

Program memory Consideration &

Addressing Modes

Memory Organization

 Program Memory

 Register File Memory

Program Memory

 Used for storing compiled code

 Each location is 14 bits long

 Every instruction is coded as a 14 bit word

 Addresses H’000’ and H’004’ are treated in a

special way

 PC can address up to 8K addresses

Register File Memory

 Consist of 2 Components

General Purpose Register (GPR) Files

(RAM)

Special Purpose Register (SPR) files

 This portion of memory is separated into banks of

128 bytes long

PIC18F - Address Buses

 Address bus

 21-bit address bus for program memory addressing capacity: 2 MB of

memory

 12-bit address bus for data memory addressing capacity: 4 KB of

memory

Data Bus and Control Signals

• Data bus
– 16-bit instruction/data bus for program memory

– 8-bit data bus for data memory

• Control signals
– Read and Write

PIC18F452/4520 Memory

 Program memory with

addresses (Flash)

 Data memory with

addresses

FFF=212=16x256=4096
=4K

Program Memory

A 21-bit program

counter is capable of

addressing the 2-

Mbyte program

memory space.

Accessing a

location between

the physically

implemented

memory and the 2-

Mbyte address will

cause a read of all

’0’s (a NOP

instruction).

PIC18F452 each

have 32 Kbytes of

FLASH memory.

This means that it

can store up to 16K

of single word

instructions

The RESET

vector address is

at 0000h and the

interrupt vector

addresses are at

0008h and 0018h.

Access RAM

Data Memory Organization

 Data Memory up to 4k

bytes

 Divided into 256 byte banks

 Half of bank 0 and half of

bank 15 form a virtual bank

that is accessible no matter

which bank is selected

PIC16F8F2520/4520

Register File Map

000h

07Fh

256 Bytes

Bank 0 GPR

Bank 1

GPR

Bank 2

GPR

Bank 13

GPR

Bank 14

GPR

Bank 15 GPR

Access SFR

Access RAM

Access SFR

080h

0FFh

100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh

F80h

00h

7Fh

80h

FFh

Access Bank

Data Memory with Access Banks

FFF=212=16x256=4096
=4K

GPR=General Purpose Reg.

SFR=Special Function Reg.

These registers are always
accessible regardless which
bank is selected – acting as a
virtual memory -

Data Memory also known as
“Register File”

We will discuss the access to
every region later, while talking
about PIC18 instructions

Accessing Data Memory
• The machine code for a PIC18 instruction has only 8

bits for a data memory address which needs 12 bits.
The Bank Select Register (BSR) supplies the other 4
bits.

Data Memory Addressing

Direct Addressing - Operand address(es)
embedded in the opcode
 8 bits of the 16-bit instruction specify any one of 256

locations

 The 9th bit specifies either the Access Bank (=0) or one

of the banks (=1)

Data Memory Addressing

Direct Addressing Examples

Direct addressing (banked)

movlb 02 ;set BSR to Bank 2

addwf 0x55, W, BANKED ; add WREG with the content of

 ; addr. 55 (f=55) in bank 2 (a=1),

 ; save the result to WREG (d=0)

Operand is the content of data memory at add. 0x255

Mnemonic in MPASM:

A (a=0) - the access bank; BANKED (a=1) - banked

W (d=0) - the WREG register; F (d=1) - the data register

Data Memory Addressing

Direct Addressing Examples

Direct addressing (using access bank)

 ;movlb not required

addwf 0x55, F, A ; add WREG to content of

 ; addr. 55 (f=55) in access

 ; bank (a=0), save the result

 ; in the data memory at the

 ;address 0x55 (d=0)

Operand is the content of data memory add. 0x055

 Indirect Addressing
 3 File Select Registers (FSR) as a pointer to

the data memory location that is to be read or

written.

 Each FSR has an INDF register associated

with it

 The INDFn register is not a physical register.

Addressing INDFn actually addresses the

register whose address is contained in the

FSRn register.

