
Introduction A Random Number Interface Strings Standard I/O and File Streams

Programming Abstraction in C++

Eric S. Roberts and Julie Zelenski

Stanford University
2010



Introduction A Random Number Interface Strings Standard I/O and File Streams

Chapter 3. Libraries and Interfaces



Introduction A Random Number Interface Strings Standard I/O and File Streams

Outline

1 Introduction

2 A Random Number Interface

3 Strings

4 Standard I/O and File Streams



Introduction A Random Number Interface Strings Standard I/O and File Streams

Outline

1 Introduction

2 A Random Number Interface

3 Strings

4 Standard I/O and File Streams



Introduction A Random Number Interface Strings Standard I/O and File Streams

Introduction

Clients: Programs that make use of library.
Interface: The boundary between a library and its clients.
An interface provides both a channel of communication and a
barrier (hide complex details).

In C++, an interface is represented by a header file.
Exporting: Putting function prototypes, data type and constant
definitions in the interface.
Just as a program implements an algorithm, a header file
provides a realization of an interface.



Introduction A Random Number Interface Strings Standard I/O and File Streams

Introduction

Clients: Programs that make use of library.
Interface: The boundary between a library and its clients.
An interface provides both a channel of communication and a
barrier (hide complex details).

In C++, an interface is represented by a header file.
Exporting: Putting function prototypes, data type and constant
definitions in the interface.
Just as a program implements an algorithm, a header file
provides a realization of an interface.



Introduction A Random Number Interface Strings Standard I/O and File Streams

Packages and abstractions

Package: Header file (.h), an interface, and its corresponding
implementation (.cpp).

Abstraction: The conceptural basis of a library.

Example: iostream and simpio, two different approaches to
input operations (powerful and flexible v.s. simple and easy to
use).



Introduction A Random Number Interface Strings Standard I/O and File Streams

Good interface design

Unified. One interface, one theme, one consistent
abstraction.
Simple. Hide as much complexity from the client as
possible.
Sufficient. Enough functionality to meet the needs.
General. Flexible enough to meet the needs of many
different clients
Stable. Same structure and effect even if the underlying
implementation changes.

Extending: Changing an interface without requiring changes to
existing programs.



Introduction A Random Number Interface Strings Standard I/O and File Streams

Good interface design

Unified. One interface, one theme, one consistent
abstraction.
Simple. Hide as much complexity from the client as
possible.
Sufficient. Enough functionality to meet the needs.
General. Flexible enough to meet the needs of many
different clients
Stable. Same structure and effect even if the underlying
implementation changes.

Extending: Changing an interface without requiring changes to
existing programs.



Introduction A Random Number Interface Strings Standard I/O and File Streams

Outline

1 Introduction

2 A Random Number Interface

3 Strings

4 Standard I/O and File Streams



Introduction A Random Number Interface Strings Standard I/O and File Streams

Random number interface

Figure 3-1, random.h, p. 90

interface boilerplate
# ifndef _random_h
# define _random_h
...

#endif

Prevent the compiler from reading the same interface more
than once during a single compilation.

function prototypes

int RandomInteger(int low, int high);
double RandomReal(double low, double high);
bool RandomChance(double p);
void Randomize();



Introduction A Random Number Interface Strings Standard I/O and File Streams

Random number interface

Figure 3-1, random.h, p. 90

interface boilerplate
# ifndef _random_h
# define _random_h
...

#endif

Prevent the compiler from reading the same interface more
than once during a single compilation.

function prototypes

int RandomInteger(int low, int high);
double RandomReal(double low, double high);
bool RandomChance(double p);
void Randomize();



Introduction A Random Number Interface Strings Standard I/O and File Streams

Implementation

ANSI function
int rand()

returns a random integer between 0 and RAND MAX inclusive.

Randomize()

hides the implementation detail of initializing a pseudorandom
number generator
srand(int (time(NULL)));



Introduction A Random Number Interface Strings Standard I/O and File Streams

Implementation

ANSI function
int rand()

returns a random integer between 0 and RAND MAX inclusive.

Randomize()

hides the implementation detail of initializing a pseudorandom
number generator
srand(int (time(NULL)));



Introduction A Random Number Interface Strings Standard I/O and File Streams

Implementation (cont.)

Figure 3-3, random.cpp, p. 97

int RandomInteger(int low, int high) {
double d = double (rand())/(double (RAND_MAX) + 1);
int k = int (d * (hight - low + 1));
return low + k;

}

1 Normalization. A floating-point number in [0, 1)

2 Scaling and truncation. Scale to an integer in
[0, high − low ]

3 Translation. Shift to [low , high]



Introduction A Random Number Interface Strings Standard I/O and File Streams

Outline

1 Introduction

2 A Random Number Interface

3 Strings

4 Standard I/O and File Streams



Introduction A Random Number Interface Strings Standard I/O and File Streams

Strings

Interface
#include <string>

Domain
All sequences of characters.

Operations
Initialization with a string literal
string str = "Hello";

Concatenation
string str2 = str + "World";

Lexicographical comparison (based on codes)
==, !=, <, >, <=, >=



Introduction A Random Number Interface Strings Standard I/O and File Streams

Calling member functions

str.length()

The object str is the receiver (receiving a request to perform
an operation).

String methods, Table 3-1, p. 101

Idiom
for (i = 0; i < str.length(); i++) {

... str[i] ...
}

Going through all characters in a string.



Introduction A Random Number Interface Strings Standard I/O and File Streams

C++ and C-style strings

Explicitly convert a C-style string literal into a C++ string using
a typecast-like notation:
string str = string("Hello");

Convert a C++ string into a C-style string, using the the method
c str.

string str = "Hello";
char *cstr = str.c_str();



Introduction A Random Number Interface Strings Standard I/O and File Streams

C++ and C-style strings

Explicitly convert a C-style string literal into a C++ string using
a typecast-like notation:
string str = string("Hello");

Convert a C++ string into a C-style string, using the the method
c str.

string str = "Hello";
char *cstr = str.c_str();



Introduction A Random Number Interface Strings Standard I/O and File Streams

Outline

1 Introduction

2 A Random Number Interface

3 Strings

4 Standard I/O and File Streams



Introduction A Random Number Interface Strings Standard I/O and File Streams

File streams

1 Declare a stream variable
ifstream infile;
ofstream outfile;

2 Open the file
infile.open("fname.txt")
The file name must be a string literal or a C-style string.

3 Transfer data from/to the file.
4 Close the file.


	Introduction
	A Random Number Interface
	Strings
	Standard I/O and File Streams

