
Professional UML with Visual Studio®.NET
Unmasking Visio®for Enterprise Architects

Andrew Filev
Tony Loton

Kevin McNeish
Ben Schoellmann

John Slater
Chaur G. Wu

543768 FM 5/19/03 2:28 PM Page 1

File Attachment
C1.jpg

Document1 5/19/03 12:06 PM Page 1

Professional UML with Visual Studio®.NET
Unmasking Visio®for Enterprise Architects

Andrew Filev
Tony Loton

Kevin McNeish
Ben Schoellmann

John Slater
Chaur G. Wu

543768 FM 5/19/03 2:28 PM Page 1

Professional UML with Visual Studio® .NET:
Unmasking Visio® for Enterprise Architects
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Card Number: 2003107079

ISBN: 0-7645-4376-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QU/QW/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR
HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU
SHOULD CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL
DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR
OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, the Wrox Programmer to
Programmer logo and related trade dress are trademarks or registered trademarks of Wiley in the United
States and other countries, and may not be used without written permission. Visual Studio is a trade-
mark of Microsoft Corporation. Visio is a trademark of Visio Corporation. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

543768 FM 5/19/03 2:28 PM Page 2

www.wiley.com

Trademark Acknowledgments
Wrox has endeavored to provide trademark information about all the companies and products

mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits

Authors Technical Editors
Andrew Filev Gerard Maguire
Tony Loton Douglas Paterson
Kevin McNeish
Ben Schoellmann Project Manager
John Slater Charlotte Smith
Chaur G. Wu

Production Coordinator
Technical Reviewers Sarah Hall

Kourosh Ardestani
Paul Churchill Cover
Mitch Denny Natalie O'Donnell
Mark Horner
Andrew Krowczyk Indexer
Christian Nagel Andrew Criddle
Ben Schoellmann
David Schultz Proofreader
Bill Sempf Chris Smith
Erick Sqarbi
Helmut Watson

Managing Editor
Louay Fatoohi

Commissioning Editors
Douglas Paterson
Gerard Maguire

About the Authors

Andrew Filev
Andrew Filev is President of dotSITE Software. This company specializes in cost-effective
development on the .NET platform. Andrew's team has been developing commercial solutions
using .NET since the first public announcement of this new Microsoft strategy. Andrew set up
one of the first .NET portals, and has held a number of seminars and lectures dedicated to .NET
in state and private companies.

Andrew has implemented numerous solutions in various high-tech fields – Web Services, ERP
applications, medical systems, development frameworks, among others. He can be reached at
andrew@dotsitesoftware.com or www.dotsitesoftware.com.

Special thanks for my friend Igor for his help with the book, also for Doug, Charlotte, and
Gerard for their great editorial work. Thanks for dotSITE team without whom I would
never take a part in working on the architecture of such interesting projects.

Tony Loton
Tony Loton works through his company LOTONtech Limited (http://www.lotontech.com) as an
independent consultant, course instructor, and technical writer. The current area of interest at
LOTONtech is the enhancement of UML visual modeling tools – specifically Rational Rose and
Visio for Enterprise Architects – to facilitate .NET application design. Further details can be
found at http://www.lotontech.com/visualmodeling.

Tony graduated in 1991 with a BSc. Hons. degree in Computer Science and Management and he
currently holds an appointment as associate lecturer with the Open University in the UK.

My contribution is dedicated to my wife and children, for respecting my need to “get on with it”.

Kevin McNeish
Kevin is President of Oak Leaf Enterprises, a company that specializes in object-oriented
developer tools, training, and software. He started his programming career twenty years ago
working with Assembly Language, then moved to C, Visual FoxPro, and currently uses C# as his
primary .NET development tool. He authored the book .NET for Visual FoxPro Developers and
teaches both .NET and UML training classes in North America and Europe.

He has also written UML articles for CoDe, FoxPro Advisor, and FoxTalk magazines. Kevin, a
Microsoft MVP, is the creator of a .NET business application framework called "The Mere
Mortals Framework for .NET". He also mentors software companies in a variety of vertical
markets to design and build component-based applications that scale from the desktop to the
Internet. He can be reached at oakleaf@oakleafsd.com or www.oakleafsd.com.

As always, thanks to my wife Nicole and my sons Jordan, Timothy, and Alexander for their
love and support while writing this book!

