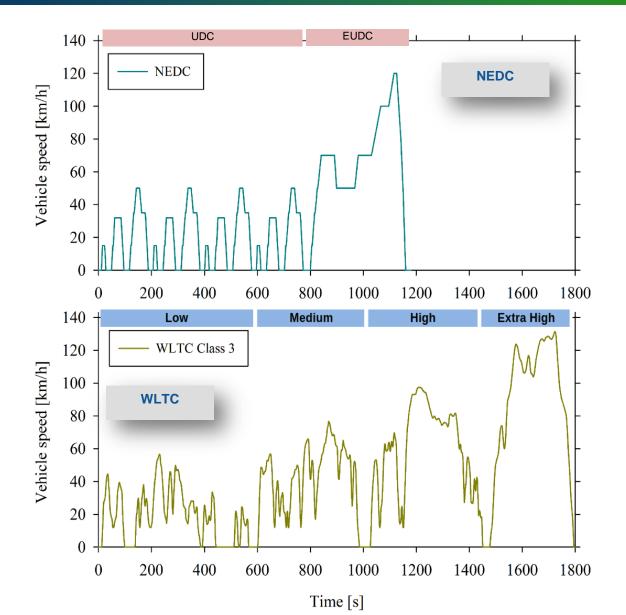


Zissis Samaras Professor

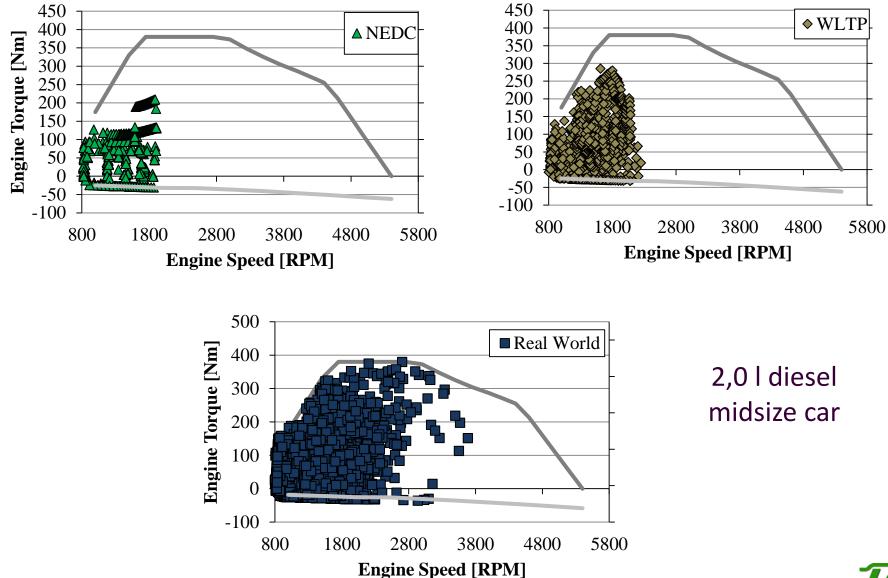
WLTP:

How will the new Regulation affect CO₂ emissions from modern passenger cars?


Lisbon, 7 June 2016

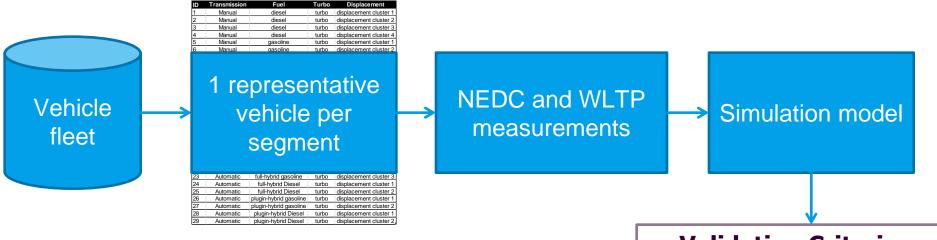
Outline

- Introduction The NEDC-WLTP Correlation Exercise
- \succ Measurement findings and ΔCO_2 analysis
- Evaluation of current CO2 reduction technologies
- CO₂MPAS validation campaign
- A look to Japan
- Concluding remarks

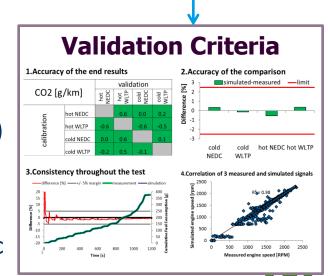


The driving cycles: NEDC vs. WLTP

Engine map area wider than in NEDC and WLTP


LAT.

