

Professional WPF Programming:

 .NET Development with the Windows®
Presentation Foundation

Chapter 7: Custom Controls

ISBN-10: 0-470-04180-3
ISBN-13: 978-0-470-04180-2

Copyright of Wiley Publishing, Inc.
Posted with Permission

Custom Controls

Windows Presentation Foundation controls are based on the concept of composition. Controls can
contain other controls. For instance, a button may contain another button as its content, or it may
contain an image, video, animation, or even a text box. The power of composition in WPF is that it
provides a tremendous amount of flexibility right out of the box for customizing controls. In addi-
tion, WPF introduces styling, control templates, and triggers, which further enhance the extensibil-
ity of controls. Still there may be times when you need to create a custom control and, of course,
WPF supports that as well.

The purpose for any application user interface is to present users with a set of visual components
that coordinate user input and organize workflow. Controls are the individual visual elements that
are logically grouped to accept, organize, and validate user input. In both Windows and web
applications today, you commonly see these elements as text boxes, drop-down lists, radio but-
tons, and checkboxes.

WPF controls are referred to as lookless controls, which refers to the separation of visual appearance
from behavior. WPF allows you to modify or extend the visual appearance of any control without
affecting the control’s behavior. Developers can modify the visual appearance of any pre-existing
control, enhancing its visual impact while allowing the user to retain familiarity with the expected
behavior. For example, with the media and animation capabilities provided in WPF, a button can
exhibit animation features when the user interacts with it, but the button’s behavior does not
change. The button may “spin” or “glow” in reaction to a user clicking on it but the button still
fires the expected click event.

Within WPF, the developer also has the ability to author custom controls tailored to the specific
data input and validation needs of their application. The base classes provided by WPF for extend-
ing and creating controls provide the developer with great flexibility in the design of their con-
trol’s visual appearance. Such flexibility in visual appearance is made available through the styling
and control template features of WPF.

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

The following concepts are covered in this chapter:

❑ Choosing a control base class

❑ Custom control authoring via the UserControl base class

❑ Data binding to controls using both declarative XAML and procedural code

❑ Customizing a control’s look and feel with styles and templates

Overview
WPF offers the developer an extensive feature set for constructing dynamic controls that push the
boundaries of what users expect from conventional Windows application development. For instance,
WPF controls can now be animated quickly and easily and 3D graphics and video can be incorporated to
give controls a new level of interactivity and dynamism.

In spite of the advances that WPF provides, the problem-solving process for controls remains
unchanged. Controls are still intended to serve a purpose and should define behavior accordingly. When
developing a control, the developer must ask himself basic design questions, such as the following:

❑ What are the requirements of my new control?

❑ What behavior or functionality should my control provide?

❑ Does a control already exist that I can customize using styling or control templates in order to
get the behavior I desire?

❑ How flexible does the control need to be for stylizing and extension by the control consumer?

❑ What type of user will be interacting with the control?

❑ Does the functionality meet the specified business requirements?

The answers to these questions will define not only the path you take — customizing an existing control
or creating a new control — but also will define your control’s behavior, referred to as its API. Designing
a streamlined, flexible, and well–thought out API is the goal of the custom control author.

In WPF, the choice of base class for your control is also dependent on the answers to these questions. The
amount of customization required for your control will indicate the starting point for extending a new
control.

Before heading down the path of creating a new control, it is important to note that many of the default
controls within the WPF Framework allow for custom styling, triggers, and templating. If, for example,
the need of your control is only to introduce an animation behavior, then creating a subclassed control
would be overkill.

206

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Control Base Classes
Once you have determined that creating a new control is the way to go, it’s time to select a base class. In
WPF, you can create custom controls based on a number of base classes, including Control, UserControl,
and FrameworkElement. Selecting which base class to inherit from when creating a new control is contin-
gent on the level of flexibility and customization you desire for your control. For example, the questions
that you should ask yourself about the purpose of your control include the following:

❑ Will your control be composed of existing WPF elements?

❑ How flexible does your control need to be?

❑ Will you be doing custom low-level rendering in your control?

❑ What is the application context of the control? Will it be used by one application or many?

❑ How much visual customization will be required by consumers of your control? Should users
be able to override the visual appearance of your control?

If you are simply composing existing elements in your control and consumers will not need to override
its visual appearance, then most likely subclassing UserControl is the way to go. If separation of visual
appearance from your control behavior is important in order that it may be visually changed by a con-
sumer, then subclassing Control is the way to go. If you can’t get the visuals you want out-of-the-box
with WPF and you’ll be doing custom rendering, then subclassing FrameworkElement is your best
choice. There may be other factors that affect your choice of base class as well. Becoming familiar with
these classes will go a long way in helping you make the right choice.

The UserControl Class
Subclassing the UserControl class is the simplest way to create a new control and is the method you
will explore in this chapter. A user control is composed of standard controls that together perform a par-
ticular interface function. Because a user control typically is meant to be used within a certain applica-
tion context, its ability to be customized doesn’t warrant as much attention as perhaps its reusability.

Within your user control you can apply styles to individual elements as well as handle specific events
and raise custom events specific to the functionality of your control.