Ben Schoellmann
Benjamin Schoellmann credits his move to sunny Houston, Texas, with providing the inspiration
necessary to pursue a development and writing career. Currently he is involved with
evangelizing .NET technologies among his coworkers at Synhrgy HR Technologies. Among his
favored activities are golfing, tinkering with his network, talking incessantly, and integrating
hardware and software solutions, primarily home automation, to enhance his leisurely pursuit of
Slack. He maintains several content-free WEB domains, including Benjammin.com. He is
obsessive about keeping pace with emerging technologies, and is very quick to credit his
developer friends with all his success in the IT field.

And while he’s quick to blame the dog for just about everything, his friends know better.

I’d like to thank all my friends and family for putting up with me during this process… and
the rest of the time as well.

John Slater
John Slater is a project manager at Management Reports International in Cleveland, OH. At
MRI he is currently developing applications for the property management industry. Right now,
he is working on several projects using .NET development tools and .NET Enterprise servers.

In his free time John enjoys outdoor activities and playing with his children Rachel and Nathan.
He can be reached at jr_slater@hotmail.com.

Chaur G. Wu
Chaur Wu currently works for Trend Micro Inc. as a senior software engineer. He started
software programming before was old enough to qualify for a driving license. The first program
he wrote was a bingo game – in assembly code on a 8051 single chip. To capitalize on the
program, he ran a small casino in the lab – he developed primitive game boxes that connected
his pals and allowed them to place bets.

He's also been involved in much larger projects. For example, he developed a program in C++
to simulate the movement and geographical coverage of GPS satellites. As a research assistant in
his graduate study, he implemented a wavelet-based video compression algorithm for a traffic
surveillance system sponsored by Boston City Department of Transportation. He also helped
solve a blurred image problem using inverse filters and other image processing algorithms for a
client who designs fiber optics components in San Jose, CA.

His technical interests include distributed software systems in Java, COM, and .NET, generative
programming, software design, and neural networks. Outside of work, his favorite vacation combines
a one-night gambling trip to Reno followed by a day of skiing at some resort near Lake Tahoe.

You can e-mail Chaur at cha_urwu@hotmail.com.

I would like to dedicate my efforts in this book to my two-year-old daughter, Sarah.– CGW

Document1 5/19/03 12:06 PM Page 1

Table of Contents

Introduction 1

What Does This Book Cover? 2

Who Is This Book For? 3

What You Need to Use This Book 3

Conventions 3

Customer Support 4
How to Download the Sample Code for the Book 4
Errata 4
E-Mail Support 5
p2p.wrox.com 5

Chapter 1: Review of UML 9

What is the Unified Modeling Language? 9
Why use UML? 10

A Brief History of UML 11

End-to-End UML Modeling 12
UML Essential Notation and Core Concepts 13

Activity Diagram 13
Use Case Diagram 15

Sequence and Collaboration Diagram 16
Statechart Diagram 18

Static Structure Diagram 20

Component Diagram 21
Deployment Diagram 23

Fitting the Pieces into the UML Jigsaw 24
UML Modeling Tools 26

Process Essentials 27
(Rational) Unified Process 27

RUP .NET Developer's Configuration 29

RUP .NET Plug-in 29
Microsoft Solutions Framework 30

A Framework not a Process 30

Summary 31
Modeling Summary 31
Process Summary 32

Table of Contents

ii

Chapter 2: A Tour of Visio 35

Visio Background 35

Beginning Visio – A Simple Diagram 36
The Visio Environment 36

Shapes 39

Connectors 42

Common Visio Software Diagrams 47
Creating COM and OLE Diagrams 49
Creating Data Flow Diagrams 52
Creating Enterprise Applications 55
Windows Interface Diagrams 56

Windows Form Shape 57
Creating Database Model Diagrams 66

Creating a Simple Data Model 66

Summary 71

Chapter 3: Diagramming Business Objects 73

What is a Business Object? 74
Object Modeling Compared to Data Modeling 74
Modeling Attributes and Behavior 75
Building Monolithic Applications 75
Building Component-Based Applications 76

Benefits of using Business Objects 76
Flexibility – Write Once, Reuse Everywhere 76
Data-Access Flexibility – Write Once, Change Once 77
Normalizing Application Logic – Write Once, Period! 77
Where's the Code? – Write It and Find It 77
Designing Complex Software 77

