

Programming Elixir
Functional |> Concurrent |> Pragmatic |> Fun

by Dave Thomas

Copyright © 2014 The Pragmatic Programmers, LLC. This book is licensed to the individual who purchased it. We don't copy -protect it because that would limit your ability to use it for your own purposes.
Please don't break this trust-don't allow others to use your copy of the book. Thanks.
- Dave & Andy .

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors or omissions, or for damages that may result from the use of information (including
program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us at
http://pragprog.com.

The team that produced this book includes: Lynn Beighley (editor), Potomac Indexing, LLC (indexer), Candace Cunningham (copyeditor), Janet Furlow (producer), Ellie Callahan (support).

For international rights, please contact rights@pragprog.com.

No part of this publication may be reproduced, stored in a retrieval sy stem, or transmitted, in any form, or by any means, electronic, mechanical, photocopy ing, recording, or otherwise, without the prior
consent of the publisher.
Printed in the United States of America.
ISBN-13: 978-1-937785-58-1

Book version: P1.0—October, 2014

http://pragprog.com
mailto:rights@pragprog.com

Table of Contents

Foreword
A Vain Attempt at a Justification

  Acknowledgments
1. Take the Red Pill
  Programming Should Be About Transforming Data
  Installing Elixir
  Running Elixir
  Suggestions for Reading the Book
  Exercises
  Think Different(ly)

I. Conventional Programming

  2. Pattern Matching

    Assignment:
I Do Not Think It Means What You Think It Means.

    More Complex Matches
    Ignoring a Value with _ (Underscore)
    Variables Bind Once (per Match)
    Another Way of Looking at the Equals Sign
  3. Immutability
    You Already Have (Some) Immutable Data
    Immutable Data Is Known Data
    Performance Implications of Immutability
    Coding with Immutable Data
  4. Elixir Basics
    Built-in Types
    Value Types
    System Types
    Collection Types
    Maps
    Names, Source Files, Conventions, Operators, and So On
    End of the Basics
  5. Anonymous Functions
    Functions and Pattern Matching
    One Function, Multiple Bodies
    Functions Can Return Functions

    Passing Functions As Arguments
    Functions Are the Core
  6. Modules and Named Functions
    Compiling a Module
    The Function’s Body Is a Block
    Function Calls and Pattern Matching
    Guard Clauses
    Default Parameters
    Private Functions
    |> — The Amazing Pipe Operator
    Modules
    Module Attributes
    Module Names: Elixir, Erlang, and Atoms
    Calling a Function in an Erlang Library
    Finding Libraries
  7. Lists and Recursion
    Heads and Tails
    Using Head and Tail to Process a List
    Using Head and Tail to Build a List
    Creating a Map Function
    Keeping Track of Values During Recursion
    More Complex List Patterns
    The List Module in Action
    Get Friendly with Lists

  8. Dictionaries: Maps, HashDicts,
Keywords, Sets, and Structs

    How to Choose Between Maps, HashDicts, and Keywords
    Dictionaries
    Pattern Matching and Updating Maps
    Updating a Map
    Sets
    With Great Power Comes Great Temptation
  9. An Aside—What Are Types?
  10. Processing Collections—Enum and Stream
    Enum—Processing Collections
    Streams—Lazy Enumerables
    The Collectable Protocol
    Comprehensions
    Moving Past Divinity

  11. Strings and Binaries
    String Literals
    The Name “strings”
    Single-Quoted Strings—Lists of Character Codes
    Binaries
    Double-Quoted Strings Are Binaries
    Binaries and Pattern Matching
    Familiar Yet Strange
  12. Control Flow
    if and unless
    cond

    case

    Raising Exceptions
    Designing with Exceptions
    Doing More with Less
  13. Organizing a Project
    The Project: Fetch Issues from GitHub
    Task: Use Mix to Create Our New Project
    Transformation: Parse the Command Line
    Step: Write Some Basic Tests
    Transformation: Fetch from GitHub
    Task: Use External Libraries
    Transformation: Convert Response
    Transformation: Sort Data
    Transformation: Take First n Items
    Transformation: Format the Table
    Task: Make a Command-Line Executable
    Task: Add Some Logging
    Task: Test the Comments
    Task: Create Project Documentation
    Coding by Transforming Data

II. Concurrent Programming

  14. Working with Multiple Processes
    A Simple Process
    Process Overhead
    When Processes Die
    Parallel Map—The “Hello, World” of Erlang

    A Fibonacci Server
    Agents—A Teaser
    Thinking in Processes
  15. Nodes—The Key to Distributing Services
    Naming Nodes
    Naming Your Processes
    I/O, PIDs, and Nodes
    Nodes Are the Basis of Distribution
  16. OTP: Servers
    Some OTP Definitions
    An OTP Server
    GenServer Callbacks
    Naming a Process
    Tidying Up the Interface
  17. OTP: Supervisors
    Supervisors and Workers
    Supervisors Are the Heart of Reliability
  18. OTP: Applications
    This Is Not Your Father’s Application
    The Application Specification File
    Turning Our Sequence Program into an OTP Application
    Supervision Is the Basis of Reliability
    Hot Code-Swapping
    OTP Is Big—Unbelievably Big
  19. Tasks and Agents
    Tasks
    Agents
    A Bigger Example
    Agents and Tasks, or GenServer?

III. More-Advanced Elixir

  20. Macros and Code Evaluation
    Implementing an if Statement
    Macros Inject Code
    Using the Representation As Code
    Using Bindings to Inject Values
    Macros Are Hygienic
    Other Ways to Run Code Fragments
    Macros and Operators

    Digging Deeper
    Digging Ridiculously Deep
  21. Linking Modules: Behavio(u)rs and Use
    Behaviours
    Use and __using__
    Putting It Together—Tracing Method Calls
    Use use
  22. Protocols—Polymorphic Functions
    Defining a Protocol
    Implementing a Protocol
    The Available Types
    Protocols and Structs
    Protocols Are Polymorphism
  23. More Cool Stuff
    Writing Your Own Sigils
    Multi-app Umbrella Projects
    But Wait! There’s More!
A1. Exceptions: raise and try, catch and throw
  Raising an Exception
  catch, exit, and throw
  Defining Your Own Exceptions
  Now Ignore This Appendix
A2. Type Specifications and Type Checking
  When Specifications Are Used
  Specifying a Type
  Defining New Types
  Specs for Functions and Callbacks
  Using Dialyzer
Bibliography

Early praise for Programming Elixir
Dave Thomas has done it again. Programming Elixir is what every programming book aspires to be. It goes beyond
the basics of simply teaching syntax and mechanical examples. It teaches you how to think Elixir.

→ Bruce Tate

CTO, icanmakeitbetter.com. Author.

In Programming Elixir, Dave has done an excellent job of presenting functional programming in a way that is fun,
practical, and full of inspirational insights into how we can rethink our very approach to designing programs. As you
progress through the book, you will often find yourself smiling after discovering a certain aspect of Elixir that lets you
do things in a new, more elegant way that will almost seem too natural and intuitive to have been neglected by the
programming community at large for so long. The book provides a detailed overview of Elixir and its tooling, aimed
at making the development process smooth and productive. Dave explains the core parts of the Erlang runtime
system, such as distribution, concurrency, and fault tolerance, that imbue Elixir with the power to write scalable and
resilient applications.

→ Alexei Sholik

The era of sequential programming is over—today's high-performance, scalable, and fault-tolerant software is
concurrent. Elixir is a key player in this new world, bringing the power of Erlang and OTP to a wider audience.
Read this book for a head start on the next big thing in software development.

→ Paul Butcher

Author of Seven Concurrency Models in Seven Weeks

Just like the Pickaxe book for Ruby, this book is the de facto standard for Elixir. Dave, in his impeccable style,
provides a thorough coverage of the Elixir language, including data structures, macros, OTP, and even Dialyzer. This
book is a joy to read, as it walks the reader through learning Elixir and the thought processes involved in writing
functional programs. If you want to accelerate your mastery of the Elixir language, Programming Elixir is your best
investment.

→ Jim Freeze

Organizer of the world's first Elixir Conference

This will undoubtedly become the Pickaxe for Elixir. … Thomas excitedly guides the reader through the
awesomeness of Elixir. Worth picking up for anyone interested in Elixir.

→ Dan Kozlowski

Programming Elixir is another smash hit from Dave Thomas. Prior to Programming Elixir I tried my hand at several
functional programming languages only to trip all over myself. You can feel Dave’s enthusiasm and joy of using the
language in each and every chapter. He will have you thinking about solving problems in ways you never thought of
before. This book has drastically changed the way I think about programming in any language for the better.

→ Richard Bishop

I've really enjoyed this book. It's not just some whirlwind tour of syntax or features; I found it to be a very thoughtful
introduction to both Elixir and functional programming in general.

→ Cody Russell

Foreword
I have always been fascinated with how changes in hardware affect how we write software.

A couple of decades ago, memory was a very limited resource. It made sense back then for our software to take
hold of some piece of memory and mutate it as necessary. However, allocating this memory and cleaning up after
we no longer needed it was a very error-prone task. Some memory was never freed; sometimes memory was
allocated over another structure, leading to faults. At the time, garbage collection was a known technique, but we
needed faster CPUs in order to use it in our daily software and free ourselves from manual memory management.
That has happened—most of our languages are now garbage-collected.

Today, a similar phenomenon is happening. Our CPUs are not getting any faster. Instead, our computers get more
and more cores. This means new software needs to use as many cores as it can if it is to maximize its use of the
machine. This conflicts directly with how we currently write software.

In fact, mutating our memory state actually slows down our software when many cores are involved. If you have
four cores trying to access and manipulate the same piece of memory, they can trip over each other. This potentially
corrupts memory unless some kind of synchronization is applied.

I quickly learned that applying this synchronization is manual, error prone, and tiresome, and it hurts performance. I
suddenly realized that’s not how I wanted to spend time writing software in the next years of my career, and I set
out to study new languages and technologies.

It was on this quest that I fell in love with the Erlang virtual machine and ecosystem.

In the Erlang VM, all code runs in tiny concurrent processes, each with its own state. Processes talk to each other
via messages. And since all communication happens by message-passing, exchanging messages between different
machines on the same network is handled transparently by the VM, making it a perfect environment for building
distributed software!

However, I felt there was still a gap in the Erlang ecosystem. I missed first-class support for some of the features I
find necessary in my daily work, things such as metaprogramming, polymorphism, and first-class tooling. From this
need, Elixir was born.

Elixir is a pragmatic approach to functional programming. It values its functional foundations and it focuses on
developer productivity. Concurrency is the backbone of Elixir software. As garbage collection once freed developers
from the shackles of memory management, Elixir is here to free you from antiquated concurrency mechanisms and
bring you joy when writing concurrent code.

A functional programming language lets us think in terms of functions that transform data. This transformation never
mutates data. Instead, each application of a function potentially creates a new, fresh version of the data. This greatly
reduces the need for data-synchronization mechanisms.

Elixir also empowers developers by providing macros. Elixir code is nothing more than data, and therefore can be
manipulated via macros like any other value in the language.

Finally, object-oriented programmers will find many of the mechanisms they consider essential to writing good
software, such as polymorphism, in Elixir.

All this is powered by the Erlang VM, a 20-year-old virtual machine built from scratch to support robust, concurrent,
and distributed software. Elixir and the Erlang VM are going to change how you write software and make you ready
to tackle the upcoming years in programming.

José Valim

Creator of Elixir

Tenczynek, Poland, October 2014

A Vain Attempt at a Justification
I’m a language nut. I love trying languages out, and I love thinking about their design and implementation. (I know;
it’s sad.)

I came across Ruby in 1998 because I was an avid reader of comp.lang.misc (ask your parents). I downloaded it,
compiled it, and fell in love. As with any time you fall in love, it’s difficult to explain why. It just worked the way I
work, and it had enough depth to keep me interested.

Fast-forward 15 years. All that time I’d been looking for something new that gave me the same feeling.

I came across Elixir a while back, but for some reason never got sucked in. But a few months before starting this
book, I was chatting with Corey Haines. I was bemoaning the fact that I wanted a way to show people functional
programming concepts without the academic trappings those books seem to attract. He told me to look again at
Elixir. I did, and I felt the same way I felt when I first saw Ruby.

So now I’m dangerous. I want other people to see just how great this is. I want to evangelize. So my first step is to
write a book.

But I don’t want to write another 900-page Pickaxe book. I want this book to be short and exciting. So I’m not going
into all the detail, listing all the syntax, all the library functions, all the OTP options, or….

Instead, I want to give you an idea of the power and beauty of this programming model. I want to inspire you to get
involved, and then point to the online resources that will fill in the gaps.

But mostly, I want you to have fun.

Acknowledgments
It seems to be a common thread—the languages I fall in love with are created by people who are both clever and
extremely nice. José Valim, the creator of Elixir, takes both of these adjectives to a new level. I owe him a massive
thank-you for giving me so much fun over the last 18 months. Along with him, the whole Elixir core team has done
an amazing job of cranking out an entire ecosystem that feels way more mature than its years. Thank you, all.

A conversation with Corey Haines reignited my interest in Elixir—thank you, Corey, for good evenings, some
interesting times in Bangalore, and the inspiration.

Bruce Tate is always an interesting sounding board, and his comments on early drafts of the book made a big
difference. And I’ve been blessed with an incredible number of active and insightful beta readers who have made
literally hundreds of suggestions for improvements. Thank you, all.

A big tip of the hat to Jessica Kerr, Anthony Eden, and Chad Fowler for letting me steal their tweets.

Candace Cunningham copy edited the book. Among the hundreds of grammatical errors she also found errors in
some of the code. Bless her.

The crew at Potomac did their customary stellar job of indexing.

