
Professor Jeffrey RAUCH Dynamical Systems

Conjugacy

Orientation. The subject corresponds to material treated in Hirsch-Smale-
Devaney as follows.

• Linear Conjugacy: §3.4

• Topological Conjugacy definition and Linear Systems: §4.2

• Hartman-Grobman Linearization Theorem: §8.2

• Flow Box Theorem: §10.2

The notion of conjugacy reappears in the treatment of Chaos in Chapter 15.

1 Linear conjugacy

Definition 1.1 Two linear systems X ′ = AX and Y ′ = BY are linearly
conjugate if and only if there is an invertible linear change of variables,
Y = HX that converts one to the other.

Theorem 1.1 Two systems are linearly conjugate if and only if A = H−1BH.

Remark 1.1 i. Linear conjugacy is the same as similarity of matrices.

ii. If two systems are linearly conjugate then the characteristic polynomials
of A and B are equal. Indeed

det(zI −B)) = det(zHH−1 −HAH−1) = detH (zI −A)H−1

= detH det(zI −A) detH−1 = det(zI −A) .

Therefore the eigenvalues of the matrices A and B must be the same with
the same multiplicities as roots.

iii. The equality of characteristic polynomial is necessary but not sufficient
for conjugacy. The matrices(

0 1
0 0

)
and

(
0 0
0 0

)
have characteristic polynomial equal to z2 yet are not similar.
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Example 1.1 The equations x′ = 2x and x′ = x are not linearly conjugate
since the eigenvalues 1 and 2 are not equal.

This equivalence relation between linear equations is too strong since x′ =
2x and x′ = x have qualitative behavior that is so similar that you would
like to classify them as equivalent.

Exercise 1.1 Show that a system X ′ = AX on CN is conjugate to a system
Y ′ = DY with diagonal matrix D if and only if A has a basis of eigenvec-
tors. Discussion. In this case solving the simple diagonal system exactly
recover’s the eigenvalue-eigenvector algorithm for X ′ = AX. This is a dis-
covery method for that algorithm complementary to beginning with Euler’s
analysis of scalar constant coefficient linear homogeneous equations.

2 Differentiable conjugacy

For linear system a linear change of coordinates yields a new linear system.
For nonlinear equations making a nonlinear change of coordinates Y = h(X)
with h and its inverse X = h−1(Y ) continuously differentiable yields a new
system for Y . Indeed, the equation X ′ = F (X) after substitution of X =
h−1(Y ) reads

d

dt
h−1(Y ) = F (h−1(Y )) . (1)

Evaluating the left hand side using the chain rule yields

DY h
−1(Y )

dY

dt
.

The formula for the derivative of the inverse is

DY h
−1(Y ) =

(
DXh

∣∣
X=h−1(Y )

)−1
.

Multiplying (1) by DXh(h−1(Y )) yields the differential equation

Y ′ = G(Y ) ,

with
G(Y ) := DXh(h−1(Y )) F (h−1(Y )) . (2)

This is the equation in the new coordinate.
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Definition 2.1 The equation X ′ = F (X) on the open set O is differentiably
conjugate to Y ′ = G(Y ) on Ω when there is a continuously differentiable
invertible map h : O → Ω with differentiable inverse so that the change of
variable Y = h(X) converts one system to the other. This holds if and only
if (2) holds.

Remark 2.1 If one has a differentiable conjugacy h : O → Ω and ω is an
open subset of Ω then h : h−1(ω) → ω is a differentiable conjugacy of the
smaller sets.

Definition 2.2 If X and Y are points the differential equations are said to
be locally differentiably conjugate when there are exist neighborhood O 3 X
and Ω 3 Y and a conjugacy as in the preceding definition.

Exercise 2.1 Show that local differentiable conjugacy is an equivalence re-
lation. Need to verify reflexivity and transitivity. The first asserts that an
equation is conjugate to itself. The second that if one has three equations
with the first conjugate to the second and the second conjugate to the third,
then the first is conjugate to the third.

Equation (2) makes sense only for differentiable h because of the DXh.
There is an equivalent version that does not involve derivative of h. Denote
by φt(X) and ψt(Y ) the flows of the respective differential equations.

Theorem 2.1 The map Y = h(X) is a differentiable conjugacy if and only
if for all X ∈ O and t one has φt(X) ∈ O if and only if ψt(h(X)) ∈ Ω and

h(φt(X)) = ψt(h(X)) . (3)

Proof. If the mapping Y = h(X) converts the differential equation to
Y ′ = G(Y ) and equivalently X = h−1(Y ) converts the Y equation to that
in X it follows that the solution curve φt(X) is mapped to the solution curve
ψt(h(X)). This is (3).

