
Programming as
Communication

SWE 795, Fall 2019
Software Engineering Environments

LaToza GMU SWE 795 Fall 2019

Today
• Part 1 (Lecture)(~40 mins)

• Programming as communication

• Part 2 (Project Presentations, Part 1)(~40 mins)

• Break

• Part 3 (Project Presentations, Part 2)(~60 mins)

!2

LaToza GMU SWE 795 Fall 2019

HW2: Study of Current Practice
• Revise study proposal based on feedback

received on HW1.
• Conduct study(s) to gather data.
• Analyze data to describe a challenge that

developers face in their programming work.

• 15 min in-class presentation
• Due in 2 weeks on 10/7

!3

LaToza GMU SWE 795 Fall 2019

Demo: Remember this code (10 seconds)

var express = require('express');
var app = express();
const fetch = require('node-fetch');

const body = { 'a': 1 };

fetch('http://localhost:3000/book/23', {
 method: 'post',
 body: JSON.stringify(body),
 headers: { 'Content-Type': 'application/json' },
})
 .then(res => res.json())
 .then(json => console.log(json));

!4

LaToza GMU SWE 795 Fall 2019

Demo: Remember this code (10 seconds)

Set<Integer>	numbers	=	new	HashSet<>();	
		
numbers.add(100);	
numbers.add(35);	
numbers.add(89);	
numbers.add(71);	
		
Iterator<Integer>	iterator	=	numbers.iterator();	
		
while	(iterator.hasNext())	{	
				Integer	aNumber	=	iterator.next();	
				System.out.println(aNumber);	
}

!5

LaToza GMU SWE 795 Fall 2019

Memory and comprehension

• When stimuli are received by human, encoded into
memory as they are processed.

• How they are encoded depends on what
knowledge structures already exist

• Depending on knowledge structures, how this
information is represented may be very different

!6

LaToza GMU SWE 795 Fall 2019

What makes a grand master a chess
expert?

• Memory for random chess boards: same for
experts and novices

• Memory for position from actual game: much
better for experts than novices

• [deGroot 1946; Chase & Simon 1973]
!7

LaToza GMU SWE 795 Fall 2019

What makes an expert?
• Experts are more intelligent?

• IQ doesn’t distinguish best chess players or most
successful artists or scientists (Doll & Mayr 1987)
(Taylor 1975)

• Experts think faster or have larger memory?
• World class chess experts don’t differ from

experts

• Experts have schemas!

!8

LaToza GMU SWE 795 Fall 2019

Experts create schemas by chunking
world

• Schema: a template (struct) describing a set of slots
while (x > 0)
{

invokeAction(actions[x]);
x—;

}

• Experts perceive the world through schemas
• “Chunk” and interpret visual stimuli to determine which

schemas are present
• Form concepts that help developers think in abstractions

!9

LaToza GMU SWE 795 Fall 2019

Program comprehension as text
comprehension

• Developers recognize specific “beacons” (a.k.a.
features) in code that activate schemas
• e.g., for (elem in elements)

• Developers mentally represent programs in terms
of schemas
• Reason about behavior of program using

schemas
• Recall what code is or is not present using

schemas

!10

LaToza GMU SWE 795 Fall 2019

Implications of text comprehension

• Distortions of form in recall
• Developers more likely to recall prototypical

schema values rather than actual.

• Distortions of content
• Developers more likely to recall values inferred

from schemas that were not present in code.

!11

LaToza GMU SWE 795 Fall 2019

Developers perceive programming plan,
control flow, data flow representations

• Build and possess different abstractions of code

• Programming plan
• Hierarchic decomposition of goals in program

• Control flow
• Control flow in a method

• Data flow
• Data flow in a method

!12

LaToza GMU SWE 795 Fall 2019

Chunking
• Items in memory encoded as chunks
• A chunk may be anything that has meaning
• # of chunks in STM fixed, but remembering bigger

chunks lets you remember more
• Memory retention relative to the concepts you

already have

!13

LaToza GMU SWE 795 Fall 2019

Chunking: What’s easiest to remember?

• A lock combination with 8 numbers in order: 10,
20, 30, 40, 50, 60, 70, 80

• A lock combination with 8 numbers in order: 50,
30, 60, 20, 80, 10, 40, 70

• A string of 10 letter: R, P, L, B, V, Q, M, S, D, G
• A string of 52 letters: I pledge allegiance to the flag

of the United State of America.

!14

LaToza GMU SWE 795 Fall 2019

Short term memory (STM)
• Primary, active memory used for holding current

context for System 2
• Unless actively maintained (or encoded to long-

term memory), decays after seconds
• Capacity ~ 4 items

• (classic estimate of 7 +/- 2 is wrong)

!15

LaToza GMU SWE 795 Fall 2019

Another code example

!16

LaToza GMU SWE 795 Fall 2019

Experienced developers learn facts at a
higher level of abstraction

!17

EXPERTS
“Well, this is just updating a cache” (1 min) 

NOVICES
“What it did was it…computes the new line
number and fires an event. But I didn’t see
it change any state.” (38 mins, 10 mins reading
getFoldLevel)