Test differences between WLTP and NEDC


		NEDC	WLTP	
Mass	Test	Reference mass: Unladen + 100 kg	TMH ("worst" case) and TML ("best" case) defined from min/max unladen mass and max laden mass	
	Inertia	Inertia classes Inertia mass = Test mass		
	Rotating parts	Not applied	+1.5% for 1-axle chassis dyno	
Road load	Origin	Provided by manufacturer – derived by the coast-down method	Calculated from NEDC RL taking into account masses, Cd*A, tyres – derived by the coast-down method in future	
	Preconditioning	Vehicle and gear box type dependent (typical values 0 to 20 N)		
Driven wheels	4WD	1-axle dyno allowed	2-axle dyno mandatory	
Engine	Preconditioning	1 NEDC + 1 EUDC (gasoline) 3 EUDC (diesel)	WLTP	
Gear shifting		Fixed points	Vehicle specific - derived from a function of mass, RL, drivetrain, full load curve	
Temperature	Soak	20 to 30 °C	23 °C ± 3 °C	
	Oil, coolant	± 2°C to soak temperature	23°C ± 2°C	
	Test initiation	25 °C ± 3 °C	23 °C ± 3 °C	
RCB Correction		Not applied	Post-test correction	

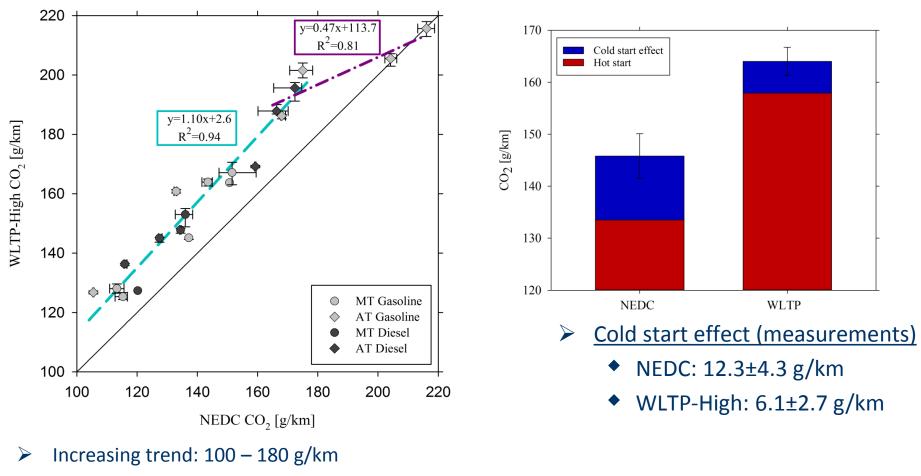
WLTP-NEDC Correlation Methodology

Division of vehicle fleet into characteristic segments, measurement of representative vehicles in NEDC and WLTP and develop/validate a vehicle simulation model.

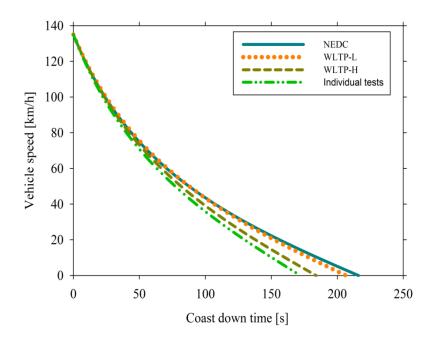
- Vehicle pool in this exercise
- <u>23 passenger cars</u> (M1) and 5 light duty vehicles (N1)
- 25 conventional, 1 Hybrid, 2 PHEV
- 15 gasoline and 13 diesel
- 14 with manual transmissions and 14 with automatic transmission

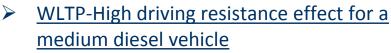
Outline

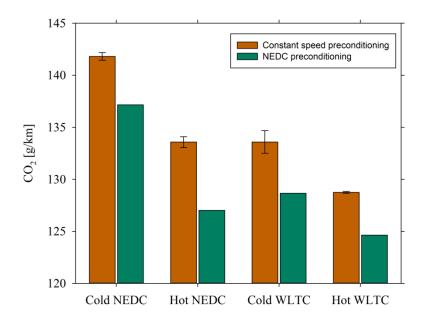
Introduction – The NEDC-WLTP Correlation Exercise


\succ Measurement findings and ΔCO_2 analysis

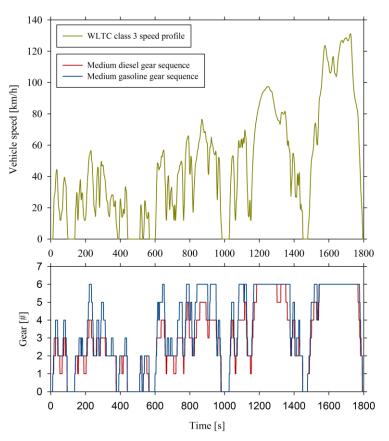
- Evaluation of current CO2 reduction technologies
- $> CO_2 MPAS$ validation campaign
- ➤ A look to Japan
- Concluding remarks

