Programming a PIC
Microcontroller
A Short Tutorial

FIGURE

16C5x SERIES BLOCK DIAGRAM

| WDTRATC
A PRESCALE

by Yesu Thommandru

lowa State University — ECpE
November 2006

Programming a PIC Microcontroller Page ii of 24

Table of Contents
TaDble Of CONTENLS cccccuerirerrresssricssnicsssnessssnesssanessasessssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssases ii
ReVISION RECOTM ..uuueiervuiicirunicnsaninssanicssanesssanessnnesssnsessasssssasssssasssssasssssasesssassssssssssssssssssssssssssssasssses iii
1. INEFOAUCHION . cciccreiccinrensnnessnnesssssesssnsossssssssssssssssssssssesssssesssssesssssesssssssssssssssssossssssssssssssssssssnssss 1
1.1 PUIPOSE. ..ttt et e et e et e et e e e ate e et e e e te e e ntae e bt e e ntaeenteeeantaeenseeenrean 1
1.2 DoCUMENT CONVENTIONS.....ccevireiieeeiieeriieesieeeeteeeteeesereesseeessreessseeesseeassseesssseesssesssseessssesssseesssses 1
1.3 Intended Audience and Reading SUZZEStIONS.......c.eeviuiieriiieerieeeiie e esiee e eseeeeaeeseneeeeeeeeeeees 1
1.4 S5 55 1<) 1oL SRS 2
2. ChooSing a PIC MiCroCONtIOlIErc..cccvieiceinsniissnissnicssnisssnssssnsssncssissassssssssssesssssssssssssssssssens 3
2.1 INEEOAUCTIONei ittt et e et e e st e e e te e et eeesbaeeesbeeesbaeeeseeensaeasssaesnseeesseeasseeessens 3
2.2 TYPES OF PICS ...ttt st sttt st ettt et bbb e 3
3. Integrated Development ENVIrONIMENL......ccccceereressnecssnecssssecssssesssssessssesssssssssssossssssssssssssnss 4
4. Programming LangUage...........ceiiiciveinininssnissnnnsssisssncsssissess 4
5. Compiler, Assembler, and LiNKETcccccceevveecessnncsssnicssnecsssnscssascsssssesssssesssssesssssossssssssssssssnss 6
6. Using MPLab IDE 7
7. WIItING SOFEWATC...ceicerurierrnricssanisssanessssnesssnnesssssessssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssses 11
8. The “Burning” Process 12
9. Breadboarding a PIC MicCroCONtIOlIErccccovvvecisnicssanscsssnecssssessssssssssosssssssssssssssssssssssses 18
10. Other Considerations 21

Programming a PIC Microcontroller Page iii of 24

Revision Record

Name Date Reason For Changes Version

Yesu Thommandru | 11/17/06 | Started tutorial 1.0

Yesu Thommandru | 11/18/06 | Finished majority of tutorial 1.1

Yesu Thommandru | 11/19/06 | Added breadboard images, finished and posted 1.2
tutorial on Dec06-04 website.

Programming a PIC Microcontroller Page 1 of 24

1. Introduction

1.1 Purpose

The purpose of this document is to provide a simple, easy to use tutorial on programming PIC
microcontrollers. The tutorial begins with instructions on selecting a specific PIC and ends with
directions for breadboarding the microcontroller.

1.2 Document Conventions

In this document different styles of text and visuals are used to help the reader separate different
types of information. General description text will be in this format, size 11 italicized Arial.
Pseudo-code or source code will be written in multi-color, size 10 Courier New font as in the
following example:

#include <stdio.h>

void main (int argc, char *argv([])
{
printf ("Star Wars!\n”);
return;

}

Buttons and menu items will be in standard Arial text such as Button with the first letter underlined.
Important notes and pieces of information will appear in normal text in shaded boxes as in the
following example:

NOTE: | think Darth Vader would win in a fight against Boba Fett!

1.3 Intended Audience and Reading Suggestions

The intended audience of this document is students in the Department of Electrical and Computer
Engineering enrolled in EE/CprE 491 or 492 Senior Design. This document can also be used by
any student or individual who wishes to learn the basics of how to program a PIC microcontroller.

There are a number of suggested readings for any users of this document. The following books
are suggested for specific PIC programming tasks:

Introduction to microelectronic systems: the PIC 16F84 microcontroller by Martin Bates.
PIC microcontroller: an intro to software and hardware interfacing by Han-Way Huang.
The PIC microcontroller: your personal introductory course by John Morton.

PIC microcontroller project book by John Lovine.

Programming and customizing the PIC microcontroller by Myke Predko.

The quintessential PIC microcontroller by Sid Katzen.

NOTE: In my experience most of software in these books is written in Assembly and are thus not
useful to students wishing to program in a high-level programming language.