“So what it does, it starts off from this line,
it has this firstInvalidFoldLevel, it goes
through all these lines, it checks whether
this fold information is correct or not, which
is this newFoldLevel, this is supposed to
be the correct fold level. If that is not the
case in the data structure, it needs to
change the state of the buffer. It creates
this, it does this change, it sets the fold
level of that line to the new fold level.” (51
mins, 12 mins reading getFoldLevel)

Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact finding. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE '07). ACM, New York, NY, USA,
361-370. DOI: https://doi.org/10.1145/1287624.1287675

LaToza GMU SWE 795 Fall 2019

Developers constantly switch the level of
abstraction with which they consider code

!18

Anneliese von Mayrhauser and A. Marie Vans. 1997. Program understanding behavior during debugging of large scale software. In Papers presented at the seventh workshop on
Empirical studies of programmers (ESP '97), Susan Wiedenbeck and Jean Scholtz (Eds.). ACM, New York, NY, USA, 157-179. DOI=http://dx.doi.org/10.1145/266399.266414

LaToza GMU SWE 795 Fall 2019

Reading code
• Can use eye gaze data to track moment to moment

the line of code a developer is reading.

!19

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/
10.1145/2786805.2786864

LaToza GMU SWE 795 Fall 2019

Reading code: Some findings
• Developers only look at a few lines within methods,

on average 32%.
• Developers constantly switch lines.
• Developers spend most of their time looking at

method invocations and variable declaration
statements.

• Developers follow data flows within a method (58%
of navigations are within slice).

!20

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015. Tracing software developers' eyes and interactions for change tasks.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 202-213. DOI: https://doi.org/
10.1145/2786805.2786864

label

label

label

label
label
label
label
label
label

Programming as communication

Programming as communication

• Goal: efficiently & accurately transmit information
from environment to developer

• Developers may choose between which evidence
they would like to consider.

!22

LaToza GMU SWE 795 Fall 2019

Example: Reuse
• Goal: display data to the user.
• Can m_k do this?
• Some potential strategies

• Read its description
• Read its implementation
• Understand how it is

typically used by calling
code

• Read documentation
• Conduct a web search for

tutorials and discussion
• Call it and see what happens

• When is there enough evidence
to decide that this is the
function to use?

!23

LaToza GMU SWE 795 Fall 2019

Example: Debugging
• Calls it, does not work.
• Goal: debug why expected

output is not generated
• Some potential strategies

• Set a breakpoint and
step through in
debugger

• Add log statements
• Compare against other

callers of function
• Check for output being

overwritten
• Try a different function

!24

LaToza GMU SWE 795 Fall 2019

Example: Testing
• Appears to work on

example, will it always work?
• Goal: check if it will always

work
• Some potential strategies

• Manually execute
program with different
inputs

• Build test suite
• Read documentation to

double check usage
• Compare against other

uses of function
elsewhere

!25

LaToza GMU SWE 795 Fall 2019

Constraint Communication Theory

• Violating a constraint results in either observably incorrect
behavior or code decay in which design decisions are violated.

• Developers accrue information about constraints by gathering
and interpreting evidence through asking and answering
questions.

• Developers choose from a variety of forms of evidence offered
by alternative programming methodologies.

• Developers choose between methodologies based on their
perception of the current programming context, expectations
about what constraints exist, their beliefs about the efficiency of
alternative methodologies, and habit.

• When developers experience a barrier which prevents use or
increases the perceived cost of using a methodology,
developers shift to using a different methodology.

!26

LaToza GMU SWE 795 Fall 2019

Programming methodologies
• Give guidance about what evidence a developer

should consider when reasoning about constraints
• Should they read the description of the function

or implementation?
• Should they try to reason about the code before

changing it or just modify it and see what
happens?

• Offer normative guidance on what a developer
should do to be effective

• May generate testable predictions about what
actions are most effective

!27

LaToza GMU SWE 795 Fall 2019

Some programming methodologies
• Design by contract

• Specifying the behavior of a function through a contract enables developers to
reason about a function through its interface rather than its implementation.

• Domain-driven design
• Creating functions which correspond to operations on domain elements

enables developers to reason about the behavior of a function by performing
mental simulations of the domain.

• Information hiding
• Hiding a design decision behind an interface enables developers to reason

about the function oblivious to the decision.
• Example-centric programming

• Developers may reason about a function through copy and paste reuse,
identifying, selecting, and adapting code examples.

• Program slicing
• Developers may reason about a function by navigating slices to understand its

impact and why it has generated erroneous output.
• Live programming

• Live programming enables developers to reason about a function by rapidly
varying its inputs and observing its output.

!28

LaToza GMU SWE 795 Fall 2019

Using programming methodologies

• Reuse, debugging, testing all supported by
methodology
• If you learn some evidence which sheds light on

constraint in one step, will influence how behave
in other steps

!29

LaToza GMU SWE 795 Fall 2019

Example

• obj.a();
• ...
• obj.b();

• Suppose that there is a protocol constraint that a
should always be invoked on obj before b.
Consider a task in which a developer wishes to
invoke b. How might a developer learn that they
should first invoke a?

!30

LaToza GMU SWE 795 Fall 2019

Example
• Imagine a look and feel constraint, where

developer expects an animation to "look good" by
proceeding at an appropriate rate. To satisfy this
constraint, the developer must pass 42:
• obj.animate(42);

• How might developers use a methodology to learn
this constraint?

!31