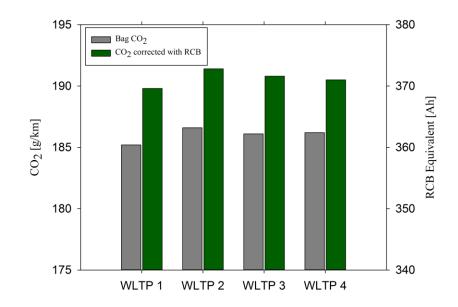

Results: WLTP vs NEDC


Results from measurements in 20 passenger cars

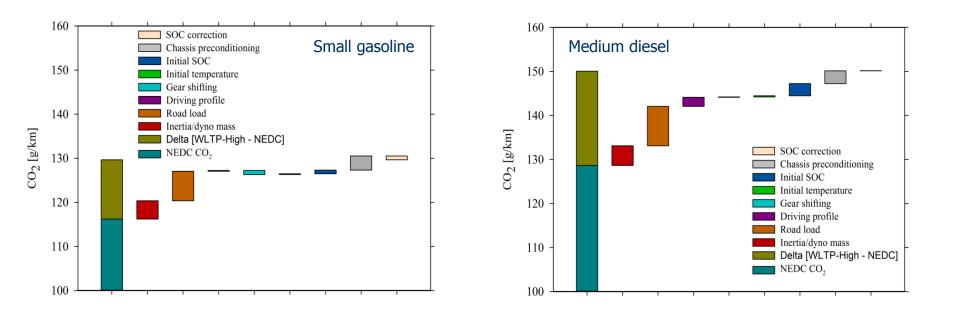

- Decreasing trend: 180 220 g/km
- Transitional area: 160 180 g/km

Results: Coast-down-time – Chassis preconditioning


- With NEDC driving resistance the vehicle stops 32 sec after the WLTP-High driving resistance
- ~13.5 g/km over NEDC and WLTP-High (simulation)


- Small gasoline vehicle with manual transmission in LAT chassis dynamometer
 - ~5 g/km over cold and hot NEDC and WLTC (measurement)
 - Preconditioning cycle effect is a function of the vehicle's topology and the chassis dynamometer
 - Ongoing investigation

Results: Gear shifting sequence – charge balance correction

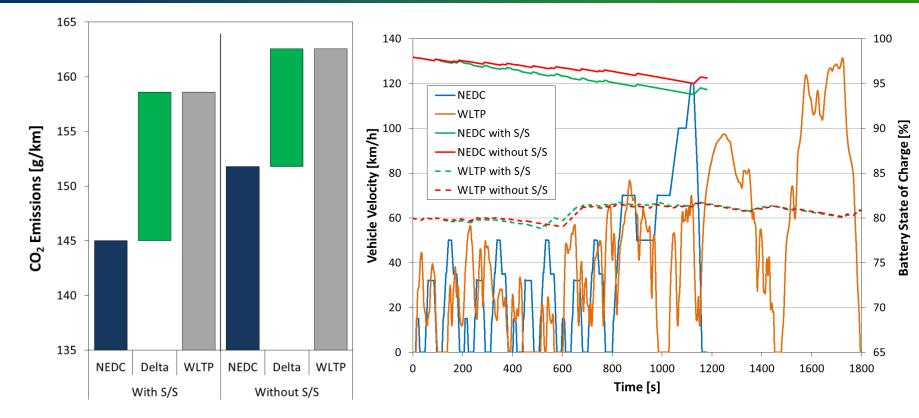

- WLTP-High gear shifting effect over NEDC fixed points
 - Medium diesel: -1 g/km (simulation)
 - Medium gasoline: -6 g/km (simulation)

- Charge balance correction effect for a large gasoline
 - 4.6 g/km (measurement)

Results: ΔCO2 analysis for a small gasoline and a medium diesel

Most significant parameters for the ΔCO₂ observed between WLTP-H and NEDC:

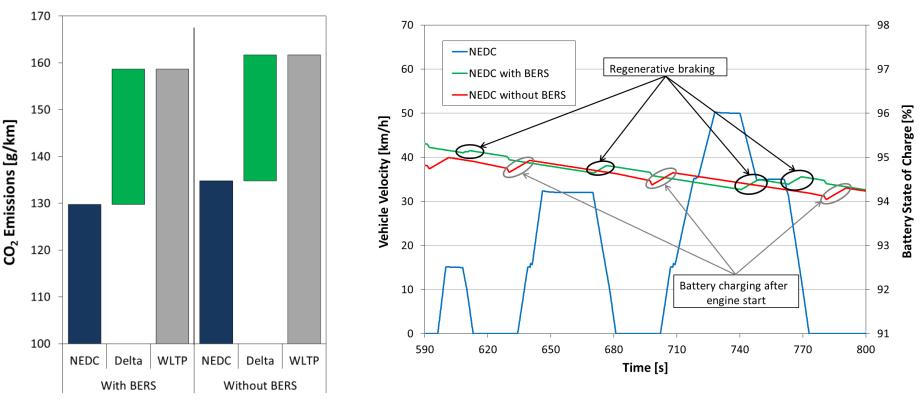
- Inertia mass
- Road load
- Chassis preconditioning
- Post test charge balance correction


Outline

Introduction – The NEDC-WLTP Correlation Exercise

- \succ Measurement findings and ΔCO_2 analysis
- Evaluation of current CO2 reduction technologies
- $> CO_2 MPAS$ validation campaign
- ➤ A look to Japan
- Concluding remarks

Start & Stop (SS)


- Engine deactivation when vehicle stands still
- ➢Elimination of fuel consumption at idle
- ➢<u>CO₂ reduction effect</u>
 - 2.5 4.8% in NEDC
 - 1.2 2.6% in WLTP