Conversely, differentiating (3) with respect to time using the chain rule yields

DXh(φt(X))
d

dt
φt(X) =

dψt(h(X))

dt
.

Using the two differential equations yields

DXh(φt(X)) F (φt(X)) = G(ψt(h(X)) .
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Setting t = 0 yields

DXh(X) F (X) = G(h(X)) .

This is equivalent to (2). �

Remark 2.2 i. Formula (3) does not involve the derivatives of h. It allows
us to generalize to conjugacies that are not differentiable.

ii. Instead of converting the X differential equation to the Y equation it
says that h converts the flow φt to ψt.

Equation (3) implies that if h is a differentiable conjugacy and you know the
value of h(X) then the value of h(X) is determined along the orbit through
X.

Indeed, suppose that h(X) = Y is known. Denote by X(t) = φt(X) and
Y (t) = ψt(Y ) the orbits through X and Y . Equation 3 evaluated at X
asserts that h(X(t)) = Y (t) determining h on the orbit X(t).

It suffices to know the value of h(X) on one point of each orbit in O to
determine entirely the values of h.

2.1 Differentiable conjugacy away from equilibria

The next result asserts that away from equilibria all differential equations
are differentiably conjugate.

Theorem 2.2 (Flow Box Theorem) If F (X) 6= 0 then there are open sets
O 3 X and Ω 3 0 so that X ′ = F (X) on O is differentially conjugate to
Y ′ = (1, 0, . . . , 0) on Ω.

Remark 2.3 i. Any two systems are differentiably conjugate at points that
are not equilibrium points. Differentiable conjugacy is a good notion away
from equilibria.

ii. The next section shows that differentiable conjugacy is too strong an
equivalence relation at equilibria. The equivalence classes are too small.

Proof of the Flow Box Theorem. Change basis in Rd so that F (X) is
the first basis element. Then translate coordinates so that X = 0. In this
way reduce to the case

X = 0, F (0) =
(
1, 0, 0, . . . , 0

)
.
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Near the origin, orbits of both equations have velocity close to
(
1, 0, 0, . . . , 0

)
so each orbit crosses {x1 = 0}. Thus any conjugacy is uniquely determined
by its values on {x1 = 0}. Construct h(X) so that

h(0, x1, . . . , xd) = (0, x1, . . . , xd) .

Denote by φt and ψt the flows of the X and Y differential equations respec-
tively. To be a conjugacy requires that

h
(
φt(0, x2, . . . , xd)

)
= ψt(h(0, x2, . . . , xd) =

(
t, x2, . . . , xd) .

To show that this uniquely determines h on a neighborhood of the origin it
suffices to show that the map

R1 × Rd−1 3 t, x2, . . . , xd 7→ φt(0, x2, . . . , xd) ∈ Rd

is invertible on a neighborhood of the origin. It suffices to show that the
Jacobian matrix at the origin is invertible.

The first column of the matrix is the derivative with respect to time of
φt(0, 0, . . . , 0) at t = 0. That is the tangent vector to the solution at 0 so is
equal to F (0) = (1, 0, . . . , 0).

The next d−1 columns of Jacobian are the x derivatives of φ(0, x2, . . . , xd) =
(0, x2, . . . , xd). Thus, the Jacobian is equal to the identity so is invertible.
Thus h is uniquely determined and the construction guarantees that h sat-
isfies the conjugacy relation (3). �

2.2 Differentiable conjugacy at equilibria

Theorem 2.3 If X ′ = F (X) and Y ′ = G(Y ) are differentiably conjugate by
Y = h(X) on neighborhoods of equilibria X and Y , then the linearizations

W ′ = AW, A := DXF (X) and Z ′ = BZ, B := DYG(Y )

are linearly conjugate by H = DXh(X)W .

Proof. Compute the Taylor expansion of the left hand side of (2) at Y to
find,

B (Y − Y ) + higher order terms .

Denote H := DXh(X). The Taylor expansion of the right hand side of (2)
is

H AH−1(Y − Y ) + higher order terms .
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The leading order terms must be the same so B = HAH−1. This is the
desired linear conjugacy. �

Example 2.1 Therefore x′ = 2x and y′ = y are not differentiably con-
jugate near the origin. As in Remark (1.1), this shows that differentiable
conjugacy is too strong a condition as soon as there are equilibria.

