liquid line contains 10 elbows. The effect of addittional elbows varies based on the specific characteristics of each installation.

Mechanical Specifications

Air Cooled Condensing Unit

- The contractor shall furnish and install a split air cooled condensing unit of size and capacity scheduled at the required working condition.
- The unit shall operate with either a R22 or R407C refrigerant.
- The unit shall be fully wired with starters and controller by the factory.
- All units shall be furnished with hermetic scroll compressors, air cooled condenser and microprocessor control panel.
- Unit shall be able to operate down to 15°C as standard and lower with a low ambient control option.
- Unit shall be able to operate up to 43°C as standard and up to 46°C with a high ambient option,within HPCO limits.
- The airflow through the condenser shall be handled by multiple direct drive fans. Each fan shall be statically and dynamically balanced. Fan motors shall be with permanently lubricated ball bearings, protected by thermal overloads.
- Units shall be designed and manufactured in accordance with the quality insurance ISO 9001.

Unit Construction

- The unit shall be designed for out door application and rust protected with polyester powder paint.
- The unit base, shall be manufactured with GI steel.
- Unit panels shall be removable to facilitate easy service with Allen Key locks.
- Compressor, air intake sections shall be protected with intake grilles as standard.
- Each unit shall be modular in de sign to facilate a modular installation to minimize installed space.

Condenser Coils

 Air cooled condenser coils shall be smooth bore with 3/8" copper tubes mechanically bonded to configured alluminium W3BS slit fins as standard.

- Coils shall be factory leak tested up to 450psig.
- Higher corrosion resistant fins shall be available as an option.

Refrigerant Circuit

- All units shall have 1 or 2 refrigeration circuits with a minimum of 2 manifolded compressors on each circuit for staging control.
- The manifolding piping shall be designed to ensure relable oil return management.
- Each circuit shall be provided with factory set high and low pressure switches.

Electrical

- Electrical panels shall be fully mounted and wired in the factory with full opening access panel.
- The starting mechanism of the fans and compressors shall be provide by the factory.
- A DOL starting mechanism shallbe provided and installed by the factory.

Control System

- Units shall be completely factory wired with microprocessor based controls, starters and terminal block for power wiring.
- Control wiring shall be 230V.
- Compressor overheat, overcurrent and phase loss protection shall be provided. (Phase loss protection is only with the high level control option)
- High and low pressure safety switches to protect the system against operations outside recommended pressure limits.
- Compressor time delays and onoff sequencing logic that is built into the microprocessor algorythm for maximum protection.
- A dry contact shall be available for remote signalling of general faults.
- Segment LED Display shall provide diagnosis for troubleshooting and setpoint temperatures as well

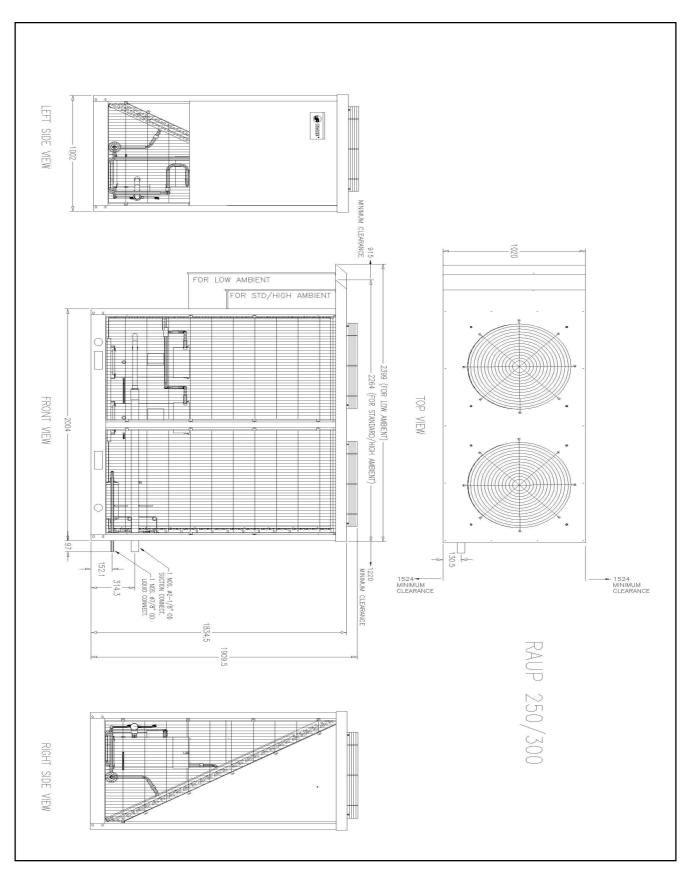
as actual size temperatures.

