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1. Introduction 

The problem of surface approximation by means of soft mathematical functions is a relevant 
topic in Hydrology. The generation of these functions allows solving implicitly some of the 
most important calculation in order to predict the behavior of the hydrological basin. Thus, 
this work proposes the use of an Evolutionary Algorithm (EA) (Bäck, 1996) to generate 3-D 
mesh surface from a set of topographic data. In literature, there are only few existing works 
about the use of Evolutionary Algorithms (EAs) applied to the reconstruction of topographic 
surfaces, most of them are based on Genetic Algorithms (GAs) (Holland, 1975; Goldberg, 
1989) as an approximation polynomial parameter estimator. Thus, this paper introduces a 
Genetic Programming (GP) approach whose aim is to obtain a mathematical function that 
allows a compact representation of the surface of the topographic information. This surface 
generation problem is then formulated as symbolic regression. The use of EAs, specifically 
GP (Koza, 1990; Banzhaf et al., 1998), constitute a promise alternative for the traditional 
interpolation techniques that employ approximation polynomials, due to GP integrates in a 
natural way the common non-linearities present in complex interpolation problems. This 
proposal is then applied to a set of topographic data corresponding to the Mezcalapa River 
zone, which is the local name of the Grijalva River located at the southeast of the Mexican 
Republic and it is one of the most important rivers due to its flow and generation of electric 
energy.  

The GP algorithm is programmed in MATLAB® and the results produced by means of this 
GP approach give indication of a significant improvement in terms of the quality of the 
approximation in relation to the results obtained by means of approximation polynomials 
method applied to this region. In the following section a brief review of some works on 
mathematical modeling applied to Civil and Hydraulic Engineering are detailed. After that, 
description of genetic programming algorithm and its implementation in MATLAB are 
presented. The application of this evolutionary method to evolve mathematical models in 
order to construct topographic surface is presented. Finally results and conclusions are 
drawn. 
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2. Previous works 

The literature related to the application of EAs to the problem of topographic surface 
generation is sparse. Some related papers, in terms of mathematical modeling, are the one 
by Fujiwara and Sawai (1999), where the use of EAs is proposed to optimize 3-D facial 
images. The problem is formulated as the selection of n points from a total set of N points 
that constitutes the original image; but, by selecting only n points (n<N), the image can be 
reconstructed with a good approximation to the original one.  
Huang and Ho (2003) proposed a genetic algorithm again to select the n points where n<N 
and N is the number of points of the original image in order to approximate a surface. In this 
work, a crossover operator named OAX (Orthogonal Arrays Crossover) was introduced. 
Kodoma et al (2005) proposed the use of hybrid algorithms by combining matrix-based 
representation genetic algorithm and a simulated annealing algorithm to reduce the 
computing time; however, performance presented by this hybrid algorithm and the original 
proposal based only on genetic algorithms are similar.  
The work by Gálvez et al (2007) concerns to the problem of curve and surface fitting. They 
focus on the case of 3D point clouds fitted with Bézier curves and surfaces. Two Artificial 
Intelligence (AI) techniques are considered in this paper: the use of GAs and the functional 
networks scheme. Wagner et al (2007) present the ability of a state-of-the-art multi-objective 
EA to be successfully integrated in surface reconstruction software. 
Goinski (2008) proposes a novel technique for surface reconstruction from a points cloud in 
3D. The aim is to combine EAs with a recursive subdivision scheme. Paszkowicz (2009) 
reports recent use of GAs in various domains related to materials science, solid state physics 
and chemistry, crystallography, biology, and engineering. Shape and topology optimization 
is one of the applications reported in the field of engineering. 
Periaux et al (2009) compare the performances of two different optimization techniques for 
solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel 
Evolutionary Algorithms software (HAPEA) and the second is implemented with a game 
strategy named Nash-EA. 
In the context of GP, this has been used to solve symbolic regression problems. In Koza 
(1990), GP was used to generate a program to represent the colors of an image as a two 
dimensions array. Keller et al. (1999) proposed the use of GP to reconstruct surfaces of 
prototype pieces of industrial equipment. In this case, the objective is related to the works 
by Kodoma et al. (2005), Fujiwara and Sawai (1999) and Huang and Ho (2003). 
The generation of mathematical function by means of symbolic regression has been widely 
studied in the GP field, as shown by the following papers by Keijzer (2003), Streeter and 
Becker (2001), Iba and Nikolaev (2001), Parasuraman et al (2007), Miller and Harding (2008), 
Baumes et al (2009), Barmpalexis et al (2011), among others. It seems that the representation 
of surface plays an important role in a variety of disciplines including aided-design, 
computer vision, graphic computation and geographical signal and image processing. Thus, 
evolutionary algorithms, in particular genetic programming, have been promising areas to 
these applications.  
In the field of hydraulic engineering, the problem of approximating a soft mathematical 
function to a set of topographic data was considered (Mendoza et al., 1996). It required of 
getting an explicit mathematical expression and then the derivative of it in order to 
construct a model of coordinates curves adjusted to free surface. The problem was initially 
solved by representing the topographic elevation as a function of the dependent variables x-
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y, which was approximated to a third order Taylor series (Arfken, 1980). Coefficients were 
adjusted by a Least Square Algorithm. Obtained results were, in general, acceptable. 
However, there were a significant number of points where the proposed method did not 
provide appropriate estimation (Mendoza et al., 1996). These points corresponded to regions 
of peaks and valleys surrounded by very different topographic points.  
In order to improve the quality of the approximation, Mendoza (2002) proposed the use of 