Creating a User Control
In this example, you will create a new user control that inherits from the
System.Windows.Controls.UserControl base class. The control will be one that I’m sure many
developers have come across before: a pie graph chart. This control will be a good example of using the
dynamic drawing features of WPF and container controls.

Before you get started in the code, let’s expand on the process of defining the behavior (API) of this con-
trol, the logic necessary to generate the graph, and the WPF objects that you will use to draw the graph.

With WPF, a piece of constructed geometry that is drawn to screen is a visual element. Therefore, it is a
targetable object that can be accessed directly in code rather than having to be redrawn as pixels to a
screen as would have been the case prior to WPF. This means that it becomes much easier for you to
detect collisions (hit-testing) as well as apply transformations and animation to the geometry object.

207

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

In order to draw to specific coordinate locations you will use a Canvas as the container for your pie
drawing. A Path object will represent each pie slice. In WPF, a Path object can be made up of multiple
geometry objects. Therefore, each pie section of your pie graph will be a Path object, which contains a
PathGeometry object.

In WPF, the PathGeometry object represents a complex shape that is made up of any combination of
arcs, curves, ellipses, lines, or rectangles. In WPF geometry, these arcs, curves, lines, and rectangles are
represented by PathFigure and PathSegment objects. This will provide you with the flexibility to
operate on each segment of the graph individually. For example, you can apply individual animations (if
you so desire) to each piece rather than to the graph as a whole. You can also capture events on a piece-
by-piece basis making it easier to respond to an input event as it pertains to each segment of the graph.
Similarly, you can utilize the WPF routed event model to allow events fired by any pie piece to bubble
up to the pie graph’s parent container.

In order to create the PathGeometry object, you must first create a PathFigure object for each side of
the pie graph piece. The PathFigure class represents a subsection of the PathGeometry object you will
create. The PathFigure is itself made up of one or more PathSegment objects, which are specific types
of geometric segments, such as the LineSegment and ArcSegment. You will use two LineSegment
classes to create the initial and terminal sides of the piece. An instance of the ArcSegment class will con-
struct the circular arc that attaches the two line segments together. Figure 7-1 illustrates how each pie
piece will be constructed using the Segment classes.

Figure 7-1

The ArcSegment Class
The ArcSegment constructs an elliptical arc based on the initial starting point of the PathFigure object
and a terminal point. Alternatively, you can construct the elliptical arc from the sibling, preceding it
within the collection of PathSegment objects in its Segments property. The following table outlines the
argument list used to construct an ArcSegment.

LineSegment
(Terminal Side)

LineSegment
(Initial Side)

ArcSegment

208

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Argument Specification

Point The terminal point for the arc segment.

Size Specifies the x and y radius of the arc. The more circular the arc desired,
the closer the x and y radius will be.

RotationAngle The x-axis rotation angle.

IsLargeArc Flags if the arc to be drawn is greater than 180 degrees.

SweepDirection Enumeration value that specifies whether the arc sweeps clockwise or
counter-clockwise.

The following XAML defines an ArcSegment that will start from the initial point based on the
PathFigure to which it belongs.

<Path Stroke=”Black” Fill=”Gray” StrokeThickness=”2” Width=”Auto”>

<Path.Data>

<PathGeometry>

<PathGeometry.Figures>

<PathFigureCollection>

<PathFigure StartPoint=”200,200”>

<PathFigure.Segments>

<PathSegmentCollection>

<ArcSegment

Point=”300,200”

Size=”200,50”

RotationAngle=”90”

IsLargeArc=”False”

SweepDirection=”Clockwise”

/>

</PathSegmentCollection>

</PathFigure.Segments>

</PathFigure>

</PathFigureCollection>

</PathGeometry.Figures>

</PathGeometry>

</Path.Data>

</Path>

The following procedural code generates the equivalent to the declarative XAML:

PathGeometry pathGeometry = new PathGeometry();

PathFigure figure = new PathFigure();

figure.StartPoint = new Point(200,200);

figure.Segments.Add(

new ArcSegment(

new Point(300,200),

209

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

new Size(200,50),

90,

false,

SweepDirection.Clockwise,

true

)

);

pathGeometry.Figures.Add(figure);

Path path = new Path();

path.Data = pathGeometry;

path.Fill = Brushes.Gray;

path.Stroke = Brushes.Black;

myContainer.Children.Add(path);

Figure 7-2 illustrates the ArcSegment created in the preceding code examples.

Figure 7-2

Each subsequent arc segment that is drawn for each piece in the pie graph will have to start at the last
terminal point of the former segment. To calculate this you’ll need to use some trigonometry to deter-
mine each pie piece’s initial and terminal points relative to the angle of each pie piece. The pie piece
angle will be determined by the percentage it represents of the underlying data. Figure 7-3 illustrates the
incremental process.

To keep track of the next starting point you’ll create a private local variable that you’ll increment by the
angle of the current pie piece.

210

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Figure 7-3

Now that you have established a basis for your control, you can build it in Visual Studio. The steps are
as follows:

1. In Visual Studio, select File ➪ New Project from the menu. From the Project Types tree view,
select Visual C# ➪ Windows (.NET Framework 3.0) Node, and then click on the Windows
Application (WPF) icon from the list. Name your project WPFWindowsApplication, and click
OK. This new project should create a Window1.xaml file, and a supporting partial class code-
behind file.

