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Introduction

To many, Visio for Enterprise Architects appears to be a mysterious diagramming tool. In conjunction with
Visual Studio .NET Enterprise Architect it potential seems clear – going from design to code, and back from
code to design offers the developer tremendous benefits for rapidly developing applications. Why do we say
'mysterious'? This is because Visio's range of features can daunt the user, but most importantly, many aspects
of its use directly relevant to software developers are frustratingly lacking in explanation.

This book aims to address this problem – here we focus exclusively on Visio's features for developing
.NET applications, encompassing:

❑ UML diagrams

❑ Generating code from UML diagrams

❑ Reverse engineering source code into UML diagrams

❑ Database modeling

Along the way, we'll see some more general applications of Visio to the software development lifecycle,
and also learn about Visio's idiosyncrasies, which almost every user of Visio will have encountered, and
wondered "Is it just me?"

In other words, this book will allow you to finally unmask Visio for Enterprise Architects.
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What Does This Book Cover?
Chapter 1 starts us off by reviewing the key UML concepts, the main diagram types, and the role of
those diagrams within the software development process. If you're quite new to UML this will serve as a
practical introduction that will help you make sense of the rest of the book.

In Chapter 2 we have our first dip into Visio, and have a look around the general Visio environment.
Before we hit the main feature of the book, the UML diagrams, we look at other aspects of Visio that
aid software development, and make an attempt to familiarize ourselves with Visio, its pages, shapes,
and connectors.

In Chapter 3 we cover using Visio for object modeling – defining data access base classes for your .NET
applications, defining a business object base class, deriving business classes from use cases, working with
abstract and concrete classes, and using sequence diagrams to model the flow of messages between objects.
Along the way we'll meet many of Visio's UML diagramming features, setting us up for the next chapter.

Visio for Enterprise Architects can generate skeleton source code from an existing UML diagram in C#,
Visual Basic .NET, or C++. Moreover, Visio provides further options that give the developer greater
control over the implementation of this source code. In Chapter 4 we look at how to generate code from
a UML model in Visio, the various options available for generating code, including the use of code
templates to specify the structure of the source code generated by Visio. We look at a variety of UML to
code mappings, typical of the situations you will encounter in more complex models.

The Visual Studio .NET Enterprise Architect and Visio for Enterprise Architects combination provides
a facility for reverse engineering existing C#, VB.NET, or C++.NET source code into a Visio UML
static structure model. In Chapter 5 we'll look at this reverse engineering feature and cover why reverse
engineering is useful how to reverse engineer .NET source code from within the Visual Studio .NET
IDE, explore the structure of a typical reverse-engineered Visio UML model, and look at the code to
UML mappings for important constructs such as generalization (inheritance) and association. We finish
the chapter by using reflection to reverse engineer .NET assemblies to provide .NET Framework base
class models for our UML diagrams.

In Chapter 6, we take a step back from the world of diagramming, generating code, and generating
more diagrams from code, and look at the role of Visio and UML in the entire software development
lifecycle. In effect, we'll be discussing how we document our work at different stages of a typical
development project using Visio and UML – at the end of this chapter you'll take away some deeper
insight into using Visio and UML in the course of working on your own projects.

Chapter 7 sees us move on to another area of using Visio to assist with general design issues. Designing
a distributed system is an iterative process from requirements analysis to modular breakdown and to
packaging and deployment strategies. However, designing a distributed system is different from
designing a non-distributed one. In this chapter we look at a .NET Remoting example, a Bank
application. We begin with an overview of .NET Remoting, and we see how to decide which classes in
our application should be .NET Remoting types, how to decide the activation mode of each .NET
remoting type, and how this can be diagrammed in Visio, what code elements should be grouped in a
component, how to prepare a component diagram, and how to prepare a deployment diagram.
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Chapter 8 moves us on to yet another aspect of Visio directly relevant to the enterprise developer – data
modeling. We take a detailed walk through database modeling and Object Role Modeling (ORM),
looking at Visio's ORM Source Diagrams and Entity Relationship Source Diagrams. We then see how
to generate a database schema from these models, and further tweak the design with reverse engineering
of the database into ORM and ER models, and updating the database with our modifications to yield
round-trip database engineering.