algorithms belonging to the EAs field. As it is known, EAs are optimization techniques 

based on the concepts of natural selection and evolution. This work is then focused on the 

use of one of these evolutionary techniques, Genetic Programming (Banzhaf, et al., 1998).  

In the present work, representing a topographic surface by means of a mathematical 

function is proposed and the problem is formulated as a symbolic regression using 

traditional genetic programming. A GP Toolbox for MATLAB is then developed and 

detailed in next sections. 

3. Genetic programming 

Nature has provided the inspiration for the design of computational algorithms in a variety 

of ways. These computational processes have taken two main natural systems as their basis 

that is the brain and the genetic evolution theory. EAs are one of these computational models 

and are proposed in this work for modelling topographic surface. 

EAs, also known as Evolutionary Computation (EC), use computational models of 

evolutionary processes in the design and implementation of computer-based problem 

solving. A general definition and classification of these evolutionary techniques is given in 

Bäck (1996). He defines an EA as a search and optimisation algorithm, inspired by the 

process of natural evolution, which maintains a population of structures that evolve 

according to rules of selection and other operators such as recombination and mutation. 

Here, the structure of all evolution-based algorithms is shown in Figure 1. 

The adaptive search algorithm called Genetic Programming (GP) was designed by Koza 

(1990). GP is an evolution-based search model that is a subclass of the popular GAs 

[Holland, 1975; Goldberg, 1989]. Koza introduced a more complex representation based on 

computer programs. Although finding algorithms or programs is more difficult than finding a 

single solution, it is more useful since generalised solutions work for an entire class of tasks. 

 

PROGRAM Evolution-Based Algorithm 

 t = 0 

 Create Initial Population P(t) 

 Evaluate Initial Population P(t) 

 While (not termination_criterion) do 

 t = t + 1 

 Select Individuals for Reproduction P(t) from P(t-1) 

 Alter P(t) 

 Evaluate New Population P(t) 

 end 

Fig. 1. Evolution-based algorithm 
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To illustrate the hierarchical encoding used for GP, Figure 2 gives a simple example where 
the operations +, -, *, %, sin, cos, exp, sqrtp belong to the function set and the variables X 
and Y and the set of constants pi, 1, 2, 3, 4, and 5, constitute the terminal set. It is important 
to mention that division has been assigned the symbol “%”; this means protected division in 
order to avoid infinity results producing by operations like dividing by zero. It is also de 
case for square root operation where sqrtp function takes the absolute value of its argument. 
Note in Figure 2 that the parse tree is also equivalent to the prefix expression, as well as to 
the mathematical function and the MATLAB function.  
 