• A zone sensor (measure room temperature to temperature STPT) control shall be standard factory installed.

Indoor Unit Air Handler Unit Casing

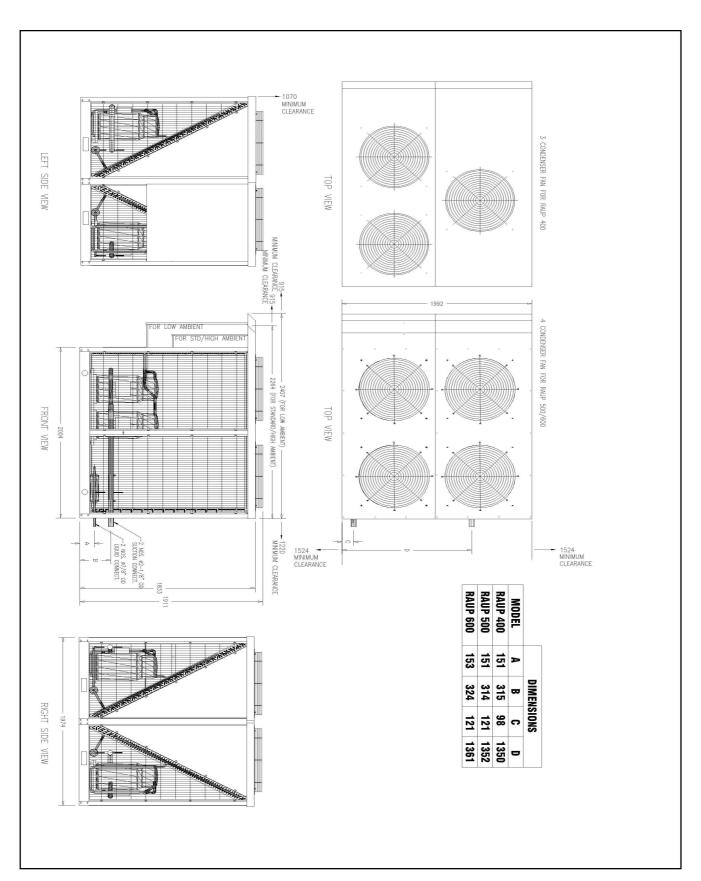
- The unit framework shall be constructed of GI steel. Exterior panels shall be fabricated from galvanized stell sheets, cleaned and coated with a baked polyster powder paint.
- All panels in contact with the air stream shall be insulated with closed cell PE insulation.
- All panels shall be removable to ensure proper access for servicing and maintainence. Removeable panels shall be secured with bolts.