Susannah Pfalzer was a voice of sanity throughout the project (as she is in so many of our Bookshelf projects), and
Janet Furlow kept us all honest.

Finally, this is the first time I’ve written a book with an editor who works down at the prose level. It’s been a
fantastic experience, as Lynn Beighley has taken what I felt was finished text and systematically shown me the
error of my assumptions. The book is way better for her advice. Thank you.

Dave Thomas

mailto:dave@pragprog.com

Dallas, TX, October 2014

mailto:dave@pragprog.com

Chapter 1

Take the Red Pill
The Elixir programming language wraps functional programming with immutable state and an actor-based approach
to concurrency in a tidy, modern syntax. And it runs on the industrial-strength, high-performance, distributed Erlang
VM. But what does all that mean?

It means you can stop worrying about many of the difficult things that currently consume your time. You no longer
have to think too hard about protecting your data consistency in a multithreaded environment. You worry less about
scaling your applications. And, most importantly, you can think about programming in a different way.

Programming Should Be About Transforming
Data
If you come from an object-oriented world, then you are used to thinking in terms of classes and their instances. A
class defines behavior, and objects hold state. Developers spend time coming up with intricate hierarchies of classes
that try to model their problem, much as Victorian gentleman scientists created taxonomies of butterflies.

When we code with objects, we’re thinking about state. Much of our time is spent calling methods in objects and
passing them other objects. Based on these calls, objects update their own state, and possibly the state of other
objects. In this world, the class is king—it defines what each instance can do, and it implicitly controls the state of
the data its instances hold. Our goal is data-hiding.

But that’s not the real world. In the real world, we don’t want to model abstract hierarchies (because in reality there
aren’t that many true hierarchies). We want to get things done, not maintain state.

Right now, for instance, I’m taking empty computer files and transforming them into files containing text. Soon I’ll
transform those files into a format you can read. A web server somewhere will transform your request to download
the book into an HTTP response containing the content.

I don’t want to hide data. I want to transform it.

Combine Transformations with Pipelines
Unix users are used to the philosophy of small, focused command-line tools that can be combined in arbitrary ways.
Each tool takes an input, transforms it, and writes the result in a format that the next tool (or a human) can use.

This philosophy is incredibly flexible and leads to fantastic reuse. The Unix utilities can be combined in ways
undreamed of by their authors. And each one multiplies the potential of the others.

It’s also highly reliable—each small program does one thing well, which makes it easier to test.

There’s another benefit. A command pipeline can operate in parallel. If I write

$ grep Elixir *.pml | wc -l

the word-count program, wc, runs at the same time as the grep command. Because wc consumes grep’s output as it
is produced, the answer is ready with virtually no delay once grep finishes.

Just to give you a taste of this kind of thing, here’s an Elixir function called pmap. It takes a collection and a function,
and returns the list that results from applying that function to each element of the collection. But…it runs a separate
process to do the conversion of each element. Don’t worry about the details for now.

spawn/pmap1.exs

defmodule Parallel do

 def pmap(collection, func) do

 collection

 |> Enum.map(&(Task.async(fn -> func.(&1) end)))

http://media.pragprog.com/titles/elixir/code/spawn/pmap1.exs

 |> Enum.map(&Task.await/1)

 end

end

We could run this function to get the squares of the numbers from 1 to 1000.

result = Parallel.pmap 1..1000, &(&1 * &1)

And, yes, I just kicked off 1,000 background processes, and I used all the cores and processors on my machine.

The code may not make much sense, but by about halfway through the book, you’ll be writing this kind of thing for
yourself.

Functions Are Data Transformers
Elixir lets us solve the problem in the same way the Unix shell does. Rather than have command-line utilities, we
have functions. And we can string them together as we please. The smaller—more focused—those functions, the
more flexibility we have when combining them.

If we want, we can make these functions run in parallel—Elixir has a simple but powerful mechanism for passing
messages between them. And these are not your father’s boring old processes or threads—we’re talking about the
potential to run millions of them on a single machine and have hundreds of these machines interoperating. Bruce
Tate commented on this paragraph with this thought: “Most programmers treat threads and processes as a
necessary evil; Elixir developers feel they are an important simplification.” As we get deeper into the book, you’ll
start to see what he means.

This idea of transformation lies at the heart of functional programming: a function transforms its inputs into its output.
The trigonometric function sin is an example—give it π/4, and you’ll get back 0.7071…. An HTML templating
system is a function; it takes a template containing placeholders and a list of named values, and produces a
completed HTML document.

But this power comes at a price. You’re going to have to unlearn a whole lot of what you know about programming.
Many of your instincts will be wrong. And this will be frustrating, because you’re going to feel like a total n00b.

Personally, I feel that’s part of the fun.

You didn’t learn, say, object-oriented programming overnight. You are unlikely to become a functional programming
expert by breakfast, either.

But at some point things will click. You’ll start thinking about problems in a different way, and you’ll find yourself
writing code that does amazing things with very little effort on your part. You’ll find yourself writing small chunks of
code that can be used over and over, often in unexpected ways (just as wc and grep can be).

Your view of the world may even change a little as you stop thinking in terms of responsibilities and start thinking in
terms of getting things done.

And just about everyone can agree that will be fun.

Installing Elixir
The most up-to-date instructions for installing Elixir are available at http://elixir-lang.org/getting_started/1.html. Go
install it now.

http://elixir-lang.org/getting_started/1.html

Running Elixir
In this book, I show a terminal session like this:

$ echo Hello, World

Hello, World

The terminal prompt is the dollar sign, and the stuff you type follows. (On your system, the prompt will likely be
different.) Output from the system is shown without highlighting.

iex—Interactive Elixir
To test that your Elixir installation was successful, let’s start an interactive Elixir session. At your regular shell
prompt, type iex.

$ iex

Erlang/OTP 17 [erts-6.0] [source] [64-bit] [smp:4:4] [async-threads:10]

 [hipe] [kernel-poll:false]

Interactive Elixir (x.y.z) - press Ctrl+C to exit (type h() ENTER for help)

iex(1)>

(The various version numbers you see will likely be different—I won’t bother to show them on subsequent
examples.)

Once you have an iex prompt, you can enter Elixir code and you’ll see the result. If you enter an expression that
continues over more than one line, iex will prompt for the additional lines with an ellipsis (…).

iex(1)> 3 + 4

7

iex(2)> String.reverse "madamimadam"

"madamimadam"

iex(3)> 5 *

...(3)> 6

30

iex(4)>

The number in the prompt increments for each complete expression executed. I’ll omit the number in most of the
examples that follow.

There are several ways of exiting from iex—none are tidy. The easiest two are typing Ctrl-C twice or typing Ctrl-G
followed by q and Return.

IEx Helpers

iex has a number of helper functions. Type h (followed by return) to get a list:

iex> h

IEx.Helpers

Welcome to Interactive Elixir. You are currently seeing the documentation

for the module IEx.Helpers which provides many helpers to make Elixir's

shell more joyful to work with.

This message was triggered by invoking the helper `h()`, usually referred

as `h/0` (since it expects 0 arguments).

There are many other helpers available:

* `c/2` — compiles a file at the given path

* `cd/1` — changes the current directory

* `clear/0` — clears the screen

* `flush/0` — flushes all messages sent to the shell

* `h/0` — prints this help

* `h/1` — prints help for the given module, function or macro

* `l/1` — loads the given module's beam code and purges the current version

* `ls/0` — lists the contents of the current directory

* `ls/1` — lists the contents of the specified directory

* `pwd/0` — prints the current working directory

* `r/0` — recompile and reload all modules that were previously reloaded

* `r/1` — recompiles and reloads the given module's source file

* `respawn/0` — respawns the current shell

* `s/1` — prints spec information

* `t/1` — prints type information

* `v/0` — prints the history of commands evaluated in the session

* `v/1` — retrieves the nth value from the history

* `import_file/1` — evaluates the given file in the shell's context

Help for functions in this module can be consulted

directly from the command line, as an example, try:

 h(c/2)

You can also retrieve the documentation for any module or function. Try these:

 h(Enum)

 h(Enum.reverse/1)

In the list of helper functions, the number following the slash is the number of arguments the helper expects.

Probably the most useful is h itself. With an argument, it gives you help on Elixir modules or individual functions in a
module. This works for any modules loaded into iex (so when we talk about projects later on, you’ll see your own
documentation here, too).

For example, the IO module performs common I/O functions. For help on the module, type h(IO) or h IO.

iex> h IO # or...

iex> h(IO)

Functions handling IO.

Many functions in this module expects an IO device as argument. An IO device

must be a PID or an atom representing a process. For convenience, Elixir

provides :stdio and :stderr as shortcuts to Erlang's :standard_io and

:standard_error....

This book frequently uses the puts function in the IO module, which in its simplest form writes a string to the
console. Let’s get the documentation.

iex> h IO.puts

* def puts(device \\ group_leader(), item)

Writes the argument to the device, similarly to write

but adds a new line at the end. The argument is expected

to be a chardata.

iex is a surprisingly powerful tool. You can use it to compile and execute entire projects, log in to remote machines,
and access already-running Elixir applications.

Customizing iex

You can customize iex by setting options. For example, I like showing the results of evaluations in bright cyan. To
find out how to do that, I used this:

iex> h IEx.configure

def configure(options)

Configures IEx.

The supported options are: :colors, :inspect, :default_prompt, :alive_prompt

and :history_size.

Colors

A keyword list that encapsulates all color settings used by the shell. See

documentation for the IO.ANSI module for the list of supported colors and

attributes.

The value is a keyword list. List of supported keys:

• :enabled - boolean value that allows for switching the coloring on and off

• :eval_result - color for an expression's resulting value

• :eval_info - … various informational messages

• :eval_error - … error messages

• :stack_app - … the app in stack traces

• :stack_info - … the remaining info in stack traces

• :ls_directory - … for directory entries (ls helper)

• :ls_device - … device entries (ls helper)

This is an aggregate option that encapsulates all color settings used by the

shell. See documentation for the IO.ANSI module for the list of supported

colors and attributes.

. . .

I then created a file called .iex.exs in my home directory, containing:

IEx.configure colors: [eval_result: [:cyan, :bright]]

If your iex session looks messed up (and things such as [33m appear in the output), it’s likely your console does not
support ANSI escape sequences. In that case, disable colorization using

IEx.configure colors: [enabled: false]

You can put any Elixir code into .iex.exs.

Compile and Run
Once you tire of writing one-line programs in iex, you’ll want to start putting code into source files. These files will
typically have the extension .ex or .exs. This is a convention—files ending in .ex are intended to be compiled into
bytecodes and then run, whereas those ending in .exs are more like programs in scripting languages—they are
effectively interpreted at the source level. When we come to write tests for our Elixir programs, you’ll see that the
application files have .ex extensions, whereas the tests have .exs because we don’t need to keep compiled versions
of the tests lying around.

Let’s write the classic first program. Go to a working directory and create a file called hello.exs.

intro/hello.exs

IO.puts "Hello, World!"

The previous example shows how most of the code listings in this book are presented. The bar before the code itself
shows the path and file name that contains the code. If you’re reading an ebook, you’ll be able to click on this to
download the source file. You can also download all the code by visiting the book’s page on our site and clicking on
the Source Code link.[1]

Source file names are written in lowercase with underscores. They will have the extension .ex for programs that
you intend to compile into binary form, and .exs for scripts that you want to run without compiling. Our “Hello,
World” example is essentially throw-away code, so we used the .exs extension for it.

Having created our source file, let’s run it. In the same directory where you created the file, run the elixir
command:

$ elixir hello.exs

Hello, World!

We can also compile and run it inside iex using the c helper:

$ iex

iex> c "hello.exs"

Hello, World!

[]

iex>

http://media.pragprog.com/titles/elixir/code/intro/hello.exs

The c helper compiled and executed the source file. (The [] that follows the output is the return value of the c
function—if the source file had contained any modules, their names would have been listed here.

The c helper compiled the source file as freestanding code. You can also load a file as if you’d typed each line into
iex using import_file. In this case, local variables set in the file are available in the iex session.

As some folks fret over such things, the Elixir convention is to use two-column indentation and spaces (not tabs).

Suggestions for Reading the Book
This book is not a top-to-bottom reference guide to Elixir. Instead, it is intended to give you enough information to
know what questions to ask and when to ask them. So approach what follows with a spirit of adventure. Try the
code as you read, and don’t stop there. Ask yourself questions and then try to answer them, either by coding or
searching the Web.

Participate in the book’s discussion forums and consider joining the Elixir mailing list.[2][3]

You’re joining the Elixir community while it is still young. Things are exciting and dynamic, and there are plenty of
opportunities to contribute.

Exercises
You’ll find exercises sprinkled throughout the book. If you’re reading an ebook, then each exercise will link directly
to a topic in our online forums. There you’ll find an initial answer, along with discussions of alternatives from readers
of the book.

If you’re reading this book on paper, visit the forums to see the list of exercise topics.[4]

Think Different(ly)
This is a book about thinking differently; about accepting that some of the things folks say about programming may
not be the full story:

Object orientation is not the only way to design code.
Functional programming need not be complex or mathematical.
The foundations of programming are not assignments, if statements, and loops.
Concurrency does not need locks, semaphores, monitors, and the like.
Processes are not necessarily expensive resources.
Metaprogramming is not just something tacked onto a language.
Even if it is work, programming should be fun.

Of course, I’m not saying Elixir is a magic potion (well, technically it is, but you know what I mean). There isn’t the
one true way to write code. But Elixir is different enough from the mainstream that learning it will give you more
perspective and it will open your mind to new ways of thinking about programming.

So let’s start.

And remember to make it fun.