 

Fig. 2. A tree-based individual encoding and its equivalent representation in prefix notation, 
MATLAB program and mathematical function 

3.1 Genetic programming operators 

As for the conventional GA, reproduction and crossover are considered the main genetic 
operators, mutation being a secondary operator. 

3.1.1 Reproduction 

Reproduction in GP works in a similar way to that in a GA, being one of the foundations of 
the survival of the fittest. It is an asexual operator that selects an individual structure 
according to some selection method based on the fitness measures. The selected individual 
is then copied without any alteration to the new population. 

3.1.2 Crossover 

One of the main differences between GP and the traditional implementation of GA is the 
fact that GP crossover does not preserve any kind of context in the chromosome. This is due 
to the fact that the standard crossover defined by Koza (1990) exchanges subtrees which are 
chosen at random in both parents. Koza has pointed out that random subtree crossover 
maintains diversity in the population because crossing two identical structures, generally, 
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will create different offspring. This is because the crossover points are, in general, different 
in the two parents. 
Crossover works by first selecting a pair of structures from the current population. Then, a 
node rooted from each parent is randomly selected. These nodes become the roots for the 
sub-structures lying below the crossover point. In the next step, the sub-structures are 
exchanged between the parents producing two new structures which are usually of different 
sizes to their parents. Figure 4 illustrates the crossover operation over a function set and 
terminal set defined as for Figure 2. 
Note that for GP-crossover, the crossover point can be either a terminal or an internal point. 
If the crossover points in both parents are internal nodes, this means that function nodes are 
chosen as roots for the substructures to be exchanged. A second case of crossover occurs 
when a terminal node and an internal node, as the root of the substructure, are chosen in the 
first and second parents, respectively. When an internal node is selected, the number of 
arguments taken by the associated function must be considered in order to exchange a valid 
substructure.  
A third case of crossover occurs when the crossover node is a terminal in both parents. In 
this case, the size and shape of the parents do not modify but the arguments of the two 
functions are swapped. 

3.1.3 Mutation 

Mutation is considered a secondary operator. It operates by randomly selecting a node, 
which can be either a terminal or internal point, and replacing the associated sub-structure 
with a randomly generated subtree up to a maximum size. A Maximum Mutation Size 
(MMS) parameter is introduced which is different from the maximum tree size parameter, 
MS. 
In a conventional GA, the mutation operator introduces a certain degree of diversity into the 
population which is being beneficial. In contrast, the GP-crossover operation is the 
mechanism for diversification in the GP population. This fact is the justification given by 
Koza (1990) for using a 0% mutation probability. Hence, convergence of the population is 
unlikely in genetic programming. 
Nevertheless, Angeline (1996) has described a set of mutation operators named: grow, 
shrink, cycle, switch and numerical terminal mutation. These mutation schemes are defined 
as follows: 
Grow exchanges a randomly selected terminal point with a randomly generated subtree. 
Shrink substitutes a selected subtree with a single terminal. 
Cycle replaces a selected internal (a function) node by another function. 
Switch selects two subtrees from the same parent and then switches their positions. 
Numerical Terminal selects a single real-valued numerical (not a variable) terminal and 
adds to it Gaussian noise with a particular variance.  