Cooling Coil

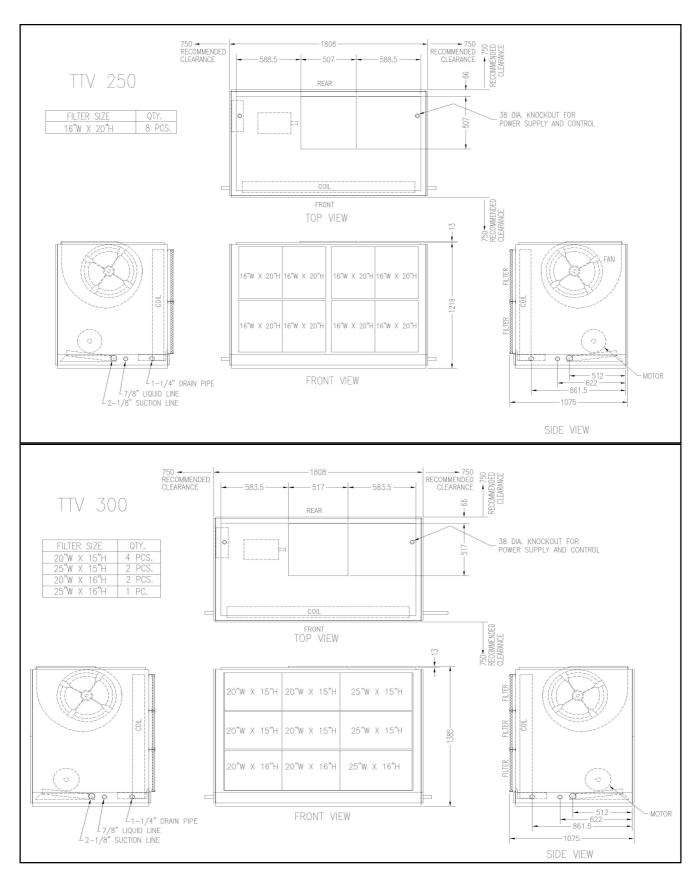

- The evaporator coil shall be 1/2 or 3/8" OD seamless copper tubes, mechanically expanded into alluminium fins.
- Coils shall have at least 2 independent circuits for good port load capability (watched with RAUP 400-600)
- Coils shall be leak and proof tested up to 375psig.
- Expansion devices shall be thermal expansion valves.
- Drain pans shall be fabricated of GI, insulated with PE and corossion resistant coated with a corossion resistant coating.

Fans

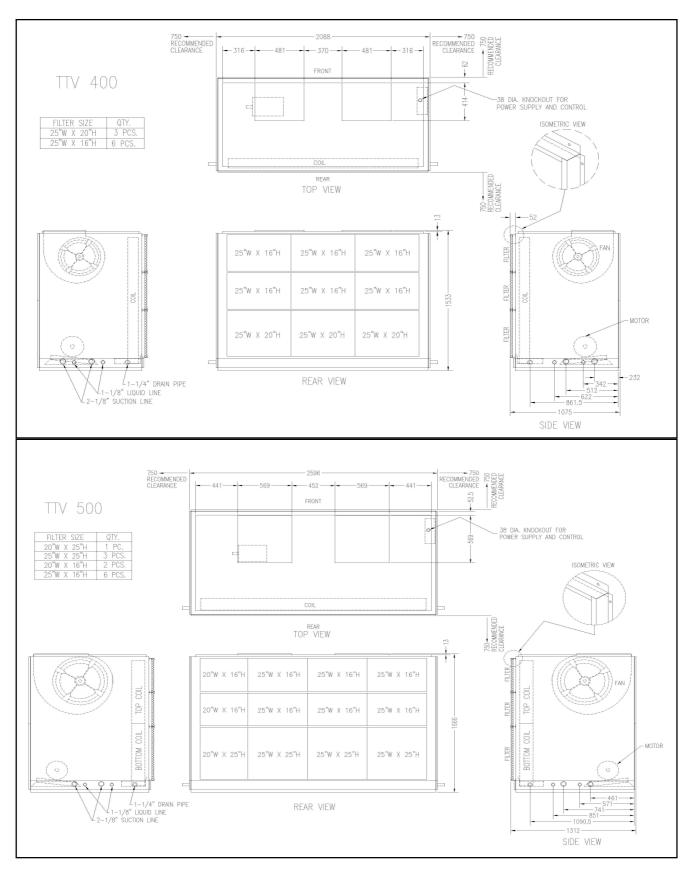
- Supply fans shall be double width double inlet forward curve centrifugal fans, statically and dynamically balanced.
- The drive components shall be fixed pitch drives with multiple V belts.The supply fan motor shall be of a TEFC type.
- DOL Fan motor starters shall be provided as standard. Thermal overloads shall be provided.



