
Program Counter Based Techniques for Dynamic Power Management

Chris Gniady, Y. Charlie Hu, and Yung-Hsiang Lu
School of Electrical and Computer Engineering, Purdue University

{gniady,ychu,yunglu}@purdue.edu

Abstract

Reducing energy consumption has become one of the
major challenges in designing future computing sys-
tems. This paper proposes a novel idea of using pro-
gram counters to predict I/O activities in the operat-
ing system. The paper presents a complete design of
Program-Counter Access Predictor (PCAP) that dynam-
ically learns the access patterns of applications and pre-
dicts when an I/O device can be shut down to save
energy. PCAP uses path-based correlation to observe
a particular sequence of program counters leading to
each idle period, and predicts future occurrences of that
idle period. PCAP differs from previously proposed shut-
down predictors in its ability to: (1) correlate I/O op-
erations to particular behavior of the applications and
users, (2) carry prediction information across multiple
executions of the applications, and (3) attain better en-
ergy savings while incurring low mispredictions.

1. Introduction

Reducing energy consumption has become one of the
most important challenges in designing future comput-
ing systems. While Moore’s Law provides steady reduc-
tion in power consumption per operation, increasing de-
mand for higher performance, versatile functionalities,
and better user interfaces have been raising power con-
sumption faster than the reduction from semiconductor
technology. Today, many computers are mobile, using
batteries with limited capacity. Meanwhile, users expect
wireless network connections, high-quality video and
audio, large storage space, and so on. Efficient power
management [16] will remain a major challenge in com-
puter system design for the foreseeable future.

In this paper, we focus on reducing the energy con-
sumption of hard disks, but the idea can be applied to

other I/O devices such as wireless network interfaces.
Many I/O devices are not always needed. For example,
a hard disk drive is idle when all needed data reside in
memory. When an I/O device is idle, it can be turned off
(also called shut down) to reduce energy consumption in
the system. When the device is later needed, it is turned
on. This is called dynamic power management. Unfor-
tunately, there are overheads to shut down and turn on
an I/O device. For example, a hard disk needs to spin up
its platters. Because of the substantial overhead, a device
should be shut down only if it will be idle for a period of
time long enough to compensate the overhead. If there
were no overhead, power management would have been
a trivial problem; a device could be shut down when-
ever it was idle. The critical issue in power management
is to accurately predict the length of future idle periods
and determine whether to shut down a device.

We propose a new mechanism for dynamic power
management. The idea is motivated by recent innova-
tions in branch prediction for high performance proces-
sors. Sequences of I/O operations are invoked by a cer-
tain group of instructions within an application. There-
fore, the predictor can observe what current I/O opera-
tion is being performed and predict the outcome based
on the previous experiences with that particular I/O op-
eration. The context of each I/O operation is recorded
using the sequence of program counters (PCs) that pre-
cede the particular I/O. If the same PC is repeated in the
same context and was previously followed by a long idle
period, then the predictor predicts a long idle period and
shuts down the disk.

Compared with previously proposed shutdown pre-
dictors, PCAP has two major advantages. First, it uses
program counters to correlate I/O operations of each
program. No information aggregation is adopted; hence,
the information is exact. Second, it allows continuous
improvement through multiple invocations of the same
program. This is possible because the program counters
that create a particular I/O operation remain the same in
different executions. These two advantages are unavail-

In Proceedings of the 10th International Symposium on High-Performance Computer Architecture (HPCA-10), Madrid, Spain,
February 14-18, 2004.

Busy I/OBusy I/O Idle

Last I/O performed New request

Wake-up

Timeout
starts

Timeout
expires

Device is off

Figure 1. Anatomy of an idle period.

able in any of the existing methods. Because of the pre-
cise information, our method is able to attain better en-
ergy savings with very few mispredictions.

The rest of the paper is organized as follows. Section
2 describes current energy saving techniques. In Section
3, we present the motivation for path-based prediction
and the design of PCAP. Section 4 presents optimiza-
tions for reducing mispredictions and training time. Sec-
tion 5 describes the global predictor for the multiprocess
environment. Section 6 presents simulation results and
finally, Section 7 concludes the paper.

2. Background: Current predictors

Many computers use power management to reduce
energy consumption. Since early 1990s, manufacturers
have been recommending spinning down hard disks af-
ter some period of idleness [4, 9]. The simple timeout
mechanism has gained wide popularity and is currently
implemented in many operating systems. Figure 1 shows
an idle period divided into two intervals. When a device
becomes idle, a timer starts. In the first interval, the de-
vice remains on. This interval ends when the timer ex-
pires. The device is shut down and “sleeps” during the
second interval until a new request arrives. If a request
arrives during the first interval, the device does not en-
ter the second interval. This approach does not save en-
ergy during the first interval but saves energy during the
second interval.

Disks require more energy to accelerate the platters
during a spin-up than during the idle state. To gain en-
ergy savings, the time in the idle state has to be long
enough to offset the extra energy needed during the shut-
down and spin-up sequence. This time is commonly re-
ferred to as the breakeven time, and is usually on the
order of a few seconds. The device-off time in Figure
1 has to be larger than the breakeven time to produce
any energy savings. A mispredicted shutdown results
in more energy being consumed than saved. Karlin et
al. [11] suggested using a component’s parameters to
determine the timeout value. Their approach produced

2-competitive energy savings if the only available infor-
mation was the sequence of requests from all processes.
In practice, to prevent shutdowns that interrupt the user,
the timeout is usually set to tens of minutes. While the
user is working, the long timeout intervals keep the disk
in the active state consuming energy but providing bet-
ter performance. Portable computers, on the other hand,
are usually either continuously used or turned off when
not in use. Therefore, long timeout intervals do not pro-
duce significant energy savings in portable computers.