Who Is This Book For?
This book is for the .NET developer who:

❑ Is comfortable with the basic concepts of UML

❑ Wants to learn how to use Visio for Enterprise Architects effectively

❑ Wants to see how UML and Visio can benefit their projects in general

What You Need to Use This Book
This book is based around the following combination:

❑ Visual Studio .NET Enterprise Architect Edition

❑ Visio for Enterprise Architects

Thus, having access to each is a prerequisite for using this book.

Conventions
We've used a number of different styles of text and layout in this book to help differentiate between different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several fonts. If it's a word that we're talking about in the text – for example, when discussing
a for (...) loop, it's in this font. If it's a block of code that can be typed as a program and run, then
it's also in a gray box:

   public Employee this[int index]

Sometimes we'll see code in a mixture of styles, like this:

   public Employee this[int index]
   {
      get
      {
         foreach (Employee em in employees)
         {
            if (em.ID == index)
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               return em;
         }
      return null;
      }
   }

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

Advice, hints, and background information come in this type of font.

Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen, or in menus like the Open or Close, are in a similar font to
the one you would see on a Windows desktop.

❑ Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book, or by e-mail to
feedback@wrox.com. Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox web site, www.wrox.com, locate the title through our Find a Book facility or
by using one of the title lists. Click Download Code on the book's detail page, or on the Download item
in the Code column for title lists.

The files that are available for download from our site have been archived using WinZip. When you've
saved the archive to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code will be extracted into
separate folders for each chapter of this book, so ensure your extraction utility is set to use folder names.

Errata
We've made every effort to make sure that there are no errors in the text or in the code. However, no
one is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful to hear about it. By sending in errata you may save
another reader hours of frustration, and, of course, you will be helping us to provide even higher quality
information. Simply e-mail the information to support@wrox.com – your information will be checked
and, if correct, posted to the errata page for that title, and used in reprints of the book.
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To find errata on the web site, go to www.wrox.com, and simply locate the title through our Advanced
Search or title list. Click the Book Errata link below the cover graphic on the book's detail page.

E-Mail Support
If you wish to query a problem in the book with an expert who knows the book in detail, then e-mail
support@wrox.com with the title of the book and the last four numbers of the ISBN in the subject field
of the e-mail. A typical e-mail should include the following things:

❑ The title of the book, the last four digits of the ISBN (7957), and the page number of the problem.

❑ Your name, contact information, and the problem in the body of the message.

We need the above details to save your time and ours – we never send unsolicited junk mail. When you
send an e-mail message, it will go through the following chain of support:

❑ Customer Support – Your message is delivered to our customer support staff, who are the first
people to read it. They have files on most frequently asked questions and will answer anything
general about the book or the web site immediately.

❑ Editorial – Deeper queries are forwarded to the technical editor responsible for that book.
They have experience with the programming language or particular product, and are able to
answer detailed technical questions on the subject.

❑ The Authors – Finally, in the unlikely event that the editor cannot answer your problem, they will
forward the request to the author. Wrox authors are glad to help support their books. They will e-
mail the customer and the editor with their response, and again all readers should benefit.

The Wrox support process can only offer support for issues that are directly pertinent to the content of
our published title. Support for questions that fall outside the scope of normal book support is provided
via the community lists of our http://p2p.wrox.com/ forum.

p2p.wrox.com
For author and peer discussion, join the P2P mailing lists. Our unique system provides programmer to
programmer™ contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail
support system. If you post a query to P2P, you can be confident that the many Wrox authors and other
industry experts who are present on our mailing lists are examining it. At p2p.wrox.com, you will find a
number of different lists that will help you not only while you read this book, but also as you develop
your own applications. Particularly appropriate to this book are the vs_dotnet and uml lists.