4. A GA toolbox for MATLAB 

MATLAB is a high-level language and possesses a variety of already implemented functions, 
where problems can be easily coded in m-files. These facts make the programming of a GA 
in MATLAB an easy process. 
The Genetic Algorithm Toolbox uses MATLAB matrix functions to build a set of routines for 
implementing a wide range of genetic algorithm methods (Chipperfield et al., 1994). 
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MATLAB essentially supports only one data type, a rectangular matrix of real or complex 
numeric elements. Thus, four data structures are defined for the implementation of the GA 
Toolbox developed by Chipperfield et al. (1994): 
1. Chromosomes: It is a matrix of size Nind*Lind, where Nind is the population size and 

Lind is the length of the strings (rows of chromosomes) representing individuals. 
2. Phenotypes: This data structure corresponds to the decision variables matrix and is 

obtained by applying a mapping process (decoding) from the chromosome 
representation into the decision variable space. Thus, this structure is a matrix of size 
Nind*Nvar, where Nvar is the number of variables that are encoding into chromosomes 
and each row corresponds to an individual’s phenotype. 

3. Objective Function: It is used to evaluate the performance of each individual (first 
chromosomes and after decoding phenotypes) of the population in the problem 
domain. This can be scalar (for mono-objective GA), or a matrix in the case of a 
multiobjective GA. Then, this data structure is a matrix of size Nind*Nobj, where Nobj is 
the number of objective (Nobj=1 for single objective problems).  

4. Fitness Values: These are derived from the objective function by means of a fitness 
assignment function (scaling or ranking). Fitness values are defined in Nind*1 matrix 
and are non-negative scalars.  

5. GP structures in MATLAB 

From Figure 2, it is seen that the parse-tree has an equivalent prefix notation (a LISP structure); 
thus, this codification is adopted in order to implement genetic programming in MATLAB. 
Then, a population is defined by a Nind*Maxnodes matrix whose content is initially zeros. By 
means of this encoding, the initial population matrix is: 

⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢

⎣

⎡
=

000

000

000

pop

A
BDBB

A
A

 

Then, random parse-trees are generated taking random values from the primitive sets. It is 
important to mention that the root node is always defined as a function node and the arity 
(number of input arguments of each function) is taking into account in order to generate 
syntactically valid structures. An example is presented as follows: 
1. The root node has been randomly chosen from the function set. For this example, this 

function is “exp”. 
2. This function takes one argument, thus another node is randomly selected from the 

function or terminal sets. Here, a function node was chosen (“+”); the “exp” function 
has its argument but the “+” function takes two arguments. Arguments for the “+” 
must be randomly selected. 

3. This process continues until terminals are selected and the expression cannot increase 
its size and (Nodesremain < (Maxnodes – Nodescurr)), where Nodesremain means the nodes 
needed in the structure in order to produce a syntactically valid expression and 
Nodescurr is the number of nodes selected at the moment to conform an expression that is 
still incomplete. In the case where (Nodesremain = (Maxnodes – Nodescurr)), only terminal 
nodes are selected for a syntactically valid expression and the process concludes.  
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In Figure 3, it is then showed some parse-trees and their equivalent prefix notation into a 
population matrix. 
 

 
 

exp * cos % sin cos 0

cos * 0 0 0 0 0 0

% * 0 0 0 0 0

pi X X Y

X Y Z
pop

X Y X Y

+⎡ ⎤⎢ ⎥+⎢ ⎥= ⎢ ⎥⎢ ⎥+⎣ ⎦
B B B B B B B B B B B  

Fig. 3. Initial GP population in MATLAB 

But, in order to facilitate the use of MATLAB to manipulate matrix values of the same type, 
an identifier is considered for each primitive (function or terminal) as shown in Table 1. 
 