Data Memory Addressing

 Indirect Addressing

LFSR 02, num1 ;load FSR2 with the add. of num1

MOVWF INDF2, W ; move WREG to the register
 ; pointed by FSR2

Data Memory Addressing

 Indirect Addressing Operations

Data Memory Addressing

 Indirect Addressing Example

count set 0x02
lfsr 0, num1
lfsr 1, num2
movlw 3
movwf count, A
bcf STATUS, c

addwfc POSTINC0, F

decfsz count, 1

bra Again

Again: movf POSTINC1, W

Data Memory Addressing

SFRs Examples

I/O Ports

PIC18F452 I/O Ports

• Five I/O ports
– PORT A through PORT E

– Most I/O pins are multiplexed
– Generally have eight I/O pins with a few exceptions
– Addresses already assigned to these ports in the design stage

– Each port is identified by its assigned SFR

Parallel I/O Output Structure

Parallel I/O Input Structure

Parallel I/O Combined I/O Structure

Parallel I/O ports Main Features

 Simple memory mapped access

 Can be configured through software as either input
or output

 Ability to set or reset individual bits

 Can have internal pull-ups

 Can drive small loads like LEDs

 Can be multifunction

 Different capability for pins (i.e. larger current)

Parallel I/O ports

 For most ports, the I/O pin’s direction (input or output) is controlled by the
data direction register TRISx (x=A,B,C,D,E): a ‘1’ in the TRIS bit
corresponds to that pin being an input, while a ‘0’ corresponds to that pin
being an output

 The PORTx register is the latch for the data to be output. Reading
PORTx register read the status of the pins, whereas writing to it will write
to the port latch.

 Example: Initializing PORTB (PORTB is an 8-bit port. Each pin is
individually configurable as an input or output).

 bcf STATUS, RP0 ; select bank0

 bcf STATUS, RP1

 clrf PORTB ; clear PORTB output data latches

 bsf STATUS, RP0 ; select bank1

 movlw 0xCF ; value used to initialize data direction

 movwf TRISB ; PORTB<7:6>=inputs, PORTB<5:4>=outputs,

 ; PORTB<3:0>=inputs

Relationship between TRIS and

PORT Registers

Illustration: Displaying a Byte

at an I/O Port (1 of 5)

 Problem statement:

 Write instructions to light up alternate LEDs at

PORTC.

 Hardware:

 PORTC

 bidirectional (input or output) port; should be setup as

output port for display

 Logic 1 will turn on an LED in Figure 2.10.

Illustration (2 of 5)

 Interfacing LEDs to
PORTC

 Port C is F82H

 Note that PORT C
is set to be an
output!

 Hence, TRISC
(address 94H) has
to be set to 0

TRISC=0

Illustration (3 of 5)

 Program (software)

 Logic 0 to TRISC sets up PORTC as an output port

 Byte 55H turns on alternate LEDs

 MOVLW 00 ;Load W register with 0

 MOVWF TRISC, 0 ;Set up PORTC as output

 MOVLW 0x55 ;Byte 55H to turn on LEDS

 MOVWF PORTC,0 ;Turn on LEDs

 SLEEP ;Power down

Register Addressing Modes

 There are 3 types of addressing modes in PIC

Immediate Addressing

Movlw H’0F’

Direct Addressing

Indirect Addressing

Direct Addressing

 Uses 7 bits of 14 bit instruction to identify a

register file address

 8th and 9th bit comes from RP0 and RP1 bits of

STATUS register.

 Exp:

 Z equ D’2’

 btfss STATUS, Z

Indirect Addressing

 Full 8 bit register address is written the special

function register FSR

 INDF is used to get the content of the address

pointed by FSR

 Exp : A sample program to clear RAM locations

H’20’ – H’2F’ .

Some CPU Registers

 STATUS

 PC

 W

 PCL

 PCLATH

Instruction Set

 Every Instruction is coded in a 14 bit word

 Each instruction takes one cycle to execute

 Only 35 instructions to learn (RISC)

Instruction Set

 Uses 7 bits of 14 bit instruction to identify register

file address

 For most instructions, W register is used as a

source register

 The result of an operation can be stored back to

the W register or back to source register

Some Arithmetic Operations
 addwf FSR, w ; Add w to FSR and put

 result in w

 iorwf TMR0, f ; Inclusive OR w with
 TMR0 and store result

 in TMR0

 addwf reg ; Add content of the reg
 to content of the w and
 store the result back

 into reg (source)