Programming a PIC Microcontroller Page 2 of 24

1.4 References

Schildt, Herbert. C/C++ Programmer’s Reference 2nd Edition. McGraw-Hill Publishing. New
York, 2000.

Morton, John. PIC Your Personal Introductory Course. Newnes. Boston, 1998.

Bergquist, Carl. Guide to PICMICRO Microcontrollers. Sams Technical Publications. Indianapolis,
2001.

Predko, Myke. Handbook of Microcontrollers. McGraw-Hill Publishing. New York, 1999.

Predko, Myke. PICMicro Microcontroller Pocket Reference. McGraw-Hill. New York. 2000.

Smith, D.W. PIC in Practice. Newnes. Oxford. 2002.

Microchip.com. PIC16F877A. 2006. <http://www.microchip.com/>
MicrochipC.com PICMicros and C <http.//www.microchipc.com/>

Best Microcontroller Projects <http.//www.best-microcontroller-projects.com/index.html>

Programming a PIC Microcontroller Page 3 of 24

2. Choosing a PIC Microcontroller

2.1 Introduction

PIC microcontrollers are popular processors developed by Microchip Technology with built-in

RAM, memory, internal bus, and peripherals that can be used for many applications. PIC originally
stood for “Programmable Intelligent Computer” but is now generally regarded as a “Peripheral
Interface Controller”.

2.2 Types of PICs

PIC microcontrollers are broken up into two major categories: 8-bit microcontrollers and 16-bit
microcontrollers. Each category is further subdivided into product families as shown in the
following table:

8-bit MCU Product Family 16-bit MCU Product Family
FI o PIC24F
PIC12
PIC24H
PIC14
dsPIC30
Fligie dsPIC33
PIC18

The microcontrollers in the PIC10 through PIC14 families are considered low-end microcontrollers.
PIC microcontrollers in the PIC16 and PIC18 families are considered mid-level microcontrollers
while 16-bit PICs are considered high-end microcontrollers.

NOTE: The majority of students and projects will require mid-level microcontrollers. The most
popular PIC used in senior design is the PIC16F877/A.

Each PIC has unique features and subtle differences. The correct choice for your project depends
on many factors:
» Does the project require analog input or output?
Does the project require digital input or output?
How many I/O pins are required?
Does the project require precise timing?
How much memory does the project require?
Is serial I/O required?
Ete.

PICs also come in several types of packages:
= Plastic Dual Inline Package (PDIP)

Small-Outline Transistor (SOT)

Dual Flat No-lead (DFN)

Mini Small Outline Package (MSOP)

Thin Quad Flat Pack (TQFP)

Plastic Leaded Chip Carrier (PLCC)

CERamic QUADpack (CERQUAD)

Programming a PIC Microcontroller Page 4 of 24

The reason for the number of packages is that there are some PICs with 100 I/O pins! The
microcontrollers are basically rectangular or square shaped. The easiest package to work with is
DIP or PDIP because it is easily breadboardable and can easily be soldered.

NOTE: Use a mid-level dual inline package PIC microcontroller. You will not be able to burn
software into a QUAD chip and SOP chips will require Schmartboards.

3. Integrated Development Environment

In order to develop your software and organize your files you will have to use an integrated
development environment. The number one IDE used with PIC microcontrollers is MPLab IDE by
Microchip Technology. MPLab IDE is free and easy to use. Just go to http.//www.microchip.com/
to download the latest version.

NOTE: The latest version of MPLab IDE ends in zero. e.g. v7.50. Files not ending in zero are
interim versions of MPLab IDE.

You can also download the MPLab IDE User’s Guide, Quick Chart, and Quick Start Guide. After
you have downloaded the latest version of MPLab IDE install the software on your local drive.

4. Programming Language

PIC microcontrollers can be programmed in Assembly, C or a combination of the two. Other high-
level programming languages can be used but embedded systems software is primarily written in
C. The following three examples demonstrate the programming styles.

Example 1 — Assembly

MAIN
clrf PORTB ;Clear PORTB output latches
bsf STATUS, RPO ;Switch to bank 1
movlw b'11110000' ;Load value to make lower 4 bits outputs
movwf TRISB ;Move value to TRISB
bcf STATUS, RPO ;Switch to bank 0
LOOP
bsf PORTB, 0 ; Turn on LED on RBO
call DELAY ;Call delay routine
bcf PORTB, 0 ;Turn off LED on RBO
call DELAY ;Call delay routine
goto LOOP ;Repeat main loop
DELAY
decfsz COUNTERL ;Decrement COUNTERL
goto DELAY ;If not zero, keep decrementing COUNTERL
decfsz COUNTERH ;Decrement COUNTERH
goto DELAY ;If not zero, decrement COUNTERL again
return

END

Programming a PIC Microcontroller Page 5 of 24

Example 2 — Assembly and C
main ()

{

short first_pass = TRUE;

/== Set up port direction reg's ————-

#asm
movlw 0 // Set port b to outputs
tris port_b
clrf port_b

movlw Oxff // Set port a to inputs
tris port_a
#endasm

//————- Wait for powerup, Initilize LCD ————-
delay_ms (200) ;
init_lcd();

/== Write a startup message ————-—
msg_1();
/== Write status message —-———-—
msg_2();
Example 3—-C
void main () {
Uug i = 0; // General purpose loop var.
Ul6 num ; // General purpose number var.
U8 row = 0; // Current display row.
Ul6 blinkc = 0; // LED blinker counter.
Ul6 blink_onoff = 1; // LED state.