3 Topological conjugacy in dimension 1

Example 3.1 Continuing the preceding example, if λj are nonzero real
numbers with the same sign then the linear equations x′ = λ1x and y′ = λ2y
are topologically conjugate.

Indeed if 0 < λ2 < λ1, the example in §4.2 of Hirsch-Smale-Devaney shows
that the unique topological conjugacy h between x′ = λ1x and y′ = λ2y on
[0,∞[ satisfying h(±1) = ±1 is given by

h(x) = xλ2/λ1 .

This is not differentiable at x = 0. It is Hölder continuous. Defining h at
±1 gives its value at one point on each orbit.

This section shows that in dimension 1, conjugacy by continuous but not
differentiable maps has many desirable properties. That continues to be
true in higher dimension.

Suppose that the flow of the ordinary differential equation

ẋ = f(x) (4)

maps the interval I to itself for t > 0. We say that I in invariant. The
interval may be open, closed, or half open. It can be infinite on one side or
both.

Similarly suppose that J in an invariant interval for the differential equation

ẏ = g(y) . (5)

Denote by φ(t, x) the flow of the x equation and ψ(t, y) the flow of the y
equation. Invariance says that for t ≥ 0 and x ∈ I, φ(t, x) ∈ I. Similarly for
J .

6



Definition 3.1 The differential equations on I and J are topologically
conjugate when there is a continuous h : I → J that is one to one, onto,
with continuous inverse so that for all t ≥ 0 and x ∈ I,

h(φ(t, x)) = ψ(t, h(x)) .

Exercise 3.1 Show that this holds if and only if for all t ≥ 0 and y ∈ J ,

h−1(ψ(t, y)) = φ(t, h−1(y)) .

Discussion. This shows that the definition is symmetric on interchange of
the equations.

Theorem 3.1 If −∞ < a < b < ∞, −∞ < ã < b̃ < ∞, f(a) = f(b) =
g(ã) = g(̃b) = 0, f 6= 0 on ]a, b[, and g 6= 0 on ]ã, b̃[, then equation (4) on
[a, b] is topologically conjugate to (5) on [ã, b̃].

Remark 3.1 In general one cannot do better than this with regards to
differentiability. The proof constructs h that is differentiable on ]a, b[ with
differentiable inverse. Typically at least one of h and h−1 is not differentiable
at a.

Proof of Theorem. We prove the case where both f and g are positive on
the interior of the intervals. The three other sign possibilities are similar.

The idea is to let the dynamics define the conjugacy. From the Fundamental
Theorem of the Phase Line, we know that the intervals I and J are invariant.
As t → ∞ orbits approach the right hand equilibria and and t → −∞ the
left hand.

Pick a point x1 ∈]a, b[ and y1 ∈]ã, b̃[. We show that there is a unique
conjugacy h(x) with h(x1) = y1.

For any x ∈]a, b[ there is a unique time −∞ < t(x) <∞ so that

φ(t(x), x1) = x .

The function t(x) is a strictly increasing function of x. The function t(x) is
determined by the one equation

φ(t, x1) = x (6)

for unknown t. Since

∂φ(t, x)

∂t
= f

(
φ(t, x)

)
> 0 , (7)
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the implicit function theorem implies that t(x) is a differentiable function
of x. Suppose that x is an arbitrary point of ]a, b[ and φ(t, x1) = x.
The in equation (7) is the main hypothesis of the implicit function theorem
that guarantees that near t, x there is a unique solution t̃(x) to (6) that
is continuously differentiable. This local solution provided by the Implicit
Function Theorem must agree with the previously found solution t(x) near x
by uniqueness of solutions (6). Therefore t(x) is continuously differentiable
near x.

If there were a conjugacy with h(x1) = y1 it would satisfy

h(x) = h(φ(t(x), x1)) = ψ(t(x), h(x1)) = ψ(t(x), y1) . (8)

This shows that there is only one possibility and that it is given by (8).

Since t(x) → ∞ as x → b it follows that h has a continuous extension to
x = b by setting h(b) = b̃. Similarly defining h(a) = ã yields a continuous
strictly increasing map of [a, b] onto [ã, b̃].

The inverse of a strictly increasing continuous function is also a continuous
strictly increasing function proving the invertibility of h.

It remains to show that

h(φ(t, x)) = ψ(t, h(x)) . (9)

If x is an endpoint this is immediate.

