

PROFESSIONAL REQUIREMENTS FOR QUALIFIED MRI PHYSICISTS IN RADIATION THERAPY PHYSICS

Geoffrey D. Clarke, PhD UT Health San Antonio

Overview

- Review Radiation Therapy Tasks that can use MRI
- Professional Qualifications in MRI Physics
- Educational Opportunities in MRI Physics
- MRI Physics Accreditation Programs
- MRI Physics Competencies Required for Radiation Therapy Tasks

MRI Simulation

- Flat table-top overlay
- Coil bridges for flex coils
- Pulse sequence modifications include:
 - Full field-of-view (FOV)
 - High receiver BW (minimize CSA and susceptibility effects)
 - Increased coverage required for target and Organs at Risk delineation landmarks for registration and IGRT
 - Increased image intensity uniformity for registration

Paulson et al. Medical Physics, 42(1), 2015

- Geometric distortion correction to < 2mm
- Imaging breath-holds tailored to match gating windows used in gated radiotherapy delivery
 3

MRI-Based Simulation Pulse Sequences

Sequence/Contrast	Site(s)	Artifacts / Confounds	
Axial/Saggital T1	Breast, Head and Neck, Prostate, Spine	Swallowing motion, flow artifacts	
Axial T2 FLAIR	Brain, Pancreas	CSF pulsation artifacts	
Post-contrast T1	Brain, Liver, Spine	Breath-holding	
Axial fat-suppressed T1	Cervix, Head and Neck, Liver, Pancreas, Spine	Swallowing motion, flow artifacts	
Fat-suppressed T2	Breast, Liver, Rectum	Breath-holding	
Axial T2 STIR	Breast, Head and Neck		
Axial ∆T1 (Post T1-Pre T1)	Brain		
Axial Diffusion (ADC)	Brain, Cervix, Head and Neck, Rectum, Rectum	Geometric distortion	
Paulson et al. Medical Physics, 42(1), 2015			

Susceptibility Artifact

- Creates signal voids.
- Distorts MR images used for treatment planning.
- Becomes worse at longer TE values.
- Becomes worse with increasing B_o field strength.

MRI Distortion Management

- System-induced distortions
 - B_o field inhomogeneities
 - Gradient nonlinearities
- Patient-induced distortions
- Center prescribed imaging volume at magnet isocenter
- Correct distortion with vendor's 3D distortion correction algorithm
- For Superior-Inferior (axial scans) use step-and-shoot:

Stanescu et al. Med Phys 39(12), 7185-7193, 2012

- i.e. scanner couch is shifted so that the center of each segment aligned with the scanner isocenter.

The Problem with Quantitative MRI

- MRI signal intensity cannot be directly related to tissue density, electron density or other tissue parameters
- Contrast in MR images is mainly dominated by the relaxation times, T1 and T2.
- Therefore, using MRI for treatment planning is problematic.
- Special MR acquisition methods must be used.
- Then MRI gray scale values to Relative Electron Density with quantitative acquisition methods and careful calibration.

MRI-Based Dosimetry and Patient-Specific Plan Verification

- CT image data of patient's head
- 3D Print patient-specific phantom
- Fill phantom's cranial vault with Vinylpyrrolidone based polymer gel
- Perform complex radiation therapy protocol on phantom
- Take phantom to MRI, perform HASTE sequence
- Calculate T2-parametric map
- Rescale T2 values to dose

Synthetic CT by MRI

A. CT scan B. T1-weighted MP-RAGE C. T2-weighted 3D-FSE D. UTE1: TE= $60 \ \mu s$ E. UTE2: TE = $4460 \ \mu s$ Double TE GRE F. Dixon Fat image G. Dixon H₂O image H. 2D TOF MR angiography

Hsu et al. Phys Med Biol. 2013 December 7; 58(23)

Synthetic CT by MRI

Typically, MR images are registered to CT images to transfer soft-tissue contrast information seen on MRI into the CT-based patient representation of Relative Electron Density for dose calculations used in treatment planning.