To subscribe to a mailing list, just follow these steps:

1. Go to http://p2p.wrox.com/.

2. Choose the appropriate category from the left menu bar.

3. Click on the mailing list you wish to join.

4. Follow the instructions to subscribe, and fill in your e-mail address and password.
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5. Reply to the confirmation e-mail you receive.

6. Use the subscription manager to join more lists and set your e-mail preferences.

Why This System Offers the Best Support
You can choose to join the mailing lists, or you can receive them as a weekly digest. If you don't have
the time (or the facility) to receive the mailing lists, then you can search our online archives. Junk and
spam mails are deleted, and your own e-mail address is protected by the Lyris system. Queries about
joining or leaving lists, and any other general queries about lists, should be sent to
listsupport@p2p.wrox.com.
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Review of UML

The purpose of this chapter is to set the scene by reviewing the key UML concepts, the main diagram
types, and the role of those diagrams within the software development process. If you're quite new to
UML this will serve as a practical introduction that will help you make sense of the rest of the book,
before you move on to further reading. If you're experienced with UML the chapter will serve as handy
revision and you might just find some nuggets of information that have so far eluded you.

Either way we'll all be moving on from roughly the same starting point: with the same appreciation of
UML notation, with an understanding of relevant software development processes, and with a common
bias towards .NET and the Visio for Enterprise Architects tool.

The final point is quite important, and the raison d'être for this book. In recent years the body of UML
literature has focused mainly on Java development and the use of modeling tools such as Rational Rose.
In this book we're applying a .NET development perspective at the same time as demonstrating the so
far under-documented Visio modeling tool that comes bundled with the Visual Studio .NET
Enterprise Architect.

With all this in mind we can now press on with the introduction to – or revision of, depending on your
background – the Unified Modeling Language.

What is the Unified Modeling Language?
When discussing UML, we need to establish one important point right up front.

The Unified Modeling Language is a notation; that is a set of diagrams and diagram elements
that may be arranged to describe the design of a software system. UML is not a process, nor is it a
method comprising a notation and a process.

1
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In theory you can apply aspects of the notation according to the steps prescribed by any process that
you care to choose – traditional waterfall, extreme programming, RAD – but there are processes that
have been developed specifically to complement the UML notation. You'll read more about the
complementary process(es) later in this chapter.

Why use UML?
Hidden inside that specific question there's a more generic question, which is "Why use a formal analysis
and design notation, UML or otherwise?" Let's start to answer that question by drawing an analogy.

Suppose you wanted to make a bridge across a small stream. You could just place a plank of wood
across from one side to the other, and you could do so on your own. Even if it failed to hold your
weight, the only downside would be wet feet.

Now suppose you wanted to make a bridge across a narrow river. You'd need to do some forward
planning to estimate what materials you'd need – wood, brick, or metal – and how much of each. You'd
need some help, and your helpers would want to know what kind of bridge you're building.

Finally, suppose you wanted to build a bridge across a very wide river. You'd need to do the same kind of
forward planning as well a communicating your ideas to a much bigger team. This would be a commercial
proposition with payback from fare-paying passengers, so you'd need to liaise with the relevant authorities
and comply with health-and-safety requirements. You'd also be required to leave behind sufficient
documentation to allow future generations to maintain the structure long into the future.

In a software context, this means that formal design becomes increasingly important as a function of the size
and complexity of the project; in particular, as a function of the number of people involved. Based on that
analogy, and wider project experience, we could conclude that a formal design notation is important in:

❑ Establishing a blueprint from the application

❑ Estimating and planning the time and materials

❑ Communicating between teams, and within a team

❑ Documenting the project

Of course, we've probably all encountered projects in which little or no formal design has been done
up-front (corresponding with the first three bullet points in that list); in fact more projects than we care
to mention! Even in those situations, UML notation has been found to be invaluable in documenting the
end result (the last bullet point in that list). Though not recommended, if that's the extent of your
commitment to UML you'll be most interested in the Reverse Engineering discussion in Chapter 5.