2. Right-click on the project node and select Add ➪ New Item. Select User Control (WPF) and
rename the file to PieGraphControl.

3. Open the PieGraphControl.xaml.cs file and add the following using directives, if they don’t
exist:

using System;

using System.Collections.Generic;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Navigation;

using System.Windows.Shapes;

4. Within the pie graph control, you will create a private class named PiePieceData that will
hold the data required to generate each section of the pie graph. Specifically, it will contain
properties pertinent to the construction of each ArcSegment for a PathFigure.

In the PieGraphControl.xaml.cs file, add the following private class declaration:

private class PiePieceData

{

private double percentage;

Initial Pie Segment
Successive Pie Segment

(starts at previous segment’s
terminal side)

211

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

private string label;

private bool isGreaterThan180;

private Point initialSide;

private Point terminalSide;

private Brush color;

public Brush Color

{

get { return color; }

set { color = value; }

}

public double Percentage

{

get { return percentage; }

set { percentage = value; }

}

public string Label

{

get { return label; }

set { label = value; }

}

public bool IsGreaterThan180

{

get { return isGreaterThan180; }

set { isGreaterThan180 = value; }

}

public Point InitialSide

{

get { return initialSide; }

set { initialSide = value; }

}

public Point TerminalSide

{

get { return terminalSide; }

set { terminalSide = value; }

}

public PiePieceData()

{

}

public PiePieceData(double percentage, string label)

{

this.percentage = percentage;

this.label = label;

}

}

212

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

5. Shifting focus back to our PieGraphControl class, you will need to perform a little math to
determine where each segment will be placed within the area of the pie graph.

❑ The ConvertToRadians method will take an angle measured in degrees and convert it
to its radian measure equivalent so that you can use the Math.Cos() and Math.Sin()
methods to find the point positions.

❑ The CalcAngleFromPercentage will take the percentage value that the pie segment
represents and calculate the angle that represents the given percentage.

❑ The CreatePointFromAngle will take the radian angle and produce a point that inter-
sects the pie graph circle for the given angle. This will help you determine the initial
and terminal sides.

Add the following private methods to your PieGraphControl class definition:

private Point CreatePointFromAngle(double angleInRadians)

{

Point point = new Point();

point.X = radius * Math.Cos(angleInRadians) + origin.X;

point.Y = radius * Math.Sin(angleInRadians) + origin.Y;

return point;

}

private double CalcAngleFromPercentage(double percentage)

{

return 360 * percentage;

}

private double ConvertToRadians(double theta)

{

return (Math.PI / 180) * theta;

}

6. You now need to include some private members that will aid in calculations and hold the collec-
tion of data from which you’ll want to generate the graph. You’ll also include a list of colors for
each piece. For the sake of this example, you’ll create a finite number of colors that will be used
with the pie pieces. For a more flexible control, you would probably include a more dynamic
color creation mechanism.

Include the following code in the PieGraphControl class definition:

private Point origin = new Point(100, 100);

private int radius = 100;

private double percentageTotal = 0;

private double initialAngle = 0;

private List<PiePieceData> piePieces = new List<PiePieceData>();

private Brush[] brushArray = new Brush[]

{

Brushes.Aquamarine,

Brushes.Azure,

Brushes.Blue,

Brushes.Chocolate,

213

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Brushes.Crimson,

Brushes.DarkGreen,

Brushes.DarkGray,

Brushes.DarkSlateBlue,

Brushes.Maroon,

Brushes.Teal,

Brushes.Violet

};

7. The following code constructs a PathFigure based on the PiePieceData, which is passed into
the method.

Include the following code in the PieGraphControl class definition:

private PathFigure CreatePiePiece(PiePieceData pieceData)

{

PathFigure piePiece = new PathFigure();

piePiece.StartPoint = origin;

// Create initial side

piePiece.Segments.Add(new LineSegment(pieceData.InitialSide, true));

// Add arc

Size size = new Size(radius,radius);

piePiece.Segments.Add(

new ArcSegment(

pieceData.TerminalSide,

size,

0,

pieceData.IsGreaterThan180,

SweepDirection.Clockwise,

true

)

);

// Complete the terminal side line

piePiece.Segments.Add(new LineSegment(new Point(origin.X,origin.Y), true));

return piePiece;

}

8. The next method definition will be a public method to allow developers to add a new pie per-
centage value. This method also checks to make sure that the total percentage doesn’t exceed
the value of 100 so that there is no overlap in the pie segments.