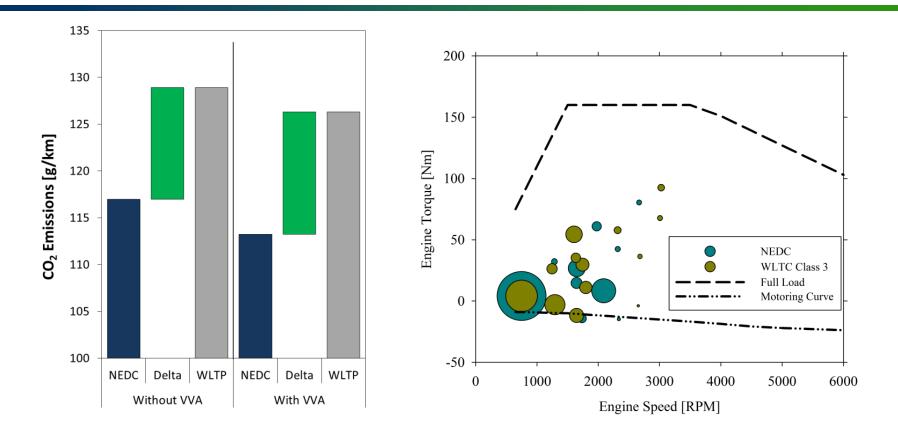
►Idling duration

- 22.6% in NEDC
- 13.4% in WLTP
- Battery charging after starting may counterbalance the positive effect of start-stop

Brake Energy Recuperation (BERS)

- Battery charging during braking regenerative braking
- \succ <u>CO₂ reduction effect</u>
 - 1.9 4.0% in NEDC
 - 1.3 1.6% in WLTP

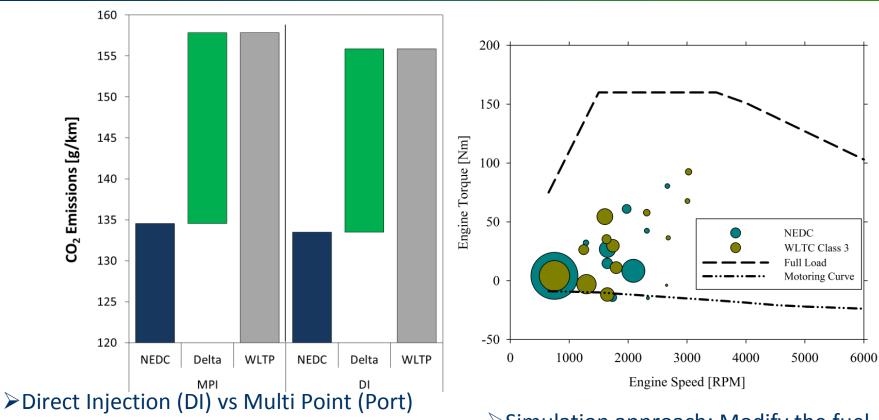
≻<u>With BERS</u>


- SoC kept above a critical value
- No need for battery charging after engine start

➢ Without BERS

- Battery depletion during braking
- Battery charging after engine start

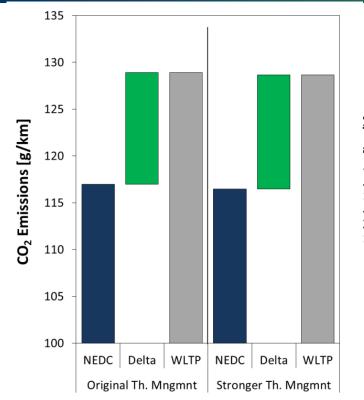
Variable Valve Actuation (VVA)



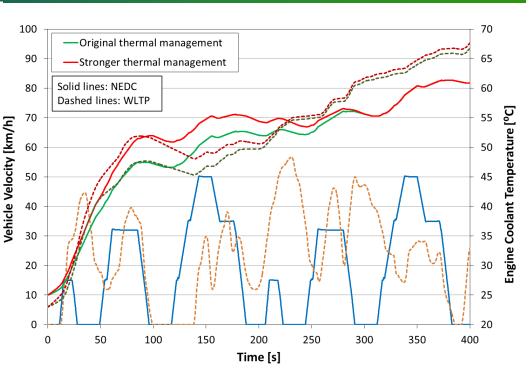
► Variable Valve Timing & Lift

- ➢Optimisation of cylinder charging
- Main effect on the lower operating range of the engine
- Simulation approach: Modify the fuel consumption map
- \succ <u>CO₂ reduction effect</u>
 - 2.5 5.0% in NEDC
 - 1.4 2.1% in WLTP

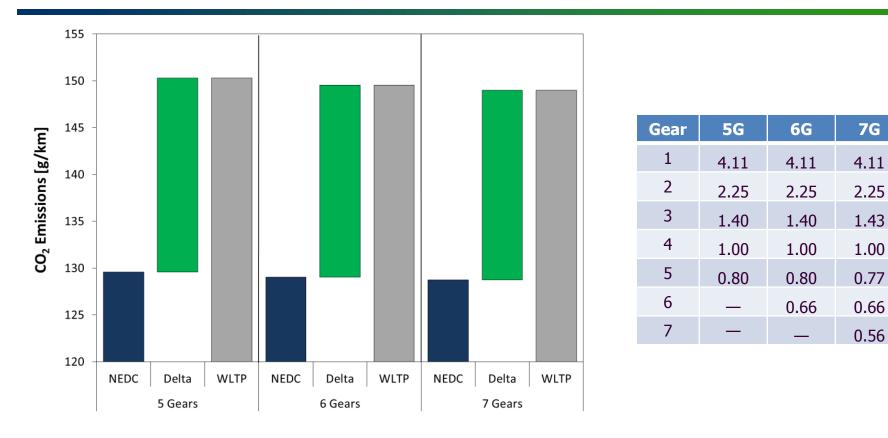
Gasoline Injection


Injection (MPI) ≻Injection at higher pressure –

- optimisation of injection strategy
 - Homogeneous combustion
- Main effect at the lower operating range