To address the energy savings in portable computers
and further exploit opportunities for energy savings in
desktop computers, more sophisticated shutdown tech-
niques were proposed. Dynamic predictors were pro-
posed that completely eliminate the timeout interval
[3, 10, 20]. These methods predicted the length of an
idle period before a device became idle. In [20], Sri-
vastava et al. suggested that the length of an idle period
could be predicted by the length of the previous busy pe-
riod. A long idle period often followed a short busy pe-
riod. Chung et al. [3] considered the pattern of sequences
of idle periods and constructed a search tree. When an
idle period occurred, the power manager would find a
path that best matched the sequence that led to the cur-
rent idle period and predicted the length of the current
idle period. Hwang et al. [10] observed that the length
of an idle period could be predicted using a weighted av-
erage of the predicted and the actual lengths of the pre-
vious idle period. Some other researchers suggested dy-
namically adjusting timeout [5, 7]. Both methods used
feedback to enlarge or to reduce the timeout based on
whether the previous prediction was correct. If it was
correct, the timeout was reduced; otherwise, it was en-
larged.

Stochastic modeling [1, 2, 17, 18] was also used to
model the trace behavior and predicted the idle period
based on the model parameters. In these approaches,
I/O requests were considered as a stochastic process.
Benini et al. [1] used stationary discrete-time Markov
processes to model the arrival of I/O operations. Us-
ing this model, they obtained the optimal probability to
shut down a device for achieving optimal energy sav-
ing. Chung et al. [2] extended the method and considered
non-stationary accesses. Their method pre-computed the
optimal solutions for several I/O probabilities. At run-
time, the power manager estimated the current proba-
bility and interpolated from the pre-computed solutions.
Qiu et al. [17] used continuous-time Markov models and
event-triggering so the power manager would not have
to periodically re-evaluate whether to shut down a de-
vice. Simunic et al. [18] suggested adding timeout to

2

continuous-time Markov models so that a device would
eventually be shut down if the device was idle continu-
ously.

A detailed study and evaluation of predictors is pre-
sented in [13] with the following conclusions: (1) Time-
out predictors offer good accuracy but waiting for time-
out to expire consumes energy; (2) Dynamic prediction
shuts down the device immediately but had, so far, much
lower accuracies, than the simple timeout prediction;
(3) Stochastic methods usually require off-line prepro-
cessing and are more difficult to implement, and prob-
lems may arise if the workload changes [2]. Application
controlled power management [6, 8, 14, 21] has much
better potential for reducing energy consumption. How-
ever, the technique places an additional burden of insert-
ing power management directives on the programmers
and requires the existing applications be modified before
they can benefit from the energy management. Runtime
adaptability of dynamic predictors provides an excellent
platform for the design of advanced shutdown predic-
tor. In this paper we adopt sophisticated branch predic-
tion techniques for energy management.

2.1. Branch prediction based techniques

Dynamic predictors are based on the premise that a
history of events is likely to repeat in the future due
to repetitive behavior of the applications [19]. Learn-
ing Tree [3] is the first attempt to adapt branch predic-
tion techniques for energy management. Figure 2 shows
an example of some repetitive behavior of idle periods.
Learning Tree discretizes the idle periods and uses the
patterns to make prediction. In Figure 2, Learning Tree
first learns that the occurrence of two idle periods shorter
than the breakeven time is followed by a long idle pe-
riod. If the two short idle periods occur again, they trig-
ger the prediction of a long idle time. To reduce mispre-
dictions Learning Tree uses sliding window filters that
filter mispredictions closely followed by an I/O opera-
tion. The sliding window filter can be applied to all dy-
namics predictors to prevent them from issuing a shut-
down for I/O operations occurring closely together.

3. PCAP

We propose Program Counter based Access Predic-
tor (PCAP), a new dynamic prediction method that can
accurately predict idle periods. The key idea behind
PCAP is that there is a strong correlation between a se-
quence of I/O operations invoked by instructions within
an application and the immediate following idle period.
To take advantage of the repetitive functions performed

Busy I/O Idle time > Breakeven

Idle time < Breakeven

Figure 2. Repetitive behavior of I/O ac-
cesses.

by applications, PCAP extracts the program context by
recording each sequence of PCs that have triggered I/O
operations before a long idle period, and predict future
idle periods based on previous experiences. Thus PCAP
differs from existing methods that lack the detailed con-
text of I/O operations.

3.1. Path-based prediction

A naive implementation of PCAP, motivated by a
hardware one-bit branch predictor, would only record
a single PC that causes an I/O followed by an idle pe-
riod. If this PC is encountered again, it triggers a pre-
diction that this is an I/O before an idle period. While
this simple implementation is fairly accurate in predict-
ing the idle periods, it is unable to accurately distinguish
between the periods that are longer or shorter than the
breakeven time. For example, an application reads mul-
tiple files in a loop, and only the last read is followed by
an idle time that is longer than the breakeven time. Us-
ing a single PC would result in the misprediction of an
idle period after each file was read at the beginning of
each loop iteration. Moreover, at the end of a loop iter-
ation, the single PC predictor would not predict an idle
time. The same scenario occurs when a user consecu-
tively opens multiple files upon starting an editor.

To address these problems, PCAP records a path
which is a sequence of I/O triggering PCs that starts af-
ter a hard disk idle period and leads to the next idle pe-
riod. As a result, PCAP can distinguish different paths
of execution and identify a particular path that the appli-
cation currently follows. The path of execution leading
to the current disk access will allow PCAP to identify
the context of the I/O operation, resulting in a more ac-
curate prediction. Previously, path-based prediction was
used to increase the accuracy of branch prediction [15]
and was later successfully used in predicting cache block
eviction [12].