Integer Indentifier Primitive Value 

1 + 

2 - 

3 * 

4 % 

5 exp 

6 cos 

7 sin 

1000 random constant 

1001 X 

1002 Y 

1003 Z 

1004 pi 

Table 1. ID for GP Primitive Sets 

Then, matrix presented in Figure 3 is transformed to the following matrix: 
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5 1 3 1004 6 1001 4 7 1001 6 1002 0

1 6 1001 3 1002 1003 0 0 0 0 0 0

4 3 1001 1002 1 1001 1002 0 0 0 0 0

pop

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
B B B B B B B B B B B

 

Genetic operators are applied on these prefix representations by selecting a random 
crossover node in the first parent in the interval [1, MaxNodesPopi] and a random node in the 
second parent between [1, MaxNodesPopi+1], where MaxNodesPop is a Nind column vector 
containing information related to the number of nodes of each individual into the 
population. This vector is updated each time crossover or mutation is performed. After that, 
associate expression to these selected nodes are taken and exchanged creating two new 
individuals. 
In the case of mutation, again a node is randomly selected in the range [1, MaxNodesPopi] 
and the syntactically valid associate sub-expression is eliminated and a new sub-expression 
is inserted. This is created from the primitive sets and using the routine of creating initial 
population. 
If a new individual generated by means of crossover or mutation exceeds the allowed 
maximum size (maximum number of nodes), a new randomly selected node is taken in the 
range defined by the position of the previously selected node and MaxNodePopi. This fact 
avoids that individuals grow rapidly causing bloat1. 
An example of crossover on the MATLAB GP representation is exemplified in Figure 4. 
Previous pop matrix is considered in this example. It is important to mention that the 
individual selection mechanism can be any method (roulette wheel, tournament, stochastic 
universal selection) and it is borrowed from the GA Toolbox, as well as the fitness 
assignment mechanism.  

5.1 Function evaluation 

In order to evaluate each individual into the population, a bottom-up parser must be 
constructed as a MATLAB function. Based on primitive set defined in Table 1 and the last 
individual of pop matrix from Figure 3, this program is evaluate as illustrated in Figure 5 
considering that the variables X and Y take the following values [-3, -2, -1, 0, 1, 2, 3]T and [0, 
1, 2, 3, 4, 5, 6]T, respectively. The output of the evaluated individual (information at the root 
node) is a vector of size Nx1, where N is the number of data points, in this simple example N 
is equal 7. Thus, the objective function is defined as the minimization of the estimated mean 
quadratic error produced between the output of each program (individual) and the real 
values of the topographic elevation. This is expressed in the following equation: 

∑ −= =
N

1j

2

ijji 'zz
N

1
f

 

where fi is the objective value of the i-th individual, z is the vector of measured topographic 
elevations, z’ is the vector of estimated topographic elevations for N recorded coordinates. 
The objective value is scalar and the fitness assignment mechanism described in 
Chipperfield et al. (1994) can be straightforward applied. Observe that for the GP Toolbox 

                                                 

1 Bloat is the rapid growth of programs produced by genetic programming.  
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only three data structures must be defined: pop, a Nind*MaxNodes matrix; objective value, a 
Nind column vector; and a fitness value, a Nind column vector. 
 

 
 

 

Fig. 4. GP toolbox crossover mechanism 
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Fig. 5. A bottom-up parser to evaluate GP individuals 

6. Estimation of topographic surface by means of GP toolbox in MATLAB 

In this section, the MATLAB GP toolbox is applied to model and estimate the topographic 

elevation of the region shown in Figure 6. The number of available topographic data was 

1600 points corresponding to the Mezcalapa river zone located at the southeast of the 

Mexican Republic. In order to apply the evolutionary methods, the following considerations 

were taken into account: 

a. The function set was composed of the four basic arithmetic operators, trigonometric 

functions (sine and cosine) and the square root sqrt function. Thus, the arity set was 

defined as {2, 2, 2, 2, 1, 1, 1}, the arithmetic functions take two input arguments and the 

remaining functions take one input argument. 

b. The terminal set consisted of the independent variables (coordinates) x and y, and the 

ephemeral random constants in the range [-1, 1]. 

c. The termination criterion was set as the maximum number of generations. 

d. In order to evaluate the performance of each individual into the population, estimate 

mean squared error between the topographic elevation obtained by the individual and 

the known elevation z was used.  