Footnotes

[1]

http://pragprog.com/titles/elixir

[2]

http://forums.pragprog.com/forums/elixir

[3]

https://groups.google.com/forum/?fromgroups#!forum/elixir-lang-talk

[4]

http://forums.pragprog.com/forums/322

http://pragprog.com/titles/elixir
http://forums.pragprog.com/forums/elixir
https://groups.google.com/forum/?fromgroups#!forum/elixir-lang-talk
http://forums.pragprog.com/forums/322

Part 1
Conventional Programming

Elixir is great for writing highly parallel, reliable applications.

But to be a great language for parallel programming, a language first has to be great for
conventional, sequential programming. In this part of the book we’ll cover how to write Elixir code,
and we’ll explore the idioms and conventions that make Elixir so powerful.

Chapter 2

Pattern Matching
In this chapter, we’ll see

pattern matching binds values to variables
matching handles structured data
_ (underscore) lets you ignore a match

We started the previous chapter by saying Elixir engenders a different way of thinking about programming.

To illustrate this and to lay the foundation for a lot of Elixir programming, let’s start reprogramming your brain by
looking at something that’s one of the cornerstones of all programming languages—assignment.

Assignment:
I Do Not Think It Means What You Think It
Means.
Let’s use the interactive Elixir shell, iex, to look at a really simple piece of code. (Remember, you start iex at the
command prompt using the iex command. You enter Elixir code at its iex> prompt, and it displays the resulting
values.)

iex> a = 1

1

iex> a + 3

4

Most programmers would look at this code and say, “OK, we assign one to a variable a, then on the next line we add
3 to a, giving us 4.”

But when it comes to Elixir, they’d be wrong. In Elixir, the equals sign is not an assignment. Instead it’s like an
assertion. It succeeds if Elixir can find a way of making the left-hand side equal the right-hand side. Elixir calls = a
match operator.

In this case, the left-hand side is a variable and the right-hand side is an integer literal, so Elixir can make the match
true by binding the variable a to value 1. You could argue it is just an assignment. But let’s take it up a notch.

iex> a = 1

1

iex> 1 = a

1

iex> 2 = a

** (MatchError) no match of right hand side value: 1

Look at the second line of code, 1 = a. It’s another match, and it passes. The variable a already has the value 1 (it
was set in the first line), so what’s on the left of the equals sign is the same as what’s on the right, and the match
succeeds.

But the third line, 2 = a, raises an error. You might have expected it to assign 2 to a, as that would make the match

succeed, but Elixir will only change the value of a variable on the left side of an equals sign—on the right a variable
is replaced with its value. This failing line of code is the same as 2 = 1, which causes the error.

More Complex Matches
First, a little background syntax. Elixir lists can be created using square brackets containing a comma-separated set
of values. Here are some lists:

["Humperdinck", "Buttercup", "Fezzik"]

["milk", "butter", ["iocane", 12]]

Back to the match operator.

iex> list = [1, 2, 3]

[1, 2, 3]

To make the match true, Elixir bound the variable list to the list [1, 2, 3].

But let’s try something else:

iex> list = [1, 2, 3]

[1, 2, 3]

iex> [a, b, c] = list

[1, 2, 3]

iex> a

1

iex> b

2

iex> c

3

Elixir looks for a way to make the value of the left side the same as on the right. The left side is a list containing
three variables, and the right is a list of three values, so the two sides could be made the same by setting the
variables to the corresponding values.

Elixir calls this process pattern matching. A pattern (the left side) is matched if the values (the right side) have the
same structure and if each term in the pattern can be matched to the corresponding term in the values. A literal
value in the pattern matches that exact value, and a variable in the pattern matches by taking on the corresponding
value.

Let’s look at a few more examples.

iex> list = [1, 2, [3, 4, 5]]

[1, 2, [3, 4, 5]]

iex> [a, b, c] = list

[1, 2, [3, 4, 5]]

iex> a

1

iex> b

2

iex> c

[3, 4, 5]

The value on the right side corresponding the term c on the left side is the sublist [3,4,5]; that is the value given to
c to make the match true.

Let’s try a pattern containing some values and variables.

iex> list = [1, 2, 3]

[1, 2, 3]

iex> [a, 2, b] = list

[1, 2, 3]

iex> a

1

iex> b

3

The literal 2 in the pattern matched the corresponding term on the right, so the match succeeds by setting the values
of a and b to 1 and 3. But…

iex> list = [1, 2, 3]

[1, 2, 3]

iex> [a, 1, b] = list

** (MatchError) no match of right hand side value: [1, 2, 3]

Here the 1 (the second term in the list) cannot be matched against the corresponding element on the right side, so no
variables are set and the match fails. This gives us a way of matching a list that meets certain criteria—in this case
a length of 3, with 1 as its second element.

Your Turn

Exercise: PatternMatching-1
Which of the following will match?

a = [1, 2, 3]

a = 4

4 = a

[a, b] = [1, 2, 3]

a = [[1, 2, 3]]

[a] = [[1, 2, 3]]

[[a]] = [[1, 2, 3]]

http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-1

Ignoring a Value with _ (Underscore)
If we didn’t need to capture a value during the match, we could use the special variable _ (an underscore). This acts
like a variable but immediately discards any value given to it—in a pattern match, it is like a wildcard saying, “I’ll
accept any value here.” The following example matches any three-element list that has a 1 as its first element.

iex> [1, _, _] = [1, 2, 3]

[1, 2, 3]

iex> [1, _, _] = [1, "cat", "dog"]

[1, "cat", "dog"]

Variables Bind Once (per Match)
Once a variable has been bound to a value in the matching process, it keeps that value for the remainder of the
match.

iex> [a, a] = [1, 1]

[1, 1]

iex> a

1

iex> [a, a] = [1, 2]

** (MatchError) no match of right hand side value: [1, 2]

The first expression in this example succeeds because a is initially matched with the first 1 on the right side. The
value in a is then used in the second term to match the second 1 on the right side.

In the next expression, the second a on the left side tries to match a 1 in the second element of the right. It doesn’t,
and so the match fails.

However, a variable can be bound to a new value in a subsequent match, and its current value does not participate in
the new match.

iex> a = 1

1

iex> [1, a, 3] = [1, 2, 3]

[1, 2, 3]

iex> a

2

What if you instead want to force Elixir to use the existing value of the variable in the pattern? Prefix it with ^ (a
caret).

iex> a = 1

1

iex> a = 2

2

iex> ^a = 1

** (MatchError) no match of right hand side value: 1

This also works if the variable is a component of a pattern:

iex> a = 1

1

iex> [^a, 2, 3] = [1, 2, 3] # use existing value of a

[1, 2, 3]

iex> a = 2

2

iex> [^a, 2] = [1, 2]

** (MatchError) no match of right hand side value: [1, 2]

There’s one more important part of pattern matching, which we’ll look at when we start digging deeper into lists.

Your Turn

Exercise: PatternMatching-2
Which of the following will match?

[a, b, a] = [1, 2, 3]

[a, b, a] = [1, 1, 2]

[a, b, a] = [1, 2, 1]

Exercise: PatternMatching-3
If you assume the variable a initially contains the value 2, which of the following will match?

[a, b, a] = [1, 2, 3]

[a, b, a] = [1, 1, 2]

a = 1

^a = 2

^a = 1

^a = 2 - a

http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20PatternMatching-3

Another Way of Looking at the Equals Sign
Elixir’s pattern matching is similar to Erlang’s (the main difference being that Elixir allows a match to assign to a
variable that was assigned in a prior match, whereas in Erlang a variable can be assigned only once).

Joe Armstrong, Erlang’s creator, compares the equals sign in Erlang to that used in algebra. When you write the
equation x = a + 1, you are not assigning the value of a + 1 to x. Instead you’re simply asserting that the
expressions x and a + 1 have the same value. If you know the value of x, you can work out the value of a, and vice
versa.

His point is that you had to unlearn the algebraic meaning of = when you first came across assignment in imperative
programming languages. Now’s the time to un-unlearn it.

That’s why I talk about pattern matching as the first chapter in this part of the book. It is a core part of Elixir—we’ll
also use it in conditions, function calls, and function invocation.

But really, I wanted to get you thinking differently about programming languages and to show you that some of your
existing assumptions won’t work in Elixir.

And speaking of existing assumptions…the next chapter kills another sacred cow. Your current programming
language is probably designed to make it easy to change data. After all, that’s what programs do, right? Not Elixir.
Let’s talk about a language in which all data is immutable.

Change and decay in all around I see…
 Henry Francis Ly te, “Abide with Me”

Chapter 3

Immutability
If you listen to functional-programming aficionados, you’ll hear people making a big deal about immutability—the
fact that in a functional program, data cannot be altered once created.

And, indeed, Elixir enforces immutable data.

But why?

You Already Have (Some) Immutable Data
Forget about Elixir for a moment. Think about your current programming language of choice. Let’s imagine you’d
written this:

count = 99

do_something_with(count)

print(count)

You’d expect it to output 99. In fact, you’d be very surprised if it didn’t. At your very core, you believe that 99 will
always have the value 99.

Now, you could obviously bind a new value to your variable, but that doesn’t change the fact that the value 99 is
still 99.

Imagine programming in a world where you couldn’t rely on that—where some other code, possibly running in
parallel with your own, could change the value of 99. In that world, the call to do_something_with might kick off
code that runs in the background, passing it the value 99 as an argument. And that could change the contents of the
parameter it receives. Suddenly, 99 could be 100.

You’d be (rightly) upset. And, what’s worse, you’d never really be able to guarantee your code produced the
correct results.

Still thinking about your current language, consider this:

array = [1, 2, 3]

do_something_with(array)

print(array)

Again, you’d hope the print call would output [1,2,3]. But in most languages, do_something_with will receive the
array as a reference. If it decides to change the second element or delete the contents entirely, the output won’t be
what you expect. Now it’s harder to look at your code and reason about what it does.

Take this a step further—run multiple threads, all with access to the array. Who knows what state the array will be
in if they all start changing it?

All this is because most compound data structures in most programming languages are mutable—you can change all
or part of their content. And if pieces of your code do this in parallel, you’re in a world of hurt.

By coincidence, Jessica Kerr (@jessitron) tweeted the following on the day I updated this section.

It’s spot-on.

Immutable Data Is Known Data
Elixir sidesteps these problems. In Elixir, all values are immutable. The most complex nested list, the database record
—these things behave just like the simplest integer. Their values are all immutable.

In Elixir, once a variable references a list such as [1,2,3], you know it will always reference those same values
(until you rebind the variable). And this makes concurrency a lot less frightening.

But what if you need to add 100 to each element in [1,2,3]? Elixir does it by producing a copy of the original,
containing the new values. The original remains unchanged, and your operation will not affect any other code holding
a reference to that original.

This fits in nicely with the idea that programming is about transforming data. When we update [1,2,3], we don’t
hack it in place. Instead we transform it into something new.

Performance Implications of Immutability
It would be easy to assume that this approach to programming is inefficient. After all, you have to create a new
copy of data whenever you update it, and that’s going to leave lots of old values around to be garbage-collected.
Let’s look at these in turn.

Copying Data
Although common sense might dictate that all this copying of data is inefficient, the reverse is true. Because Elixir
knows that existing data is immutable, it can reuse it, in part or as a whole, when building new structures.

Consider this code. (It uses a new operator, [head | tail], which builds a new list with head as its first element
and tail as the rest. We’ll spend a whole chapter on this when we talk about lists and recursion. For now, just
trust.)

iex> list1 = [3, 2, 1]

[3, 2, 1]

iex> list2 = [4 | list1]

[4, 3, 2, 1]

In most languages, list2 would be built by creating a new list containing a 4, a 3, a 2, and a 1. The three values in
list1 would be copied into the tail of list2. And that would be necessary because list1 would be mutable.

But Elixir knows list1 will never change, so it simply constructs a new list with a head of 4 and a tail of list1.

Garbage Collection
The other performance issue with a transformational language is that you quite often end up leaving old values
unused when you create new values from them. This leaves a bunch of things using up memory on the heap, so
garbage collection has to reclaim them.

Most modern languages have a garbage collector, and developers have grown to be suspicious of them—they can
impact performance quite badly.

But the cool thing about Elixir is that you write your code using lots and lots of processes, and each process has its
own heap. The data in your application is divvied up between these processes, so each individual heap is much,
much smaller than would have been the case if all the data had been in a single heap. As a result, garbage collection
runs faster. And when a process terminates before its heap becomes full, all its data is discarded—no garbage
collection is required.

Coding with Immutable Data
Once you accept the concept, coding with immutable data is surprisingly easy. You just have to remember that any
function that transforms data will return a new copy of it. Thus, we never capitalize a string. Instead, we return a
capitalized copy of a string.

iex> name = "elixir"

"elixir"

iex> cap_name = String.capitalize name

"Elixir"

iex> name

"elixir"

If you’re coming from an object-oriented language, you may dislike the idea that we write String.capitalize name
and not name.capitalize(). But in OO languages, objects mostly have mutable state. When you make a call such
as name.capitalize() you have no immediate indication whether you are changing the internal representation of
the name, returning a capitalized copy, or both. There’s plenty of scope for ambiguity.

In a functional language, we always transform data. We never modify it in place. The syntax reminds us of this
every time we use it.

That’s enough theory. It’s time to start learning the language. In the next chapter we’ll quickly go over the basic
data types and some syntax, and in the following chapters we’ll look at functions and modules.

Chapter 4

Elixir Basics
In this chapter, we’ll see

Five value types
Two system types
Four collection types
Naming, operators, etc.

In this chapter we’ll look at the types that are baked into Elixir, along with a few other things you need to know to
get started. This chapter is deliberately terse—you’re a programmer and you know what an integer is, so I’m not
going to insult you. Instead, I try to cover the Elixir-specific stuff you need to know.

