Computer Graphics

Prof. Feng Liu Fall 2021

http://www.cs.pdx.edu/~fliu/courses/cs447/

09/27/2021

Today

- Course overview and information
- Digital images
- ☐ Homework 1 due 4:30 pm, Oct. 06
 - Email <u>abhijay@pdx.edu</u>
 - With title "Your Name + Homework 1"
 - No late homework will be accepted

Pre-Requisites

- □ C/C++ programming
- Linear algebra
 - A free book by Prof. Jim Hefferon http://joshua.smcvt.edu/linearalgebra/

Acknowledgement

- ☐ This course is based on CS 559 at the University of Wisconsin, Madison taught by Dr. *Stephen Chenney*
- □ The course materials are adapted and used here with Dr. Chenney's permission

(c) copyright 2008, Blender Foundation / www.bigbuckbunny.org

Source: https://www.youtube.com/watch?v=Ms7d-3Dprio

What is Computer Graphics?

Practically, it's about movies, games, AR, VR, design, training, art, advertising, communication, ...

Technically, it's about the production, manipulation and display of images using computers

Graphics Building Blocks

- Images and computers
 - Sampling, color, filters, ...
- □ Drawing in 2D
 - Drawing lines and triangles, clipping, transformations
- Drawing in 3D
 - Viewing, transformations, lighting, real-time graphics
- Modeling in 3D
 - Describing volumes and surfaces, drawing them effectively
- Miscellaneous topics
 - Raytracing, animation, ...

People

- Lecturer: Prof. Feng Liu
 - Office hours: by appointment
 - fliu@pdx.edu
- □ TA: Abhijay Ghildyal
 - https://pdx.zoom.us/j/9351201094
 - Office hours: MW 2:30-3:30pm
 - abhijay@pdx.edu

Web and Computer Account

- Course website
 - http://www.cs.pdx.edu/~fliu/courses/cs447/
 - Homework, projects, readings
- □ Google Chat
 - You should have already received an invitation
- Everyone needs a Computer Science department computer account
 - Get account at CAT at http://cat.pdx.edu

Textbooks & Readings

- Fundamentals of Computer Graphics
 - By Shirley et al.
 - 4th edition, A.K. Peters
- OpenGL Programming Guide
 - By Shreiner et al.
 - 8th edition (does not matter which edition)
 - Early version available online
 - http://www.glprogramming.com/red/

Grading

- □ 20% Midterm
- □ 25% Final
- □ 10% Project 1
- ☐ 20% Project 2
 - Have the option to work in group
- ☐ 25% Homework

Homework

- Roughly one homework every two weeks
 - 5 homework totally
- Primary to explore topics further and prepare you for the exams
- Some topics will be presented only in homework
 - Review of linear algebra in Homework 1

Projects

- □ Project 1: Image editing
- ☐ Project 2: Building a virtual theme park
- □ Visual C++ & FLTK & OpenGL

Project demo

C++

- Required for this class
 - You presumably have taken CS 202 or its equivalence for C++
- □ We'll provide tutorials for you to use C++ within Visual Studio
 - Help you get familiar with VS, NOT C++
 - We support Visual Studio 2019
 - ☐ See programming tutorials on our class website

Software Infrastructure

- ☐ FLTK will be the user interface toolkit
 - Provides windows, buttons, menus, etc
 - C++ class library, completely portable
 - Available for free: www.fltk.org
- OpenGL will be the 3D rendering toolkit
 - Provides an API for drawing objects specified in 3D
 - Included as part of Windows and in most Unix distributions
 - getting hardware acceleration may take some effort
- □ Visual Studio 2019 will be the programming environment for grading
- To be graded, your projects must compile under Visual C++ on a Windows machine.

Visual Computing at PSU

- Undergraduate/graduate courses
 - Winter: Introduction to Computer Vision
 - Spring: Introduction to Computational Photography

Admin Questions?

Today

- Course overview and information
- Digital Images
- □ Homework 1 due 4:30 pm, Oct. 06
 - Email <u>abhijay@pdx.edu</u>
 - □ With title "Your Name + Homework 1"
 - No late homework will be accepted

Images

- An image is intended to describe the light that arrives at your eyes when you view it
 - You can be even more abstract: image describes what you should think when you see it
- Different display devices convey the image content in different ways
 - e.g. printer and computer monitors use two different approaches
 - The same image may look different on different monitors
 - Who cares?

Image Formats

- We are familiar with many forms of image:
 - Photographs
 - Paintings
 - Sketches
 - Television (NTSC, PAL-SECAM)
 - Digital formats (JPEG, PNG, GIF, BMP, TGA, etc.)
 - MPEG, H.264, H.265 (for videos)
- Each form has its own way of obtaining and storing the information content

Digital Images

- Many formats exist for storing images on a computer
 - JPEG, PNG, GIF, BMP, TGA, etc.
- There are some conflicting goals:
 - The storage cost should be minimized

Digital Images

- Many formats exist for storing images on a computer
 - JPEG, PNG, GIF, BMP, TGA, etc.
- There are some conflicting goals:
 - The storage cost should be minimized
 - The amount of information stored should be maximized
 - The size of something and the amount of information is contained are not the same thing
 - Original information versus perceptual equivalence
 - Tracking ownership may be important
- Most formats you are familiar with are raster images

Raster Images

- A raster is a regular grid of pixels (picture elements)
 - The smallest element of an image is called a pixel
- Raster image formats store the color at each pixel, and maybe some other information
 - Easiest is to use a simple array of pixel values
 - Some formats store the pixel information in very different ways
 - e.g. a 5x3, floating point, grayscale image

0.25	0.5	0.25	0.5	0.25
1	0.25	0	0.25	1
0.25	0.5	0.25	0.5	0.25

Vector Images

- □ Vector formats offer an alternative way to store images
- □ The most common use of vector formats are in fonts images of characters (Postscript, TrueType)
- Store images as collections of geometric primitives
 - E.g. Lines, polygons, circles, curves, ...