U8 bcd_h,bcd_m,bcd_s; // BCD numbers.
init_ports();
init () ;
enable_interrupts();

ROW_RESET;

N,

for (;;) { // infinite loop

// FLASH LED @ RA3
if (++blinkc>500) { // time to change state ?
blinkc=0;

| suggest writing your code completely in C because it is much faster and easier than writing your
code in Assembly or a combination of languages.

NOTE: The version of C that you use to write you software will depend on the C compiler you
choose to use in your project.

Programming a PIC Microcontroller Page 6 of 24

5. Compiler, Assembler, and Linker

Once you have downloaded and installed MPLab IDE and chosen a programming language you
will have to select a compiler. The compiler, assembler, and linker are usually combined in a
single package. In MPLab IDE you can choose you compiler by using the Project Wizard or
selecting the menu option Project - Select Language Toolsuite. The following image shows
some of the available toolsuites in MPLab IDE:

Project Wizard
Step Two: rLL
Select a language toolsuite

Active Toolsuite: HI-TECH PICC Toolzuite bl

B Frudsen Data CCSH

Toolzuite Contentz | B Knudsen Data CCBE

- Byte Craft Agzzembler & C Compiler

E:EE E'ﬂmp"g[| £S5 € Compiler for PIC12/14/16/18
=MD O TECH PICC Toolsuite

PICC Link.er [I:IIE IAE PIC12

4R Systems Midrange

Microchip 45830 Toolzuite

Microchip C17 Toaolzuite

C:\Pragram FilestH Microchip C18 T oolsuite

Microchip C30 Toaolzuite

Microchip MPASH Toolzuite

Lozation

Help! My Suite lsn't Listed!] Show all installed toolzuites

[< Back ” et = l [Cancel] [Help]

Most of the toolsuites are NOT preinstalled and are quite expensive. As a student you will most
likely be interested in the free toolsuites that come with MPLab IDE which are Microchip MPASM
Toolsuite and CCS C Compiler for PIC12/24/26/18. Other free compilers that can be integrated
into MPLab IDE are available on the web.

NOTE: The CCS C Compiler is free but incompatible with many PIC microcontrollers. Check the
supported device list at http.//www.ccsinfo.com/devices.php ?page=devices

Because of the previous note | searched in the Internet for a free C compiler. | came across the
HI-TECH PICC-Lite compiler available at http.//htsoft.com/products/PICClite comparison.php.
The compiler can be easily installed and integrated into MPLab IDE.

Programming a PIC Microcontroller

6. Using MPLab IDE

Page 7 of 24

Let’s start writing software in MPLab IDE in the C programming language by creating a new

project.

Open MPLab IDE and observe the Workspace and Output windows. The Workspace window
organizes the files in your project in an easy to see hierarchy.

Select Project > Project Wizard to create a new project as shown in the following image:

File Edit View

W] Debugger Programmer Tools Configure W

| D& |

Mew...

Open...
Close k
Set Active Project

Quickbuild {no .asm file)

Mlaam
earl

Build Options...

Remove File From Project

Select Language Toolsuite. ..

Set Language Tool Locations. .,
Version Contral...

Programming a PIC Microcontroller Page 8 of 24

You should see the following welcome message in a dialog window:

.Project Wizard

. Welcomel!

Thiz wizard helpz you create and configure a new MPLAR
project.

To continue, click Mesxt.

[Mext =][Cancel] [Help]

Hit Next > and you will see enter Step One: Select a device. There will be a single pull down
menu with a huge amount of PIC microcontrollers to choose from.

Dewice:

FICT1EFE774 v

PICTEFB7 74 [A
PICT6FB3

PICT16F3a3

PIC1EFE24

PICTEFE36

PICTEFEE7

PICTEFS13

PIC1EF314

~ |PIC1EFS16E

PICTEFS17 —
PIC1EFS46 ==
—PICTEHYS40
PICTBHYETD
PICT1EHVETR
PICTEHY7E5
PICT7C42
PICT7C428

PIC17C752
PICT7C756

PIC17C7EG
PICT7CR42

PIC18C452

Programming a PIC Microcontroller Page 9 of 24
After selecting your device hit Next > and you will enter Step Two: Select a language toolsuite (see
section 5). Choose your compiler and hit Next >.