e. The selection mechanism used in these experiments was tournament selection with 

tournament of size 3. 

f. The population was composed of 100 individuals of a maximum size of 256 nodes. 

g. Probabilities of crossover and mutation were set to 0.95 and 0.05, respectively. 

h. Finally, ten independent runs were carried out for each sub-region. 
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Fig. 6. Mezcalapa river zone, southeast of Mexican Republic 

7. Results analysis 

The strategy followed in order to reproduce the topography of The Mezcalapa fork River 

was to divide into ten regions the total area; each one of 160 triples of points with 

coordinates (xi, yi, zi). In order to avoid numerical noise a constant value in x and y 

coordinates was added; then, the wireframe map of the total area is shown in Figure 7. 

Figure 8 shows a wireframe map of the same area reconstructed with the estimated values 

of the topographic level; comparing the results, they show that the map based on the 

estimated values is softer, reproduces well the peaks and the valleys but it does not reach 

the values they present.  

The real topography is more rugged and steep; in general, the estimated values of the 

topographic height fall short in the values of the peaks and valleys, leading to smooth the 

values of these. Perhaps the most evidence of this softening is the upper right of the region, 

the real topography exhibits a series of peaks, which show vaguely in the topography 

generated with the estimated values. In general the border values are well reproduced, but 

the extreme internal values (peaks or valleys) are the ones with the information surrounding 

do not have a good estimate. 

In general, when the estimate is good the calculated value is almost the same as the 

measured, however if the information does not help the estimation errors are large (over one 

meter) that future studies will try to improve. 

The analysis of the results shows good estimations of the z values but there are some 

particular areas where it is necessary to refine the set of functions and terminals for better 

estimations of the value of the topographic level. The average error in the ten areas was 0.70 

masl; the maximorum maximum value is in area 1 and is 4.4 masl; minimorum minimum 

value is in area 7 and it has a value of 0.0096 masl. Table 2 shows for each region, the 

average, the maximum and the minimum errors.  
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Fig. 7. Total region, real values of the topographic level 

 

 

Fig. 8. Wireframe map, estimated values of the topographic level 
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Region max error (masl) min error (masl)

1 4.39 0.0023

2 2.34 0.0014

3 2.92 0.012

4 3.26 0.033

5 2.87 0.0028

6 3.85 0.0042

7 3.68 0.00096

8 3.05 0.0013

9 2.83 0.0015

10 3.14 0.003

0.69

0.69

average error (masl)

0.64

0.72

0.68

0.74

0.83

0.69

0.71

0.6

 

Table 2. Results for each region 

Figure 9 shows the difference in absolute value between real z value and estimated z value. 
It can see that the vast majority of points are in the area where the error is less than 0.5 masl. 
However it is also showed that there are points where the estimation error exceeds the value 
of a meter, the latter leads to recommend a further study to refine the areas which have 
picks or valleys and normally these values are surrounded by information that does not 
provide much help for their estimation. 
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Fig. 9. Differences between real and estimated z values 

8. Conclusions 

In this work, a GP MATLAB Toolbox has been introduced exploiting the facilities that this 
interpreter offers. Individual trees are mapped into matrix where each row corresponds to 

www.intechopen.com



 
Engineering Education and Research Using MATLAB 

 

440 

an individual in prefix notation. This type of representation allows to exploit the MATLAB 
data type, rectangular matrix. Then, the GP Toolbox was applied to model topographic 
surfaces; the study region was, in this case the Mezcalapa fork river. Modeling problem was 
formulated as a symbolic regression and obtained results showed considerably good the 
reconstruction of the topographic surface. However, it is necessary to continue the study to 
refine the model’s estimations in the areas in which the values of the peaks and valleys are 
not reached. In general, it reproduces well the topography but it can be improved by 
considering different function sets, genetic operators or more complex individuals in order 
to reduce the estimation errors since the standard GP was the one implemented in this 
work. 
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