Designing a Component-based Application 78

Business and Data-Access Base Classes 78
Creating Namespace Packages 79
Creating an Abstract Data-Access Class 80
Creating a Class (Static Structure) Diagram 81
Adding Operations to the Class 82

The UML Class Properties Dialog 83
The UML Operation Properties Dialog 84

Specifying Operation Parameters 86
Marking an Operation as Abstract 89
Adding .NET Base Classes to the Model 90
Adding the SaveDataSet Operation 91
Creating Concrete Subclasses 93
Creating a Business Object Base Class 95

Choosing a .NET Type for Your Business Object Class 95
Creating the BusinessObject Class 96

Table of Contents

iii

Specifying a Composition Relationship 97

Adding Overloaded BusinessObject Operations 99
Adding the GetDataSet Operations 99

Adding the SaveDataSet Operations 100
Adding Attributes to the BusinessObject Class 101

Use Cases for a Simple Library System 103

Modeling the Check Out Media Use Case 105

Deriving Classes from Use Cases 105
Thinking about Data 106

Creating a Sequence Diagram 107
Changing the Drawing Page Orientation 108
Adding Use Case Text to the Sequence Diagram 108
Adding the Actor and UI Placeholder 110
Adding Messages Between Objects 114
Creating Business Object Classes 116
Adding the Borrower Object to the Sequence Diagram 118
Adding a Message Call to the Borrower Object 119
Resizing the Activation Shapes 121
Retrieving Checked-Out Media 122
Calculating Fines 124
Displaying the Borrower Information 125
Checking Out Media 127
Tweaking the Sequence Diagram 129

Summary 130

Chapter 4: Generating Code from the Visio Model 133

Overview of Code Generation 133

Code Generation in Visio 134
The Employee Class 135

Adding Fields 136

Previewing Code 136
Adding Properties 138

Adding a Method 141
Implementing an Interface 144

Generating Code 148
Regenerating Code 152

Checking Errors 152
Code Generation in Different Languages 153

Code Templates 154
Using Templates 155

Working with Templates 155
Templates for Specific Entities 158

Creating New Templates 160
XML Comments and Code Templates 162

Table of Contents

iv

Enhancing the Model 167
Mapping Associations 167
Creating a Collection 169
Creating an Indexer 169
Creating Events and Delegates 170
Overriding Methods 171

Summary 171

Chapter 5: Reverse Engineering 175

Why Reverse Engineer? 175

Reverse Engineering from Source Code 176
Reverse Engineering QuickStart 176
Key Features and Limitations of Reverse Engineering 178

Reverse Engineering Granularity 178
Semantic Errors 179

Static Structure Diagrams 180
Round-trip Engineering 181

Projects that Don't Compile 181
Source Code Required 181

Reverse Engineering Example 182
Reverse Engineering the ParcelTracker Application 182
Reverse-Engineered Model Structure 183

Code-to-UML Mapping Examples 185
Generalization (or Inheritance) 185
Associations and Attributes 187
Operations and Properties 189

Method Bodies 191
Primitive and Value Types 192

Reverse Engineering, No Source Code Required 193
Running the RE.NET Lite Reverse Engineer 194

Creating a .NET Framework Base Model 197
RE.NET Lite Internals 198
RE.NET Lite Limitations 203

Summary 203

Chapter 6: Documenting the Project 207

The Typical Software Development Lifecycle 208
Requirements Development 209
Architecture or High-Level Design 210
Detailed Design 210
Coding/Implementation 210
Testing/Quality Assurance 210
Rollout 211
Support/Maintenance 211

Table of Contents

v

Role of UML and Visio in the Project 211
UML as Documentation 211
Requirements Development Documentation 212

Use Cases 214

Using Use Cases for Documentation 216

Architecture Documentation 218
Using Class Diagrams 218
Using Activity Diagrams 219
Using Component Diagrams 221

Detailed Design Documentation 222
Using Detailed Class Diagrams 222
Using Sequence Diagrams 224

Coding and Implementation Documentation 225
Requirements Documentation for Coding 226
Architecture Documents for Coding 226

Testing and Quality Assurance Documentation 226

Using Visio Reports throughout the Project 227
Static Structure Diagram Report 232
Deployment Diagram Report 235
Component Report 236

Summary 237

Chapter 7: Distributed System Design 239

Object-Based Distributed Systems in .NET 240
Distributed Systems and Local Systems 240