- Simulation approach: Modify the fuel consumption map
- \succ <u>CO₂ reduction effect</u>
 - 1.5% in NEDC
 - 0.8% in WLTP

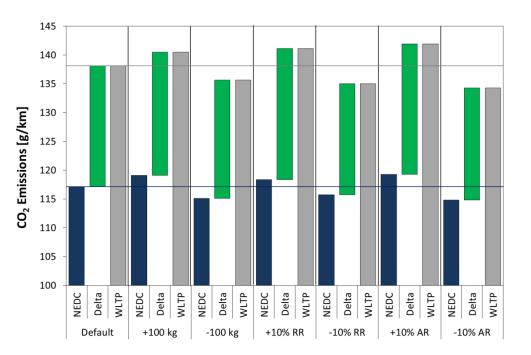
Engine Thermal Management


- Advanced cooling systems/strategies
 - separate cooling circuits (engine block/head)
 - cooled exhaust manifold
 - exhaust heat recovery
- Cold start effect 10% in NEDC vs 5% in WLTP

- Faster engine warm-up after cold start
- <u>CO₂ reduction effect</u>
 - <1% in both NEDC and WLTP</p>

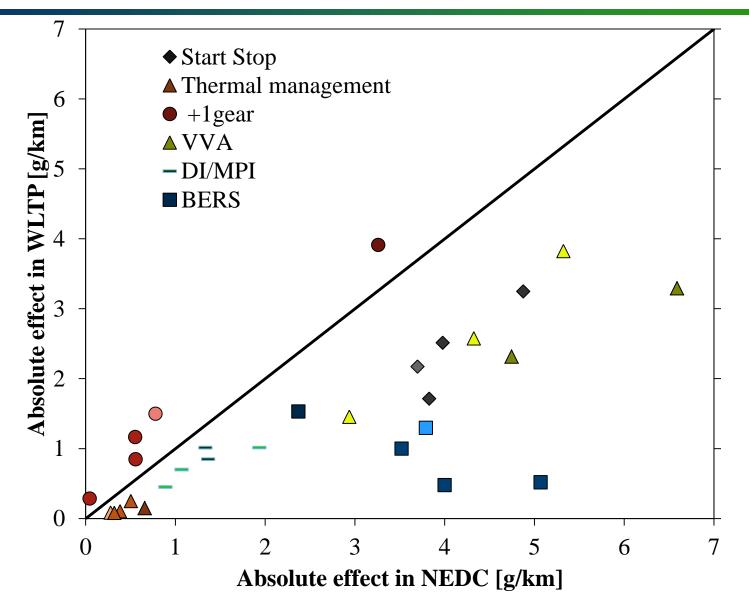
Gearbox variations

- Downspeeding: Driving the engine to lower rotational speeds
- Variation of gear number and ratio
- Final drive is kept constant

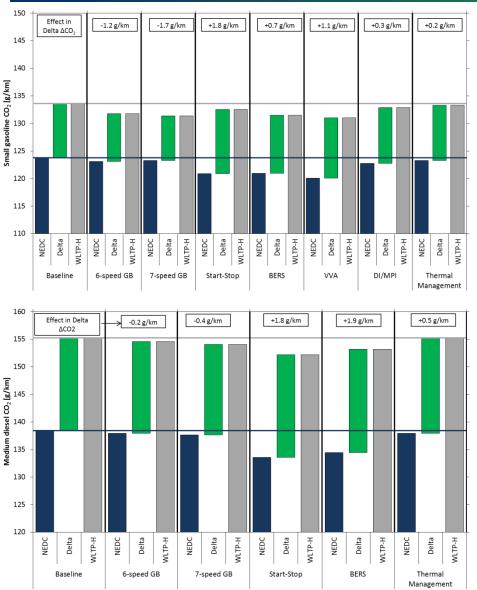

- > Up to 7 gears in manual transmission
- <u>CO₂ reduction effect</u>
 - 1.0% in NEDC
 - 3.0% in WLTP
- Optimised gear shifting in WLTP

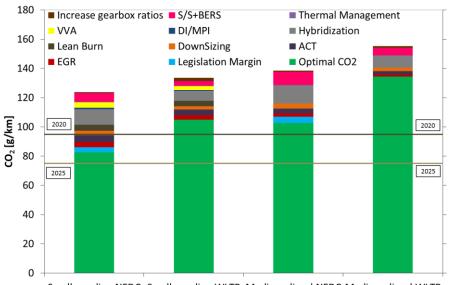
Road Load and inertia

- Different vehicle variations (additional equipment, tires, chassis body version)
 - lighter or heavier
 - Iower rolling resistance
 - Iower aerodynamic drag
- ►<u>CO₂ reduction effect</u>


Scenario	NEDC	WLTP
-100kg	2.0%	2.0%
-10% RR	1.2%	2.2%
-10% AR	2.0%	2.8%

- RL effect stronger in WLTP due to higher velocities
- ➤-10% AR has stronger effect that -10%RR, as aero drag is proportional to v²