Equation (8) implies that for all −∞ < t <∞

h(φ(t, x1)) = ψ(t, h(x1)) (10)

If x is not an endpoint, write x = φ(t(x), x1) so φ(t, x) = φ(t + t(x), x1).
Compute using (8)-(10),

h(φ(t, x)) = h(φ(t+t(x), x1)) = ψ(t+t(x), y1)) = ψ(t, ψ(t(x), y1)) = ψ(t, h(x)).

completing the proof that h is a conjugacy. �

Exercise 3.2 i. With λj and equations as in the Example 3.1, find the
unique conjugacy g : [0,∞[→ [0,∞[ that satisfies g(1) = 2.

ii. Is it g or g−1 that is not differentiable at the origin?

One can glue conjugacies on adjacent intervals to yield conjugacies on the
union. In this way the result just proved puts meat on the bones of the
definition of equivalence of phase portraits in the handout on Dynamics in
Dimension 1. What was ”phase portraits look alike” can now be strength-
ened to topological conjugacy.
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4 Linearization or Hartman-Grobman Theorem

4.1 Main result

Definition 4.1 The equations X ′ = F (X) on O and Y ′ = G(Y ) on Ω
are topologically conjugate if and only if there is a continuous invertible
h : O → Ω so that for all X ∈ O and t one has φt(X) ∈ O if and only if
ψt(h(X)) ∈ Ω and

h(φt(X)) = ψt(h(X)) . (11)

Remark 4.1 i. As in the case of differentiable conjugacy, a topological
conjugacy is determined by its values at one point on each orbit. To take
advantage of this one often defines a conjugacy on a section transverse to
the flow and lets the dynamics extend to a much larger set.

ii. As for differentiable conjugacy in Section 2, one defines local topological
conjugacy. The local concept defines an equivalence relation.

Theorem 4.1 If the system X ′ = F (X) has dimension k1 + k2 and an
equilibrium X at which the linearization has k1 eigenvalues with strictly
negative real part and k2 eigenvalues with strictly positive real part then it
is topologically conjugate to the system

Y := (YI , YII) ∈ Rk1 × Rk2 , Y ′I = −YI , Y ′II = YII .

Example 4.1 The example of a center with small outward or inward cubic
perturbation

X ′ =

(
0 1
−1 0

)
X + ε |X|2X

is a sink for ε < 0 and a source for ε > 0 and in all cases linearizes to the
same center. This shows that the hyperbolicity hypothesis is essential.

Example 4.2 Topological conjugacy can strikingly deform images. For ex-
ample a linear spiral sink in R2 is topologically conjugate to X ′ = −X,
while the phase diagrams don’t look very similar with the usual criteria of
pattern recognition. It is the lack of differentiability of the conjugacies at
the equilibria that allows for this distortion.
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4.2 Proof of topological conjugacy of sinks

We prove the Linearization Theorem only in the case that X ′ = F (X) has
a sink. By time reversal this implies the case of sources. It also yields a
complete topological classification of linear hyperbolic dynamics.

Proof of linearization at a sink. Translate coordinates so that X = 0.
Denote by A := DXF (0) the coefficient matrix of the linearized equation. By
hypothesis, A has only eigenvalues with strictly negative real part. Choose a
scalar product Q and an c, r > 0 so that if X ′ = F (X) with Q(X(t), X(t)) ≤
r2 one has

dQ(X(t), X(t))

dt

∣∣∣∣
t=t

≤ −cQ(X(t), X(t)) .

This inequality shows that if −∞ < t1 < t2 <∞ and X(t) is a solution with
X(t) ∈ B for t1 ≤ t ≤ t2 then

Q(X(t2), X(t2)) ≤ e−c(t2−t1) Q(X(t1), X(t1)) (12)

Define the ellipsoid S and solid ellipsoid B, by

S := {X : Q(X,X) = r2} , B := {X : Q(X,X) ≤ r2} .

With 0 = t1 < t2 < ∞, (12) shows that orbits starting on S say inside
B and tend to the origin as t → ∞. Taking t2 < 0 = t1 shows that orbits
starting at any point of B\0 when followed backward in time have Q growing
exponentially till the orbit reaches S. This shows that the map

[0 , ∞[×S 3 t, w 7→ φt(w) := g(t, w) ∈ B \ 0

is a one to one and onto continuously differentiable map.

To show that the inverse is continuously differentiable it suffices, by the In-
verse Function Theorem, to show that for every t, w the derivativeDt,wg(t, w)
is an invertible linear map from Rd to itself.

Exercise 4.1 Give more detail of this application of the Inverse Function
Theorem. Hint. There is an analogous argument in the proof of Theorem
3.1.