Figure 3 shows an example of I/O operations made
by an application. The leftmost column is the program
counters that initiate I/O operations. The middle column

3

Path = {PC1, PC2, PC1}
Match in the prediction table
Shutdown scheduled
Wait time not expired
Shutdown canceled

PC1
PC2
PC1

0.1 s
0.2 s
0.3 s

Access

PC1
PC2
PC1

20.1 s
20.2 s
20.3 s

PC1
PC2
PC1

40.1 s
40.2 s
40.3 s

PC2 40.4 s

Path = {PC1, PC2, PC1}
{PC1, PC2, PC1} saved in
the prediction table; Path = {}
Path = {PC1, PC2, PC1}
Match in the prediction table
Shutdown scheduled

Prediction verified. Path = {}

time
Access
PC

Figure 3. A prediction example showing
the program counters that initiate I/O, time
of access, and prediction steps under-
taken by PCAP.

shows the time when an I/O operation occurs. The right
column shows prediction steps undertaken by PCAP.
The application generates three sequences of I/O oper-
ations. Within each sequence the accesses are 0.1 sec-
onds apart keeping the disk spinning. During the first
sequence, the PC of each I/O operation is retrieved and
stored as a part of a path which consists of {PC1, PC2,
PC1}. At that point PCAP encounters a long 20 second
interval which presents the opportunity to save energy.
This is the first time that PCAP encounters such a se-
quences of PCs, therefore the sequence does not trigger
a prediction. However, the path is stored in the predic-
tion table for future predictions. The second occurrence
of {PC1, PC2, PC1} triggers the prediction of an idle pe-
riod and the disk is shut down. The example also shows
the third sequence of {PC1, PC2, PC1} that is immedi-
ately followed by PC2. In this case, the misprediction
will occur if there is no additional information present.

3.2. Basic design

So far we have discussed predicting idle periods
based on a path of I/O triggering PCs followed by an
application. The path can be arbitrarily long and there-
fore the storage and comparison can be difficult to im-
plement efficiently. In our implementation, we encode
the path by arithmetically adding the PCs in the path,
as previously suggested in [12] for predicting cache ac-
cesses. Such encoded path results in a 4 byte variable,
called a signature in the rest of the paper. For example,
a path {PC1, PC2, PC1} from Figure 3 is encoded as

Process status structure in the kernel

Access

PC1+ PC2

Current signature

PC1 +

Application’s

PC1+ PC2+ PC3

Prediction

prediction table

Figure 4. Implementation of PCAP.

PC1+PC2+PC1. The encoding minimizes the storage re-
quirements of PCAP and provides a quick comparison
between current signature and the signature in the pre-
diction table. Such encoding introduces the possibility of
two different paths resulting in the same signature. For
example, path {PC1, PC2, PC1} is different from path
{PC1, PC1, PC2}, but it will result in the same signa-
ture. In our experiments, this signature aliasing did not
occur. Therefore we do not explore alternative encod-
ings.

Figure 4 illustrates runtime encoding of the path and
prediction table lookup. Each process maintains its own
4 byte current signature variable in the kernel process
status structure. After a period of idle time greater than
breakeven, the current signature variable in the current
process is overwritten by the PC of the first I/O opera-
tion. For each subsequent I/O operation, the PC that trig-
gers the I/O is added to the current signature variable.
After each update of the current signature, PCAP uses
the signature to lookup the prediction in the prediction
table. If a signature match is found between the current
signature and a signature in the prediction table, PCAP
predicts a long idle period and shuts down the disk. If a
signature match is not found, the prediction of “no idle”
is implied and the disk remains turned on. If PCAP en-
counters an idle period longer than the breakeven time
and the current signature does not match any of the pre-
diction table entries, PCAP records that signature in the
prediction table. After PCAP learns the new signature, it
will use it for the future predictions.

3.2.1. Obtaining PCs of I/O operations PCAP needs
the PC of the function call from the applications that
invoked and I/O operation. There are multiple ways to
obtain the PC: library modifications, system call inter-
ceptions, and kernel modifications. In the first method,
the modified library call can read the PC directly from
the calling program’s stack, therefore requiring the least
amount of overhead. In the second method, interception
of the system calls happens at the user-kernel bound-

4

ary, at which time the I/O library call may have in-
voked multiple levels of functions which finally invoked
the system call. A time consuming traversal of multiple
library function stack frames may be necessary to ar-
rive at the application’s stack frame that invoked the li-
brary call. Finally, the kernel modifications are similar
to the system call interceptions, also requiring multiple
stack frame traversals. Library modifications are prefer-
able since the PC can be obtained as soon as the appli-
cation starts executing the library code and stack frame
traversal is needed.

3.2.2. Runtime Overhead of PCAP During each I/O
operation, PCAP has to obtain the PC, calculate the sig-
nature, and perform the predictor table lookup. However,
these steps can be implemented very efficiently. To ob-
tain the PC and calculate the signature requires about
four memory accesses when the I/O system library is
modified to obtain PCs. The predictor lookup consists
of a hash table access and the comparison of signatures.
These overheads are insignificant with respect to time
and energy consumption as compared to thousands of
instructions required to process an I/O operation.

4. PCAP optimizations

PCAP is able to retrieve and make use of program
context and as a result, it can achieve high number
of predicted shutdowns while incurring few mispredic-
tions. In this section, we discuss adaptation of branch
prediction mechanisms as well as basic timeout mecha-
nisms to further reduce the mispredictions and improve
energy savings in PCAP.

4.1. Reducing mispredictions

The path-based prediction method in PCAP uses the
context of execution in making more accurate predic-
tions but it can still cause mispredictions. PCAP, as any
other predictor derived from path-based prediction, in-
herits the possibility of subpath aliasing. Subpath alias-
ing occurs when one path of PCs is a prefix sequence
within a longer path of PCs. The last sequence of ac-
cesses in Figure 3 shows the occurrence of subpath alias-
ing. The path {PC1, PC2, PC1} is the subpath of {PC1,
PC2, PC1, PC2}. In this case, the misprediction occurs
when the prefix path of the longer path is encountered.
One example of such a scenario is when the user opens a
file, performs “save as” to a different file, opens another
file, and edits it for some period of time. The same se-
quence is followed later, but instead of editing the sec-
ond file, the user also performs “save as”. Another ex-
ample can be obtained from an Internet browser where

some pages require loading additional libraries (addi-
tional I/Os) to decode the multimedia context and some
do not.