.NET Infrastructure for Distributed Systems 243
.NET Remoting 243

ASP.NET Versus .NET Remoting 246

Preparation Work in Visio 247

Custom UML Stereotypes for .NET Distributed Systems 248

Package and Deploy the Bank Application 252
System Requirements 253

.NET Remoting Type and Activation Mode 255

Identify the Elements that Should Go into One Component. 257
Adding a Detailed Component Diagram 257

Adding a Bird's-Eye-View Component Diagram 260
Component Packaging 261

Map Components to Physical Deployment Nodes 263

Summary 267

Table of Contents

vi

Chapter 8: Database Modeling with Visio for Enterprise Architects 269

Design Process Overview 270
Database Modeling 270
Object Role Modeling (ORM) 271
What is ORM? 271

Elementary Facts 272

ORM Notation 272

The Conceptual Schema Design Procedure 273
Visio Data Projects 276

Creating the Data Project 277
Step 2 – Drawing the Fact Types 278

The Business Rules Window 278
The Fact Editor 279

Visio Reporting 283
Step 3 of the CSDP 284
Constraints 285
Steps 4 to 7 of the CSDP 290

Traveler, TicketPrice, and FrequentFlierMiles 290

Add Constraint Form 291
The Add Constraint Editor 292

Creating the Conceptual, Logical, and Physical Database 296
Creating the Object Types 296
Creating the Predicate Types 297

Building the Logical Model 302
Generating the Database 308
Organization of the Data Projects 311

Refreshing the Model from the Database 312

Reverse Engineering the Database 314
Reverse Engineering an ER diagram 315

The Reverse Engineer Wizard 315

The Database Properties Window for ER diagrams 320
Reverse Engineering an ORM Diagram 324

The Database Properties Window for ORM Diagrams 324

Summary 327

Index 329
A Guide to the Index 329

Table of Contents

vii

Introduction

To many, Visio for Enterprise Architects appears to be a mysterious diagramming tool. In conjunction with
Visual Studio .NET Enterprise Architect it potential seems clear – going from design to code, and back from
code to design offers the developer tremendous benefits for rapidly developing applications. Why do we say
'mysterious'? This is because Visio's range of features can daunt the user, but most importantly, many aspects
of its use directly relevant to software developers are frustratingly lacking in explanation.

This book aims to address this problem – here we focus exclusively on Visio's features for developing
.NET applications, encompassing:

❑ UML diagrams

❑ Generating code from UML diagrams

❑ Reverse engineering source code into UML diagrams

❑ Database modeling

Along the way, we'll see some more general applications of Visio to the software development lifecycle,
and also learn about Visio's idiosyncrasies, which almost every user of Visio will have encountered, and
wondered "Is it just me?"

In other words, this book will allow you to finally unmask Visio for Enterprise Architects.

Introduction

2

What Does This Book Cover?
Chapter 1 starts us off by reviewing the key UML concepts, the main diagram types, and the role of
those diagrams within the software development process. If you're quite new to UML this will serve as a
practical introduction that will help you make sense of the rest of the book.

In Chapter 2 we have our first dip into Visio, and have a look around the general Visio environment.
Before we hit the main feature of the book, the UML diagrams, we look at other aspects of Visio that
aid software development, and make an attempt to familiarize ourselves with Visio, its pages, shapes,
and connectors.

In Chapter 3 we cover using Visio for object modeling – defining data access base classes for your .NET
applications, defining a business object base class, deriving business classes from use cases, working with
abstract and concrete classes, and using sequence diagrams to model the flow of messages between objects.
Along the way we'll meet many of Visio's UML diagramming features, setting us up for the next chapter.

Visio for Enterprise Architects can generate skeleton source code from an existing UML diagram in C#,
Visual Basic .NET, or C++. Moreover, Visio provides further options that give the developer greater
control over the implementation of this source code. In Chapter 4 we look at how to generate code from
a UML model in Visio, the various options available for generating code, including the use of code
templates to specify the structure of the source code generated by Visio. We look at a variety of UML to
code mappings, typical of the situations you will encounter in more complex models.