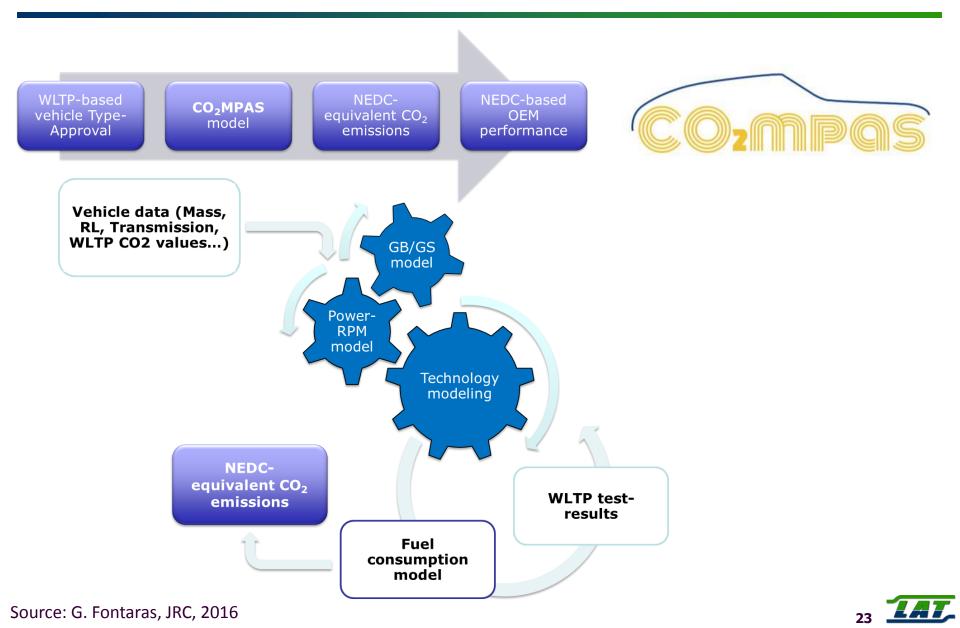



ΔCO2 WLTP/H – NEDC: Which cycle is affected more?

CO2 reduction technologies applied to a small gasoline and a medium diesel

Small gasoline NEDC Small gasoline WLTP Medium diesel NEDC Medium diesel WLTP

- Hybridization scenario has the largest impact as regards CO₂ reduction, followed by Start Stop and BERS for both driving cycles.
- The reduction effect for the different technologies cannot be integrated. Currently, the overlapping between them cannot be estimated.
- Optimal CO₂ refers to the minimum simulated value

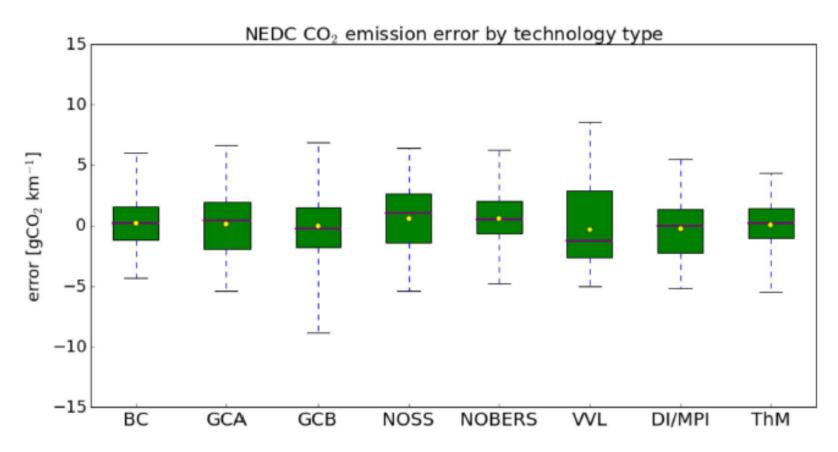


Outline

- Introduction The NEDC-WLTP Correlation Exercise
- \succ Measurement findings and ΔCO_2 analysis
- Evaluation of current CO2 reduction technologies
- CO₂MPAS validation campaign
- > A look to Japan
- Concluding remarks

CO₂MPAS Description

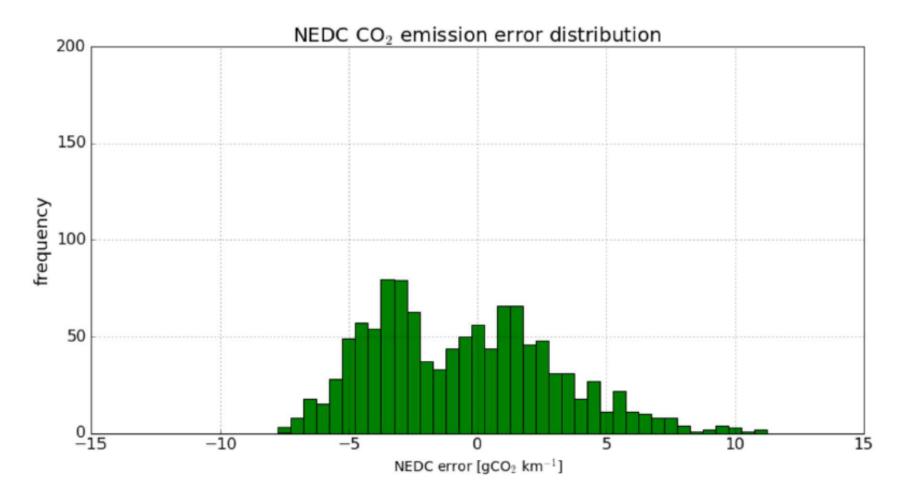
Validation campaign


Test cases examined

- I2 MT vehicle models in Cruise (synthetic based on real tests)
- 6 AT vehicle models in Cruise (synthetic based on real tests)
- 22 Real vehicles (tested in both NEDC and WLTP)
- Total 2169 synthetic MTs, 1138 synthetic ATs, 22 real cars (increasing)