Add the following to the PieGraphControl class definition:

public void AddPiePiece(double percentage, string label)

{

if (percentageTotal + percentage > 1.00)

throw new Exception(“Cannot add percentage. Will make total greater than

100%.”);

PiePieceData pieceData = new PiePieceData();

214

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

pieceData.Percentage = percentage;

pieceData.Label = label;

// Calculate initial and terminal sides

double angle = CalcAngleFromPercentage(percentage);

double endAngle = initialAngle + angle;

double thetaInit = ConvertToRadians(initialAngle);

double thetaEnd = ConvertToRadians(endAngle);

pieceData.InitialSide = CreatePointFromAngle(thetaInit);

pieceData.TerminalSide = CreatePointFromAngle(thetaEnd);

pieceData.IsGreaterThan180 = (angle > 180);

// Update the start angle

initialAngle = endAngle;

piePieces.Add(pieceData);

}

9. Once the values have been added to the control, it is now ready to proceed in rendering the
data. The following method creates a new PathGeometry object for each pie piece figure so that
it can be drawn to screen. Add the following RenderGraph method to your PieGraphControl
class definition:

public void RenderGraph()

{

int i = 0;

foreach (PiePieceData piePiece in piePieces)

{

PathGeometry pieGeometry = new PathGeometry();

pieGeometry.Figures.Add(CreatePiePiece(piePiece));

Path path = new Path();

path.Data = pieGeometry;

path.Fill = brushArray[i++ % brushArray.Length];

piePiece.Color = (Brush)brushArray[i++ % brushArray.Length];

canvas1.Children.Add(path);

}

}

10. In the default Window1.cs code-behind file that was generated when the project was created,
include the following code in the constructor of the PieGraphControl class:

public partial class Window1 : Window

{

public Window1()

{

InitializeComponent();

PieGraphControl ctrl = new PieGraphControl();

ctrl.AddPiePiece(.20, “Latino”);

ctrl.AddPiePiece(.20, “Asian”);

ctrl.AddPiePiece(.30, “African-American”);

215

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

ctrl.AddPiePiece(.30, “Caucasian”);

ctrl.RenderGraph();

this.myGrid.Children.Add(ctrl);

}

}

11. The following XAML code contains the drawing canvas to which the drawing output will be
directed.

Copy the following XAML code into the PieGraphControl.xaml file:

<UserControl x:Class=”WPFWindowsApplication.PieGraphControl”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” Width=”300” Height=”400”>

<Grid>

<Canvas Margin=”50,38,51,162” MinHeight=”50” MinWidth=”50” Name=”canvas1” />

</Grid>

</UserControl>

12. Modify the Window1.xaml code generated by the New Project Wizard so that it looks like this:

<Window x:Class=”WPFWindowsApplication.Window1”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”WPFWindowsApplication” Height=”300” Width=”300”

>

<Grid Name=”myGrid”/>

</Window>

13. Build the project in Debug to view the custom user control in WPF. Figure 7-4 shows the com-
piled result.

Figure 7-4

216

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Data Binding in WPF
In WPF, data binding is an integral part of the platform. Data binding creates a connection between the
properties of two objects. When the property of one object (the source) changes, the property of the other
object (the target) is updated. In the most common scenario, you will use data binding to connect appli-
cation interface controls to the underlying source data that populates them. A great example of data
binding is using a Slider control to change a property of another control. The Value property of the
Slider is bound to a specified property of some control such as the width of a button. When the slider
is moved, its Value property changes and through data binding the Width property of the button is
updated. The change is reflected at runtime, so as you might imagine, data binding is a key concept in
animation. WPF introduces new methods for implementing data binding, but the concept remains the
same: a source object property is bound to a target object property.

Prior to WPF, developers created data bindings by setting the DataSource property of a binding target
object and calling its DataBind method. In the case of binding to a collection of objects, sometimes event
handling methods would perform additional logic on an item-by-item basis to produce the output
result. In WPF, the process for creating a binding between object and data source can be done procedu-
rally through code or declaratively using XAML markup syntax.

Binding Markup Extensions
WPF introduces a new XAML markup extension syntax used to create binding associations in XAML. A
markup extension signals that the value of a property is a reference to something else. This could be a
resource declared in XAML or a dynamic resource determined at runtime. Markup extensions are placed
within a XAML element attribute value between a pair of curly braces. You can also set properties within
markup extensions. The following code example illustrates a markup extension for a binding:

<TextBlock

Text=”{Binding Source={StaticResource resourceKey},Path= Property}”

Margin=”2,2,2,2”

FontSize=”12”

/>

In the preceding XAML code, you designate that the Text property of the TextBox control is data
bound by using a Binding extension. Within the Binding markup extension you specify two proper-
ties: the source object to bind from and the property of the source object to bind to. The source object is
defined using another extension that denotes the source is a static resource defined within the XAML
document. As you can see from this example, markup extensions can be nested within other markup
extensions as well.

Binding Modes
Binding modes allow you to specify the binding relationship between the target and source objects. In
WPF, a binding can have one of four modes, as the following table illustrates.

217

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Mode Description

OneWay The target object is updated to reflect changes to the source object.

TwoWay The target and source objects are updated to reflect changes on either end.

OneWayToSource The converse of OneWay binding where target object changes are propa-
gated back to the source object.

OneTime The target object is populated to the source data once and changes
between the target and source aren’t reflected upon one another.

To operate within a OneWay or TwoWay binding mode, the source data object needs to be able to notify the
target object of source data changes. The source object must implement the INotifyPropertyChanged
interface to allow the target object to subscribe to the PropertyChanged event to refresh the target
binding.