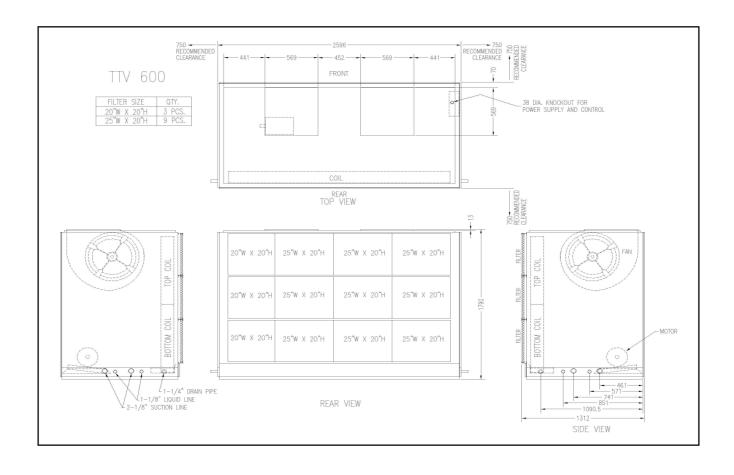
Dimension Drawing Condensing Unit



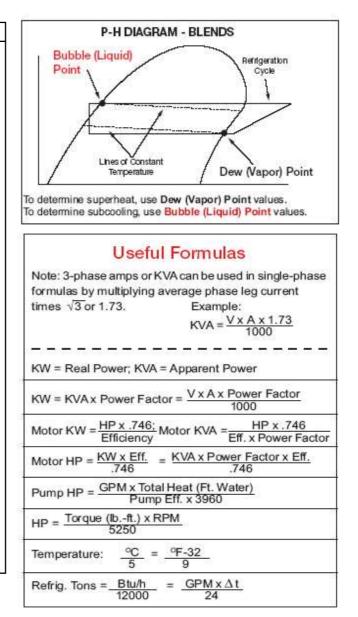
Dimension Drawing Condensing Unit



Dimension Drawing (Evaporating) Unit



Dimension Drawing (Evaporating) Unit


Dimension Drawing Indoor (Evaporating) Unit

Standard Conversion Table

To Convert From	То	Multiply By:
Length		
Feet (ft) Inches (In)	meter (m) millimeters (mm)	.30481 25.4
Area		
Square Feet (ft2) Square Inches (In3)	square meter (m2) square millimeters (mm2)	.093 645.2
Cubic Feet (ft3) Cubic Inches (In3) Gallons (gal) Gallons (gal)	Cubic Meter (m3) Cubic mm (mm3) litres(l) Cubic meter (m3)	.0283 16387 3.785 .003785
Flow		
Cubic feet/min (cfm) Cubic feet/min (cfm) Gallons/minute (GPM) Gallons/minute (GPM)	cubic meters/second (m3/s) cubic meters/hr (m3/hr) cubic meter/hr (m3/hr) litres/second (l/s)	.000472 1.69884 .2271 .06308
Velocity		
Feet per minute (ft/m) Feet per second (ft/s)	meters per second (m/s) meters per second (m/s)	.00508 .3048
Energy and Power and Capa	city	
British Thermal Units (Btu/h) British Thermal Units (Btu/h) Tons (refrig. effect) Tons (refrig. effect) Horsepower	Kilowatt (kW) Kcalorie (Kcal) Kilowatt (refrig. effect) Kilocalories-per hour (Kcal/hr) Kilowatt (kW)	.000293 .252 3.516 3024 .7457
Pressure		
Feet of water (ftH2O) Inches of water (inH2O) Pounds per square inch (PSI*) PSI* *PSIG	Pascals (PA) Pascals (PA) Pascals (PA) Bar or KG/CM2	2990 249 6895 0.06895