Now that we've answered the generic question, let's return to the specific question of why use UML?

Well it's become something of an industry standard, which means that there's a good chance of finding
other people who understand it. That's very important in terms of the communication and
documentation bullet points in our list. Also if you or anyone else in the team does not understand it,
there's a good chance of finding relevant training courses, or books like this one.

That's very pragmatic reasoning and perhaps more convincing than a more academic (or even
commercial) argument such as:
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"The application of UML has a proven track record in improving the quality of software systems."

A Brief History of UML
Taking the phrase Unified Modeling Language as our starting point, we've discussed in the previous
section the "language" (namely, notation) aspect. In the next section, we'll investigate the "modeling"
aspect, which leaves us here with the word "unified". What, or who, preceded the UML and how did it
all become unified? This will become clear as we step through a brief history of UML.

In the beginning although there was a plethora of object-oriented "methods", there were three
principal methods:

❑ The Booch method devised by Grady Booch

❑ Object Modeling Technique (OMT) devised by Jim Rumbaugh

❑ Object Oriented Software Engineering (also known as Objectory) devised by Ivar Jacobson

These three methods have many ideas in common, yet different notation for expressing those ideas.
Some of you may remember that in an OMT class diagram the classes were represented as rectangular
boxes whereas in the Booch method they were represented as stylized cloud shapes. Also, each method
placed emphasis on different aspects of object-oriented software development. For example Jacobson
introduced the idea of use cases, not addressed by the other methods.

In simple terms, a use case is a unit of functionality provided by the system to an actor
(such as a user). For example, in a word-processing application one of the use cases
might be "Run spell checker".

The unification of these three methods combined the best bits of each method with a common notation
(UML) for the common concepts – the end result being an industry-standard notation for analysis and design.
If you speak with anyone who claims to be doing object modeling, chances are they'll be using UML.

So how did this unification play out in time? The key dates are:

❑ OOPSLA '94 – Jim Rumbaugh leaves General Electric to join Grady Booch at Rational
Software, so as to merge their methods and achieve standardization across the industry.

❑ OOPSLA '95 – Booch and Rumbaugh publish version 0.8 of the Unified Method. Rational
Software buys Objectory and Ivar Jacobson joins the company.

❑ January 1997 – Booch, Rumbaugh, and Jacobson (the three amigos) release – through
Rational – a proposal for the UML version 1.0.

❑ September 1997 – UML version 1.1 is adopted by the Object Management Group (OMG).

The Object Management Group, previously best known for the CORBA standard, is a non-profit
organization – comprising many member companies – that encourages, standardizes, and supports
the adoption of object technologies across the industry. You can find out more about the OMG at
http://www.omg.org.
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If we've given the impression that the Unified Modeling Language is the exclusive work of only three
contributors, the three amigos, then let's set the record straight. Some of the concepts are based in the
early work of other individuals – for example, David Harel's work on Statechart diagrams – and some
further enhancements have come from other member organizations of the OMG; for example, the
Object Constraint Language (OCL) devised by IBM.

OCL was devised so that additional rules could be added to a UML model in a language that less
ambiguous than English. For example, the statement "Person.Employer=Person.Manager.Employer"
may be less ambiguous than "a person and their manager must both work for the same company."

More information on OCL can be found at
http://www-3.ibm.com/software/ad/library/standards/ocl.html.

At the time of writing, the UML specification is at version 1.4 and in mid-2001 the OMG members
started work on a major upgrade to UML 2.0. Modeling tools – including Visio for Enterprise Architects
– will always be one or two steps behind in their support for the specification, but that's not usually a
big problem because the core concepts discussed in the next section are now quite mature and stable.