Built-in Types
Elixir’s built-in types are

Value types:
Arbitrary-sized integers
Floating-point numbers
Atoms
Ranges
Regular expressions

System types:
PIDs and ports
References

Collection types:
Tuples
Lists
Maps
Binaries

In Elixir, functions are a type too. They have their own chapter, following this one.

You might be surprised that this list doesn’t include things such as strings and structures. Elixir has them, but they
are built using the basic types from this list. However, they are important. Strings have their own chapter, and we
have a couple of chapters on lists and maps (and other dictionary-like types). The maps chapter also describes the
Elixir structure facilities.

Finally, there’s some debate about whether regular expressions and ranges are value types. Technically they aren’t
—under the hood they are just structures. But right now it’s convenient to treat them as distinct types.

Value Types
The value types in Elixir represent numbers, names, ranges, and regular expressions.

Integers
Integer literals can be written as decimal (1234), hexadecimal (0xcafe), octal (0o765), and binary (0b1010).

Decimal numbers may contain underscores—these are often used to separate groups of three digits when writing
large numbers, so one million could be written 1_000_000.

There is no fixed limit on the size of integers—their internal representation grows to fit their magnitude.

factorial(10000) # => 28462596809170545189...and so on for 35640 more digits...

(You’ll see how to write a function such as factorial in Modules and Named Functions,.)

Floating-Point Numbers
Floating-point numbers are written using a decimal point. There must be at least one digit before and after the
decimal point. An optional trailing exponent may be given. These are all valid floating-point literals:

1.0 0.2456 0.314159e1 314159.0e-5

Floats are IEEE 754 double precision, giving them about 16 digits of accuracy and a maximum exponent of around
10308.

Atoms
Atoms are constants that represent something’s name. We write them using a leading colon (:), which can be
followed by an atom word or an Elixir operator. An atom word is a sequence of letters, digits, underscores, and at
signs (@). It may end with an exclamation point or a question mark. You can also create atoms containing arbitrary
characters by enclosing in double quotes the characters following the colon. These are all atoms:

:fred :is_binary? :var@2 :<> :=== :"func/3" :"long john silver"

An atom’s name is its value. Two atoms with the same name will always compare as being equal, even if they were
created by different applications on two computers separated by an ocean.

We’ll be using atoms a lot to tag values.

Ranges
Ranges are represented as start..end, where start and end can be values of any type. However, if you want to
iterate over the values in a range, the two extremes must be integers.

Regular Expressions
Elixir has regular-expression literals, written as ~r{regexp} or ~r{regexp}opts. Here I show the delimiters for

regular-expression literals as { and }, but they are considerably more flexible. You can choose any nonalphanumeric
characters as delimiters, as described in the discussion of sigils. Some people use ~r/…/ for nostalgic reasons, but
this is less convenient than the bracketed forms, as any forward slashes inside the pattern must be escaped.

Elixir regular expression support is provided by PCRE,[5] which basically provides a Perl 5–compatible syntax for
patterns.

You can specify one or more single-character options following a regexp literal. These modify the literal’s match
behavior or add functionality.

Opt Meaning

f Force the pattern to start to match on the first line of a multiline string.

g Support named groups.

i Make matches case insensitive.

m If the string to be matched contains multiple lines, ^ and $ match the start and end of these lines. \A and \z continue to match the beginning or end of the string.

r Normally modifiers like * and + are greedy , matching as much as possible. The r modifier makes them reluctant, matching as little as possible.

s Allow . to match any newline characters.

u Enable unicode-specific patterns like \p.

x Enable extended mode—ignore whitespace and comments (# to end of line).

You manipulate regular expressions with the Regex module.

iex> Regex.run ~r{[aeiou]}, "caterpillar"

["a"]

iex> Regex.scan ~r{[aeiou]}, "caterpillar"

[["a"], ["e"], ["i"], ["a"]]

iex> Regex.split ~r{[aeiou]}, "caterpillar"

["c", "t", "rp", "ll", "r"]

iex> Regex.replace ~r{[aeiou]}, "caterpillar", "*"

"c*t*rp*ll*r"

System Types
These types reflect resources in the underlying Erlang VM.

PIDs and Ports
A PID is a reference to a local or remote process, and a port is a reference to a resource (typically external to the
application) that you’ll be reading or writing.

The PID of the current process is available by calling self. A new PID is created when you spawn a new process.
We’ll talk about this in Part II.

References
The function make_ref creates a globally unique reference; no other reference will be equal to it. We don’t use
references in this book.

Collection Types
The types we’ve seen so far are common in other programming languages. Now we’re getting into types that are
more exotic, so we’ll go into more detail here.

Elixir collections can hold values of any type (including other collections).

Tuples
A tuple is an ordered collection of values. As with all Elixir data structures, once created a tuple cannot be modified.

You write a tuple between braces, separating the elements with commas.

{ 1, 2 } { :ok, 42, "next" } { :error, :enoent }

A typical Elixir tuple has two to four elements—any more and you’ll probably want to look at maps,, or structs,.

You can use tuples in pattern matching:

iex> {status, count, action} = {:ok, 42, "next"}

{:ok, 42, "next"}

iex> status

:ok

iex> count

42

iex> action

"next"

It is common for functions to return a tuple where the first element is the atom :ok if there were no errors. For
example (assuming you have a file called Rakefile in your current directory):

iex> {status, file} = File.open("Rakefile")

{:ok, #PID<0.39.0>}

Because the file was successfully opened, the tuple contains an :ok status and a PID, which is how we access the
contents.

A common idiom is to write matches that assume success:

iex> { :ok, file } = File.open("Rakefile")

{:ok, #PID<0.39.0>}

iex> { :ok, file } = File.open("non-existent-file")

** (MatchError) no match of right hand side value: {:error, :enoent}

The second open failed, and returned a tuple where the first element was :error. This caused the match to fail, and
the error message shows that the second element contains the reason—enoent is Unix-speak for “file does not
exist.”

Lists
We’ve already seen Elixir’s list literal syntax, [1,2,3]. This might lead you to think lists are like arrays in other
languages, but they are not (in fact, tuples are the closest Elixir gets to a conventional array). Instead, a list is
effectively a linked data structure. A list may either be empty or consist of a head and a tail. The head contains a
value and the tail is itself a list. (If you’ve used the language Lisp, then this will all seem very familiar.)

As we’ll discuss in Chapter 7, Lists and Recursion , this recursive definition of a list is the core of much Elixir
programming.

Because of their implementation, lists are easy to traverse linearly, but they are expensive to access in random order
(to get to the nth element, you have to scan through n–1 previous elements). It is always cheap to get the head of a
list and to extract the tail of a list.

Lists have one other performance characteristic. Remember that we said all Elixir data structures are immutable?
That means once a list has been made, it will never be changed. So, if we want to remove the head from a list,
leaving just the tail, we never have to copy the list. Instead we can return a pointer to the tail. This is the basis of all
the list-traversal tricks we’ll cover in Chapter 7, Lists and Recursion .

Elixir has some operators that work specifically on lists:

iex> [1, 2, 3] ++ [4, 5, 6] # concatenation

[1, 2, 3, 4, 5, 6]

iex> [1, 2, 3, 4] -- [2, 4] # difference

[1, 3]

iex> 1 in [1,2,3,4] # membership

true

iex> "wombat" in [1, 2, 3, 4]

false

Keyword Lists

Because we often need simple lists of key/value pairs, Elixir gives us a shortcut. If we write

[name: "Dave", city: "Dallas", likes: "Programming"]

Elixir converts it into a list of two-value tuples:

[{:name, "Dave"}, {:city, "Dallas"}, {:likes, "Programming"}]

Elixir allows us to leave off the square brackets if a keyword list is the last argument in a function call. Thus,

DB.save record, [{:use_transaction, true}, {:logging, "HIGH"}]

can be written more cleanly as

DB.save record, use_transaction: true, logging: "HIGH"

We can also leave off the brackets if a keyword list appears as the last item in any context where a list of values is
expected.

iex> [1, fred: 1, dave: 2]

[1, {:fred, 1}, {:dave, 2}]

iex> {1, fred: 1, dave: 2}

{1, [fred: 1, dave: 2]}

Maps
A map is a collection of key/value pairs. A map literal looks like this:

%{ key => value, key => value }

Here are some maps:

iex> states = %{ "AL" => "Alabama", "WI" => "Wisconsin" }

%{"AL" => "Alabama", "WI" => "Wisconsin"}

iex> responses = %{ { :error, :enoent } => :fatal, { :error, :busy } => :retry }

%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}

iex> colors = %{ :red => 0xff0000, :green => 0x00ff00, :blue => 0x0000ff }

%{blue: 255, green: 65280, red: 16711680}

In the first case the keys are strings, in the second they’re tuples, and in the third they’re atoms. Although typically
all the keys in a map are the same type, that isn’t required.

iex> %{ "one" => 1, :two => 2, {1,1,1} => 3 }

%{:two => 2, {1, 1, 1} => 3, "one" => 1}

If the key is an atom, you can use the same shortcut that you use with keyword lists:

iex> colors = %{ red: 0xff0000, green: 0x00ff00, blue: 0x0000ff }

%{blue: 255, green: 65280, red: 16711680}

Why do we have both maps and keyword lists? Maps allow only one entry for a particular key, whereas keyword
lists allow the key to be repeated. Maps are efficient (particularly as they grow), and they can be used in Elixir’s
pattern matching, which we discuss in later chapters.

In general, use keyword lists for things such as command-line parameters and for passing around options, and use
maps (or another data structure, the HashDict) when you want an associative array.

Accessing a Map

You extract values from a map using the key. The square-bracket syntax works with all maps:

iex> states = %{ "AL" => "Alabama", "WI" => "Wisconsin" }

%{"AL" => "Alabama", "WI" => "Wisconsin"}

iex> states["AL"]

"Alabama"

iex> states["TX"]

nil

iex> response_types = %{ { :error, :enoent } => :fatal,

...> { :error, :busy } => :retry }

%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}

iex> response_types[{:error,:busy}]

:retry

If the keys are atoms, you can also use a dot notation:

iex> colors = %{ red: 0xff0000, green: 0x00ff00, blue: 0x0000ff }

%{blue: 255, green: 65280, red: 16711680}

iex> colors[:red]

16711680

iex> colors.green

65280

You’ll get a KeyError if there’s no matching key when you use the dot notation.

Binaries
Sometimes you need to access data as a sequence of bits and bytes. For example, the headers in JPEG and MP3

files contain fields where a single byte may encode two or three separate values.

Elixir supports this with the binary data type. Binary literals are enclosed between << and >>.

The basic syntax packs successive integers into bytes:

iex> bin = << 1, 2 >>

<<1, 2>>

iex> byte_size bin

2

You can add modifiers to control the type and size of each individual field. Here’s a single byte that contains three
fields of widths 2, 4, and 2 bits. (The example uses some built-in libraries to show the result’s binary value.)

iex> bin = <<3 :: size(2), 5 :: size(4), 1 :: size(2)>>

<<213>>

iex> :io.format("~-8.2b~n", :binary.bin_to_list(bin))

11010101

:ok

iex> byte_size bin

1

Binaries are both important and arcane. They’re important because Elixir uses them to represent UTF strings,
They’re arcane because, at least initially, you’re unlikely to use them directly.

Names, Source Files, Conventions, Operators,
and So On
Identifiers in Elixir are combinations of upper- and lowercase ASCII characters, digits, and underscores. They may
end with a question mark or an exclamation point.

Module, record, protocol, and behaviour names start with an uppercase letter and are bumpycase (like this:
BumpyCase). All other identifiers start with a lowercase letter or an underscore, and by convention use underscores
between words. If the first character is an underscore, Elixir doesn’t report a warning if the variable is unused in a
pattern match or function parameter list.

Source files are written in UTF-8, but identifiers may use only ASCII.

By convention, source files use two-character indentation for nesting—and they use spaces, not tabs, to achieve this.

Comments start with a hash sign (#) and run to the end of the line.

The community is compiling a coding style guide. As I write this, it is at https://github.com/niftyn8/elixir_style_guide,
but I’m told it may move in the future.

Truth
Elixir has three special values related to Boolean operations: true, false, and nil. nil is treated as false in Boolean
contexts.

(A bit of trivia: all three of these values are aliases for atoms of the same name, so true is the same as the atom
:true.)

In most contexts, any value other than false or nil is treated as true. We sometimes refer to this as truthy to
differentiate those from the actual value true.

Operators
Elixir has a very rich set of operators. Here’s a subset we’ll use in this book.

Comparison operators

a === b # strict equality (so 1 === 1.0 is false)

a !== b # strict inequality (so 1 !== 1.0 is true)

a == b # value equality (so 1 == 1.0 is true)

a != b # value inequality (so 1 != 1.0 is false)

a > b # normal comparison

a >= b # :

a < b # :

a <= b # :

The ordering comparisons in Elixir are less strict than in many languages, as you can compare values of
different types. If the types are the same or are compatible (for example 3 > 2 or 3.0 < 5), the comparison
uses natural ordering. Otherwise comparison is based on type according to this rule:
number < atom < reference < function < port < pid < tuple < map < list < binary

Boolean operators

https://github.com/niftyn8/elixir_style_guide

(These operators expect true or false as their first argument.)

a or b # true if a is true, otherwise b

a and b # false if a is false, otherwise b

not a # false if a is true, true otherwise

Relaxed Boolean operators

These operators take arguments of any type. Any value apart from nil or false is interpreted as true.

a || b # a if a is truthy, otherwise b

a && b # b if a is truthy, otherwise a

!a # false if a is truthy, otherwise true

Arithmetic operators

+ - * / div rem

Integer division yields a floating-point result. Use div(a,b) to get an integer result.

rem is the remainder operator. It is called as a function (rem(11, 3) => 2). It differs from normal modulo
operations in that the result will have the same sign as the function’s first argument.