You should be at a window called Step Three: Name your project. Enter your project name,

choose a directory, and hit Next >. In this example we will create a project called MyProject and
create a folder on the desktop.

o

-

Project Wizard
Step Three: Eﬁ
Mame your project
Project Hame
b uProject

Project Direchary

C:ADocurmentz and Settingzhv'esu ThaommandrubDeskiophkdyProject

[< Back]L_J_iaxt |[Cancel] [Help]

Step Four: Add existing files to your project allows you to add any required files into your project
directory. Examples of required files are <pic.h>, <stdlib.h>, and <string.h>. Add any necessary
files to your project and hit Next >. (In this example we’ll skip this step)

TIP: If you’re using the HI-TECH PICC-Lite compiler there are several helpful files such as Icd.h,
Icd.c, delay.h, delay.c and many others in the folder /HI-TECH Software\PICC-Lite\9.50\samples
that can help you in your project.

Programming a PIC Microcontroller Page 10 of 24

The last window in the Project Wizard is a summary of the options you have selected. If
everything looks ok hit Einish to create the project.

.Project Wizard .

Summary

Click 'Finizh' to create the project with theze parameters.

Project Parameters

Device: PICTBFE7TA
Toolzuite: HI-TECH PICC Toolsuite
File: C:ADocuments and Settingshyesu

A new project will be created and added to the curment
workzpace. Maote that the selected device applies to all
projects in the current workspace.

[< Back]l Finish |[Cancel] [Help]

After hitting Finish you will be presented with a dialog window asking you to save your workspace.
A workspace is a file that allows a user to gather and organize various sources and resources.
Rename and save your workspace in the project directory.

Y MyProject - MPLAB IDE v7.50

| O | ¥ & I‘_ ok 7 | Releasel&?k @ [%@l | Checksum: Ox0fcf |
=1 Untitled Workspace |10 |/_V\J' Save Workspace As
= [MyProject.mcp* R |HjCore IVI o ¥ e E
(22 source Files = () Editar
(23 Header Files ‘J [CHMTC Suites
(22 Object Files Receri 1 untitied
(0 Library Files
(22 Other Files =
[
Desktop
My Documents
| [22 Files ‘og Symbols |
My Computer
File name: |L.H"Itlﬁed |[V] [Save]
My Network Save as type: ||'v'|PL2.B Workspace Files {"mcw) IVI [Cancel]

Your workspace window now contains a hierarchy of folders for your project.

Programming a PIC Microcontroller Page 11 of 24

7. Writing Software

We will now write basic software in C using MPLab IDE. The following program flashes an LED on
one of the PORTA pins of the PIC microcontroller (look at the PIC’s datasheet).

main.c

//LED example program written for
//PIC programming tutorial.

//standard include files
#include <stdlib.h>
#include <pic.h>
#include “delay.h”

//main function
void main ()

{

PORTA = 0x00; //set RAO-RAS5 low
TRISA = 0x00; //set PORTA to output
//superloop
while (1)
{

PORTA = !PORTA;

DelayMs (250) ;

For basic C operations and delays the files stdlib.h and delay.h are needed. The file pic.h is
required for access to the PIC microcontrollers I/O pins, memory locations, and other components.
The following diagram shows how I/O pins on a PIC16f877A correspond to software variables:

40-Pin PDIP

_J ppe— re7reo

MCLRVPP —[]

1

RAO/AND w—m[] 2 30 [] «—= RBE/PGC

RA1/ANT ww—e[] 3 38 [] w—e RB5

PORTA RAZ/AN2/VREF-/CVREF g [] 4 37 [] =+—= RB4
RAJAN3VREF+ w—me[] 5 36 [] w—m RBIPGM

RA4TOCKI/C1OUT -—a[] 6 35 [] ~—s= RB2

SSic2 7 34 [] =+—s- RB1

8 33 [~—= RBO/INT

320 =— Voo
31 [] w— Vss
30 [] =—s RD7/PSP7
29 [=—e RD6/PSPG
28 [] w—s RD5/PSP5
27 [J a—m RD4PSP4
26 [] «—= RCT/RXDT
25 [a—s= ROBITX/CK
24 [] -— RC5/SDO
RC3/SCK/SCL +—=[] 18 23 [] —m= RC4/SDISDA
RDO/PSPO a—s[] 10 22 []w—s RD3/PSP3
RD1/PSP1 ~—m-[] 20 21 [a—s RD2IPSP2

PIC16F874A/B7TA

PORTA

RAO/ANO

- RA1/AN1

- RAZ/AN2/VREF-/ICVREF
+—n RA3/ANS/VREF+

- RA4/TOCKI/C10UT
- RAS5/AN4/SS/C20UT

l,

PORTA in the file main.c refers to the 6-bit I/O port on the PIC microcontroller. Each pin can be
set high or low using simple masking commands: PORTA = 0x01 sets RAO high. Multiple pins can
be set: PORTB = 0xFF. Check the datasheet for the number and size of ports on your PIC.