At the time of writing, the version of Visio for Enterprise Architects used in the construction of this
chapter provides support for UML at least up to version 1.2 – this can be determined from the About
error checking in the UML model section of the Microsoft Visio Help:

"Semantic error checking occurs automatically, noting errors in the design of UML model elements,
based on the well-formedness rules in the UML 1.2 specification."

End-to-End UML Modeling
Having looked at why UML is useful, and where it came from, we'll now look at the notation itself. To
cover the complete notation in a single chapter would be impossible, so for a deeper coverage I'll refer
you to some other works.

❑ Instant UML by Pierre-Alain Muller (Wrox Press, ISBN 1-86100-087-1).

❑ The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar
Jacobson (Addison Wesley, ISBN 0-201-57168-4).

❑ UML Distilled by Martin Fowler with Kendall Scott (Addison Wesley, ISBN 0-201-65783-X).

What we'll do here is cover the essential notation and core concepts that will allow us to progress
through the rest of the book with a common understanding.

We'll also aim to address one of the problems of many UML courses and books. The problem being,
that all too often the various diagrams are presented in isolation without a clear indication of how they
relate to one another. To make matters worse, different examples are often used to demonstrate the
different diagrams, not one of those examples being for a system that you might actually want to build.
Think here of a statechart diagram that describes a motor car gearbox, or a sequence diagram that
describes the operation of a hotel elevator.
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So in the following section we'll have a single example, an Order Processing system, which you should be
able to relate to even if you don't intend to build such a thing, and at the end, we'll pull it all together.

UML Essential Notation and Core Concepts
Now we'll step through the UML diagrams in turn, all the way from an activity diagram through to a
deployment diagram in this order:

❑ Activity Diagram

❑ Use Case Diagram

❑ Sequence and Collaboration Diagram

❑ Statechart Diagram

❑ Static Structure Diagram

❑ Component Diagram

❑ Deployment Diagram

Each diagram is labeled in light gray with some of the names given to the UML elements that are
shown, which – for the record – reflects the UML metamodel.

The UML Metamodel is itself a UML model, which defines the rules for constructing
other UML models. Whereas in one of your own models you might state "Bank is
associated with one or more Accounts", the metamodel would state a more generic
relationship of "a Class may be associated with any Other Class".

On the whole, the model elements have been labeled using Visio EA terminology so as to reduce the
potential for confusion when you come to use the tool. Historically – and in other modeling tools – you
may have encountered alternative UML terminology. The alternative terms have been tabulated
towards the end of this chapter.

As you'll see later in this chapter, the software development process that you follow might well be
described as use-case driven, which implies the use case diagram as an obvious starting point. But those
use cases will doubtless fit into some kind of overall business process, perhaps modeled up-front by a
business analyst. So we'll take a business process as our starting point and use this as a vehicle for
demonstrating the most suitable diagram for that purpose; the activity diagram.

Activity Diagram
The activity diagram is the closest you'll get in UML to a flow chart, and the closest you'll get to a
business process diagram. Here is a sample activity diagram with the important UML elements labeled,
followed by a description of those elements.
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OrderClerk Logistics Accounts

Take Order

unpicked : Order Pick Stock

Deliver Item(s)
Prepare Invoice

object in state

entry action

initial state
swim lane

Send Invoice

entry/Print Invoice

transition (fork)

transition (join)

state

control flow

❑ Initial state is where the diagram begins.

❑ Control flow shows a transfer of control from one activity to another.

❑ State represents a period of time during which a piece of work is carried out by person
or team.

❑ Transition (fork) shows the point as which two or more parallel activities will commence.

❑ Transition (join) shows the point as which two or more parallel activities must synchronize
and converge.

❑ Swim lane allows all of the activities carried out by a particular person or team arranged into
a column.

❑ Entry action shows what must happen when the activity begins.

❑ Object in state shows an object that is produced or consumed in the course of an activity, with
the production or consumption (object flow) being represented by the dashed line.