Data Binding to a List<T>
To pull all of these concepts together, you will modify the pie graph control you created previously to
include some data bound elements. In this example, you will add a ListBox control to your user control
that will display the percentage and description for each segment of the pie chart. You will bind the
ListBox items to the pie pieces.

Because the source data object is a private list within the custom user control, you will need to set the
context of the binding to the private list. To do this you will add a line of code to the constructor of the
PieGraphControl that initializes the DataContext property of the user control to the list of pie pieces.
The DataContext property allows child elements to bind to the same source as its parent element.

public PieGraphControl()

{

InitializeComponent();

this.DataContext = piePieces;

}

Next, in the XAML code for the PieGraphControl, you’ll replace the current Grid with the following
markup to introduce a ListBox control into the element tree. You will need to add a Binding markup
extension to the ItemSource property of the ListBox to designate that it is data bound. Because you set
the DataContext of the control to the list of pie pieces, you don’t need to specify the source in the bind-
ing extension. You only need to include the binding extension itself within the curly braces. The follow-
ing code segment illustrates the XAML markup required for this.

<Grid>

<Canvas

Margin=”50,38,51,162”

MinHeight=”50”

MinWidth=”50”

Name=”canvas1”

/>

<ListBox

Height=”138”

Margin=”49,0,49,13”

218

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Name=”listBox1”

VerticalAlignment=”Bottom”

ItemsSource=”{Binding}”>

</ListBox>

</Grid>

At this point, the process creates the binding but gives you no visualization of the data elements with
which you would like to populate the ListBox. If you were to compile this project and view the result-
ing list box, you would see that all of the list items would just be ToString() representations of each
PiePieceData object. To customize the result of each ListBox item and to display the data you want
you’ll need to use a data template.

Data Templates
Data templates provide you with a great deal of flexibility in controlling the visual appearance of data in
a binding scenario. A data template can include its own unique set of controls, elements, and styles,
resulting in a customized look and feel.

To customize the visual appearance of each data bound item that appears in the ListBox you will define a
DataTemplate as a resource of the PieGraphControl. Defining our data template as a PieGraphControl
resource will allow child elements within the custom control to use the same template if so desired. The fol-
lowing code segment defines a data template that you will apply to each list item in our PieGraphControl.

<UserControl.Resources>

<DataTemplate x:Key=”ListTemplate”>

<Grid>

<Border

BorderBrush=”{Binding Path=Color}”

BorderThickness=”1”

CornerRadius=”3”

Width=”150”>

<StackPanel Orientation=”Horizontal”>

<TextBlock

Text=”{Binding Path=Percentage}”

Margin=”2,2,2,2”

FontSize=”12”

/>

<TextBlock

Text=”{Binding Path=Label}”

Margin=”2,2,2,2”

FontSize=”12”

/>

</StackPanel>

</Border>

</Grid>

</DataTemplate>

</UserControl.Resources>

Within the data template, you will notice that Binding Extensions have been added to those elements
that will display the source data. The template includes a Border whose border brush will be specified
by the color of the pie piece that is bound to it. Within the BorderBrush attribute of the Border ele-
ment, you include a binding extension to specify that it binds to the Color property of the pie piece.

219

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Now that the template has been created, you need to add an attribute to the ListBox element to specify
that it should use the new template. Within the ItemTemplate attribute of the ListBox element, you
add a binding extension to define the template as a StaticResource that you’ve defined in XAML. The
resource key serves as the name of the template — in this case the name is ListTemplate.

<Grid>

<Canvas

Margin=”50,38,51,162”

MinHeight=”50”

MinWidth=”50”

Name=”canvas1”

/>

<ListBox

Height=”138”

Margin=”49,0,49,13”

Name=”listBox1”

VerticalAlignment=”Bottom”

ItemsSource=”{Binding}”

ItemTemplate=”{StaticResource ListTemplate}”>

</ListBox>

</Grid>

Figure 7-5 shows the newly formatted data bound ListBox as is defined in the template.

Figure 7-5

220

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Data Conversions
Within a binding, you can also specify if any type conversions need to take place before data is bound to
the target control. In order to support a custom conversion, you need to create a class that implements
the IValueConverter interface. IValueConverter contains two methods that need to be imple-
mented: Convert and ConvertBack.

In the pie chart, recall that each pie piece on the graph represents a fraction of the total pie. This fraction
is stored within each PiePieceData object as a double. While it is common knowledge that decimals
can be thought of in terms of percentages, it would be nice to display to the user the double value as a
percentage to make the data easier to read.

In your PieGraphControl, you will now define a new class that converts the decimal value to a string
value for its percentage representation. Copy the following code sample, which contains the class defini-
tion for the converter into the PieGraphControl.xaml.cs file:

[ValueConversion(typeof(double), typeof(string))]

public class DecimalToPercentageConverter : IValueConverter

{

public object Convert(object value, Type targetType, object parameter,

System.Globalization.CultureInfo culture)

{

double decimalValue = (double)value;

return String.Format(“{0:0%}”, decimalValue);

}

public object ConvertBack(object value, Type targetType, object parameter,

System.Globalization.CultureInfo culture)

{

throw new InvalidOperationException(“Not expected”);

}

public DecimalToPercentageConverter()

{

}

}

In order to use the type converter within XAML, you will need to create a new XML namespace that
maps to the CLR namespace. To do so, add the following xmlns attribute to the UserControl element
of the PieGraphControl.xaml file.

xmlns:local=”clr-namespace:WPFWindowsApplication”

Next you must add an additional property to the Binding markup extension to denote that you would
like to use a type converter during the binding. In the following code example, you add the Converter
property to the binding and set it to the DecimalToPercentageConverter resource you’ve defined in
the control resources and assign it the given key:

<UserControl.Resources>

<local:DecimalToPercentageConverter x:Key=”decimalConverter” />

<DataTemplate x:Key=”ListTemplate”>

...

