Physics 414: Introduction to Biophysics

Professor Henry Greenside
October 11, 2018

For[i =2, i 2 length, i++,

6 = RandomReal[ { ©., 27} ] ;

walk[[1]1] = walk[[i-1]] +
a { Cos[®] , Sin[e] }

y/
walk = Table[ {©®., ©.}, {length} ] ; %
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Osmosis is a nonequilibrium phenomenon:
movement of water (solvent molecules) across
semipermeable membrane to region of higher
solute concentration until equilibrium attained
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Pure water has a higher water
concentration than water “diluted”
with solute molecules so chemical
potential of pure water 1s higher than
chemical potential of solution, so
water will move “downhill” from
higher to lower chemical potential if
it can.

Solution has higher concentration of
big molecules than pure water so the
opposite should occur but the
movement of big molecules to pure
water is blocked by the
semipermeable membrane. So water
moves into the solution
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Osmosis causes pressure difference Ap across
membrane, with higher pressure on solution side
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https://youtu.be/7WX8zz RInE

Membrane is permeable to water but impermeable to
solute. Home experiment could be corn syrup inside

cellophane membrane.


https://youtu.be/7WX8zz_RlnE

Thermodynamic equilibrium requires chemical potential p of
water to be same on both sides of semipermeable
membrane, leads to the van’t Hoff equation if solutions are
dilute. See Section 6.2.3 page 264-266 of PBOC2 (you do
NOT need to know this derivation though)
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If solutions are dilute, only number of solute molecules matters,
not kind of solute molecules! For rather deep reasons related to how
1deal gas law can be derived from entropy S(E, V,N), van’t Hoff
equation has same form as ideal gaslaw P = (N/V) kT=ckT.



Conceptual osmosis question

It 1s found that when red blood cells are placed in
a 1 mM solution of NaCl, the volumes of the red
blood cells remain approximately constant.

If the same red blood cells are now placed in a 1
mM solution of glucose molecules, then
1) the red blood cells will remain the same
2) their volumes will increase.
3) their volumes will decrease.




How to understand origin of osmotic pressure via
transfer of momentum Is subtle but interesting, don't
have time to discuss In course :(

Bernoulli’'s ideal-gas argument of particles colliding with
and transferring momentum to wall doesn’t work
because, for dilute solutions, the solute particles are
greatly outnumbered by solvent (water) molecules.

If you are interested, you can read a nice discussion of
how the osmotic pressure arises from microscopic
forces in the book “Biological Physics: Energy,
Information, and Life” by Philip Nelson, see Section
7.3.1.

This knowledge is optional for the course, purely for
your own enjoyment and satisfaction.



Egg Osmosis (Hypertonic vs. Hypotonic Solution)

https:/lwww.youtube.com/watch?v=SSS3EtKAzYc
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Search YouTube also for “dialysis tubing”


https://www.youtube.com/watch?v=SSS3EtKAzYc

Is osmotic pressure significant for a biological cell?

Typically 30% of eukaryotic cell’s volume (volume fraction ¢) occupied by

globular proteins of radius R ~ 10nm. (Think hemoglobin inside red blood
cell.) Then
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If cell placed in pure water and other stuff in cell ignored (e.g., ~ 100 mM
of ions),

Ap = ckT ~ (7 x 10°*) kT ~ 300Pa < 1atm ~ 10° Pa (2)

Osmotic pressure from fewer large molecules is tiny compared to atmo-
spheric pressure but need to look at what pressure means in terms of cellular
parameters. If cell has radius R ~ 10 uym, Young-Laplace law gives

20 RAp

Apzﬁ = O

~2x 1077 J/m?. (3)

This exceeds o for eukaryotic cell bilipid membranes so bang, cell explodes.

Several evolutionary choices: pump water out, pump small molecules out, or
build strong wall to prevent membrane from expanding (plants, bacteria).

Cells placed in y
distilled water ¢ Hz0
i "

Cells swell
and burst



Conseqguences, applications of osmosis

1) Cell shape and volume (how to kill a slug with salt...)

2) Photosynthesis by plants (stomata), roots extracting
water

3) Cholera: bacterial-induced release of water into the
small intestine

4) Reverse osmosis: desalination of seawater by
pushing sea water through semi-permeable
membrane with high pressure.




Stomata of a plant leaf (singular “stoma”)
open and close via osmotic pressure
https://en.wikipedia.org/wiki/Stoma

~60 um

Stoma controls local intake and release of gases related
to photosynthesis
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https://en.wikipedia.org/wiki/Stoma

Venus Fly Trap (North and South Carolina)
and Electroosmosis

https://youtu.be/Hzk1bM2vVFU
“True Facts : Carnivorous Plants
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https://youtu.be/Hzk1bM2vVFU
https://youtu.be/Hzk1bM2vVFU

Class discussion: Are wrinkled fingers after
bath/swim due to osmosis?

r“ | " .. 4 ":,:. | ; —
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Chapter 8:
Random Walks and the Structure of Macromolecules

Claim: many polymers and biomolecules act in solution at room
temperature as if they consist of approximately equal-size rigid
links connected by frictionless joints that can rotate in any
direction: the “freely jointed chain model” or FJC model.