Programming a PIC Microcontroller Page 12 of 24

TRISA is a direction control register corresponding to PORTA. The corresponding TRIS registers
have the same bit width as the ports they control. Setting a tris bit to 1 signals that an I/O pin on
that port will be used as an input pin. Setting a tris bit to 0 signals that an I/O pin will be used as
an output pin.

TIP: Usually the first function called when entering the main function is an initialization function that
sets all ports and their directions.

The program then enters a superloop and flips PORTA on and off with a delay of 250 milliseconds.
The structure, purpose, and complexity of your software depend on the application of use of your
PIC microcontroller. For a good source on programming microcontrollers in C visit
http.//www.best-microcontroller-projects.com/programming-microcontrollers-in-c.htmi.

NOTE: Standard C functions such as printf() or scanf() are meaningless in embedded
programming. In order to test I/O functionality the PIC will have to be breadboarded.

8. The “Burning” Process

Once you have you software written you can compile your code to check for syntactical errors.
The first important step in the “Burning” processing is building your project. Before building your
project make sure your configuration bits are set appropriately by selecting Configure >
Configuration Bits. Then select Project - Build All or hit Ctrl + F10 to build your project.

MyProject - MPLAB IDE v7.50

Bile Edit Wiew Project Debugger Programmer Tools Configure Win

W Project Wizard... I_;erFjF

— New...
— Open...
F — Close »
| @ (O MyPrd set active Project »
= (2 504
(A Hezs Clean
(3 obj| Build Al Crl4F10

Libl Make F10 /is
&

Jmain.c

EJ otf Buid Options... »

Save Project
Save Project As...
Add Files to Project... /im
Add Mew File to Project. .. voi
Remaove File From Project 3

[:l Files 0% Select Language Toolsuite..,
Set Language Tool Locations. ..
Version Contral...

16

g fir

The output window will print the results of each step in the build process. You will probably
receive some warning or advisory messages. If the build process was successful the output
window should print a Memory Usage Map that looks like the following:

Programming a PIC Microcontroller Page 13 of 24

Memory Usage Map:

Program space:

CODE used 21h(33)of 800hwords (1.6%)

CONST used Oh(0)of 800hwords (0.0%)

ENTRY used Oh(0)of 800hwords (0.0%)

STRING used Oh(0)of 800hwords (0.0%)
Data space:

BANKO used 3h(3)of 60hbytes (3.1%)

BANK1 used Oh(0)of 50hbytes (0.0%)

COMBANK used Oh(0)of 10hbytes (0.0%)
EEPROM space:

EEDATA used Oh(0)of 100hbytes (0.0%)
ID Location space:

IDLOC used Oh(0)of 4hbytes (0.0%)
Configuration bits:

CONFIG used Oh(O0)of 1hword (0.0%)
Summary:

Program space used 21h(33)of 800hwords (1.6%)

Data space used 3h(3)of BOhbytes (1.7%)

EEPROM space used Oh(0)of 100hbytes (0.0%)
ID Location space used Oh(0)of 4hbytes (0.0%)
Configuration bits used Oh(0)of 1hword (0.0%)

Loaded C:\MyProject\MyProject.cof.
BUILD SUCCEEDED: Sat Nov 18 01:34:23 2006

When you build your project a large amount of files are created and stored in your project
directory. The most important file created is the hexadecimal file as shown in the following image:

@l rmain, IJFE FLF Fie
=] MyProject 8KE Linker Address
ﬁrvl*,'F'rDject 1KB Microchip MPLE
rﬂl MyProject 4KB SYM File

e = MyProject.cof 3IKE COF File
rvl*,'F'rDject.hex 1KB HEX File
@ MyProject.hxl 1KE H¥L File
= MyProject.ide Type: HEX File
i@lrvl*,'PrDject.mcs Date Modified: 11/18/2006 1:40 &M
fTI‘,'F'I'DjEEt.thEII;IS Size: 202 bytes L
E_ MyProject. tagsrc 1KB TAGSRC File

This is the file that will be “burned” into your PIC microcontroller. Copy this HEX file and take it to
the computer connected to your available programmer.

Programming a PIC Microcontroller Page 14 of 24

NOTE: The senior design lab (Town Engineering room 316) has an easy to use Dataman
Universal Programmer used to program PIC microcontrollers.

Place your PIC microcontroller in the black ZIF socket and place the silver lever in the down
position to clamp onto the I/O pins.