The Visual Studio .NET Enterprise Architect and Visio for Enterprise Architects combination provides
a facility for reverse engineering existing C#, VB.NET, or C++.NET source code into a Visio UML
static structure model. In Chapter 5 we'll look at this reverse engineering feature and cover why reverse
engineering is useful how to reverse engineer .NET source code from within the Visual Studio .NET
IDE, explore the structure of a typical reverse-engineered Visio UML model, and look at the code to
UML mappings for important constructs such as generalization (inheritance) and association. We finish
the chapter by using reflection to reverse engineer .NET assemblies to provide .NET Framework base
class models for our UML diagrams.

In Chapter 6, we take a step back from the world of diagramming, generating code, and generating
more diagrams from code, and look at the role of Visio and UML in the entire software development
lifecycle. In effect, we'll be discussing how we document our work at different stages of a typical
development project using Visio and UML – at the end of this chapter you'll take away some deeper
insight into using Visio and UML in the course of working on your own projects.

Chapter 7 sees us move on to another area of using Visio to assist with general design issues. Designing
a distributed system is an iterative process from requirements analysis to modular breakdown and to
packaging and deployment strategies. However, designing a distributed system is different from
designing a non-distributed one. In this chapter we look at a .NET Remoting example, a Bank
application. We begin with an overview of .NET Remoting, and we see how to decide which classes in
our application should be .NET Remoting types, how to decide the activation mode of each .NET
remoting type, and how this can be diagrammed in Visio, what code elements should be grouped in a
component, how to prepare a component diagram, and how to prepare a deployment diagram.

Introduction

3

Chapter 8 moves us on to yet another aspect of Visio directly relevant to the enterprise developer – data
modeling. We take a detailed walk through database modeling and Object Role Modeling (ORM),
looking at Visio's ORM Source Diagrams and Entity Relationship Source Diagrams. We then see how
to generate a database schema from these models, and further tweak the design with reverse engineering
of the database into ORM and ER models, and updating the database with our modifications to yield
round-trip database engineering.

Who Is This Book For?
This book is for the .NET developer who:

❑ Is comfortable with the basic concepts of UML

❑ Wants to learn how to use Visio for Enterprise Architects effectively

❑ Wants to see how UML and Visio can benefit their projects in general

What You Need to Use This Book
This book is based around the following combination:

❑ Visual Studio .NET Enterprise Architect Edition

❑ Visio for Enterprise Architects

Thus, having access to each is a prerequisite for using this book.

Conventions
We've used a number of different styles of text and layout in this book to help differentiate between different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several fonts. If it's a word that we're talking about in the text – for example, when discussing
a for (...) loop, it's in this font. If it's a block of code that can be typed as a program and run, then
it's also in a gray box:

 public Employee this[int index]

Sometimes we'll see code in a mixture of styles, like this:

 public Employee this[int index]
 {
 get
 {
 foreach (Employee em in employees)
 {
 if (em.ID == index)

Introduction

4

 return em;
 }
 return null;
 }
 }

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

Advice, hints, and background information come in this type of font.

Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen, or in menus like the Open or Close, are in a similar font to
the one you would see on a Windows desktop.

❑ Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments, either by returning the reply card in the back of the book, or by e-mail to
feedback@wrox.com. Please be sure to mention the book title in your message.

How to Download the Sample Code for the Book
When you visit the Wrox web site, www.wrox.com, locate the title through our Find a Book facility or
by using one of the title lists. Click Download Code on the book's detail page, or on the Download item
in the Code column for title lists.

The files that are available for download from our site have been archived using WinZip. When you've
saved the archive to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code will be extracted into
separate folders for each chapter of this book, so ensure your extraction utility is set to use folder names.

Errata
We've made every effort to make sure that there are no errors in the text or in the code. However, no
one is perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful to hear about it. By sending in errata you may save
another reader hours of frustration, and, of course, you will be helping us to provide even higher quality
information. Simply e-mail the information to support@wrox.com – your information will be checked
and, if correct, posted to the errata page for that title, and used in reprints of the book.

Introduction

5

To find errata on the web site, go to www.wrox.com, and simply locate the title through our Advanced
Search or title list. Click the Book Errata link below the cover graphic on the book's detail page.

E-Mail Support
If you wish to query a problem in the book with an expert who knows the book in detail, then e-mail
support@wrox.com with the title of the book and the last four numbers of the ISBN in the subject field
of the e-mail. A typical e-mail should include the following things:

❑ The title of the book, the last four digits of the ISBN (7957), and the page number of the problem.

❑ Your name, contact information, and the problem in the body of the message.