Join operators

binary1 <> binary2 # concatenates two binaries (later we'll

 # see that binaries include strings)

list1 ++ list2 # concatenates two lists

list1 -- list2 # returns elements in list1 not in list2

The in operator

a in enum # tests if a is included in enum (for example,

 # a list or a range)

End of the Basics
We’ve now covered the low-level ingredients of an Elixir program. In the next two chapters we’ll discuss how to
create anonymous functions, modules, and named functions.

Footnotes

[5]

http://www.pcre.org/

http://www.pcre.org/

Chapter 5

Anonymous Functions
In this chapter, we’ll see

Anonymous functions
Pattern matching and arguments
Higher-order functions
Closures
The & function literal

Elixir is a functional language, so it is no surprise that functions are a basic type.

An anonymous function is created using the fn keyword.

fn

 parameter-list -> body

 parameter-list -> body ...

end

Think of fn…end as being a bit like the quotes that surround a string literal, except here we’re returning a function
as a value, not a string. We can pass that function value to other functions. We can also invoke it, passing in
arguments.

At its simplest, a function has a parameter list and a body, separated by ->.

For example, the following defines a function, binding it to the variable sum, and then calls it.

iex> sum = fn (a, b) -> a + b end

#Function<12.17052888 in :erl_eval.expr/5>

iex> sum.(1, 2)

3

The first line of code creates a function that takes two parameters (named a and b). The implementation of the
function follows the -> arrow (in our case it simply adds the two parameters), and the whole thing is terminated with
the keyword end. We store the function in the variable sum.

On the second line of code, we invoke the function using the syntax sum.(1,2). The dot indicates the function call,

and the arguments are passed between parentheses. (You’ll have noticed we don’t use a dot for named function
calls—this is a difference between named and anonymous functions.)

If your function takes no arguments, you still need the parentheses to call it:

iex> greet = fn -> IO.puts "Hello" end

#Function<12.17052888 in :erl_eval.expr/5>

iex> greet.()

Hello

:ok

You can, however, omit the parentheses in a function definition.

iex> f1 = fn a, b -> a * b end

#Function<12.17052888 in :erl_eval.expr/5>

iex> f1.(5,6)

30

iex> f2 = fn -> 99 end

#Function<12.17052888 in :erl_eval.expr/5>

iex> f2.()

99

Functions and Pattern Matching
When we call sum.(2,3), it’s easy to assume we simply assign 2 to the parameter a and 3 to b. But that word,
assign, should ring some bells. Elixir doesn’t have assignment. Instead it tries to match values to patterns. (We
came across this when we looked at pattern matching and assignment.)

If we write

a = 2

then Elixir makes the pattern match by binding a to the value 2. And that’s exactly what happens when our sum
function gets called. We pass 2 and 3 as arguments, and Elixir tries to match these arguments to the parameters a
and b, which it does by giving a the value 2 and b the value 3. It’s the same as when we write

{a, b} = {1, 2}

This means we can perform more complex pattern matching when we call a function. For example, the following
function reverses the order of elements in a two-element tuple.

iex> swap = fn { a, b } -> { b, a } end

#Function<12.17052888 in :erl_eval.expr/5>

iex> swap.({ 6, 8 })

{8, 6}

We’ll use this pattern-matching capability when we look at functions with multiple implementations in the next
section.

Your Turn

Exercise: Functions-1
Go into iex. Create and run the functions that do the following:

list_concat.([:a, :b], [:c, :d]) #=> [:a, :b, :c, :d]

sum.(1, 2, 3) #=> 6

pair_tuple_to_list.({ 1234, 5678 }) #=> [1234, 5678]

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-1

One Function, Multiple Bodies
A single function definition lets you define different implementations, depending on the type and contents of the
arguments passed. (You cannot select based on the number of arguments—each clause in the function definition
must have the same number of parameters.)

At its simplest, we can use pattern matching to select which clause to run. In the example that follows, we know the
tuple returned by File.open has :ok as its first element if the file was opened, so we write a function that displays
either the first line of a successfully opened file or a simple error message if the file could not be opened.

Line 1iex> handle_open = fn

2 ...> {:ok, file} -> "Read data: #{IO.read(file, :line)}"

3 ...> {_, error} -> "Error: #{:file.format_error(error)}"

4 ...> end

5 #Function<12.17052888 in :erl_eval.expr/5>

6 iex> handle_open.(File.open("code/intro/hello.exs")) # this file exists

7 "Read data: IO.puts \"Hello, World!\"\n"

8 iex> handle_open.(File.open("nonexistent")) # this one doesn't

9 "Error: no such file or directory"

Let’s start by looking inside the function definition. On lines 2 and 3 we define two separate function bodies. Each
takes a single tuple as a parameter. The first of them requires that the first term in the tuple is :ok. The second line
uses the special variable _ (underscore) to match any other value for the first term.

Now look at line 6. We call our function, passing it the result of calling File.open on a file that exists. This means
the function will receive the tuple {:ok,file}, and this matches the clause on line 2. The corresponding code calls
IO.read to read the first line of this file.

We then call handle_open again, this time with the result of trying to open a file that does not exist. The tuple that is
returned ({:error,:enoent}) is passed to our function, which looks for a matching clause. It fails on line 2 because
the first term is not :ok, but it succeeds on the next line. The code in that clause formats the error as a nice string.

Note a couple of other things in this code. On line 3 we call :file.format_error. The :file part of this refers to
the underlying Erlang File module, so we can call its format_error function. Contrast this with the call to
File.open on line 6. Here the File part refers to Elixir’s built-in module. This is a good example of the underlying
environment leaking through into Elixir code. It is good that you can access all the existing Erlang libraries—there
are hundreds of years of effort in there just waiting for you to use. But it is also tricky because you have to
differentiate between Erlang functions and Elixir functions when you call them.

And finally, this example shows off Elixir’s string interpolation. Inside a string, the contents of #{...} are

evaluated and the result is substituted back in.

Working with Larger Code Examples

Our handle_open function is getting uncomfortably long to ty pe directly into iex. One ty po, and we’d have to ty pe it all in again.

Instead, let’s use our editor to ty pe it into a file in the same directory we were in when we started iex. Let’s call the file handle_open.exs.

first_steps/handle_open.exs

handle_open = fn

{:ok, file} -> "First line: #{IO.read(file, :line)}"

{_, error} -> "Error: #{:file.format_error(error)}"

end

IO.puts handle_open.(File.open("Rakefile")) # call with a file that exists

IO.puts handle_open.(File.open("nonexistent")) # and then with one that doesn't

Now, inside iex, ty pe:

c "handle_open.exs"

This compiles and runs the code in the given file.

We can do the same thing from the command line (that is, not inside iex) using this:

$ elixir handle_open.exs

We used the file extension .exs for this example. This is used for code that we want to run directly from a source file (think of the s as meaning script). For files we want to compile and use
later, we’ll employ the .ex extension.

http://media.pragprog.com/titles/elixir/code/first_steps/handle_open.exs

Your Turn

Exercise: Functions-2
Write a function that takes three arguments. If the first two are zero, return “FizzBuzz.” If the first is zero,
return “Fizz.” If the second is zero, return “Buzz.” Otherwise return the third argument. Do not use any
language features that we haven’t yet covered in this book.

Exercise: Functions-3
The operator rem(a, b) returns the remainder after dividing a by b. Write a function that takes a single
integer (n) and calls the function in the previous exercise, passing it rem(n,3), rem(n,5), and n. Call it seven
times with the arguments 10, 11, 12, and so on. You should get “Buzz, 11, Fizz, 13, 14, FizzBuzz, 16.”
(Yes, it’s a FizzBuzz solution with no conditional logic.)[6]

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-3

Functions Can Return Functions
Here’s some strange code:

iex> fun1 = fn -> fn -> "Hello" end end

#Function<12.17052888 in :erl_eval.expr/5>

iex> fun1.()

#Function<12.17052888 in :erl_eval.expr/5>

iex> fun1.().()

"Hello"

The strange thing is the first line. It’s a little hard to read, so let’s spread it out.

fun1 = fn ->

 fn ->

 "Hello"

 end

 end

The variable fun1 is bound to a function. That function takes no parameters, and its body is a second function
definition. That second function also takes no parameters, and it evaluates the string "Hello".

When we call the outer function (using fun1.()), it returns the inner function. When we call that (fun1.().()) the
inner function is evaluated and “Hello” is returned.

We wouldn’t normally write something such as fun1.().(). But we might call the outer function and bind the result
to a separate variable. We might also use parentheses to make the inner function more obvious.

iex> fun1 = fn -> (fn -> "Hello" end) end

#Function<12.17052888 in :erl_eval.expr/5>

iex> other = fun1.()

#Function<12.17052888 in :erl_eval.expr/5>

iex> other.()

"Hello"

Functions Remember Their Original Environment
Let’s take this idea of nesting functions a little further.

iex> greeter = fn name -> (fn -> "Hello #{name}" end) end

#Function<12.17052888 in :erl_eval.expr/5>

iex> dave_greeter = greeter.("Dave")

#Function<12.17052888 in :erl_eval.expr/5>

iex> dave_greeter.()

"Hello Dave"

Now the outer function has a name parameter. Like any parameter, name is available for use throughout the body of
the function. In this case, we use it inside the string in the inner function.

When we call the outer function, it returns the inner function definition. At this point it has not yet substituted the
name into the string. But when we call the inner function (dave_greeter.()), the substitution takes place and the
greeting appears.

But something strange happens here. The inner function uses the outer function’s name parameter. But by the time
greeter.("Dave") returns, that outer function has finished executing and the parameter has gone out of scope. And
yet when we run the inner function, it merrily uses that parameter’s value.

This works because functions in Elixir automatically carry with them the bindings of variables in the scope in which
they are defined. In our example, the variable name is bound in the scope of the outer function. When the inner
function is defined, it inherits this scope and carries the binding of name around with it. This is a closure—the scope
encloses the bindings of its variables, packaging them into something that can be saved and used later.

Let’s play with this some more.

Parameterized Functions
In the previous example, the outer function took an argument and the inner one did not. Let’s try a different example
where both take arguments.

iex> add_n = fn n -> (fn other -> n + other end) end

#Function<12.17052888 in :erl_eval.expr/5>

iex> add_two = add_n.(2)

#Function<12.17052888 in :erl_eval.expr/5>

iex> add_five = add_n.(5)

#Function<12.17052888 in :erl_eval.expr/5>

iex> add_two.(3)

5

iex> add_five.(7)

12

Here the inner function adds the value of its parameter other to the value of the outer function’s parameter n. Each
time we call the outer function, we give it a value for n and it returns a function that adds n to its own parameter.

Your Turn

Exercise: Functions-4
Write a function prefix that takes a string. It should return a new function that takes a second string. When
that second function is called, it will return a string containing the first string, a space, and the second string.

iex> mrs = prefix.("Mrs")

#Function<erl_eval.6.82930912>

iex> mrs.("Smith")

"Mrs Smith"

iex> prefix.("Elixir").("Rocks")

"Elixir Rocks"

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-4

Passing Functions As Arguments
Functions are just values, so we can pass them to other functions.

iex> times_2 = fn n -> n * 2 end

#Function<12.17052888 in :erl_eval.expr/5>

iex> apply = fn (fun, value) -> fun.(value) end

#Function<12.17052888 in :erl_eval.expr/5>

iex> apply.(times_2, 6)

12

In this example, apply is a function that takes a second function and a value. It returns the result of invoking that
second function with the value as an argument.

We use the ability to pass functions around pretty much everywhere in Elixir code. For example, the built-in Enum
module has a function called map. It takes two arguments: a collection and a function. It returns a list that is the
result of applying that function to each element of the collection. Here are some examples:

iex> list = [1, 3, 5, 7, 9]

[1, 3, 5, 7, 9]

iex> Enum.map list, fn elem -> elem * 2 end

[2, 6, 10, 14, 18]

iex> Enum.map list, fn elem -> elem * elem end

[1, 9, 25, 49, 81]

iex> Enum.map list, fn elem -> elem > 6 end

[false, false, false, true, true]

The & Notation
The strategy of creating short helper functions is so common that Elixir provides a shortcut. Let’s look at it in use
before we explore what’s going on.

iex> add_one = &(&1 + 1) # same as add_one = fn (n) -> n + 1 end

#Function<6.17052888 in :erl_eval.expr/5>

iex> add_one.(44)

45

iex> square = &(&1 * &1)

#Function<6.17052888 in :erl_eval.expr/5>

iex> square.(8)

64

iex> speak = &(IO.puts(&1))

&IO.puts/1

iex> speak.("Hello")

Hello

:ok

The & operator converts the expression that follows into a function. Inside that expression, the placeholders &1, &2,
and so on correspond to the first, second, and subsequent parameters of the function. So &(&1 + &2) will be
converted to fn p1, p2 -> p1 + p2 end.

Elixir is even more clever. Look at the speak line in the previous code. Normally Elixir would have generated an
anonymous function, so &(IO.puts(&1)) would become fn x -> IO.puts(x) end. But Elixir noticed that the body
of the anonymous function was simply a call to a named function (the IO function puts) and that the parameters
were in the correct order (that is, the first parameter to the anonymous function was the first parameter to the
named function, and so on). So Elixir optimized away the anonymous function, replacing it with a direct reference to
the function, IO.puts/1.

For this to work, the arguments must be in the correct order:

iex> rnd = &(Float.round(&1, &2))

&Float.round/2

iex> rnd = &(Float.round(&2, &1))

#Function<12.17052888 in :erl_eval.expr/5>

You might see references to Erlang pop up when you define functions this way. That’s because Elixir runs on the
Erlang VM. There’s more evidence of this if you try something like &abs(&1). Here Elixir maps your use of the abs
function directly into the underlying Erlang library, and returns &:erlang.abs/1.