Start the Dataman Programmer software by going to Start > All Programs - Dataman
Programmers - Dataman-48XP. There are basically three steps in the Dataman Programmer
“burning” process:

1. Select device

2. Load HEX file

3. Program PIC

Programming a PIC Microcontroller Page 15 of 24

Select the Device - Select Device from the menu or press Alt + C in order to choose your PIC
microcontroller. A large list of devices will be displayed in a window. Find you PIC and press OK.

Data &
>~>Data: SREITE
[enzar | oK | 3
Wendor Device
ECQH EMN2OFE12 Cancel
MesFlash EN29F512 *32PLCC
ENZ25SF512 *32TS HELP
ENZ25FO02A{MIB ENZ25F512 *32TS/W
ENZ2SFO02A{MIT EN25LY1604B @4BFBGA
ENZBFO02C{MIB ENZBLY160AT @4SFBGA ~Type -
EN2SFO02C{MIT EN25LY400AR @4B8FBGA & Al
EN25F010 EN25LY400AT @4SFBGA
EM2OF010 *32PLCC EMZ5LYB00BE @45FBGA ' EPROM
EN25FD10 *32TS EN25LYE00BT @4B8FEGA PROM
EN25FD10 *32TS/W PLD 3
EN29F040/4 =
~
_ EN29FOE0 *40TS hiEL B
= I
adl | Tvpe EPROM Adapter MOMNE Man. Code 1C7Fh Dev. Code 927Fh
Kote
Check]
File : No File OnOff Reset
Note : Alarm Config
For Help, press F1 [Court [oonooi4 E%A

Select File - Load File or click the Load button or press Alt + L in order to load the HEX file from
your project. The Dataman software should automatically detect the file as an Intel HEX file.
Make sure one of the Clear Buffer radio buttons is selected and press OK.

= 101010 Y = | = eam|w ||
oy | 4 X £ | xu | g |y |E =
Save | Load | Select| AutolD| Edit Read | Blank | Prog. | Verify | Erase | Comp. | Prot. | Config | Opuon

EON ENZOF002Z(— ¥
POV Load A File To Buffer X o
Dataman-48¥E/ :
Elank checkin Il i i

Blank check c 1D:\Program FileshDatamaniDataman-48XPhsample 614 |
== H H . .
R0 Auto Faormat Detected From File address

From File To Buffer Address

|Nnrma\ _'_] |D Help
To Buffer Buffer Size

|Hormal | [40000

r Clear Buffer Before Loading the file

p " Disable 5 _
= @ Clear buffer with blank state ==
- ~ . =
Device : EON B Clear buffer w?th zeros (000}
Adapter : NONF Clear buffer with ones (OxFF)
Size : 40000 g
Check Sum : 00BB33a2T VPP . NONE DEVICE COOE - 92711] MR Falire | 5
File : No File Oonoff Reset
Note : Alarm Config

For Help, press F1 “[Count Doooo17 EUA

Programming a PIC Microcontroller Page 16 of 24

Right now you have loaded your HEX file from your project into the Dataman buffer. The PIC
microcontroller isn’t programmed yet! The Dataman software allows you to view and edit the
buffer as shown in the following image but this step should be unnecessary.

Buffer Edit

EUN

Datd 4ddress-H Hex Text -
Dat{ |ElOEIEfaelels (31 32z 33 34 20 31 32 33-34 20 31 32 33 34 20 31 |1234 1234 1234 1 ij
Elay 000000010 |32 33 34 20 31 32 33 34-20 31 32 33 34 20 31 32 |234 1234 1234 12
Blax 000000020 (33 34 20 31 32 33 34 20-31 32 33 34 20 31 32 33 |34 1234 1234 123
00:(000000030 |34 20 31 32 33 34 20 31-32 33 34 20 31 32 33 34 |4 1234 1234 1234
Read (000000040 (20 31 32 33 34 20 31 32-33 34 20 31 32 33 34 20 | 1234 1234 1234
Read (000000050 |31 32 33 34 20 31 32 33-34 20 31 32 33 34 20 31 (1234 1234 1234 1
Elay |DODO00OGO0 |32 33 34 20 31 32 33 34-20 31 32 33 34 20 31 32 |234 1234 1234 12
prod |D00000070 |33 34 20 31 32 33 34 20-31 32 33 34 20 31 32 33 |34 1234 1234 123
ver]|D0DO00O0EO0 |34 20 31 32 33 34 20 31-32 33 34 20 31 32 33 34 |4 12534 1234 1234
Verd |DOOODDOSO |20 31 32 33 34 20 31 32-33 34 20 31 32 33 34 20 | 1234 1234 1234
Prod|0000000AD |31 32 33 34 20 31 32 33-34 20 31 32 33 34 20 31 (1234 1234 1234 1
00:d|0ooooooEn |32 33 34 20 51 3z 33 34-20 31 32 33 34 20 51 32 |234 1234 1234 12
Resd|0000000CE |33 34 20 31 52 33 34 20-31 32 33 34 20 31 32 33 |34 1234 1234 123
Read |0000000D0 (34 20 31 32 33 34 20 31-32 33 34 20 31 32 33 34 (4 1234 1234 1234
.00, d|O000000ED |20 31 32 33 34 20 31 32-33 34 20 31 32 33 34 20 | 1234 1234 1234 =
4 DODODDOFD |31 32 33 34 20 31 32 33-34 20 31 32 33 34 20 31 |1234 1234 1234 1 || .
Curaddr-H ChkSum-H (00BB3342)
pl\: S | Fill ‘ Gy | Ynda | From Address ’57
Chec Radix | Search ‘ MNext ‘ OK | ChkSum| To Address 3IFFFF