We need the above details to save your time and ours – we never send unsolicited junk mail. When you
send an e-mail message, it will go through the following chain of support:

❑ Customer Support – Your message is delivered to our customer support staff, who are the first
people to read it. They have files on most frequently asked questions and will answer anything
general about the book or the web site immediately.

❑ Editorial – Deeper queries are forwarded to the technical editor responsible for that book.
They have experience with the programming language or particular product, and are able to
answer detailed technical questions on the subject.

❑ The Authors – Finally, in the unlikely event that the editor cannot answer your problem, they will
forward the request to the author. Wrox authors are glad to help support their books. They will e-
mail the customer and the editor with their response, and again all readers should benefit.

The Wrox support process can only offer support for issues that are directly pertinent to the content of
our published title. Support for questions that fall outside the scope of normal book support is provided
via the community lists of our http://p2p.wrox.com/ forum.

p2p.wrox.com
For author and peer discussion, join the P2P mailing lists. Our unique system provides programmer to
programmer™ contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail
support system. If you post a query to P2P, you can be confident that the many Wrox authors and other
industry experts who are present on our mailing lists are examining it. At p2p.wrox.com, you will find a
number of different lists that will help you not only while you read this book, but also as you develop
your own applications. Particularly appropriate to this book are the vs_dotnet and uml lists.

To subscribe to a mailing list, just follow these steps:

1. Go to http://p2p.wrox.com/.

2. Choose the appropriate category from the left menu bar.

3. Click on the mailing list you wish to join.

4. Follow the instructions to subscribe, and fill in your e-mail address and password.

Introduction

6

5. Reply to the confirmation e-mail you receive.

6. Use the subscription manager to join more lists and set your e-mail preferences.

Why This System Offers the Best Support
You can choose to join the mailing lists, or you can receive them as a weekly digest. If you don't have
the time (or the facility) to receive the mailing lists, then you can search our online archives. Junk and
spam mails are deleted, and your own e-mail address is protected by the Lyris system. Queries about
joining or leaving lists, and any other general queries about lists, should be sent to
listsupport@p2p.wrox.com.

Introduction

7

Review of UML

The purpose of this chapter is to set the scene by reviewing the key UML concepts, the main diagram
types, and the role of those diagrams within the software development process. If you're quite new to
UML this will serve as a practical introduction that will help you make sense of the rest of the book,
before you move on to further reading. If you're experienced with UML the chapter will serve as handy
revision and you might just find some nuggets of information that have so far eluded you.

Either way we'll all be moving on from roughly the same starting point: with the same appreciation of
UML notation, with an understanding of relevant software development processes, and with a common
bias towards .NET and the Visio for Enterprise Architects tool.

The final point is quite important, and the raison d'être for this book. In recent years the body of UML
literature has focused mainly on Java development and the use of modeling tools such as Rational Rose.
In this book we're applying a .NET development perspective at the same time as demonstrating the so
far under-documented Visio modeling tool that comes bundled with the Visual Studio .NET
Enterprise Architect.

With all this in mind we can now press on with the introduction to – or revision of, depending on your
background – the Unified Modeling Language.

What is the Unified Modeling Language?
When discussing UML, we need to establish one important point right up front.

The Unified Modeling Language is a notation; that is a set of diagrams and diagram elements
that may be arranged to describe the design of a software system. UML is not a process, nor is it a
method comprising a notation and a process.

1

Chapter 1

10

In theory you can apply aspects of the notation according to the steps prescribed by any process that
you care to choose – traditional waterfall, extreme programming, RAD – but there are processes that
have been developed specifically to complement the UML notation. You'll read more about the
complementary process(es) later in this chapter.

Why use UML?
Hidden inside that specific question there's a more generic question, which is "Why use a formal analysis
and design notation, UML or otherwise?" Let's start to answer that question by drawing an analogy.

Suppose you wanted to make a bridge across a small stream. You could just place a plank of wood
across from one side to the other, and you could do so on your own. Even if it failed to hold your
weight, the only downside would be wet feet.

Now suppose you wanted to make a bridge across a narrow river. You'd need to do some forward
planning to estimate what materials you'd need – wood, brick, or metal – and how much of each. You'd
need some help, and your helpers would want to know what kind of bridge you're building.