221

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

<StackPanel Orientation=”Horizontal”>

<TextBlock

Text=”{Binding Path=Percentage, Converter={StaticResource decimalConverter}}”

Margin=”2,2,2,2”

FontSize=”12”

/>

<TextBlock

...

</DataTemplate>

</UserControl.Resources>

Figure 7-6 shows the results of the modified PieGraphControl that now includes the data conversion for
each percentage within the ListBox item list.

Figure 7-6

Creating and Editing Styles
WPF styles allow you to uniformly apply a specific group of property settings to controls in order to
define a desired look and feel. WPF has a styling mechanism similar to CSS and its application to HTML
elements. Styles provide a centralized location where you define the visual appearance for your controls.
In addition, styles propagate those attributes to any element that inherits the style. Styles also allow the
definition of custom triggers that can change the visual behavior of a control.

Before you begin applying styles to controls, you will cover the basics of styles and how to apply them
to standard controls.

222

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Styles are declared in the Resources property of a window, container, or application. Where you place
your style definition depends on the scope of your style. For styles that have a global context within
your application, you can add your style to the Resources property of the App.xaml file. The following
code segment illustrates a global application-level style defined in the <Application> element of an
App.xaml file:

<Application x:Class=”WinFxBrowserApplication1.App”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

StartupUri=”Window1.xaml”

>

<Application.Resources>

<Style x:Key=”GlobalTextStyle”>

<Setter Property=”TextElement.FontSize” Value=”14”></Setter>

</Style>

</Application.Resources>

</Application>

To apply this style to an element, you simply set the Style attribute of the control to the name of the
defined style:

<Label Style=”{StaticResource GlobalTextStyle}” Name=”label1” >My Label

Text</Label>

Figure 7-7 illustrates your label with an application-level style applied.

Figure 7-7

Specifying a Style’s Target Type
The previous example illustrated a generic style definition that could be applied to any WPF element in
your application, provided that it had a FontSize attribute to set. The style is generic because it does
not specify a TargetType attribute. You use the TargetType attribute to indicate a specific control type
to which the style will apply. If no x:Key attribute is specified along with the TargetType attribute,
then the style will be applied to all elements of the specified target type.

The following code segment illustrates the use of the TargetType attribute. This style will be applied to
elements of type Label. Additionally, the code defines an x:Key attribute so that only Label elements
that specify the style property LabelStyle will inherit the style.

223

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

<Grid.Resources>

<Style x:Key=”LabelStyle” TargetType=”{x:Type Label}”>

<Setter Property=”Background” Value=”BlueViolet” />

<Setter Property=”Foreground” Value=”White” />

<Setter Property=”FontSize” Value=”20” />

<Setter Property=”Width” Value=”50” />

<Setter Property=”Height” Value=”30” />

</Style>...

</Grid.Resources>

As mentioned, specifying a target type for a style can also create a default style that is to be added to any
element of the specified type by default. By removing the x:Key attribute, the style will be applied by
default to elements of the specified target type — in this case, labels.

<Application.Resources>

<Style TargetType=”{x:Type Label}”>

<Setter Property=”Background” Value=”LightGray” />

<Setter Property=”Foreground” Value=”White” />

<Setter Property=”FontSize” Value=”14” />

<Setter Property=”Width” Value=”100” />

<Setter Property=”Height” Value=”50” />

</Style>...

</Application.Resources>

The preceding code snippet declares a style that will be applied to all elements of type Label. Figure 7-8
illustrates the results of a simple label without a Style property defined. The style is picked up simply
because the label is of type Label.

Figure 7-8

Inheriting and Overriding Styles
A style is a class just like any other in WPF, so it can be inherited from and extended easily. Inheriting
from a style class comes in handy if you want to define a global style to apply to all of your elements.
For instance, maybe you want all of your text elements to conform to one font face. Of course, you may
also want a small subset of text elements to use other text styles. In this case you adjust the weight and
decoration by overriding the global style, either with an additional style, or by setting the element
attributes directly.

224

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

To inherit from a style in XAML, you simply specify the BasedOn attribute of the Style element and
create a markup extension that points to the base style. The following code segment defines a base style
that is applied to a button, as well as a derived style that inherits from the base style.