- Accurate geometry
- Accurate electron density
 - Water/Fat quantitation with MRI
 - Ultra-Short TE (UTE) methods for imaging bone

Hsu et al. Phys Med Biol. 2015

4D-MRI Technology

- MR can acquire an image in an arbitrary plane by changing the direction of magnetic field gradient
- Two non-coplanar image views provided critical motion characterization, because the most significant displacements are in the cranial-caudal direction
- Volumetric 4D MRI is practical with parallel acquisition using large RF coil arrays
- Up to 16-fold acceleration possible for a 32-channel system
- View-sharing, or TRICKS, further speeds acquisition

4D MRI and 4D Radiation Therapy

Time information required for motion characterization in 4D volumetric imaging can be obtained using respiratory gating or motion tracking technique

- 4DRT aims to track and compensate for target motion during radiation treatment, minimizing normal tissue injury, especially critical structures adjacent to the target.
- 4DRT requires 4D imaging, 4D radiation treatment planning (4D RTP), and 4D radiation treatment delivery (4D RTD.

Online Targeting

- Hybrid MRI-linac radiotherapy technology
- Allows direct target visualization for treatment guidance

Constantin et al Med. Phys. 38 4174-85, 2011

- Allows patient set-up based on the actual position, shape and motion characteristics.
- Actual motion tracking during irradiation can be used for real-time treatment guidance and adaptation
- Can also record anatomical changes for dose reconstruction and dose accumulation

Treatment Response and Adaptations

Diffusion Weighted MRI

- In a tumor with high cellularity, the motion of water molecules is more restricted.
- Treatments result in increased ADC values due to cell swelling, tumor lysis and necrosis.
- Dynamic Contrast-Enhanced (DCE) Perfusion Imaging
 - Maps the distribution of tumor perfusion, blood volume, & mean transit time.
 - Have shown prognostic and predictive value for response of certain cancers to therapy.

Diffusion Weighted Imaging (DWI)

- DWI measures the mobility of cellular water in tissue without exogenous contrast agent.
- DWI improves RT treatment planning by characterizing tumor tissue properties required for tumor grading and target volume delineation.
- DWI is also a sensitive marker for alterations in tumor cellularity and could be used in the early assessment of RT treatment response.

Tsien et al. Semin Radiat Oncol. 2014 Jul; 24(3): 218–226

Dynamic Contrast-Enhanced Perfusion Imaging

- T1 mapping can be employed to help convert dynamic changes in MRI signal into concentration-vs-time curves
- Validation will require standardization, reproducibility, accuracy and robustness assessments, as well as clinical validation of the sensitivity and specificity.

K_{trans} map shows changes in tumor permeability following RT.

Cao et al, Med. Phys. 34(2):604-612, 2007

MRI and CT Systems by Region (2015 or most recent)

JAPAN

Number of devices (1A) and utilizations (1B) of CT, MRI and PET.

Matsumoto M, Koike S, Kashima S, Awai K (2015) Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data. PLOS ONE 10(5): e0126036. https://doi.org/10.1371/journal.pone.0126036 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126036

AAPM Qualified MRI Physicist

- AAPM only recognizes MRI Physics Qualifications in the context of being a Qualified Diagnostic Medical Physicist.
- Requires certification by:
 - The American Board of Radiology; or
 - The American Board of Medical Physics (currently ABMP doesn't offer Diagnostic Medical Physics certification but already ABMP certified Diagnostic Medical Physicists can maintain certification); or
 - The Canadian College of Physicists in Medicine.