R410A

Standard Conversion Table

Pressure

Psia 44.00 46.00

48.00

50.00

55.00

60.00

	Pressure	Temperature	
	R22	R123	R134a
Temp	Pressure	Pressure	Pressure
٩F	psia	psia	psia
0.00	38.728	1.963	21.171
5.00	42.960	2.274	23.777
10.00	47.536	2.625	26.628
15.00	52.475	3.019	29.739
20.00	57.795	3.460	33.124
25.00	63.514	3.952	36.800
30.00	69.651	4.499	40.784
35.00	76.225	5.106	45.092
40.00	83.255	5.778	49.741
45.00	90.761	6.519	54.749
50.00	98.763	7.334	60.134
55.00	107.28	8.229	65.913
60.00	116.33	9.208	72.105
65.00	125.94	10.278	78.729
70.00	136.13	11.445	85.805
75.00	146.92	12.713	93.351
80.00	158.33	14.090	101.39
82.08	-	14.696	-
85.00	170.38	15.580	109.93
90.00	183.09	17.192	119.01
95.00	196.50	18.931	128.65
100.00	210.61	20.804	138.85
105.00	225.46	22.819	149.65
110.00	241.06	24.980	161.07
115.00	257.45	27.297	173.14
120.00	274.65	29.776	185.86
125.00	292.69	32.425	199.28
130.00	311.58	35.251	213.41
135.00	331.37	38.261	228.28
140.00	352.08	41.464	243.92
145.00	373.74	44.868	260.36

Temp ⁰F		Temp ⁰F		
Bubble	Dew	Bubble	Dew	
-0.28	11.47	-16.91	-16.79	
1.86	13.56	-14.90	-14.77	
3.92	15.58	-12.95	-12.82	
5.93	17.53	-11.07	-10.94	
10.68	22.18	-6.59	-6.46	
15.11	26.50	-2.42	-2.29	
19.27	30.56	1.49	1.63	
23.19	34.39	5.17	5.32	
00.00	00.04		0.04	

Temperature

L

Pressure

R407C

* PSIG = PSIA-14.7

00.00	15.11	20.00	-2.42	-2.29
65.00	19.27	30.56	1.49	1.63
70.00	23.19	34.39	5.17	5.32
75.00	26.90	38.01	8.66	8.81
80.00	30.43	41.46	11.98	12.13
85.00	33.80	44.74	15.14	15.30
90.00	37.02	47.88	18.17	18.32
95.00	40.11	50.89	21.06	21.22
100.00	43.08	53.78	23.85	24.01
110.00	48.70	59.24	29.12	29.28
120.00	53.95	64.35	34.03	34.20
130.00	58.87	69.13	38.65	38.82
140.00	63.53	73.65	43.00	43.18
150.00	67.94	77.93	47.13	47.31
160.00	72.13	81.99	51.05	51.23
170.00	76.14	85.87	54.79	54.98
180.00	79.97	89.58	58.37	58.56
190.00	83.65	93.13	61.08	61.99
200.00	87.18	96.55	65.10	65.29
220.00	93.88	103.00	71.34	71.54
240.00	100.14	109.02	77.16	77.36
260.00	106.02	114.67	82.63	82.83
280.00	111.58	119.99	87.79	87.99
300.00	116.85	125.03	92.68	92.88
320.00	121.86	129.81	97.32	97.53
340.00	126.65	134.36	101.75	101.95
360.00	131.23	138.70	105.99	106.19
380.00	135.63	142.86	110.05	110.24
400.00	139.85	146.84	113.94	114.13
450.00	149.77	156.11	123.06	123.24
500.00	158.90	164.54	131.41	131.58
550.00	167.37	172.23	139.12	139.27
600.00	175.31	179.23	146.28	146.40

Literature Order Number	MUL-PRC004-E4 (August 2015)
File Number	
Supersedes	MUL-PRC004-E4 (May 2012)
Stocking Location	Penang, Malaysia

Since The Trane Company has a policy of continuous product improvement, it reserves the right to change design and specifications without notice.