 ± 100kg ± 10% in F0, F1 ± 10% in F2 +1 gear ratio, +2 gear ratios Active - Inactive 	+ 1 gear (GCA) + 2 gears (GCB) Base case with tech. Alternative case (NoSS)
± 10% in F2 +1 gear ratio, +2 gear ratios	+ 2 gears (GCB) Base case with tech.
+1 gear ratio, +2 gear ratios	+ 2 gears (GCB) Base case with tech.
	+ 2 gears (GCB) Base case with tech.
Active – Inactive	
Active – Inactive	Base case with BERS Alternative case (NoBERS)
Present/not present	Base case without tech Alternate case with (VVL)
Present / not present	Base case without tech. Alternate case with (DI/MPI)
Faster warm-up	Base case without tech. Alternate case with (ThM)
	Present/not present Present / not present

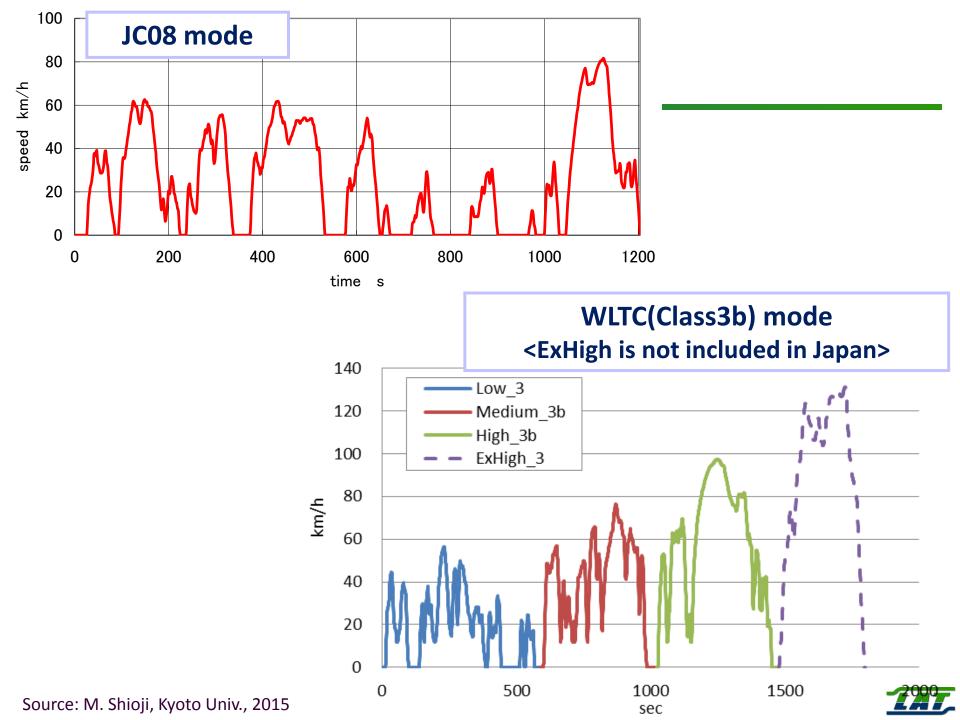
Results per technology - MTs



The green box represents the 1st and 3rd quartile. The dark purple line is the median. The yellow dot is the mean. the whiskers show the min and max values.

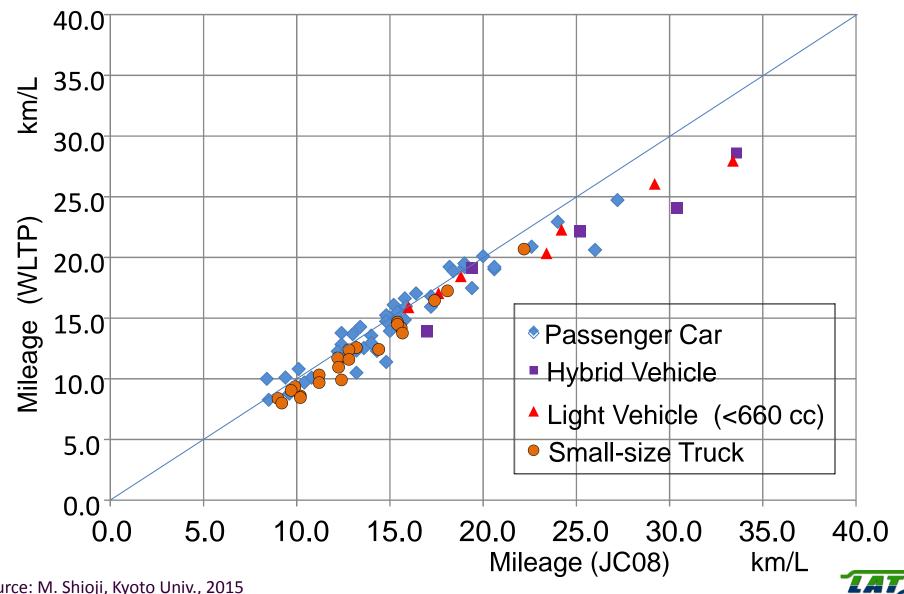
Source: G. Fontaras, JRC, 2016

Results NEDC and sub-cycles synthetic data - ATs



Outline

- Introduction The NEDC-WLTP Correlation Exercise
- \succ Measurement findings and ΔCO_2 analysis
- Evaluation of current CO2 reduction technologies
- $> CO_2 MPAS$ validation campaign
- A look to Japan
- Concluding remarks