4.1.1. Sliding wait-window To reduce the mispredic-
tions due to subpath aliasing, PCAP uses a sliding wait-
window filter before shutting down the disk. In Figure 3
the occurrence of the third sequence {PC1, PC2, PC1}
will result in a shutdown prediction. After the prediction
is made, the predictor waits for a sliding wait-window
to pass before shutting down the disk. If during this in-
terval PC2 arrives, the prediction is ignored and the path
collection is continued without any interruption. On the
other hand, if there is no access during the wait-window,
the disk is shut down.

4.1.2. History and file descriptors The wait-window
is unable to eliminate all mispredictions caused by sub-
path aliasing. As a solution, we provide PCAP with ad-
ditional information about the context which will help
PCAP in distinguishing different paths and reducing
subpath aliasing. We propose two sources of additional
information: history of idle periods and file descriptor of
the I/O operation. These sources are orthogonal and can
be implemented concurrently to further improve the ac-
curacy of PCAP.

History based prediction is drawn from the wealth
of optimizations proposed for branch predictors. We in-
corporate history of idle periods in PCAP as follows.
Any idle period longer than the wait-window and shorter
than the breakeven time is recorded as 0 in the idle bit-
vector. Any period that is longer than the breakeven time
is recorded as 1. Intervals shorter than the wait-window
are not included, since they are filtered at the run time.
Paths of PCs and the history bit-vectors are maintained
concurrently for each running process and used together
in training and predicting. The shutdown is issued only
if the current path and the current idle bit-vector match
a particular entry in the prediction table.

Inclusion of file descriptors into the predictor table
entries is motivated by research in [12], where the au-
thors use the address of the cache block to aid the pre-
dictor in differentiating cache blocks that exhibit sub-
path aliasing. The direct adoption would be to use the
location of accessed files on the disk. However, inclu-
sion of file locations makes the predictor table size de-
pendent on the I/O footprint of the application, and we
would face the same problem of exploding predictor ta-
ble size as occurs in [12]. Moreover, an application can
potentially open different files in different executions,
requiring the predictor to retrain every time a new file is
open. File descriptors, on the other hand, show less vari-

5

ability and provide related context, because file descrip-
tor are often assigned based on some user behavior.

4.2. Reusing prediction tables

Path-based prediction requires extensive learn-
ing to populate the prediction table. To reduce the
delay in learning, we propose to reuse the prediction ta-
bles across multiple executions of the same application.
While PCAP uses learning based on process ID, it asso-
ciates the prediction table with a particular application.
Once the application exits, the trained prediction ta-
ble is saved in the application initialization file, which
most applications already have. The prediction ta-
ble is loaded when the application starts again and reads
the initialization file.

Uniqueness of PCs allows the prediction table to be
carried across application executions. However, PC ad-
dresses may change due to recompilation or dynamically
loadable modules. In this case, PCAP will retrain based
on the new code or the order of loaded modules. The
old entries can be replaced when the new behavior is de-
tected. A simple LRU mechanism would be sufficient in
removing old unused entries.

4.3. Backup predictor

Prediction table reuse significantly reduces predictor
training, but application or user behavior may change
over time and thus it is not possible to eliminate fu-
ture training. During training, on a particular signature,
PCAP does not make a shutdown prediction, and the
disk will remain spinning for the entire idle period used
for training. To reduce the impact of training on en-
ergy savings, we use the simple timeout predictor as the
backup predictor for PCAP. When PCAP is unable to
match a signature, the backup timeout predictor shuts
down the disk after the timer expires. This is the only
time when the timeout predictor overrides the no-idle
prediction from PCAP and shuts down the disk.

5. Global prediction

So far we have discussed PCAP implementation and
optimizations on a per application basis. In real systems,
many processes are running concurrently and some of
them may be from a single application. To generate shut-
down prediction, a system-wide prediction is needed
that will take into account multiple processes running
concurrently. Figure 5 presents the Global Shutdown
Predictor that generates global shutdown prediction by
considering the input from all processes. Each process

Disk Shutdown

Prediction
PID 1

Prediction
PID N

Prediction
PID 2

. . .

Global Shutdown Predictor

Figure 5. Global predictor.

has its own private PCAP which generates local predic-
tions as shown in Figure 4. The Global Shutdown Pre-
dictor predicts shutdown only when the PCAP for every
process in the system predicts shutdown.

PCAP for each process generates prediction only af-
ter an I/O operation. Once a prediction to shut down
the disk is generated, it remains unchanged until the
process performs I/O operation that wakes up the disk.
When an idle period occurs, the prediction will be gen-
erated by every application. If PCAP is in training, the
backup timeout predictor will make the prediction for
that process. For example, assume that PCAPS from all
processes in Figure 5 predict shutdown and the disk is
turned off. At some later time, process 2 performs some
I/O operation that wakes up the disk and PCAP pre-
dicts the shutdown right after the access. Since other
processes do not change their state, all predictions re-
main the same and the disk is shut down after PCAP
from process 2 makes the prediction. We can observe
that PCAP from currently running process will make the
last prediction and no synchronization is necessary be-
tween waiting processes at this time.

6. Results

To evaluate the performance of PCAP and compare
it to previously proposed predictors we use a trace sim-
ulator. A detailed trace of the applications was obtained
by modifying the strace Linux utility. The modified
Strace reads traced processs memory and allows us
to obtain the following information about the I/O oper-
ation: PC, access type, time, file descriptor, and file lo-
cation on disk. In addition, we also included the time of
forks and exits of the processes within the parent
application. Each application was traced separately, cre-
ating an independent trace for each application.