<Window.Resources>

<Style x:Key=”BaseStyle”>

<Setter Property=”TextElement.FontSize” Value=”12”></Setter>

</Style>

<Style x:Key=”BoldStyle” BasedOn=”{StaticResource BaseStyle}”>

<Setter Property=”TextElement.FontWeight” Value=”Bold”></Setter>

</Style>

<Style x:Key=”ItalicStyle” BasedOn=”{StaticResource BoldStyle}”>

<Setter Property=”TextElement.FontStyle” Value=”Italic”></Setter>

</Style>

</Window.Resources>

<Grid Name=”myGrid”>

<Label Style=”{StaticResource BaseStyle}” Height=”29” VerticalAlignment=”Top”

Margin=”91,31,100,0”>This is my base styled text.</Label>

<Label Style=”{StaticResource BoldStyle}” Margin=”55,79,49,92” >This is my base

derived bold styled text.</Label>

<Label Style=”{StaticResource ItalicStyle}” Margin=”57,0,47,41” Height=”26”

VerticalAlignment=”Bottom”>This is my bold derived italic styled text.</Label>

</Grid>

Figure 7-9 illustrates the results.

Figure 7-9

Style properties are overridden by in-line styles in WPF. In the following code segment, you adjust the
italicized styled label in the previous code block but override the FontSize inline.

<Label Style=”{StaticResource ItalicStyle}” FontSize=”16” Margin=”17,61,22,58”>This

is my bold derived italic styled text at 16pt.</Label>

The results are illustrated in Figure 7-10.

225

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Figure 7-10

Style Triggers
Triggers enable you to develop interaction logic based on conditions or events. They allow you to alter
the behavior of controls depending on which conditions of the control are true. Triggers can apply a new
set of style changes or can initiate more complex actions, such as animating properties of the control.
Triggers fall into three categories: properties, events, and data.

Property triggers watch specific properties and fire when their values change. In the following example,
you define a style for a button that contains a property trigger that fires when the IsMouseOver prop-
erty change occurs. The trigger alters the background and foreground properties of the button.

<Style x:Key=”ButtonStyle” TargetType=”{x:Type Button}”>

<Setter Property=”Background” Value=”LightBlue” />

<Setter Property=”Foreground” Value=”Blue” />

<Setter Property=”FontSize” Value=”14” />

<Setter Property=”Width” Value=”100” />

<Setter Property=”Height” Value=”50” />

<Setter Property=”TextElement.FontSize” Value=”12”></Setter>

<Style.Triggers>

<Trigger Property=”IsMouseOver” Value=”True”>

<Setter Property=”Background” Value=”Orange” />

<Setter Property=”Foreground” Value=”Black”></Setter>

</Trigger>

</Style.Triggers>

</Style>

The important thing to note about triggers is that they are designed to handle the return to original state
automatically. Therefore, there is no need to apply an additional trigger to return the button back to its
original state once the property condition isn’t true.

Triggers can also have multiple conditions, which must hold true before new property changes are
applied. Triggers with multiple conditions are modeled with a MultiTrigger element. The
MultiTrigger element contains a collection of Condition child elements for each logical condition that
must be applied before the trigger is fired. The following code segment illustrates a sample
MultiTrigger for a button where the IsMouseOver and IsEnabled properties must be true before
applying new property changes:

<Style.Triggers>

<MultiTrigger>

<MultiTrigger.Conditions>

226

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

<Condition Property=”IsMouseOver” Value=”True”/>

<Condition Property=”IsEnabled” Value=”True” />

</MultiTrigger.Conditions>

<Setter Property=”Background” Value=”Orange” />

<Setter Property=”Foreground” Value=”Black”></Setter>

</MultiTrigger>

</Style.Triggers>

Unlike property triggers, event triggers listen for specific events rather than watching for property changes.

A data trigger can be used when an element participates in data binding. A data trigger will fire when a
value that is bound to an element is equal to the value specified in the data trigger’s Value attribute. Using
data triggers allows you to define styles or behaviors based on runtime data. For example, you may have a
list box containing items that represent tasks in a queue that are color-coded based on a priority level.

To illustrate the application of a data trigger, add the following code representing a new style to the
resources collection of the PieGraphControl. The data trigger specifies the binding path that maps to the
PiePieceData object’s Percentage property. It also specifies a target value of .2 which, if matched dur-
ing the binding, will apply a bold font weight to the text element of the list box item. Figure 7-11 illus-
trates the compiled result.

<Style TargetType=”ListBoxItem”>

<Style.Triggers>

<DataTrigger Binding=”{Binding Path=Percentage}” Value=”.2”>

<Setter Property=”TextElement.FontWeight” Value=”Bold” />

</DataTrigger>

</Style.Triggers>

</Style>

Figure 7-11

An important thing to remember about all of the trigger types is that they can coexist with one another
within a style definition. Each type of trigger can also have multiple declarations for multiple properties
or multiple events. If your control requires the use of event, property, and data triggers, they can simply
be placed as sibling elements within the Style.Triggers XAML declaration.

<Style TargetType=”ListBoxItem”>

<Style.Triggers>

<EventTrigger ...=””>

</EventTrigger>

<DataTrigger ...>

</DataTrigger>

<Trigger ...>

</Trigger>

</Style.Triggers>

</Style>

20% Latino

20% Asian

30% African-American

30% Caucasian

227

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Customizing Existing Controls with
Templates

The composition design model of WPF offers such an unprecedented level of control customization that
creating and implementing a custom control is often unnecessary. Using templates, the entire look and
behavior of a control can be customized easily within XAML.