Comparison of JC08 and WLTP

	JC08	WLTP (Class3b)
Average Speed (km/h)	24.41	36.57
Ratio of Idling Time (%)	29.7	15.4
Ratio of Cold Test (%)	25	100
Maximum Speed (km/h)	81.6	97.4
Maximum Acceleration (positive only) (km/h/s)	5.5	5.7
Test Duration (s)	1204	1477
Total Running Distance (km)	8.17	15.01

CO2 Correlation between JC08 and WLTP

Source: M. Shioji, Kyoto Univ., 2015

Outline

- Introduction The NEDC-WLTP Correlation Exercise
- \succ Measurement findings and ΔCO_2 analysis
- Evaluation of current CO2 reduction technologies
- $> CO_2 MPAS$ validation campaign
- > A look to Japan
- Concluding remarks

Conclusions (1/2)

- WLTP is a step forward Its introduction will contribute to closing the gap between real world and reported fuel consumption
- WLTP higher fuel consumption compared to the NEDC does not come from the driving cycle. It comes from the test conditions!
- The dominant impacts are found to be
 - the higher test mass,
 - the driving resistance,
 - the preconditioning cycle and
 - the post test charge balance correction.
- Care has to be taken by the regulator as regards
 - The road loads to be used for certification purposes

Conclusions (2/2)

- Most technologies have stronger effect on NEDC
- Therefore the technologies introduced for fuel efficiency so far should be revisited
- Also some attention is needed to the fact that WLTP compared to NEDC has
 - Less stop periods
 - Less cold start
- WLTP is a cycle for development purposes
- RDE and other initiatives can play a very important role in ensuring that CO2 reduction actually takes place as foreseen

Thank you for your attention!

Back up

Different parameters in gear shifting generation algorithm

Gear shifting input	Diesel vehicle	Gasoline vehicle		
Idle engine speed [RPM]	830	750		
Engine speed at maximum power [RPM]	4000	5500		
Maximum power [kW]	120	125		
Engine to vehicle speed ratio for 1st gear	98.92	134.85		
Engine to vehicle speed ratio for 2nd gear	54.14	73.23		
Engine to vehicle speed ratio for 3rd gear	33.69	51.31		
Engine to vehicle speed ratio for 4th gear	24.06	38.59		
Engine to vehicle speed ratio for 5th gear	19.25	31.02		
Engine to vehicle speed ratio for 6th gear	15.88	26.52		
Delta in curb mass [kg]	-	-200		
Delta in WLTP-High mass [kg]	-	-231		
Delta in WLTP-High F0 [N]	_	-5.8		
Delta in WLTP-High F1 [N/(km/h)]	_	0.0561		
Delta in WLTP-High F2 [N/(km/h) ²]	_	0.0025		

Measured vehicles

Fuel	Vehicle	Emission Standard	I*/A**/T***	Start/Stop	Displacement [cc]	Max Power [kW]	Max Torque [Nm]	Curb mass [kg]
	G01	EURO5	PFI/NA/MT6	YES	1368	125	250	1290
	G02	EURO5	DI/T/MT6	YES	1798	125	318	1450
	G03	EURO6	DI/T/MT6	YES	1600	100	240	1300
	G04	EURO5	DI/T/AT8	YES	1995	180	350	1510
	G05	EURO5	PFI/NA/MT5	YES	875	77	145	930
Casalina	G06	EURO5	PFI/NA/MT5	YES	1368	57	115	1025
Gasoline	G07	EURO5	DI/T/MT6	YES	999	92	170	1179
	G08	EURO5	DI/T/AT7	YES	3498	200	370	1635
	G09	EURO5	PFI/NA/AT5	YES	999	52	92	750
	G10	EURO5	DI/T/AT6	NO	2497	187	360	1456
	G11	EURO5	DI/T/MT5	NO	1197	66	160	1102
	G12	EURO5	DI/T/AT6	YES	1390	110	240	1623
	D01	EURO5	DI/T/AT8	YES	2967	190	580	1880
	D02	EURO5	DI/T/MT6	YES	1995	120	380	1465
Diesel	D03	EURO5	DI/T/MT5	NO	1248	55	190	1090
	D04	EURO5	DI/T/AT7	NO	2030	120	360	2030
	D05	EURO5	DI/T/MT5	YES	1248	70	190	1393
	D06	EURO5	DI/T/AT6	NO	1686	95	300	1309
	D07	EURO6	DI/T/MT6	YES	1598	90	320	1601
	D08	EURO5	DI/T/MT6	YES	1560	82	270	1293

*I = Injection: DI = Direct Injection; PFI = Port Fuel Injection

**A = Aspiration: T = Turbo; NA = Naturally Aspirated

***T = Transmission: ATn = Automatic Transmission with n gears, MTn = Manual Transmission with n gears

LAT

37