Table 1 shows five applications used by a user during
the trace collection. Mozilla is a web browser and the
user spends time reading the page content and following
the links. The I/O behavior depends on the content of

6

Num. of Num. of idle periods Total
Appl. executions Global Local I/Os

mozilla 49 365 1001 90843
writer 33 112 358 133016

impress 19 87 234 220455
xemacs 37 94 103 79720
nedit 29 29 29 6663

mplayer 31 51 111 512433

Table 1. Applications and execution details.

the page and the interests of the user. Xemacs and nedit
are editors used by the user who spends most of the time
thinking and typing. Xemacs is primarily used to create
larger files and edit multiple files, while nedit is primar-
ily used to quickly open correct/modify source code dur-
ing compilation or bug fixes. Nedit does not show repeti-
tive behavior since once a file is modified it is saved and
nedit is closed. Nedit is the only application with sin-
gle process. Writer is a word processor from the Open
Office suite and the user mostly composes the text and
also does some quick fixes after proofreading. Impress
is also an Open Office application and is used to pre-
pare presentation slides. Mplayer is a media player and
the user usually watches a media clip and then exits the
player.

Table 1 also lists how many times each application
was executed and the total number of idle periods that
were long enough to save energy by performing a shut-
down. The local number of idle periods is the sum of
idle periods that each process from the application en-
countered. The global number shows the idle periods ob-
served by an application as a whole, i.e., the number of
periods when all processes observed idle I/Os. There-
fore, the global number is much smaller than the sum of
local numbers.

The trace simulator simulates the multiprocess envi-
ronment. It simulates different idle period predictors and
collects statistics for each process as well as for the en-
tire application.

To take into account of the effects of disk caching in
an operating system, we have implemented a file cache
simulator. The simulator models the implementation of
the file cache in Linux, and the collected traces of I/O
operations are filtered through our file cache, and only
cache misses are treated as actual disk accesses. The
file cache size is 256 Kbytes. We use the LRU mech-
anism for cache replacement and the default timer of 30
seconds between cache flushes of dirty data. Since the
studied applications did not generate large amount of
data the impact of dirty data flushes was limited. The

State Power

Busy power 2.2 W
Idle power 0.95 W

Standby power 0.13 W
Spin-up energy 4.4 J

Shutdown energy 0.36J

State Transition Delay

Spin-up time 1.6 sec.
Shutdown time 0.67 sec.
Breakeven time 5.43 sec.

Table 2. The states and state transitions of the
simulated disk.

elongation of default timer and optimizations of dirty
data flushes are being currently evaluated in the Linux
community. These optimizations will further benefit the
power management.

Energy consumption and savings are calculated based
on the amount of time the applications spend in a partic-
ular state and the corresponding power consumption as
listed in Table 2. These parameters correspond to Fu-
jitsu MHF 20043 AT disk drive [13].

We start by evaluating the ability of the predictors
to predict shutdowns in Section 6.1 and Section 6.2. In
Section 6.3, we evaluate energy savings of various pre-
dictors. In Section 6.4, we compare the effectiveness of
different optimizations of PCAP for reducing mispredic-
tions and learning time.

6.1. Local prediction accuracy

In this section, we compare the accuracy and the abil-
ity of predictors to predict hard disk shutdowns. In Fig-
ure 6 we compare the timeout predictor (TP), the Learn-
ing Tree (LT) predictor, and PCAP. TP uses a 10-second
timer and after the timer expires it shuts down the disk.
The 10-second interval results in low mispredictions and
good energy savings in our applications. Lower timer
values would increase mispredictions significantly and
much higher timeout would reduce the energy savings
considerably. The 10-second interval is also used for the
backup timeout predictors in PCAP and LT. LT is able
to manage multiple power states, but in our study LT
only predicts shutdowns. The backup timeout predictor
and the sliding wait-window mechanism are included in
both LT and PCAP, allowing a direct comparison. We
have used one-second wait-window since it filters mis-
predictions in most common cases.

Figure 6 presents the fractions of shutdowns nor-
malized to the number of idle periods that are long

7

0%

20%

40%

60%

80%

100%

120%

140%

TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP

mozilla writer impress xemacs nedit mplayer

F
ra

ct
io

n
 o

f
sh

u
td

o
w

n
s

Hit Not predicted Miss

Figure 6. Local shutdown predictor

enough for a shutdown to benefit energy management.
The fraction of “Hit” represents the fraction of idle pe-
riods with correctly predicted shutdowns. The “Not Pre-
dicted” fraction presents missed opportunity to shut the
disk down. The fraction of “Miss” corresponds to the ad-
ditional shutdowns that were introduced due to mispre-
diction. The additional shutdowns occurred during the
idle periods that were shorter than the breakeven time
and therefore are not part of idle periods shown in Ta-
ble 1. However, we normalized the misprediction to the
number of idle periods for direct comparison in the fig-
ures.

The complete system-wide predictor contains one
global and many local predictors, as shown in Figure 5.
Figure 6 presents results for the local predictor by cal-
culating the total number of misses and hits from each
process and normalizing them to the total number of idle
periods for the processes in the application. High accu-
racy in the local predictors will result in improved ac-
curacy for the global predictor. TP has the lowest num-
ber of predictions, 52% on average, and as a result it
has the lowest number of mispredictions, 3% on av-
erage. Mozilla, writer, and impress have multiple pro-
cesses with short idle intervals. Mozilla is the most dif-
ficult to predict since it has many short intervals that re-
sult from user following the links on the web pages. The
remaining applications usually have longer idle periods
and TP performs better.

The wait-window makes the number of mispredic-
tions in LT rather low for the dynamic predictor which
averages 10% across the applications. LT is able to cor-
rectly predict 88% of local shutdowns. To maximize en-

0%

20%

40%

60%

80%

100%

120%

140%

TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP TP LT
PC

AP

mozilla writer impress xemacs nedit mplayer

F
ra

ct
io

n
 o

f
sh

u
td

o
w

n
s

Hit Not predicted Miss

Figure 7. Global shutdown predictor

ergy savings and minimize mispredictions we have used
a history length of eight in LT. Longer history lengths
does not improve accuracy. Shorter history may result in
more hits, but misprediction may also increase.