Finally, suppose you wanted to build a bridge across a very wide river. You'd need to do the same kind of
forward planning as well a communicating your ideas to a much bigger team. This would be a commercial
proposition with payback from fare-paying passengers, so you'd need to liaise with the relevant authorities
and comply with health-and-safety requirements. You'd also be required to leave behind sufficient
documentation to allow future generations to maintain the structure long into the future.

In a software context, this means that formal design becomes increasingly important as a function of the size
and complexity of the project; in particular, as a function of the number of people involved. Based on that
analogy, and wider project experience, we could conclude that a formal design notation is important in:

❑ Establishing a blueprint from the application

❑ Estimating and planning the time and materials

❑ Communicating between teams, and within a team

❑ Documenting the project

Of course, we've probably all encountered projects in which little or no formal design has been done
up-front (corresponding with the first three bullet points in that list); in fact more projects than we care
to mention! Even in those situations, UML notation has been found to be invaluable in documenting the
end result (the last bullet point in that list). Though not recommended, if that's the extent of your
commitment to UML you'll be most interested in the Reverse Engineering discussion in Chapter 5.

Now that we've answered the generic question, let's return to the specific question of why use UML?

Well it's become something of an industry standard, which means that there's a good chance of finding
other people who understand it. That's very important in terms of the communication and
documentation bullet points in our list. Also if you or anyone else in the team does not understand it,
there's a good chance of finding relevant training courses, or books like this one.

That's very pragmatic reasoning and perhaps more convincing than a more academic (or even
commercial) argument such as:

Review of UML

11

"The application of UML has a proven track record in improving the quality of software systems."

A Brief History of UML
Taking the phrase Unified Modeling Language as our starting point, we've discussed in the previous
section the "language" (namely, notation) aspect. In the next section, we'll investigate the "modeling"
aspect, which leaves us here with the word "unified". What, or who, preceded the UML and how did it
all become unified? This will become clear as we step through a brief history of UML.

In the beginning although there was a plethora of object-oriented "methods", there were three
principal methods:

❑ The Booch method devised by Grady Booch

❑ Object Modeling Technique (OMT) devised by Jim Rumbaugh

❑ Object Oriented Software Engineering (also known as Objectory) devised by Ivar Jacobson

These three methods have many ideas in common, yet different notation for expressing those ideas.
Some of you may remember that in an OMT class diagram the classes were represented as rectangular
boxes whereas in the Booch method they were represented as stylized cloud shapes. Also, each method
placed emphasis on different aspects of object-oriented software development. For example Jacobson
introduced the idea of use cases, not addressed by the other methods.

In simple terms, a use case is a unit of functionality provided by the system to an actor
(such as a user). For example, in a word-processing application one of the use cases
might be "Run spell checker".

The unification of these three methods combined the best bits of each method with a common notation
(UML) for the common concepts – the end result being an industry-standard notation for analysis and design.
If you speak with anyone who claims to be doing object modeling, chances are they'll be using UML.

So how did this unification play out in time? The key dates are:

❑ OOPSLA '94 – Jim Rumbaugh leaves General Electric to join Grady Booch at Rational
Software, so as to merge their methods and achieve standardization across the industry.

❑ OOPSLA '95 – Booch and Rumbaugh publish version 0.8 of the Unified Method. Rational
Software buys Objectory and Ivar Jacobson joins the company.

❑ January 1997 – Booch, Rumbaugh, and Jacobson (the three amigos) release – through
Rational – a proposal for the UML version 1.0.

❑ September 1997 – UML version 1.1 is adopted by the Object Management Group (OMG).

The Object Management Group, previously best known for the CORBA standard, is a non-profit
organization – comprising many member companies – that encourages, standardizes, and supports
the adoption of object technologies across the industry. You can find out more about the OMG at
http://www.omg.org.

Chapter 1

12

If we've given the impression that the Unified Modeling Language is the exclusive work of only three
contributors, the three amigos, then let's set the record straight. Some of the concepts are based in the
early work of other individuals – for example, David Harel's work on Statechart diagrams – and some
further enhancements have come from other member organizations of the OMG; for example, the
Object Constraint Language (OCL) devised by IBM.

OCL was devised so that additional rules could be added to a UML model in a language that less
ambiguous than English. For example, the statement "Person.Employer=Person.Manager.Employer"
may be less ambiguous than "a person and their manager must both work for the same company."

More information on OCL can be found at
http://www-3.ibm.com/software/ad/library/standards/ocl.html.