For w ∈ S, choose a basis v1, . . . , vd−1 of the set of vectors tangent to S at
w. Denote by v0 the vector (1, 0, , . . . , 0) corresponding to a unit change in
t and no change in w. Need to show that(

Dt,wg(t, w)
)
vj , j = 0, 1, . . . , d− 1
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is a basis for Rd. Introduce the solutions of the linearized equation at X(t) =
φt(w),

Γ(t) := DXF (X(t)) , Z ′j = Γ(t)Zj , Zj(0) = vj .

The definition of the linearization shows that(
Dt,wg(t, w)

)
vj = Zj(t) .

Exercise 4.2 Explain this in a little more detail.

Since the Zj(0) are a basis it follows from the Fundamental Theorem of
Linear Systems that the Zj(t) are a basis for all t. Taking t = t yields the
desired invertibility.

Define a conjugation h of φt on B to ψt on B. The equilibria must be
mapped to each other, h(0) = 0. Each orbit in B \0 touches S so it suffices
to define the values of h on S. Define the conjugation h to be equal to the
identity on S. The conjugacy relation

h ◦ φt = ψt ◦ h (13)

then determines h as a one to one and onto map of B to itself that is
continuously differentiable along with its inverse from B \ 0 to itself.

By construction, equation (13) is satisfied. To complete the proof one needs
to show that h and h−1 are continuous. Only continuity at the origin remains
unproved.

To prove continuity of h at 0, suppose that Xn ∈ B with Xn → 0. Need to
show that h(Xn)→ 0. Since h(0) = 0 it is sufficient to treat the case where
Xn 6= 0 for all n. Write Xn = φt(n)Wn with Wn ∈ S. Since Xn → 0 one
must have t(n)→∞.

Exercise 4.3 Explain why.

Therefore
h(Xn) := ψt(n)(Wn) = e−t(n)Wn → 0 .

Thus h is continuous.

The continuity of the inverse is proved by a nearly identical argument. Com-
posing (13) on the left and right with h−1 yields

φt ◦ h−1 = h−1 ◦ ψt . (14)
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Suppose that Yk ∈ B with Yk → 0. Need to show that h−1(Yk) → 0. It
suffices to consider Yk 6= 0 for all n. Choose Uk ∈ S and t(k) ≥ 0 so that
Yk = ψt(k)(Uk) = e−t(k)Uk. Therefore Yk → 0 implies t(k)→∞.

Using (14) shows that as k →∞,

h−1(Yk) = h−1
(
ψt(k)(Uk)

)
= φt(k)(h

−1(Uk)) = φt(k)(Uk)) → 0 .

The proves the continuity of h−1 and completes the proof of the linearization
of sinks. �

4.3 Topological conjugacy of linear systems

Though we do not prove the Linearization Theorem in its full generality, the
case of linear equations can be reduced to the case of sinks and sources.

Theorem 4.2 Suppose that X ′ = AX and Y ′ = BY are hyperbolic linear
systems on finite dimensional complex vector spaces V and W respectively.
They are topologically conjugate if and only if

dimVu = dimWu and dimVs = dimWs

where the subscripts u and s denote the unstable and stable subspaces.

Proof Decompose

V = Vu ⊕ Vs , A = A
∣∣
Vu
⊕ A

∣∣
Vs
,

W = Wu ⊕ Ws , B = B
∣∣
Wu
⊕ B

∣∣
Ws

.

Choose topological conjugacies

hu : Vu → Wu and hs : Vs → Ws

conjugating the flows on the unstable and stable spaces. This is possible
since these are sources and sinks respectively.

The map

V 3 vu + vs 7→ h(vu + vs) := hu(vu) + hs(vs)

conjugates the X and Y equations. �
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Example 4.3 HSD page 67 Case 1, considers the case where the X equation
is a linear saddle in dimension d = 2. It depends on Example 3.1 and is
an elementary example of such a gluing.

Exercise 4.4 Explain why an analogous argument does not reduce the non-
linear Linearization Theorem for a general hyperbolic equilibrium to a pair
of conjugations on the stable and unstable manifolds.

Exercise 4.5 Show that the conjugation h just constructed has a natural
extension to a conjugation defined on the entire space Rd. Hint.Extend the
maps hu and hs to the entire stable and unstable subspaces. Do this by
considering the past of orbits starting on the ellipsoid S.

Exercise 4.6 Show by example that for nonlinear problems the local conju-
gacy need not extend to a global one and explain where the proof analogous
to that of the preceding exercise breaks down.
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