PCAP achieves the highest average coverage by cor-
rectly predicting 89% of the local shutdown intervals.
Here, the coverage is defined as correctly predicted shut-
downs as a percentage of all such opportunities. PCAP
has slightly lower coverage in nedit and mplayer than
LT, as it requires one more idle period to learn in nedit
and two more in mplayer. Since PCAP has more so-
phisticated learning mechanisms, it requires more train-
ing than the predictors that do not observe the applica-
tion context. PCAP also improves the prediction accu-
racy, compared to LT, with only 5% mispredicted shut-
downs. Compared to TP, PCAP has 37% more cover-
age and only 2% more mispredictions. The mispredic-
tions in PCAP can be significantly reduced by providing
more context as shown in Section 6.4.

6.2. Global prediction accuracy

The final shutdown prediction is made by the global
predictor, which is based on the collection of local pre-
dictions. Therefore, in the remaining sections we will
only present global prediction results. Figure 7 shows
the final prediction results made by the Global Shut-
down Predictor. Results were normalized to the number
of global idle periods since only during those periods the
predictors should attempt to shut down the disk. Figure
7 follows the trends of Figure 6 except for the follow-
ing differences. First, TP achieves much higher percent-
age of hits than in Figure 6. This can be explained by the

8

0%

20%

40%

60%

80%

100%

120%

A BCD E A BCD E A BCD EA BCD E A BCD E A BCD E

mozilla writer impress xemacs nedit mplayer

E
n

er
g

y
di

st
ri

b
u

ti
o

n

Busy I/O Idle < Breakeven
Idle > Breakeven Power cycle

A – Base, B – Ideal, C – TP, D – LT, E – PCAP

Figure 8. Energy distribution.

lower number of global idle periods the predictions are
normalized against, as explained before. Second, LT and
PCAP achieve lower percentage of hits than in Figure 6.
This is caused by mixed TP (backup) and LT or PCAP
as local predictors. Since TP requires a much large time-
out period (10 seconds) before predicting a shutdown,
while LT and PCAP can make predictions immediately.
If any local predictor is using TP, the global prediction
has to wait for 10 seconds before predicting a shutdown.
In other words, the global predictor is coerced by the
backup TP predictor into delaying making predictions.
Third, all three predictors achieve higher percentage of
mispredictions. This is because the global predictor pre-
dicts shutdown only when all local predictors predict
shutdown. Thus if one local predictor mispredicts shut-
down while other local predictors correctly predict shut-
down, the global predictor mispredicts.

Global TP is able to shut down the disk in 71% of idle
periods, on average, while incurring only 8% of mispre-
dicted shutdowns. LT is more aggressive with an average
of 84% correct shutdowns, but also incurs an average
of 20% mispredicted shutdowns. PCAP again predicts
much better than LT, correctly shutting down the disk
during 86% of the idle periods, on average, while incur-
ring only 10% of mispredicted shutdowns. The overall
trends across applications remain unchanged from Fig-
ure 6.

6.3. Energy savings

In this section, we present a breakdown of the disk
I/O operations and the ability of TP, LT and PCAP to
reduce energy consumption. Figure 8 shows the energy

consumption profile of each application. The energy
consumed by each application was divided into three
components: “busy I/O”, “idle < breakeven”, and “idle
> breakeven”. In addition, we include the “Power Cy-
cle” section for the predictor results, which is the energy
consumed during the shutdown and spin-up cycle for
both correctly and incorrectly predicted shutdowns. The
“idle > breakeven” energy component is energy con-
sumed during the periods that are long enough to shut
down the disk and save the energy.

We observe that the base system spends most of its
execution in the idle I/O state. On average 83% of en-
ergy is consumed during the idle I/O state, and 82% of
energy is from the intervals longer than the breakeven
time. The exception is mplayer which requires continu-
ous stream of video and therefore has limited idle time.
Mplayer loads the movie into its own memory buffer
and maintains the buffer full until the movie ends. At
this time the I/O activity stops and the movie finishes
playing from the buffer. The idle energy in the Figure
8 corresponds to the amount of time it took to empty
the 8 MB buffer at the end of the movie. The idle time
in the other applications depends on the user interac-
tion. Mozilla loads libraries and saves temporary infor-
mation every time a user opens a new web page. There-
fore, the idle time is dependent on the surfing habits of
the user and the page content. The two editors, xemacs
and nedit, show similar behavior since users spend more
time typing and thinking than opening new files. Writer
and impress are basically editors, but word processing
and presentation preparation require additional libraries
like dictionaries or graphic filters that require more I/O
time.

The ideal predictor in Figure 8 saves all en-
ergy that comes from the idle periods that are longer
than breakeven time. The energy required to turn off
and on the disk is present since even the ideal pre-
dictor consumes energy during the correct shutdown
and spin-up of the disk. As a result the ideal predic-
tor eliminates on average 78% of energy in the applica-
tions.

Simple TP performs well, on average saving 72% of
energy in the applications which is 6% away from the
ideal predictor. The energy savings of TP can be in-
creased at the cost of higher mispredicted shutdowns by
setting the timeout to be the breakeven time [11]. In this
case, TP with timeout of 5.43 seconds eliminates on av-
erage 74% of energy, however the global mispredictions
increase to 12% as a result of shorter timeout.

LT is more aggressive in making predictions and
saves on average 75% of energy. PCAP predictor saves

9

0%

20%

40%

60%

80%

100%

120%

140%

ABCD ABCD ABCD ABCD ABCD ABCD

mozilla writer impress xemacs nedit mplayer

F
ra

ct
io

n
 o

f
sh

u
td

o
w

n
s

Hit primary Hit backup Not predicted
Miss primary Miss backup

A – PCAP, B – PCAPh, C – PCAPf, D – PCAPfh

Figure 9. Predictor optimizations

on average 76% of energy which is only 2% from the
maximum savings possible with much lower mispredic-
tions than LT. Misprediction rates play a very significant
role in selecting the right predictor. Unnecessary shut-
downs not only consume energy but also can affect disk
reliability and irritate the user who has to wait for the
disk to spin up.