S TTE . eal TTONT DEwICE, T T
Note : Config J

Alarm |

For Help, press F1 *[Count DoO0019 57 |

Before programming the PIC microcontroller you can set certain device options in the Dataman
software by pressing the Config button in the menu bar. A window with several sections of
checkboxes and radio buttons will appear for your specific device. Read your PIC’s datasheet to
fully understand these configuration bits. Make your appropriate choices and click OK.

: Device Operation Option 7
%‘; = | & | Page 1]
Save | Load | Select | AutolD b1 | Option
EON EN29F002(H)T hoi e iige v
Dataman-48XP/ UXP Start Address 0 End Address 3FFFF| 3
Dataman-48XP/ULP Buffer Size 40000 Autolnc, Start 3FFFF
Blank checking...| | augingEnd FFFE AutolncVale [i
Blank check compl]
00:00:06.42 Options
Rearh_nt-g file: : D: [¥ Insertion Test v Device ID Check H
~Read file complet ¥ Blank Check W Program
W Verify Passes ™ MemProt/ProgChig
™ Auto-lncrement I Auto Erase/Over Wiite
“erify option Autolnc. data format
7 1. Twice VCC +4 5% & 1.Binary
% 2 Twice WCG +4 103 " 2A5CH Hex
" 30nce " 3.45CI Decimal
" 4Modulo-28
S 2
Device : EON EN29) 0
Adapter : NONE 100
Size : A0000hX8 0
Check Sum : 00BB3342 % 5
File : D:\Progranmj eset
Note : Ok Cancel | Help nfig
For Help, press Fi Count (0000017 B4

Programming a PIC Microcontroller Page 17 of 24

Now it is time to program your PIC microcontroller. The correct device has been selected, the
HEX file has been loaded and configuration bits have been set. Select Device - Program - Auto
or press Alt + P to program your PIC microcontroller. You should see a progress bar at the center

of your screen:

e =1
& - [o]x]
= =] o | = = = aqm .
Eh, | 4= xx e x| ga| =y k2 5| W 2
Save | Load | Select| AutolD| — Edit Read | Blank | Prog. | Yerity | Erase | Comp.| Prot. | Config | Option
EOH EN20F00Z({H)T ~
Dataman-48XP/UXP at LPT 1
Dataman-48XP/UXP Firmware Version 4.10
Blank checking...
Blank check complete.
O0:00:06.42
Reading file : D:\Prog‘ram Files\Dataman\Dataman—4BXP\sample.BIN -~
Read file completg |
Blank chescking. .. RaEETERT e
=rProgramming. . .
Progress
90% 4
ulialwiafubalolu bfnladaluloulula! 7 e
v
4 b
Device : EON EN29F002([N]T Current Count : 0
Adapter : NONE Pin : 32 Target Count : 100
Size : 40000hX8 VCC : 5.00¥ Manu. Code : 1C7Fh Current Failure : 0
Check Sum : 00BB3342h VPP : None Device Code : 927Fh Max Failure : 5
File : D:\Program OnOff Reset
Note © Alarm Config
For Help, press F1 Count 0000017 %A

If the “burn” process has been successful a Programming Complete message will be printed to the
screen. There are many other functions provided by the software. For more details read the
datasheet on the Dataman 48UXP Universal Programmer available at
http.//dataman.com/Webpages/Programmers/Product48UXPInformation.aspx.

NOTE: When reprogramming a PIC you may receive the error messages: “Poor contact at pin 13”
or “Over current detected”. These messages most likely mean you have destroyed your PIC.

Programming a PIC Microcontroller Page 18 of 24

9. Breadboarding a PIC Microcontroller

When breadboarding a PIC microcontroller the most important thing to remember (besides how
easily they can be destroyed) is the mandatory pin connections required to make your program
run. These connections will differ from device to device so please read your datasheet for more
specific information.