At the time of writing, the UML specification is at version 1.4 and in mid-2001 the OMG members
started work on a major upgrade to UML 2.0. Modeling tools – including Visio for Enterprise Architects
– will always be one or two steps behind in their support for the specification, but that's not usually a
big problem because the core concepts discussed in the next section are now quite mature and stable.

At the time of writing, the version of Visio for Enterprise Architects used in the construction of this
chapter provides support for UML at least up to version 1.2 – this can be determined from the About
error checking in the UML model section of the Microsoft Visio Help:

"Semantic error checking occurs automatically, noting errors in the design of UML model elements,
based on the well-formedness rules in the UML 1.2 specification."

End-to-End UML Modeling
Having looked at why UML is useful, and where it came from, we'll now look at the notation itself. To
cover the complete notation in a single chapter would be impossible, so for a deeper coverage I'll refer
you to some other works.

❑ Instant UML by Pierre-Alain Muller (Wrox Press, ISBN 1-86100-087-1).

❑ The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar
Jacobson (Addison Wesley, ISBN 0-201-57168-4).

❑ UML Distilled by Martin Fowler with Kendall Scott (Addison Wesley, ISBN 0-201-65783-X).

What we'll do here is cover the essential notation and core concepts that will allow us to progress
through the rest of the book with a common understanding.

We'll also aim to address one of the problems of many UML courses and books. The problem being,
that all too often the various diagrams are presented in isolation without a clear indication of how they
relate to one another. To make matters worse, different examples are often used to demonstrate the
different diagrams, not one of those examples being for a system that you might actually want to build.
Think here of a statechart diagram that describes a motor car gearbox, or a sequence diagram that
describes the operation of a hotel elevator.

Review of UML

13

So in the following section we'll have a single example, an Order Processing system, which you should be
able to relate to even if you don't intend to build such a thing, and at the end, we'll pull it all together.

UML Essential Notation and Core Concepts
Now we'll step through the UML diagrams in turn, all the way from an activity diagram through to a
deployment diagram in this order:

❑ Activity Diagram

❑ Use Case Diagram

❑ Sequence and Collaboration Diagram

❑ Statechart Diagram

❑ Static Structure Diagram

❑ Component Diagram

❑ Deployment Diagram

Each diagram is labeled in light gray with some of the names given to the UML elements that are
shown, which – for the record – reflects the UML metamodel.

The UML Metamodel is itself a UML model, which defines the rules for constructing
other UML models. Whereas in one of your own models you might state "Bank is
associated with one or more Accounts", the metamodel would state a more generic
relationship of "a Class may be associated with any Other Class".

On the whole, the model elements have been labeled using Visio EA terminology so as to reduce the
potential for confusion when you come to use the tool. Historically – and in other modeling tools – you
may have encountered alternative UML terminology. The alternative terms have been tabulated
towards the end of this chapter.

As you'll see later in this chapter, the software development process that you follow might well be
described as use-case driven, which implies the use case diagram as an obvious starting point. But those
use cases will doubtless fit into some kind of overall business process, perhaps modeled up-front by a
business analyst. So we'll take a business process as our starting point and use this as a vehicle for
demonstrating the most suitable diagram for that purpose; the activity diagram.

Activity Diagram
The activity diagram is the closest you'll get in UML to a flow chart, and the closest you'll get to a
business process diagram. Here is a sample activity diagram with the important UML elements labeled,
followed by a description of those elements.

Chapter 1

14

OrderClerk Logistics Accounts

Take Order

unpicked : Order Pick Stock

Deliver Item(s)
Prepare Invoice

object in state

entry action

initial state
swim lane

Send Invoice

entry/Print Invoice

transition (fork)

transition (join)

state

control flow

❑ Initial state is where the diagram begins.

❑ Control flow shows a transfer of control from one activity to another.

❑ State represents a period of time during which a piece of work is carried out by person
or team.

❑ Transition (fork) shows the point as which two or more parallel activities will commence.

❑ Transition (join) shows the point as which two or more parallel activities must synchronize
and converge.

❑ Swim lane allows all of the activities carried out by a particular person or team arranged into
a column.

❑ Entry action shows what must happen when the activity begins.

❑ Object in state shows an object that is produced or consumed in the course of an activity, with
the production or consumption (object flow) being represented by the dashed line.