Because [] and {} are operators in Elixir, literal lists and tuples can also be turned into functions. Here’s a function
that returns a tuple containing the quotient and remainder of dividing two integers:

iex> divrem = &{ div(&1,&2), rem(&1,&2) }

#Function<12.17052888 in :erl_eval.expr/5>

iex> divrem.(13, 5)

{2, 3}

There’s a second form of the & function capture operator. You can give it the name and arity (number of
parameters) of an existing function, and it will return an anonymous function that calls it. The arguments you pass to
the anonymous function will in turn be passed to the named function. We’ve already seen this: when we entered &
(IO.puts(&1)) into iex, it displayed the result as &IO.puts/1. In this case, puts is a function in the IO module, and it
takes one argument. The Elixir way of naming this is IO.puts/1. If we place an & in front of this, we wrap it in a
function. Here are some other examples:

iex> l = &length/1

&:erlang.length/1

iex> l.([1,3,5,7])

4

iex> len = &Enum.count/1

&Enum.count/1

iex> len.([1,2,3,4])

4

iex> m = &Kernel.min/2 # This is an alias for the Erlang function

&:erlang.min/2

iex> m.(99,88)

88

This works with named functions we write, as well (but we haven’t covered how to write them yet).

The & shortcut gives us a wonderful way to pass functions to other functions.

iex> Enum.map [1,2,3,4], &(&1 + 1)

[2, 3, 4, 5]

iex> Enum.map [1,2,3,4], &(&1 * &1)

[1, 4, 9, 16]

iex> Enum.map [1,2,3,4], &(&1 < 3)

[true, true, false, false]

Your Turn

Exercise: Functions-5
Use the &… notation to rewrite the following.

Enum.map [1,2,3,4], fn x -> x + 2 end

Enum.each [1,2,3,4], fn x -> IO.inspect x end

http://forums.pragprog.com/forums/322/topics/Exercise:%20Functions-5

Functions Are the Core
At the start of the book, we said the basis of programming is transforming data. Functions are the little engines that
perform that transformation. They are at the very heart of Elixir.

So far we’ve been looking at anonymous functions—although we can bind them to variables, the functions
themselves have no name.

Elixir also has named functions. In the next chapter we’ll cover how to work with them.

Footnotes

[6]

http://c2.com/cgi/wiki?FizzBuzzTest

http://c2.com/cgi/wiki?FizzBuzzTest

Chapter 6

Modules and Named Functions
In this chapter, we’ll see

Modules, the basic unit of code
Defining public and private named functions
Guard clauses
Module directives and attributes
Calling functions in Erlang modules

Once a program grows beyond a couple of lines, you’ll want to structure it. Elixir makes this easy. You break your
code into named functions and organize these functions into modules. In fact, in Elixir named functions must be
written inside modules.

Let’s look at a simple example. Navigate to a working directory and create an Elixir source file called times.exs.

mm/times.exs

defmodule Times do

 def double(n) do

 n * 2

 end

end

Here we have a module named Times. It contains a single function, double. Because our function takes a single
argument and because the number of arguments forms part of the way we identify Elixir functions, you’ll see this
function name written double/1.

http://media.pragprog.com/titles/elixir/code/mm/times.exs

Compiling a Module
Let’s look at two ways to compile this file and load it into iex. First, if you’re at the command line, you can do this:

$ iex times.exs

iex> Times.double 4

8

Give iex a source file’s name, and it compiles and loads the file before it displays a prompt.

If you’re already in iex, you can use the c helper to compile your file without returning to the command line.

iex> c "times.exs"

[Times]

iex> Times.double(4)

8

iex> Times.double(123)

246

The line c "times.exs" compiles your source file and loads it into iex. We then call the double function in the
Times module a couple of times using Times.double.

What happens if we make our function fail by passing it a string rather than a number?

iex> Times.double("cat")

** (ArithmeticError) bad argument in arithmetic expression

 times.exs:3: Times.double/1

An exception (ArithmeticError) gets raised, and we see a stack backtrace. The first line tells us what went wrong
(we tried to perform arithmetic on a string), and the next line tells us where. But look at what it writes for the name
of our function: Times.double/1.

In Elixir a named function is identified by both its name and its number of parameters (its arity). Our double
function takes one parameter, so Elixir knows it as double/1. If we had another version of double that took three
parameters, it would be known as double/3. These two functions are totally separate as far as Elixir is concerned.

But from a human perspective, you’d imagine that if two functions have the same name they are somehow related,
even if they have a different number of parameters. For that reason, don’t use the same name for two functions that
do unrelated things.

The Function’s Body Is a Block
The do…end block is one way of grouping expressions and passing them to other code. They are used in module
and named function definitions, control structures…any place in Elixir where code needs to be handled as an entity.

However, do…end is not actually the underlying syntax. The actual syntax looks like this:

def double(n), do: n * 2

You can pass multiple lines to do: by grouping them with parentheses.

def greet(greeting, name), do: (

 IO.puts greeting

 IO.puts "How're you doing, #{name}?"

)

The do…end form is just a lump of syntactic sugar—during compilation it is turned into the do: form. (And the do:
form itself is nothing special; it is simply a term in a keyword list.) Typically people use the do: syntax for single-line
blocks, and do…end for multiline ones.

This means our times example would probably be written as

mm/times1.exs

defmodule Times do

 def double(n), do: n * 2

end

We could even write it as

defmodule Times, do: (def double(n), do: n*2)

(but please don’t).

http://media.pragprog.com/titles/elixir/code/mm/times1.exs

Your Turn

Exercise: ModulesAndFunctions-1
Extend the Times module with a triple function that multiplies its parameter by three.

Exercise: ModulesAndFunctions-2
Run the result in iex. Use both techniques to compile the file.

Exercise: ModulesAndFunctions-3
Add a quadruple function. (Maybe it could call the double function.…)

http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-3

Function Calls and Pattern Matching
In the previous chapter we covered how anonymous functions use pattern matching to bind their parameter list to
the passed arguments. The same is true of named functions. The difference is that we write the function multiple
times, each time with its own parameter list and body. Although this looks like multiple function definitions, purists
will tell you it’s multiple clauses of the same definition (and they’d be right).

When you call a named function, Elixir tries to match your arguments with the parameter list of the first definition
(clause). If it cannot match them, it tries the next definition of the same function (remember, this must have the
same arity) and checks to see if it matches. It continues until it runs out of candidates.

Let’s play with this. The factorial of n (written n!) is the product of all numbers from 1 to n. By convention, 0! is 1.

Another way of expressing this is to say

factorial(0) → 1
factorial(n) → n * factorial(n-1)

This is a specification of factorial, but it is also very close to an Elixir implementation:

mm/factorial1.exs

defmodule Factorial do

 def of(0), do: 1

 def of(n), do: n * of(n-1)

end

Here we have two definitions of the same function. If we call Factorial.of(2), Elixir matches the 2 against the
first function’s parameter, 0. This fails, so it tries the second definition, which succeeds when Elixir binds 2 to n. It
then evaluates the body of this function, which calls Factorial.of(1). The same process applies, and the second
definition is run. This, in turn, calls Factorial.of(0), which is matched by the first function definition. This function
returns 1 and the recursion ends. Elixir now unwinds the stack, performing all the multiplications, and returns the
answer. This factorial implementation works, but it could be significantly improved. We’ll do that improvement when
we look at tail recursion.

Let’s play with this code:

iex> c "factorial1.exs"

[Factorial]

iex> Factorial.of(3)

http://media.pragprog.com/titles/elixir/code/mm/factorial1.exs

6

iex> Factorial.of(7)

5040

iex> Factorial.of(10)

3628800

iex> Factorial.of(1000)

40238726007709377354370243392300398571937486421071463254379991042993851239862

90205920442084869694048004799886101971960586316668729948085589013238296699445

...

00624271243416909004153690105933983835777939410970027753472000000000000000000

000

000

000

This pattern of design and coding is very common in Elixir (and almost all functional languages). First look for the
simplest possible case, one that has a definite answer. This will be the anchor. Then look for a recursive solution that
will end up calling the anchor case.

Here are a couple of examples:

Sum of the first n numbers

The sum of the first 0 numbers is 0.
The sum of the numbers up to n is n + the sum of the numbers up to n–1.

Length of a list

The length of an empty list is 0.
The length of any other list is 1 + the length of the tail of that list.

One point worth stressing: the order of these clauses can make a difference when you translate them into code.

Elixir tries functions from the top down, executing the first match. So the following code will not work:

mm/factorial1-bad.exs

defmodule BadFactorial do

 def of(n), do: n * of(n-1)

 def of(0), do: 1

end

The first function definition will always match and the second will never be called. But Elixir has you covered—
when you try to compile this, you’ll get a warning:

iex> c "factorial1-bad.exs"

.../factorial1-bad.ex:3: this clause cannot match because a previous clause at

 line 2 always matches

One more thing: when you have multiple implementations of the same function, they should be adjacent in the source
file.

http://media.pragprog.com/titles/elixir/code/mm/factorial1-bad.exs

Your Turn

Exercise: ModulesAndFunctions-4
Implement and run a function sum(n) that uses recursion to calculate the sum of the integers from 1 to n.
You’ll need to write this function inside a module in a separate file. Then load up iex, compile that file, and try
your function.

Exercise: ModulesAndFunctions-5
Write a function gcd(x,y) that finds the greatest common divisor between two nonnegative integers.
Algebraically, gcd(x,y) is x if y is zero; it’s gcd(y, rem(x,y)) otherwise.

http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-5

Guard Clauses
We’ve seen that pattern matching allows Elixir to decide which function to invoke based on the arguments passed.
But what if we need to distinguish based on their types or on some test involving their values? For this, you use
guard clauses . These are predicates that are attached to a function definition using one or more when keywords.
When doing pattern matching, Elixir first does the conventional parameter-based match and then evaluates any when
predicates, executing the function only if at least one predicate is true.

mm/guard.exs

defmodule Guard do

 def what_is(x) when is_number(x) do

 IO.puts "#{x} is a number"

 end

 def what_is(x) when is_list(x) do

 IO.puts "#{inspect(x)} is a list"

 end

 def what_is(x) when is_atom(x) do

 IO.puts "#{x} is an atom"

 end

end

Guard.what_is(99) # => 99 is a number

Guard.what_is(:cat) # => cat is an atom

Guard.what_is([1,2,3]) # => [1,2,3] is a list

Recall our previous factorial example.

mm/factorial1.exs

defmodule Factorial do

 def of(0), do: 1

http://media.pragprog.com/titles/elixir/code/mm/guard.exs
http://media.pragprog.com/titles/elixir/code/mm/factorial1.exs

 def of(n), do: n * of(n-1)

end

If we were to pass it a negative number, it would loop forever—no matter how many times you decrement n, it will
never be zero. So it is a good idea to add a guard clause to stop this from happening.

mm/factorial2.exs

defmodule Factorial do

 def of(0), do: 1

 def of(n) when n > 0 do

 n * of(n-1)

 end

end

If you run this code with a negative argument, none of the functions will match:

iex> c "factorial2.exs"

[Factorial]

iex> Factorial.of -100

** (FunctionClauseError) no function clause matching in Factorial.of/1...

Guard-Clause Limitations
You can write only a subset of Elixir expressions in guard clauses. The following list comes from the Getting Started
guide.[7]

Comparison operators

==, !=, ===, !==, >, <, <=, >=

Boolean and negation operators

or, and, not, !. Note that || and && are not allowed.

Arithmetic operators

+, -, *, /

http://media.pragprog.com/titles/elixir/code/mm/factorial2.exs

Join operators

<> and ++, as long as the left side is a literal.

The in operator

Membership in a collection or range

Type-check functions

These built-in Erlang functions return true if their argument is a given type. You can find their documentation
online.[8]

is_atom is_binary is_bitstring is_boolean is_exception is_float is_function is_integer
is_list is_map is_number is_pid is_port is_record is_reference is_tuple

Other functions

These built-in functions return values (not true or false). Their documentation is online, on the same page as
the type-check functions.

abs(number) bit_size(bitstring) byte_size(bitstring) div(number,number) elem(tuple, n)
float(term) hd(list) length(list) node() node(pid|ref|port) rem(number,number)
round(number) self() tl(list) trunc(number) tuple_size(tuple)

Default Parameters
When you define a named function, you can give a default value to any of its parameters by using the syntax param
\\ value. When you call a function that is defined with default parameters, Elixir compares the number of
arguments you are passing with the number of required parameters for the function. If you’re passing fewer
arguments than the number of required parameters, then there’s no match. If the two numbers are equal, then the
required parameters take the values of the passed arguments, and the other parameters take their default values. If
the count of passed arguments is greater than the number of required parameters, Elixir uses the excess to override
the default values of some or all parameters. Parameters are matched left to right.

mm/default_params.exs

defmodule Example do

 def func(p1, p2 \\ 2, p3 \\ 3, p4) do

 IO.inspect [p1, p2, p3, p4]

 end

end

Example.func("a", "b") # => ["a",2,3,"b"]

Example.func("a", "b", "c") # => ["a","b",3,"c"]

Example.func("a", "b", "c", "d") # => ["a","b","c","d"]

Default arguments can behave surprisingly when Elixir does pattern matching. For example, compile the following:

def func(p1, p2 \\ 2, p3 \\ 3, p4) do

 IO.inspect [p1, p2, p3, p4]

end

def func(p1, p2) do

 IO.inspect [p1, p2]

end

and you’ll get this error:

http://media.pragprog.com/titles/elixir/code/mm/default_params.exs

** (CompileError) default_params.exs:7: def func/2 conflicts with

 defaults from def func/4

That’s because the first function definition (with the default parameters) matches any call with two, three, or four
arguments.