Using the PIC16F877A as an example we will outline the basic step required to run the flashing
LED program written in MyProject previously described. The following is a pin diagram of the
PIC16F877A:

u 40 [] ~—= RB7/PGD
39] =—= RB6/PGC
38 [] =+—» RB5

37] =—= RB4

36 [] +—= RB3/PGM
35 [] -—= RB2

34 [] =—» RB1

33 [-=—= RBO/INT
32 [] «=— VDD

31 [] -—— Vss

30 [J =—= RD7/PSP7
29 [[] -—= RD6/PSP6
28 [] -—» RDS5/PSP5
27 [] =—= RD4/PSP4
26 [J +—» RC7/RX/DT
25] == RC6/TX/CK
24 [] -—= RC5/SDO
23 [] -+—= RC4/SDI/SDA
22 [] -+—= RD3/PSP3
21 [0 «—= RD2/PSP2

MCLR/Vpp —==[]

RAO/ANO a—w[]

RA1/AN1 <—[]
RA2/AN2/V/REF-/CVREF —a—[]
RA3/AN3/VREF+ e []
RA4/TOCKI/C1OUT e [
RA5/AN4/SS/C20UT ~—s[]
REO/RD/AN5 «—[]
RE1/WR/ANG ~a—[]
RE2/CS/AN7 a—»[]

VDD —— [

VSS o []

OSC1/CLKI —m[]
0SC2/CLKO a——1]
RCO/T10SO/T1CKI a—[]
RC1/T10SI/CCP2 a—u[]
RC2/CCP1 a—[]
RC3/SCK/SCL ~a—w[]
RDO/PSPO «tt—t[]
RD1/PSP1 —-—»[]

@ NN =

©

EEEECEEE
PIC16F874A/877A

-
©

)]
[=}

With regards to voltage supply, pins 1, 11, 12, 32, and 33 must always be connected. Vpp is the
positive voltage supply while Vss is ground. The MCLR/Vep pin is a special pin that keeps the PIC
is reset mode until a proper voltage supply is detected. This pin must be connected in a special

-

way in line with two resistors and a capacitor:

PIC16F87XA

R 11

R2(2

(@]

I

Programming a PIC Microcontroller

Page 19 of 24

A representative from Microchip claimed the following values for components in the circuit:

Component Value
R1 33 KQ
R2 10 KQ
C1 0.1 uF

For more accurate values please read chapter 14.0 Special Features of the CPU in your PIC

microcontroller’s datasheet.

The next important step in breadboarding a PIC microcontroller is the clock oscillation required to
step through your program. Because most PIC’s do not have internal oscillators and external
clocking method is required. Pin 13 OSC1 must be connected in order for your program to run.

During the testing phase a square wave signal from an Arbitrary Waveform Generator may be
used as the source of oscillation. The correct frequency will depend on the PIC you are using as

well as your software requirements.

FConnnn
] | N}

B 5 O 1

When your components are ready to be soldered onto a PCB a timer IC will be required. A cheap
555 timer can be purchased from Digikey or Mouser. Radio Shack also sells them for $1.49.

Programming a PIC Microcontroller Page 20 of 24

The following diagram is the basic circuit schematic for wiring up a PIC microcontroller to run the
LED flash program. You can ignore the 7805 chip and supply the PIC with 5V. As you can see
the red LED is connected to one of the pin in PORTA. The LED should flash on and off at a speed
depending upon your chosen frequency.

+

g,

10uF

|

33K

,_.
=]
=

|
I o |

1EFE77

|

i

You circuit should end up looking something like this:

For more information of breadboarding a PIC microcontroller please read the appropriate PIC
datasheet and visit First Project Tutorial with the 16F877 at
http.//members.home.nl/b.vandam/lonely/pagina000.htmi.

Programming a PIC Microcontroller Page 21 of 24

10. Other Considerations

The software you will develop for your project will obviously be much more complex that the LED
flash program written for this document. Microchip’s website has a section dedicated to software
development along with web seminars and tutorials.

This tutorial is not all inclusive and should only be used as a starting point for a general overview
of programming a PIC microcontroller. The most information you can acquire on PIC
microcontrollers is the individual datasheets and specs. They provide a wealth of information in a
neatly organized document. Also take advantage of Microchip’s very helpful technical support
team at http.//support.microchip.conv.

The following names are contacts at lowa State University capable of helping with programming
PIC microcontrollers:

= Prof. Ralph Patterson

CSG 2101 Coover
o Steve Kavorik
o Jason Boyd
o Jason Jirak

= Dr. Doug Jacobson

= SSOL Howe Hall
o Mike Cook

» Diane Rover — Associate Dean of Engineering
= Dr. Akilesh Tyagi
» Prof. Zhao Zhang
I would also appreciate any feedback on this tutorial. Please feel free to email me with questions

and/or suggestions at yesu@iastate.edu. Thank you for taking the time read this short introduction
to programming PIC microcontrollers.