When this 1s true, can use mathematics of so-called random walks
to describe and deduce some of their properties such as average
size, average distance between free ends, force-extension curve

\ Effective length of rigid
(y segment 1s called the

/ “Kuhn length” a
m

https://en.wikipedia.org/wiki/Ideal chain 3


https://en.wikipedia.org/wiki/Ideal_chain

Applications of random-walk model of polymers

1) Size, volume of random-walk polymer

2) Tethering of ligand to increase local
concentration of ligand

3) Loop formation: probability of one end of
random-walk polymer meeting other end
to close up and form a loop

4) Deduce structure of DNA inside nucleus,
how affected by pinning of DNA to
nuclear membrane, existence of chromatin
domains.
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Numerical exploration of random walks
Mathematica notebookrandom-walks.nb

&= A (* constant step size )

length = 1003 (* number of steps in walk =)

walk = Table[
f0ay Bty
{ i, 1, length}
13

For[i =2, 1 £ length, i++,
& = RandomReal[ { 0., 27} ] ;
walk[[i]] = walk[[i - 1]] + a { Cos[e], Sin[e]};

13

gl = ListLinePlot[ walk ] ;
g2 = Graphics[circle[ 1 6.. B} ; ﬂfTEEEEF'a] ];
Show[

gl, g2,

AspectRatio - Equal,
PlotRange - All

]

http://webhome.phy.duke.edu/~hsg/414/files/mma-and-matlab/random-walks.nb
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http://webhome.phy.duke.edu/~hsg/414/files/mma-and-matlab/random-walks.nb

Experimental example:
Atomic Force Microscopic (AFM) images
DNA writhing on a flat mica surface
See Fig 8.2 p. 313 PBOC2

(A) (B)
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Nonequilibrium shaken chain spontaneously
contracts to “blob” because of multiplicity (entropy)

YouTube video of beaded chain (not a molecule!) being shaken vertically
https://youtu.be/zC0fS-g15m0
“KNOT: Unknotting of a beaded chain #5”
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https://youtu.be/zC0fS-g15m0
https://youtu.be/zC0fS-g15m0

At the blackboard: why root-mean-square distance from
origin of random walk goes as Sgrt[number of steps]
(You need to understand this derivation!)

I gave more general vector version of argument on page 314 of PBOC2 of why the root-
mean-square (rms) distance from the origin after taking N successive random steps of
equal length a 1s Sqrt[N]. Key point is to take “ensemble average” <..> of the distance
squared, which means to average over all possible random walks starting from the origin
and taking the same number of steps. Outline of algebra is following:

X = location of random walker after NV random steps of length a

N
:AX1+AX2+...+AXN:ZAXZ- =
1=1

B2 — (X X} — < (ﬁ; AX@') | (i AXj) >

N
D (AXF) +2) (AX; - AX))
i=1 i<j
Na* + 2a” Z (cos (0;;)) since a - b = abcos(0)
1<j
= Na?, since Vi, 7, (cos (6;5)) = 0.
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Why does (cos (#;;)) =0 ?

Why does the ensemble average (cos(#;;)) = 0, where 8;; is the angle between the ith and
jth vector steps, AX; and AX;?

Without giving a careful proof, the gist is that if we choose two vectors of identical length
with random directions in dimension 2 or 3, the angle #;; between those vectors must itself
vary randomly in the interval [0,27) and so cos(#;;) must take on all possible values in the
range [—1, 1] of cosine with equal likelihood, both positive and negative, and so the average
of cos(#;;) over many identical random walks (always starting at origin, N steps, all steps
of same length) will involve adding many numbers that are equally positive and negative
and so add up to zero.

It is perhaps easier to see this in two dimensions, for which

AX; - AX; = [a(cos(6;),sin(f;))] - [a (cos(#;), sin(6;))]
= a* (cos(6;) cos(#;) + sin(#;) sin(#;))
=a” cos (0; — 0;) .
So in 2D, #;; = #; — 6#; is the difference in angles that give the directions for the ith and
jth steps. If the #; are being chosen randomly from a uniform distribution on the interval

0,27], #; — 6, is a uniformly distributed random number on the interval [—2m, 2r] which
spans two periods of cos(f), so any average over all of its values must be zero.
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Kuhn length versus persistence length &,
Pages 319-321 of PBOC2

Will discuss after the midterm exam when we get to Chapter 10
on beams, involves technical details not important for the
midterm. For now, just realize that experimental measurements
like Fig 8.5 on page 319 yield a persistence length and a
calculation (page 320 PBOC?2) relates the Kuhn length of a
random-walk polymer to the persistence length by:

a = 2&,

So logic is that IF a polymer is described by a random walk with equal Kuhn
lengths, THEN the Kuhn length is related to the persistence length by this simple
relation. However, there are cases where the two lengths are not simply related,;

knowing the persistence length does not automatically give the Kuhn length
without further information.
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At the board: let’s figure out what happens if we
attach one random-walk polymer (blue) to the end
of a second random-walk polymer (red)?