ACR Qualified MRI Physicist/Scientist

Qualifications	Medical Physicist	MR Scientist	
Initial	 Diagnostic Physics by ABR Imaging Physics or MRI Physics by ABMP Imaging Physics or MRI Physics by CCPM 	 Graduate degree in a physical science involving NMR or MRI 3 years of experience in clinical MRI 	
Continuing Experience	Upon renewal, 2 MRI unit surveys in prior 24 months		
Continuing Education	15 CEU/CME (1/2 Cat 1) in prior 36 months (includes credits pertinent to the accredited modality)		

Available Specialty Imaging Training

CAMPEP Programs with Speciality Imaging Courses

Where to Gain MRI Experience

- OJT in Clinical MRI Simulation & Treatment Planning in RT Dept.
- OJT in QC & Protocol Development in Radiology Dept.
- Project Participation at MRI Research Centers
- Medical Physics Residency Programs

ABMP MRI Physics Qualifications

- The applicant must possess a graduate degree in Physics, Medical Physics, or other appropriate and related field, from an accredited university.
- A minimum of two years full time equivalent comprehensive patient related experience in MRI physics under supervision of board-certified medical physicist (can be in residency program)
- Two letters, attesting that the candidate meets the experience requirements (1 physicist, 1 physician)
- Note: Degree from CAMPEP-accredited program not required
- Note: No CAMPEP-accredited residency program required

CCPM MRI Physics Certification

- Possess a Masters or Doctoral degree from an accredited university or college in Medical Physics, Physics, Science with Physics as a major option, Engineering or Applied Mathematics.
- A minimum of two years full time equivalent comprehensive patient related experience in MRI physics following the qualifying degree
- Three letters, attesting that the candidate meets the experience requirements (2 physicist, 1 physician)
- Note: Degree from CAMPEP-accredited program not required
- Note: No CAMPEP-accredited residency program required

ABMP and CCPM Exam Processes

	ABMP	CCPM		
Written Part 1 medical MRI	Part 1: general medical physics <i>OR</i> MRI science	Part 1: general medical physics, anatomy/biology (MC, matching)		
	(MC)	Part 2: MRI safety (MC/short answer)		
Written	Part 2: MRI Physics (MC)	Part 3: MRI physics (essay)		
		Part 4: Imaging physics (essay)		
Oral	Seven questions on areas of competency (next slide)	instrumentation, clinical applications, specialty knowledge & techniques.		
MC = multiple choice		26		

ABMP MRI Physics Exam

Anyone who has passed ABR Part 1 (General Medical Physics Exam) can skip Part1 of ABMP Exam and proceed directly to Part II – written MRI Physics Exam

ABMP MRI Physics Accreditation

General Education/Experience Requirements:
1. Basic Physics of Nuclear Magnetic Resonance
2. Magnetic Resonance Imaging Theory and Reconstruction
3. MR Image Characteristics and Artifacts
4. Advanced MR Imaging Techniques & System Features
5. Contrast, MR Angiography & Cardiac MRI
6. MR Technology and Equipment Quality Control
7. Site Planning and Safety of MR Studies

MRI Expertise for RT Tasks

DISTORTION CORRECTION	SYNTHETIC CT	ONLINE TARGETING	4D MRI	TREATMENT RESPONSE
Х	Х	Х	Х	Х
Х	Х	Х	Х	Х
Х	Х	Х	Х	Х
	Х	Х	Х	Х
	Х	Х	Х	Х
Х	Х	Х	Х	Х
Х	Х	Х	Х	Х
	DISTORTION CORRECTION X X X X	DISTORTION CORRECTIONSYNTHETIC CTXXXXXXXXXXXXXXXXXXXXXX	DISTORTION CORRECTIONSYNTHETIC CTONLINE TARGETINGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DISTORTION CORRECTIONSYNTHETIC CTONLINE TARGETING4D MRIXX

Summary

- MRI can provide exceptional image data for use in multiple phases of radiation cancer therapy
- However, the use of MRI in RT requires a high degree of competence and understanding of sophisticated MRI methods and procedures.
- Programs are in place for professional credentialing (certification) in MRI Physics however,
 - "MRI Physicist" is not a specialty recognized by the AAPM and prescribes no special competencies for undertaking MRI physics
 - MRI physics specific courses are not required in CAMPEPaccredited graduate programs

Summary

- Despite plenty of MRI systems across the developed world, there are limited opportunities for medical physicists to gain hands-on, practical experience in MRI
- If these issues are not addressed, there will be a shortage of qualified medical MRI physicists to accommodate future needs for technical expertise in MRI for radiation therapy

Fin