- It is possible to go from a vector image to a raster image
 - We'll learn how
- It is very hard to go the other way
 - A popular yet challenging computer vision problem

Trade-Offs

- Which format, raster or vector, is easier to:
 - Display?
 - Resize (scale bigger or smaller)?
 - Rotate?
 - Crop (cut bits off at the edges)?

Obtaining Digital Images

What are some methods for obtaining a digital image?

Obtaining Digital Images

- What are some methods for obtaining a digital image?
 - Digital camera
 - Scanning another image
 - Other forms of scanning (e.g. medical)
 - Editing existing digital images
 - Paint or drawing programs
 - Created from abstract data (e.g. math function plot)
 - Rendered from a scene description
 - ...

Ideal Images

- ☐ The information stored in images is often continuous in nature
- □ For example, consider the ideal photograph:
 - It captures the intensity of light at a particular set of points coming from a particular set of directions (it's called *irradiance*)
 - The intensity of light arriving at the camera can be any positive real number, and it mostly varies smoothly over space
 - The world we see is not pixelated
 - Where do you see spatial discontinuities in a photograph?

Digital Images

- Computers work with discrete pieces of information
- ☐ How do we digitize a continuous image?
 - Break the continuous space into small areas, pixels
 - Use a single value for each pixel the pixel value (no color, yet)
 - No longer continuous in space or intensity
- This process is fraught with danger, as we shall see

Discretization Issues

- Can only store a finite number of pixels
 - Choose your target physical image size, choose your resolution (pixels per inch, or dots per inch, dpi), determine width/height in pixels necessary
 - Storage space goes up with square of resolution
 - ☐ 600dpi has 4× more pixels than 300dpi
- Can only store a finite range of intensity values
 - Typically referred to as depth number of bits per pixel
 - Directly related to the number of colors available and typically little choice
 - ☐ Most common depth is 8, but also sometimes see 16 for grey
 - Also concerned with the minimum and maximum intensity dynamic range
- What is enough resolution and enough depth?

Perceptual Issues

- Spatially, humans can discriminate about ½ a minute of arc
 - At fovea, so only in center of view
 - At 0.5m, about 0.1mm ("Dot pitch" of monitors)
 - Sometimes limits the required number of pixels
- Humans can discriminate about 8 bits of intensity
 - "Just Noticeable Difference" experiments
 - Limits the required depth for typical dynamic ranges
 - Actually, it's 9-10 bits, but 8 is far more convenient
- BUT, when manipulating images much higher resolution may be required

DeepFovea: Neural Reconstruction for Foveated Rendering (Facebook Reality Lab)

https://www.youtube.com/watch?v=eTUmmW4ispA

Intensity Perception

- Humans are actually tuned to the *ratio* of intensities, not their absolute difference
 - So going from a 50 to 100 Watt light bulb looks the same as going from 100 to 200
- Most computer graphics ignores this, giving poorer perceptible intensity resolution at low light levels, and better resolution at high light levels

Dynamic Range

- Image depth refers to the number of bits available, but not how those bits map onto intensities
- We can use those bits to represent a large range at low resolution, or a small range at high resolution
- Common display devices can only show a limited dynamic range, so typically we fix the range at that of the display device and choose high resolution

More Dynamic Range

- Real scenes have very high and very low intensities
- Humans can see contrast at very low and very high light levels
 - Can't see all levels all the time use adaptation to adjust
 - Still, high range even at one adaptation level
- ☐ Film has low dynamic range around 100:1
- Monitors are even worse
- Many ways to deal with the problem
 - Way beyond the scope of this course

- □ When images are created, a *linear* mapping between pixels and intensity is assumed
 - For example, if you double the pixel value, the displayed intensity should double
- Monitors, however, do not work that way
 - For analog monitors, the pixel value is converted to a voltage
 - The voltage is used to control the intensity of the monitor pixels
 - But the voltage to display intensity is not linear
 - Similar problem with other monitors, different causes
- □ The outcome: A linear intensity scale in memory does not look linear on a monitor
- Even worse, different monitors do different things

Gamma Control

- The mapping from voltage to display is usually an exponential function: $I_{display} \propto I_{to-monitor}^{\gamma}$
- □ To correct the problem, we pass the pixel values through a *gamma function* before converting them to the monitor

 $I_{to-monitor} \propto I_{image}^{1/\gamma}$

- ☐ This process is called *gamma correction*
- \square The parameter, γ , is controlled by the user
 - It should be matched to a particular monitor
 - Typical values are between 2.2 and 2.5
- The mapping can be done in hardware or software

Next Time

□ Color