M=50 steps with a=1 followed
by N=50 steps with b=2.

Consider random-walk polymer consisting of M identical monomers of Kuhn length a. One end of this
monomer is attached to a glass bead that is held in a fixed position by an optical tweezer. The free end of this
polymer is attached to a second random-walk polymer of N identical monomers of Kuhn length . Let Xend
be the location of the free end of the second polymer.
1) What is the mean or average location: <Xend> ?
2)What is the variance of the location of the end: <(Xend — <Xend>) : (Xend — <Xend> )> ?
Answer to (1): (Xeng) =0 =(0,0,0)
Answer to (2): the mean-square-dstance is Ma? + Nb?.
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Tethering of ligand with random-walk polymer can
Increase local ligand concentration
See Section 19.4.2, Fig 19.61, page 884 of PBOC2

)  — ®) (©

effective O
concentration =
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Ceffective — —
4 4
_;TRSG —;T(NCL2)3/2

22



Single-molecule force-extension curves:
“Force spectroscopy”
Fig 8.21 page 338 PBOC2
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force (pN)

Different macromolecules
have different force-extension profiles
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At blackboard: low-force linear regime of force-extension
curve using freely-jointed chain model and partition
function

F=—FKIllnZy, In = ZN

OF dIn(Z,)

Ly=- (=] =-Nkr—2Y
w=-(3) 0]

Zy(1d) = ePla g e=Fla, Z1(3d-lattice) = 4 4 P72 4 ¢ P/a

27 0 e
cos (6
Z1(3d-continuous) = / d¢ [ df exp [M} sin ()
Jo Jo KT

fa

L d = Natanl e
(L)1q a tanh (kT)
sinh(f3 fa)
L'(—a..it‘ezﬂr' I
(L)3d-1att (12 + cosh(f fa)

. kT
(L)3d—cont = Na lmth (%) — ﬁ}

For 3D continuous independent links, get Langevin function L(x) =
coth(x) — 1/x that shows up in using statistical mechanics to cal-
culate polarization or magnetization of gas of independent electric
or magnetic dipoles aligning in external uniform field at finite tem-
perature T .
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Freely-jointed chain model predictions
of force-extension curves
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PBOC2 uses entropy to derive linear (“Hookean”)
regime of force-extension curve using 1d freely-jointed
chain but better, easier to use Boltzmann distribution

G(ng) ~ —2fang + kT [ngIn(ng) + (N —ng)In(N —ng)] =
9G = 2fa+kTlnhng —kTIn(N —n,.) =0 =
8nR
nr _ oo |20
P exXp [kT] =4

z = Ly —PRTTL _ tanh &
List ngr+ng kT

Although using entropy leads to a more detailed longer
argument, it makes more clear why a random-walk
polymer or rubber acts like a spring: the entropy is greatest
when the polymer is not too long (fully extended) nor not
too compact. At finite temperature, when entropy matters,
/ there is a finite equilibrium size (of order R G) and it takes

a force to make the molecule deviate from its state of
— greatest multiplicity (largest entropy).
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All these expressions for <L> predict linear “Hookean”
regime with spring constant k that is proportionalto T

Liota
Compare some order-of-magnitudes:
For A-phage ssDNA,
3kT fN
Lot =~ 20 pm, a ~ 1.5 nm, k = ~ 200 —.
aLliot pm

For commercial steel spring

k~10*N/m ~ 10" fN/pum.

For chemical bond in diatomic molecule like HCI,

k~10°N/m ~ 10"* N /pm.

So DNA is weak spring compared to some familiar springs.
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Temperature dependence of spring constant
explains why rubber contracts upon being
warmed, and why random-walk polymers become
more compact with increased T

Liota

See the YouTube videos “Rubber band shrinks when heated”,
https://www.youtube.com/watch?v=eB4B2xZI77A

and “Rubber band heat engine”
https://www.youtube.com/watch?v=dBX1.93984cQ
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https://www.youtube.com/watch?v=eB4B2xZI77A
https://www.youtube.com/watch?v=dBXL93984cQ

One-minute End-of-class Question

30



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