There’s one more thing with default parameters. Here’s a function with multiple heads that also has a default
parameter:

mm/default_params1.exs

defmodule DefaultParams1 do

 def func(p1, p2 \\ 123) do

 IO.inspect [p1, p2]

 end

 def func(p1, 99) do

 IO.puts "you said 99"

 end

end

IO

If you compile this, you’ll get an error:

** (CompileError) default_params1.exs.exs:8: def func/2 has default

 values and multiple clauses, define a function head

 with the defaults

The intent is to reduce the confusion that can arise with defaults. Simply add a function head with no body that
contains the default parameters, and use regular parameters for the rest. The defaults will apply to all calls to the
function.

mm/default_params2.exs

http://media.pragprog.com/titles/elixir/code/mm/default_params1.exs
http://media.pragprog.com/titles/elixir/code/mm/default_params2.exs

defmodule Params do

 def func(p1, p2 \\ 123)

 def func(p1, p2) when is_list(p1) do

 "You said #{p2} with a list"

 end

 def func(p1, p2) do

 "You passed in #{p1} and #{p2}"

 end

end

IO.puts Params.func(99) # You passed in 99 and 123

IO.puts Params.func(99, "cat") # You passed in 99 and cat

IO.puts Params.func([99]) # You said 123 with a list

IO.puts Params.func([99], "dog") # You said dog with a list

Your Turn

Exercise: ModulesAndFunctions-6
I’m thinking of a number between 1 and 1000.…
The most efficient way to find the number is to guess halfway between the low and high numbers of the
range. If our guess is too big, then the answer lies between the bottom of the range and one less than our
guess. If our guess is too small, then the answer lies between one more than our guess and the end of the
range.
Your API will be guess(actual, range), where range is an Elixir range.
Your output should look similar to this:

iex> Chop.guess(273, 1..1000)

Is it 500

Is it 250

Is it 375

Is it 312

Is it 281

Is it 265

Is it 273

273

Hints:
You may need to implement helper functions with an additional parameter (the currently guessed
number).
The div(a,b) function performs integer division.
Guard clauses are your friends.
Patterns can match the low and high parts of a range (a..b=4..8).

http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-6

Private Functions
The defp macro defines a private function—one that can be called only within the module that declares it.

You can define private functions with multiple heads, just as you can with def. However, you cannot have some
heads private and others public. That is, the following code is not valid:

def fun(a) when is_list(a), do: true

defp fun(a), do: false

|> — The Amazing Pipe Operator
I’ve saved the best for last, at least when it comes to functions.

You’ve all seen code like this:

people = DB.find_customers

orders = Orders.for_customers(people)

tax = sales_tax(orders, 2013)

filing = prepare_filing(tax)

Bread-and-butter programming. We did it because the alternative was to write

filing = prepare_filing(sales_tax(Orders.for_customers(DB.find_customers), 2013))

and that’s the kind of code that you use to get kids to eat their vegetables. Not only is it hard to read, but you have to
read it inside out if you want to see the order in which things get done.

Elixir has a better way of writing it.

filing = DB.find_customers

 |> Orders.for_customers

 |> sales_tax(2013)

 |> prepare_filing

The |> operator takes the result of the expression to its left and inserts it as the first parameter of the function
invocation to its right. So the list of customers the first call returns becomes the argument passed to the
for_customers function. The resulting list of orders becomes the first argument to sales_tax, and the given
parameter, 2013, becomes the second.

val |> f(a,b) is basically the same as calling f(val,a,b), and

list

|> sales_tax(2013)

|> prepare_filing

is the same as prepare_filing(sales_tax(list, 2013)).

In the previous example, I wrote each term in the expression on a separate line, and that’s perfectly valid Elixir. But
you can also chain terms on the same line.

iex> (1..10) |> Enum.map(&(&1*&1)) |> Enum.filter(&(&1 < 40))

[1, 4, 9, 16, 25, 36]

Note that I had to use parentheses in that code—the & shortcut and the pipe operator fight otherwise.

Let me repeat that—you should always use parentheses around function parameters in pipelines.

The key aspect of the pipe operator is that it lets you write code that pretty much follows your spec’s form. For the
sales-tax example, you might have jotted this on some paper:

Get the customer list.
Generate a list of their orders.
Calculate tax on the orders.
Prepare the filing.

To take this from a napkin spec to running code, you just put |> between the items and implement each as a
function.

DB.find_customers

 |> Orders.for_customers

 |> sales_tax(2013)

 |> prepare_filing

Programming is transforming data, and the |> operator makes that transformation explicit.

And now this book’s subtitle makes sense.

Modules
Modules provide namespaces for things you define. We’ve already seen them encapsulating named functions. They
also act as wrappers for macros, structs, protocols, and other modules.

If we want to reference a function defined in a module from outside that module, we need to prefix the reference
with the module’s name. We don’t need that prefix if code references something inside the same module as itself, as
in the following example.

defmodule Mod do

 def func1 do

 IO.puts "in func1"

 end

 def func2 do

 func1

 IO.puts "in func2"

 end

end

Mod.func1

Mod.func2

func2 can call func1 directly because it is inside the same module. Outside the module, you have to use the fully
qualified name, Mod.func1.

Just as you do in your favorite language, Elixir programmers use nested modules to impose structure for readability
and reuse. After all, every programmer is a library writer.

To access a function in a nested module from the outside scope, prefix it with all the module names. To access it
within the containing module, use either the fully qualified name or just the inner module name as a prefix.

defmodule Outer do

 defmodule Inner do

 def inner_func do

 end

 end

 def outer_func do

 Inner.inner_func

 end

end

Outer.outer_func

Outer.Inner.inner_func

Module nesting in Elixir is an illusion—all modules are defined at the top level. When we define a module inside
another, Elixir simply prepends the outer module name to the inner module name, putting a dot between the two. This
means we can directly define a nested module.

defmodule Mix.Tasks.Doctest do

 def run do

 end

end

Mix.Tasks.Doctest.run

It also means there’s no particular relationship between the modules Mix and Mix.Tasks.Doctest.

Directives for Modules
Elixir has three directives that simplify working with modules. All three are executed as your program runs, and the
effect of all three is lexically scoped—it starts at the point the directive is encountered, and stops at the end of the
enclosing scope. This means a directive in a module definition takes effect from the place you wrote it until the end
of the module; a directive in a function definition runs to the end of the function.

The import Directive
The import directive brings a module’s functions and/or macros into the current scope. If you use a particular
module a lot in your code, import can cut down the clutter in your source files by eliminating the need to repeat the

module name time and again.

For example, if you import the flatten function from the List module, you’d be able to call it in your code without
having to specify the module name.

mm/import.exs

defmodule Example do

 def func1 do

 List.flatten [1,[2,3],4]

 end

 def func2 do

 import List, only: [flatten: 1]

 flatten [5,[6,7],8]

 end

end

The full syntax of import is

import Module [, only:|except:]

The optional second parameter lets you control which functions or macros are imported. You write only: or
except:, followed by a list of name: arity pairs. It is a good idea to use import in the smallest possible enclosing
scope and to use only: to import just the functions you need.

import List, only: [flatten: 1, duplicate: 2]

Alternatively, you can give only: one of the atoms :functions or :macros, and import will bring in only functions
or macros.

The alias Directive
The alias directive creates an alias for a module. One obvious use is to cut down on typing.

defmodule Example do

http://media.pragprog.com/titles/elixir/code/mm/import.exs

 def func do

 alias Mix.Tasks.Doctest, as: Doctest

 doc = Doctest.setup

 doc.run(Doctest.defaults)

 end

end

We could have abbreviated this alias directive to alias Mix.Tasks.Doctest because the as: parameter defaults
to the last part of the module name.

The require Directive
You require a module if you want to use the macros defined in that module. The require directive ensures that the
given module is loaded before your code tries to use any of the macros it defines. We’ll talk about require when we
talk about macros.

Module Attributes
Elixir modules each have associated metadata. Each item of metadata is called an attribute of the module and is
identified by a name. Inside a module, you can access these attributes by prefixing the name with an at sign (@).

You can give an attribute a value using the syntax

@name value

This works only at the top level of a module—you cannot set an attribute value inside a function definition. You can,
however, access attributes inside functions.

mm/attributes.exs

defmodule Example do

 @author "Dave Thomas"

 def get_author do

 @author

 end

end

IO.puts "Example was written by #{Example.get_author}"

You can set the same attribute multiple times in a module. If you access that attribute in a named function in that
module, the value you see will be the value in effect when the function is defined.

mm/attributes1.exs

defmodule Example do

 @attr "one"

 def first, do: @attr

 @attr "two"

 def second, do: @attr

end

http://media.pragprog.com/titles/elixir/code/mm/attributes.exs
http://media.pragprog.com/titles/elixir/code/mm/attributes1.exs

IO.puts "#{Example.first} #{Example.second}" # => one two

These attributes are not variables in the conventional sense. Use them for configuration and metadata only. (Many
Elixir programmers employ them where Java or Ruby programmers might use constants.)

Module Names: Elixir, Erlang, and Atoms
When we write modules in Elixir, they have names such as String or PhotoAlbum. We call functions in them using
calls such as String.length("abc").

What’s happening here is subtle. Internally, module names are just atoms. When you write a name starting with an
uppercase letter, such as IO, Elixir converts it internally into an atom called Elixir.IO.

iex> is_atom IO

true

iex> to_string IO

"Elixir.IO"

iex> :"Elixir.IO" === IO

true

So a call to a function in a module is really an atom followed by a dot followed by the function name. And, indeed,
we can call functions like this:

iex> IO.puts 123

123

:ok

iex> :"Elixir.IO".puts 123

123

:ok

Calling a Function in an Erlang Library
The Erlang conventions for names are different—variables start with an uppercase letter and atoms are simple
lowercase names. So, for example, the Erlang module timer is called just that, the atom timer. In Elixir we write
that as :timer. If you want to refer to the tc function in timer, you’d write :timer.tc. (Note the colon at the
start.)

Say we want to output a floating-point number in a three-character-wide field with one decimal place. Erlang has a
function for this. A search for erlang format takes us to the description of the format function in the Erlang io
module.[9]

Reading the description, we see that Erlang expects us to call io.format. So, in Elixir we simply change the Erlang
module name to an Elixir atom:

iex> :io.format("The number is ~3.1f~n", [5.678])

The number is 5.7

:ok

Finding Libraries
If you’re looking for a library to use in your app, you’ll want to look first for existing Elixir modules. The built-in ones
are documented on the Elixir website,[10] and others are listed at http://hex.pm and on GitHub (search for elixir).

If that fails, search for a built-in Erlang library or search the Web.[11] If you find something written in Erlang, you’ll
be able to use it in your project (we’ll cover how in the chapter on projects,). But be aware that the Erlang
documentation for a library follows Erlang conventions. Variables start with uppercase letters, and identifiers starting
with a lowercase letter are atoms (so Erlang would say tomato and Elixir would say :tomato). A summary of the
differences between Elixir and Erlang is available online.[12]

Now that we’ve looked at functions, let’s move on to the data they manipulate. And where better to start than with
lists, the subject of the next chapter?

http://hex.pm

Your Turn

Exercise: ModulesAndFunctions-7
Find the library functions to do the following, and then use each in iex. (If the word Elixir or Erlang appears
at the end of the challenge, then you’ll find the answer in that set of libraries.)

Convert a float to a string with two decimal digits. (Erlang)
Get the value of an operating-system environment variable. (Elixir)
Return the extension component of a file name (so return .exs if given "dave/test.exs"). (Elixir)
Return the process’s current working directory. (Elixir)
Convert a string containing JSON into Elixir data structures. (Just find; don’t install.)
Execute a command in your operating system’s shell.

Footnotes

[7]

http://elixir-lang.org/getting_started/5.html

[8]

http://erlang.org/doc/man/erlang.html#is_atom-1

[9]

http://erlang.org/doc/man/io.html#format-2>

[10]

http://elixir-lang.org/docs/

[11]

http://erlang.org/doc/ and http://erldocs.com/R15B/ (Note that the latter is slightly out of date.)

[12]

http://elixir-lang.org/crash-course.html

http://forums.pragprog.com/forums/322/topics/Exercise:%20ModulesAndFunctions-7
http://elixir-lang.org/getting_started/5.html
http://erlang.org/doc/man/erlang.html#is_atom-1
http://erlang.org/doc/man/io.html#format-2>
http://elixir-lang.org/docs/
http://erlang.org/doc/
http://erldocs.com/R15B/
http://elixir-lang.org/crash-course.html

Chapter 7

Lists and Recursion
In this chapter, we’ll see

The recursive structure of lists
Traversing and building lists
Accumulators
Implementing map and reduce

When we program with lists in conventional languages, we treat them as things to be iterated—it seems natural to
loop over them. So why do we have a chapter on lists and recursion? Because if you look at the problem in the
right way, recursion is a perfect tool for processing lists.

Heads and Tails
Earlier we said a list may either be empty or consist of a head and a tail. The head contains a value and the tail is
itself a list. This is a recursive definition.

We’ll represent the empty list like this: [].

Let’s imagine we could represent the split between the head and the tail using a pipe character, |. The single
element list we normally write as [3] can be written as the value 3 joined to the empty list:

[3 | []]

When we see the pipe character, we say that what is on the left is the head of a list and what’s on the right is the
tail.

