
Program Syntax

In Text: Chapter 3 & 4

N. Meng, F. Poursardar

Overview

• Basic concepts

– Programming language, regular expression,

context-free grammars

• Lexical analysis

– Scanner

• Syntactic analysis

– Parser

2

Basic Definitions

• Syntax—the form or structure of the

expressions, statements, and program units

• Semantics—the meaning of the expressions,

statements, and program units

• Why write a language definition; who will use it?

– Other language designers

– Implementers (compiler writers)

– Programmers (the users of the language)

What is a “Language”?

• A sentence is a string of characters over

some alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit

of a language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g.,

identifier)
Lexemes Tokens
index identifier

= equal_sign

2 int_literal

Natural Languages Are Ambiguous

• “I saw a man on a hill with a telescope”

• Programming languages should be

precise and unambiguous

– Both programmers and computers can tell

what a program is supposed to do

5

Recognizers vs. Generators

• We don’t want to use English to describe a
language (too long, tedious, imprecise), so …

• There are two formal approaches to
describing syntax:
– Recognizers

• Given a string, a recognizer for a language L tells
whether or not the string is in L (e.g.: Compiler –
syntax analyzer)

– Generators
• A generator for L will produce an arbitrary string in L on

demand. (e.g.: Grammar, BNF)

– Recognition and generation are useful for
different things, but are closely related

Programming Language Definition

• Syntax

– To describe what its programs look like

– Specified using regular expressions and

context-free grammars

• Semantics

– To describe what its programs mean

– Specified using axiomatic semantics,

operational semantics, or denotational

semantics

7

Grammars

• Developed by Noam Chomsky in the mid-

1950s

• 4-level hierarchy (0-3)

• Language generators, meant to describe

the syntax of natural languages

• Context-free grammars define a class of

languages called context-free languages

(level 2)

Chomsky Classification of Grammars

Grammar Type Grammar Accepted Automaton

Type 0 Unrestricted grammar Turing Machine

Type 1 Context-sensitive grammar
Linear-
bounded automaton

Type 2 Context-free grammar Pushdown automaton

Type 3 Regular grammar Finite state automaton

9

Chomsky Classification of Grammars

The following illustration shows the scope of

each type of grammar:

10

Type-2 grammars

• Type-2 grammars generate context-free
languages.

• The productions must be in the form A → γ

• where A ∈ N (Non terminal)

• and γ ∈ (T ∪ N)* (String of terminals and non-
terminals).

• These languages generated by these
grammars are be recognized by a non-
deterministic pushdown automaton.

• Example:

11

S → Xa

X → a

X → aX

X → abc

X → ε

Regular Expressions

• A regular expression is one of the following:

– A character

– The empty string, denoted by

– Two or more regular expressions concatenated

– Two or more regular expressions separated by

| (or)

– A regular expression followed by the Kleene

star (concatenation of zero or more strings)

12

Regular Expressions

• The pattern of numeric constants can be

represented as:

13

What is the meaning of following

expressions ?

• [0-9a-f]+

• b[aeiou]+t

• a*(ba*ba*)*

14

Define Regular Expressions

• Match strings only consisting of ‘a’, ‘b’, or

‘c’ characters

• Match only the strings “Buy more milk”,

“Buy more bread”, or “Buy more juice”

• Match identifiers which contain letters and

digits, starting with a letter

15

Context-Free Grammars

• Context-Free Grammars

– Developed by Noam Chomsky in the mid-

1950s

– Describe the syntax of natural languages

– Define a class of languages called context-

free languages

– Was originally designed for natural languages

16

Context-Free Grammars

• Using the notation Backus-Naur Form

(BNF)

• A context-free grammar consists of

– A set of terminals T

– A set of non-terminals N

– A start symbol S (a non-terminal)

– A set of productions P

17

Terminals T

• The basic symbols from which strings are

formed

• Terminals are tokens

– if, foo, ->, ‘a’

18

Non-terminals N

• Syntactic variables that denote sets of

strings or classes of syntactic structures

– expr, stmt

• Impose a hierarchical structure on the

language

19

Start Symbol S

• One nonterminal

• Denote the language defined by the

grammar

20

Production P

• Specify the manner in which terminals and

nonterminals are combined to form strings

• Each production has the format

nonterminal -> a string of nonterminals and

terminals

• One nonterminal can be defined by a list

of nonterminals and terminals

21

Production P

• Nonterminal symbols can have more than

one distinct definition, representing all

possible syntactic forms in the language

<if_stmt> -> if <logic_expr> then <stmt>

<if_stmt> -> if <logic_expr> then <stmt> else <stmt>

Or

<if_stmt> -> if <logic_expr> then <stmt>

| if <logic_expr> then <stmt> else <stmt>

22

Backus-Naur Form

• Invented by John Backus and Peter Naur

to describe syntax of Algol 58/60

• Used to describe the context-free

grammars

• A meta-language: a language used to

describe another language

23

BNF Rules

• A rule has a left-hand side(LHS), one or

more right-hand side (RHS), and consists of

terminal and nonterminal symbols

• For a nonterminal, when there is more than

one RHS, there are multiple alternative ways

to expand/replace the nonterminal

– E.g., <stmt> -> <single_stmt>

| begin <stmt_list> end

24

BNF Rules

• Rules can be defined using recursion

<ident_list> -> ident

| ident, <ident_list>

• Two types of recursion

– Left recursion:

• id_list_prefix -> id_list_prefix, id | id

– Right recursion

• The above example

25

How does BNF work?

• It is like a mathematical game:

– You start with a symbol S

– You are given rules (Ps) describing how you

can replace the symbol with other symbols

(Ts or Ns)

– The language defined by the BNF grammar is

the set of all terminal strings (sentences) you

can produce by following these rules

26

Derivation

• A grammar is a generative device for

defining languages

• The sentences of the language are

generated through a sequence of rule

applications

• The sequence of rule applications is called

a derivation

27

An Example Grammar

<program> -> <stmts>

<stmts> -> <stmt>

| <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term>

| <term> - <term>

<term> -> <var>

| const
28

An Exemplar Derivation

<program> => <stmts>

=> <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

29

sentence

sentential
forms