To customize a control in WPF, you can define and apply a control template. A control template allows
you to change the composition of a control to any degree you like. As mentioned earlier, in WPF this is
possible because controls are lookless, meaning their visual appearance is separate from the behavior.
Control templates differ from styles. Styles allow you to customize a control’s visual appearance based on
setting properties that exist on the elements that make up the control (the default control template). A con-
trol template, however, can extend and even completely replace the elements that make up the control.

The one thing to remember when customizing an existing control with templates is that to offer a com-
plete implementation of a new template, it is good practice to make sure you include overrides for all of
the common triggers for events and property changes. For example, when creating a template for a but-
ton, it would be a good idea to create property and event triggers for mouse property changes and
events.

The following example walks you through the basics of creating a custom control template for a button
and then applying that template to a button.

1. In Visual Studio, add a new WPF window to the application you created for the custom user
control. Leave the default name intact, as it is of no importance to this example.

2. Create a set of brushes as static resources, which you will use to define the mouse over, mouse
out, and mouse pressed look and feel of the button. Place the following code within the
Window.Resources element of the window XAML file.

<RadialGradientBrush x:Key=”ButtonOffStateColor”>

<GradientStop Color=”sc#1, 0, 0.05307113, 0.8078084” Offset=”1”/>

<GradientStop Color=”#FFFFFFFF” Offset=”0”/>

<GradientStop Color=”#FF5D87F0” Offset=”0.64595660749506867”/>

</RadialGradientBrush>

<RadialGradientBrush x:Key=”ButtonOnStateColor”>

<GradientStop Color=”sc#1, 0.0145082464, 0.0145082464, 0.0145082464” Offset=”1”/>

<GradientStop Color=”sc#1, 0, 0.07862101, 0.451001883”

Offset=”0.64595660749506867”/>

<GradientStop Color=”#FF7DA5D8” Offset=”0”/>

</RadialGradientBrush>

<RadialGradientBrush x:Key=”ButtonPressedStateColor”>

<GradientStop Color=”sc#1, 0, 0.07862101, 0.451001883”

Offset=”0.63872452333990792”/>

<GradientStop Color=”#FF7DA5D8” Offset=”0.85568704799474”/>

<GradientStop Color=”#FF074492” Offset=”1”/>

<GradientStop Color=”#FF12345F” Offset=”0”/>

<GradientStop Color=”#FF0A3F83” Offset=”0”/>

</RadialGradientBrush>

228

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

3. You now need to define the style and control template for the button. The following XAML code
defines a new control template for a button and includes property triggers for the IsMouseOver
and IsPressed properties. It applies the appropriate brush you previously defined to each trig-
ger respectively. Include the following code in the Windows.Resources declaration:

<Style x:Key=”RadialButton” TargetType=”Button”>

<Setter Property=”SnapsToDevicePixels” Value=”true”/>

<Setter Property=”OverridesDefaultStyle” Value=”true”/>

<Setter Property=”MinHeight” Value=”60”/>

<Setter Property=”MinWidth” Value=”60”/>

<Setter Property=”Template”>

<Setter.Value>

<ControlTemplate TargetType=”Button”>

<Ellipse

Stroke=”{x:Null}”

Fill=”{StaticResource ButtonOffStateColor}”

HorizontalAlignment=”Center”

VerticalAlignment=”Center”

Width=”60”

Height=”60”

x:Name=”Ellipse”>

</Ellipse>

<ControlTemplate.Triggers>

<Trigger Property=”IsMouseOver” Value=”true”>

<Setter TargetName=”Ellipse” Property=”Fill” Value=”{StaticResource

ButtonOnStateColor}” />

</Trigger>

<Trigger Property=”IsPressed” Value=”true”>

<Setter TargetName=”Ellipse” Property=”Fill” Value=”{StaticResource

ButtonPressedStateColor}” />

<Setter TargetName=”Ellipse” Property=”Stroke” Value=”Black” />

</Trigger>

</ControlTemplate.Triggers>

</ControlTemplate>

</Setter.Value>

</Setter>

</Style>

4. Add a Button declaration to the default window Grid and apply the RadialButton style as
follows:

<Grid HorizontalAlignment=”Center” VerticalAlignment=”Center”>

<Button Style=”{StaticResource RadialButton}” />

</Grid>

5. Compile the application and run the new Window file. The compile result is illustrated in
Figures 9-12 through 9-14.

Figure 7-12 illustrates the default state of your button.

229

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

Figure 7-12

Figure 7-13 illustrates the IsMouseOver state of your button.

Figure 7-13

Figure 7-14 illustrates the IsPressed state of your button.

Figure 7-14

230

Chapter 7: Custom Controls

Excerpted from Professional WPF Programming: .NET Development with the Windows(r) Communication Foundation
Wrox Press, www.wrox.com

	ADPC5.tmp
	Professional WPF Programming:
	 .NET Development with the Windows® Presentation Foundation
	Chapter 7: Custom Controls
	ISBN-10: 0-470-04180-3
	ISBN-13: 978-0-470-04180-2