Timeout plays a role in all predictors since LT and
PCAP use timeout prediction as a backup during train-
ing intervals. Longer timeout has an adverse effect on
the energy savings in TP, since TP has to wait for the
timer to expire for every interval. Moreover, the energy
saving-misprediction trade-off varies among application
for TP, making it even more difficult to select a value that
will benefit a wide range of applications. LT and PCAP
energy savings are not affected by the timeout value,
since most predictions are handled by the primary pre-
dictors in LT and PCAP. Aggressive timeout values do
not benefit PCAP and a longer timeout is preferable, be-
cause it eliminates mispredictions due to short timeout.

6.4. Optimizations

In this section, we first evaluate the benefits of addi-
tional context provided by history and file descriptor. We
then evaluate the importance of prediction table reuse.

6.4.1. History and file descriptors Prediction accu-
racy is improved by providing the predictor with addi-
tional information about the context of execution. We
present PCAP in Figure 9 with the addition of idle pe-
riod history (PCAPh), file descriptor (PCAPf), and com-
bination of history and file descriptor (PCAPfh), respec-

tively. Figure 9 presents results for the global predictor,
and the base PCAP from Figure 7 is included for com-
parison. Each misprediction and hit section of the bar
was split into two sections to show the contribution from
the primary and backup predictor. Since there were mul-
tiple processes running and making predictions concur-
rently, we decided to attribute the final global prediction
to the predictor type (primary or backup) making the last
decision before the shutdown. For example, if all pro-
cesses predicted shutdown and one process is waiting
for the timer to expire, this shutdown is attributed to the
backup timeout predictor.

PCAP is the best performer in Figure 7, achieving
high coverage of 85% at a relatively low cost of only
10% mispredicted shutdowns. By augmenting PC paths
with the history of idle periods, we further pinpoint the
location of the I/O instructions within the execution flow
of the application. We have used a history length of six
periods which maximizes energy savings and minimizes
the number of mispredictions. Longer history does not
reduce mispredictions any further. Addition of history
increases the training duration in PCAP, requiring the
backup predictor to make more predictions. On aver-
age, the hit rate remains at 85%, but the additional con-
text provided by history results in drop in the mispredic-
tions to an average of 5%. At this point PCAPh achieves
higher coverage and fewer mispredictions than TP or LT.
The impact of using history on energy savings is limited
and results in well under 1% average change. As a re-
sult PCAPh is still able to save 76% of energy at a cost
of only 5% mispredicted shutdowns.

Mozilla is the most difficult to predict, how-
ever PCAPh manages to reduce the misprediction
rate to 13% as compared to 26% in PCAP. The to-
tal of 49 mispredicted shutdowns in 49 executions of
mozilla should be mostly unnoticeable and should not
irritate the user. Other applications have lower mispre-
diction rates than mozilla and already perform well
with PCAP. The additional complexity that history in-
troduces is well justified in case of mozilla, and other
applications are seeing limited benefit as well.

Addition of file descriptors to the path of PCs
(PCAPf) also improves the predictability. But since a
file descriptor may be reused by multiple files, the ac-
curacy is not as good as in PCAPh, though still better
than in PCAP. PCAPf achieves an average cover-
age of 85% with an average of 9% mispredicted
shutdowns. The combined use of history and file de-
scriptors is shown as PCAPfh in Figure 9. The resulting
average coverage is 84% with an average of 5% mis-
predicted shutdown. The energy saving in PCAPf

10

0%

20%

40%

60%

80%

100%

120%

140%

ABCD ABCD ABCD ABCD ABCD ABCD

mozilla writer impress xemacs nedit mplayer

F
ra

ct
io

n
 o

f
sh

u
td

o
w

n
s

Miss backup
Miss primary
Not predicted
Hit backup
Hit primary

A-PCAP, B-PCAPa, C-LT, D-LTa

Figure 10. Predictor table reuse

and PCAPfh is also the same as in PCAP. On aver-
age, the mispredictions and energy savings did not
change after adding file descriptors to the PCAPh.
Only mozilla shows higher reductions in misses, there-
fore adding file descriptor to PCAPh may be justified
only for some workloads.

6.4.2. Reuse and storage of prediction tables More
sophisticated predictors demand extended training that
a single execution of the application may not provide.
Figure 10 shows PCAP and LT from Figure 7 and com-
pares them against PCAPa and LTa which discard pre-
dictor tables after an application exits. Since PCAPa and
LTa discard predictor information, they have to relearn
prediction signatures every time the application is exe-
cuted. Training consumes a significant number of idle
periods during which the backup predictor is responsi-
ble for making shutdown predictions to save energy.

The primary predictor (PCAP) with prediction ta-
ble reuse is responsible for 70% of correct predictions,
while the backup predictor provides additional 15%
of correct predictions, on average. Studied applications
mostly do not have enough repetitive behavior to train
the predictor and use its full potential during one exe-
cution. As a result, by discarding trained predictor ta-
ble, the primary predictor in PCAPa is responsible for
only 16% of correct predictions while the backup pre-
dictor provides 59% of correct predictions, on average.
Similar behavior is observed in LT where the primary
predictor predicts 66% of hits and the backup predic-
tor 18%, on average. In LTa, on the other hand, the pri-
mary predictor only predicts 26% and the backup pre-

Number of entries
Application PCAP PCAPh PCAPf PCAPfh

mozilla 72 99 129 139
writer 30 36 30 36

impress 34 44 44 47
xemacs 13 16 13 16
nedit 6 6 6 6

mplayer 24 24 26 26

Table 3. Storage requirements.

dictor 50% of hits, on average. We can also observe that
mispredictions generally decrease in PCAPa since pri-
mary predictors are making fewer predictions. The ex-
ceptions are writer and impress where the backup pre-
dictor makes significant amount of wrong predictions.

The higher energy savings relate to the prediction
coverage of the primary predictor. Without prediction
table reuse (PCAPa and LTa), most of predictions are
made by the backup timeout predictor, therefore the
overall energy savings are comparable to the simple TP.
Thus to achieve better energy savings than TP, it is im-
portant to perform application-based predictions. Imple-
mentation of sophisticated predictors without prediction
table reuse does not provide significant gains to justify
the complexity of the predictors.

Implementation of prediction table reuse saves the
prediction table upon the application exit and reloads
it when the new instance of the application starts exe-
cuting. Table 3 shows the amount of information that is
saved for each application. Each entry is encoded into
a 4-byte word, therefore even in case of mozilla which
requires to store 139 entries in PCAPfh, the table con-
sumes only 556 bytes. Other applications and predictors
require even less storage, and therefore the storage is not
a problem in our experiments. Longer running predictors
and changing user behavior can result in many more sig-
natures. In this case, some storage limit can be imposed
and an LRU replacement of old signatures can be used.

7. Conclusion

In this paper we have proposed Program Counter Ac-
cess Predictor which dynamically learns the access pat-
terns of the applications and predicts when the I/O de-
vice can be shut down in order to save energy. By using
path-based correlation to observe access patterns, PCAP
predicts future occurrences of long idle periods with
high accuracy. We present implementation of PCAP that
reduces average mispredictions to 5% which is much
lower than the mispredictions in Learning Tree and even

11

lower than in Timeout Predictor. We have also shown
the need for prediction table reuse to offset the over-
head of training in predictors more sophisticated than
the timeout based predictors. Our experimental results
show that table reuse reduces the training time, resulting
in on average fourfold increase in PCAPs coverage and
more than doubles the coverage of LT. Overall, PCAP
is able to save on average 76% of the total energy con-
sumed by I/Os, only 2% away from a perfect predictor
savings.

PCAP can be further extended to handle multiple low
power states of hard disks. For example, the sliding wait-
window can be optimized to put the disk into a lower
power state immediately, and only shut down after the
wait-window elapses.

PCAP opens a new direction for the development of
predictor-based techniques suitable for many other as-
pects of the operating system, such as file buffer man-
agement and I/O prefetching. PC-based techniques do
not require any modification to an application and yet
have the potential to obtain program context as accurate
as one provided by an annotated application. Thus we
expect PC-based predictions to perform as well as pre-
diction schemes that rely on application hints.

References

[1] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D.
Micheli. Policy Optimization for Dynamic Power Man-
agement. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 18(6):813–833, June
1999.

[2] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and
G. D. Micheli. Dynamic Power Management for Non-
stationary Service Requests. IEEE Trans. on Computers,
51(11):1345–1361, November 2002.

[3] E.-Y. Chung, L. Benini, and G. D. Micheli. Dynamic
power management using adaptive learning tree. In Pro-
ceedings of the International Conference on Computer-
Aided Design, pages 274–279, Novemebr 1999.

[4] Dell Computer Corp. Dell System 320SLi User’s Guide.
June 1992.

[5] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk
Spin-down Policies for Mobile Computers. In Pro-
ceedings 2nd USENIX Symp. on Mobile and Location-
Independent Computing, pages 381–413, 1995.

[6] C. S. Ellis. The Case for Higher-Level Power Manage-
ment. In Workshop on Hot Topics in Operating Systems,
pages 162–167, Rio Rico, AZ, USA, March 1999.

[7] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is Not Sloth. In Proceedings of the
USENIX Winter Conference, pages 201–212, 1995.

[8] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bian-
chini. Application transformations for energy and
performance-aware device management. In Proceedings
of the 11th International Conference on Parallel Archi-
tectures and Compilation Techniques, September 2002.

[9] Hewlett-Packard. Kittyhawk power management modes.
Internal document, April 1993.

[10] C.-H. Hwang and A. C. Wu. A Predictive System Shut-
down Method for Energy Saving of Event Driven Com-
putation. ACM Trans. on Design Automation of Elec-
tronic Systems, 5(2):226–241, April 2000.

[11] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Ow-
icki. Competitive Randomized Algorithms for Non-
Uniform Problems. In Symposium on Discrete Algo-
rithms, pages 301–309, 1990.

[12] A.-C. Lai and B. Falsafi. Selective, accurate, and timely
self-invalidation using last-touch prediction. In Pro-
ceedings of the 27th Annual International Symposium on
Computer Architecture, June 2000.

[13] Y.-H. Lu, E.-Y. Chung, T. Simunic, L. Benini, and G. D.
Micheli. Quantitative Comparison of Power Manage-
ment Algorithms. In Proceedings of the Design Automa-
tion and Test in Europe, pages 20–26, 2000.

[14] Y.-H. Lu, G. D. Micheli, and L. Benini. Requester-aware
power reduction. In Proceedings of the International
Symposium on System Synthesis, pages 18–24, 2000.

[15] R. Nair. Dynamic path-based branch correlation. In Pro-
ceedings of the 28th annual international symposium on
Microarchitecture, pages 15–23, November 1995.

[16] R. Neugebauer and D. McAuley. Energy is Just Another
Resource: Energy Accounting and Energy Pricing in the
Nemesis OS. In Workshop on Hot Topics in Operating
Systems, pages 59–64, 2001.

[17] Q. Qiu and M. Pedram. Dynamic Power Management
Based on Continuous-Time Markov Decision Processes.
In Proceedings of the Design Automation Conference,
pages 555–561, New Orleans, LA, USA, June 1999.

[18] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli.
Dynamic Power Management for Portable Systems. In
Proceedings of the International Conference on Mobile
Computing and Networking, pages 11–19, 2000.

[19] J. E. Smith. A Study of Branch Prediction Strategies. In
Proceedings of the 8th Annual Symposium on Computer
Architecture, pages 135–148, 1981.

[20] M. B. Srivastava, A. P. Chandrakasan, and R. W. Broder-
sen. Predictive System Shutdown and Other Architecture
Techniques for Energy Efficient Programmable Compu-
tation. IEEE Trans. on VLSI Systems, 4(1):42–55, March
1996.

[21] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O—
a novel I/O semantics for energy-aware applications. In
Proceedings of the Fifth Symposium on Operating Sys-
tem Design and Implementation, December 2002.

12