Let’s look at the list [2, 3]. The head is 2, and the tail is the single-element list containing 3. And we know what
that list looks like—it is our previous example. So we could write [2,3] as

[2 | [3 | []]]

At this point, part of your brain is telling you to go read today’s XKCD—this list stuff can’t be useful. Ignore that
small voice, just for a second. We’re about to do something magical. But before we do, let’s add one more term,
making our list [1, 2, 3]. This is the head 1 followed by the list [2, 3], which is what we derived a moment ago:

[1 | [2 | [3 | []]]]

This is valid Elixir syntax. Type it into iex.

iex> [1 | [2 | [3 | []]]]

[1, 2, 3]

And here’s the magic. When we discussed pattern matching, we said the pattern could be a list, and the values in
that list would be assigned from the right-hand side.

iex> [a, b, c] = [1, 2, 3]

[1, 2, 3]

iex> a

1

iex> b

2

iex> c

3

We can also use the pipe character in the pattern. What’s to the left of it matches the head value of the list, and
what’s to the right matches the tail.

iex> [head | tail] = [1, 2, 3]

[1, 2, 3]

iex> head

1

iex> tail

[2, 3]

How iex Displays Lists

In Chapter 11, Strings and Binaries, y ou’ll see that Elixir has two representations for strings. One is the familiar sequence of characters in consecutive memory locations. Literals written with
double quotes use this form.

The second form, using single quotes, represents strings as a list of integer codepoints. So the string 'cat' is the three codepoints: 99, 97, and 116.

This is a headache for iex. When it sees a list like [99,97,116] it doesn’t know if it is supposed to be the string 'cat' or a list of three numbers. So it uses a heuristic. If all the values in a list
represent printable characters, it display s the list as a string; otherwise it display s a list of integers.

iex≻ [99, 97, 116]

'cat'

iex≻ [99, 97, 116, 0] # '0' is nonprintable

[99, 97, 116, 0]

In Chapter 11, Strings and Binaries, we’ll cover how to by pass this behavior. In the meantime, don’t be surprised if a string pops up when y ou were expecting a list.

Using Head and Tail to Process a List
Now we can split a list into its head and its tail, and we can construct a list from a value and a list, which become the
head and tail of that new list.

So why talk about lists after we talk about modules and functions? Because lists and recursive functions go together
like fish and chips. Let’s look at finding the length of a list.

The length of an empty list is 0.
The length of a list is 1 plus the length of that list’s tail.

Writing that in Elixir is easy:

lists/mylist.exs

defmodule MyList do

 def len([]), do: 0

 def len([head|tail]), do: 1 + len(tail)

end

The only tricky part is the definition of the function’s second variant:

def len([head | tail]) ...

This is a pattern match for any nonempty list. When it does match, the variable head will hold the value of the first
element of the list, and tail will hold the rest of the list. (And remember that every list is terminated by an empty
list, so the tail can be [].)

Let’s see this at work with the list [11, 12, 13, 14, 15]. At each step, we take off the head and add 1 to the length of
the tail:

len([11,12,13,14,15])

= 1 + len([12,13,14,15])

= 1 + 1 + len([13,14,15])

= 1 + 1 + 1 + len([14,15])

= 1 + 1 + 1 + 1 + len([15])

http://media.pragprog.com/titles/elixir/code/lists/mylist.exs

= 1 + 1 + 1 + 1 + 1 + len([])

= 1 + 1 + 1 + 1 + 1 + 0

= 5

Let’s try our code to see if theory works in practice:

iex> c "mylist.exs"

...mylist.exs:3: variable head is unused

[MyList]

iex> MyList.len([])

0

iex> MyList.len([11,12,13,14,15])

5

It works, but we have a compilation warning—we never used the variable head in the body of our function. We can
fix that, and make our code more explicit, using the special variable _ (underscore), which acts as a placeholder. We
can also use an underscore in front of any variable name to turn off the warning if that variable isn’t used. I
sometimes like to do this to document the unused parameter.

lists/mylist1.exs

defmodule MyList do

 def len([]), do: 0

 def len([_head | tail]), do: 1 + len(tail)

end

When we compile, the warning is gone. (However, if you compile the second version of MyList, you may get a
warning about “redefining module MyList.” This is just Elixir being cautious.)

iex> c "mylist1.exs"

[MyList]

http://media.pragprog.com/titles/elixir/code/lists/mylist1.exs

iex> MyList.len([1,2,3,4,5])

5

iex> MyList.len(["cat", "dog"])

2

Using Head and Tail to Build a List
Let’s get more ambitious. Let’s write a function that takes a list of numbers and returns a new list containing the
square of each. We don’t show it, but these definitions are also inside the MyList module.

lists/mylist1.exs

def square([]), do: []

def square([head | tail]), do: [head*head | square(tail)]

There’s a lot going on here. First, look at the parameter patterns for the two definitions of square. The first matches
an empty list and the second matches all other lists.

Second, look at the body of the second definition:

def square([head | tail]), do: [head*head | square(tail)]

When we match a nonempty list, we return a new list whose head is the square of the original list’s head and whose
tail is list of squares of the tail. This is the recursive step.

Let’s try it:

iex> c "mylist1.exs"

[MyList]

iex> MyList.square [] # this calls the 1st definition

[]

iex> MyList.square [4,5,6] # and this calls the 2nd

[16, 25, 36]

Let’s do something similar—a function that adds 1 to every element in the list:

lists/mylist1.exs

def add_1([]), do: []

def add_1([head | tail]), do: [head+1 | add_1(tail)]

And call it:

http://media.pragprog.com/titles/elixir/code/lists/mylist1.exs
http://media.pragprog.com/titles/elixir/code/lists/mylist1.exs

iex> c "mylist1.exs"

[MyList]

iex> MyList.add_1 [1000]

[1001]

iex> MyList.add_1 [4,6,8]

[5, 7, 9]

Creating a Map Function
With both square and add_1, all the work is done in the second function definition. And that definition looks about
the same for each—it returns a new list whose head is the result of either squaring or incrementing the head of its
argument and whose tail is the result of calling itself recursively on the tail of the argument. Let’s generalize this.
We’ll define a function called map that takes a list and a function and returns a new list containing the result of
applying that function to each element in the original.

lists/mylist1.exs

def map([], _func), do: []

def map([head | tail], func), do: [func.(head) | map(tail, func)]

The map function is pretty much identical to the square and add_1 functions. It returns an empty list if passed an
empty list; otherwise it returns a list where the head is the result of calling the passed-in function and the tail is a
recursive call to itself. Note that in the case of an empty list, we use _func as the second parameter. The
underscore prevents Elixir from warning us about an unused variable.

To call this function, pass in a list and a function (defined using fn).

iex> c "mylist1.exs"

[MyList]

iex> MyList.map [1,2,3,4], fn (n) -> n*n end

[1, 4, 9, 16]

A function is just a built-in type, defined between fn and the end. Here we pass a function as the second argument
(func) to map. This is invoked inside map using func.(head), which squares the value in head, using the result to
build the new list.

We can call map with a different function:

iex> MyList.map [1,2,3,4], fn (n) -> n+1 end

[2, 3, 4, 5]

And another:

iex> MyList.map [1,2,3,4], fn (n) -> n > 2 end

[false, false, true, true]

http://media.pragprog.com/titles/elixir/code/lists/mylist1.exs

And we can do the same using the & shortcut notation:

iex> MyList.map [1,2,3,4], &(&1 + 1)

[2, 3, 4, 5]

iex> MyList.map [1,2,3,4], &(&1 > 2)

[false, false, true, true]

Keeping Track of Values During Recursion
So far you’ve seen how to process each element in a list, but what if we want to sum all of the elements? The
difference here is that we need to remember the partial sum as we process each element in turn.

In terms of a recursive structure, it’s easy:

sum([]) → 0
sum([head |tail]) → «total» + sum(tail)

But the basic scheme gives us nowhere to record the total as we go along. Remember that one of our goals is to
have immutable state, so we can’t keep the value in a global or module-local variable.

But we can pass the state in a function’s parameter.

lists/sum.exs

defmodule MyList do

 def sum([], total), do: total

 def sum([head | tail], total), do: sum(tail, head+total)

end

Our sum function now has two parameters, the list and the total so far. In the recursive call, we pass it the list’s tail
and increment the total by the value of the head.

At all times, these types of functions maintain an invariant, a condition that is true on return from any call (or nested
call). In this case, the invariant is that at any stage of the recursion, the sum of the elements in the list parameter plus
the current total will equal the total of the entire list. Thus, when the list becomes empty the total will be the value
we want.

When we call sum we have to remember to pass both the list and the initial total value (which will be 0):

iex> c "sum.exs"

[MyList]

iex> MyList.sum([1,2,3,4,5], 0)

15

iex> MyList.sum([11,12,13,14,15], 0)

65

http://media.pragprog.com/titles/elixir/code/lists/sum.exs

Having to remember that extra zero is a little tacky, so the convention in Elixir is to hide it—our module has a public
function that takes just a list, and it calls private functions to do the work.

lists/sum2.exs

defmodule MyList do

 def sum(list), do: _sum(list, 0)

 # private methods

 defp _sum([], total), do: total

 defp _sum([head | tail], total), do: _sum(tail, head+total)

end

Two things to notice here: First, we use defp to define a private function. You won’t be able to call these functions
outside the module. Second, we chose to give our helper functions the same name as our public function, but with a
leading underscore. Elixir treats them as being independent, but a human reader can see that they are clearly related.

(Had we kept the exact same name, they would still be different functions. as they have a different arity from the
original sum function. The leading underscore simply makes it explicit. Some library code also uses do_xxx for these
helpers.)

http://media.pragprog.com/titles/elixir/code/lists/sum2.exs

Your Turn

Exercise: ListsAndRecursion-0
I defined our sum function to carry a partial total as a second parameter so I could illustrate how to use
accumulators to build values. The sum function can also be written without an accumulator. Can you do it?

Generalizing Our Sum Function
The sum function reduces a collection to a single value. Clearly other functions need to do something similar—return
the greatest/least value, the product of the elements, a string containing the elements with spaces between them, and
so on. How can we write a general-purpose function that reduces a collection to a value?

We know it has to take a collection. We also know we need to pass in some initial value (just like our sum/1 function
passed a 0 as an initial value to its helper). Additionally, we need to pass in a function that takes the current value of
the reduction along with the next element of the collection, and returns the next value of the reduction. So, it looks
like our reduce function will be called with three arguments:

reduce(collection, initial_value, fun)

Now let’s think about the recursive design:

reduce([], value, _) → value
reduce([head |tail], value, fun) → reduce(tail, fun.(head, value), fun)

reduce applies the function to the list’s head and the current value, and passes the result as the new current value
when reducing the list’s tail.

Here’s our code for reduce. See how closely it follows the design.

lists/reduce.exs

defmodule MyList do

 def reduce([], value, _) do

 value

 end

 def reduce([head | tail], value, func) do

 reduce(tail, func.(head, value), func)

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-0
http://media.pragprog.com/titles/elixir/code/lists/reduce.exs

 end

end

And, again, we can use the shorthand notation to pass in the function:

iex> c "reduce.exs"

[MyList]

iex> MyList.reduce([1,2,3,4,5], 0, &(&1 + &2))

15

iex> MyList.reduce([1,2,3,4,5], 1, &(&1 * &2))

120

Your Turn

Exercise: ListsAndRecursion-1
Write a mapsum function that takes a list and a function. It applies the function to each element of the list and
then sums the result, so

iex> MyList.mapsum [1, 2, 3], &(&1 * &1)

14

Exercise: ListsAndRecursion-2
Write a max(list) that returns the element with the maximum value in the list. (This is slightly trickier than it
sounds.)

Exercise: ListsAndRecursion-3
An Elixir single-quoted string is actually a list of individual character codes. Write a caesar(list, n)

function that adds n to each list element, wrapping if the addition results in a character greater than z.

iex> MyList.caesar('ryvkve', 13)

?????? :)

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-3

More Complex List Patterns
Not every list problem can be easily solved by processing one element at a time. Fortunately, the join operator, |,
supports multiple values to its left. Thus, you could write

iex> [1, 2, 3 | [4, 5, 6]]

[1, 2, 3, 4, 5, 6]

The same thing works in patterns, so you can match multiple individual elements as the head. For example, the
following program swaps pairs of values in a list.

lists/swap.exs

defmodule Swapper do

 def swap([]), do: []

 def swap([a, b | tail]), do: [b, a | swap(tail)]

 def swap([_]), do: raise "Can't swap a list with an odd number of elements"

end

We can play with it in iex:

iex> c "swap.exs"

[Swapper]

iex> Swapper.swap [1,2,3,4,5,6]

[2, 1, 4, 3, 6, 5]

iex> Swapper.swap [1,2,3,4,5,6,7]

** (RuntimeError) Can't swap a list with an odd number of elements

The third definition of swap matches a list with a single element. This will happen if we get to the end of the
recursion and have only one element left. As we take two values off the list on each cycle, the initial list must have
had an odd number of elements.

Lists of Lists

http://media.pragprog.com/titles/elixir/code/lists/swap.exs

Let’s imagine we had recorded temperatures and rainfall at a number of weather stations. Each reading looks like
this:

[timestamp, location_id, temperature, rainfall]

Our code is passed a list containing a number of these readings, and we want to report on the conditions for one
particular location, number 27.

lists/weather.exs

defmodule WeatherHistory do

 def for_location_27([]), do: []

 def for_location_27([[time, 27, temp, rain] | tail]) do

 [[time, 27, temp, rain] | for_location_27(tail)]

 end

 def for_location_27([_ | tail]), do: for_location_27(tail)

end

This is a standard recurse until the list is empty stanza. But look at our function definition’s second clause. Where
we’d normally match into a variable called head, here the pattern is

for_location_27([[time, 27, temp, rain] | tail])

For this to match, the head of the list must itself be a four-element list, and the second element of this sublist must be
27. This function will execute only for entries from the desired location. But when we do this kind of filtering, we
also have to remember to deal with the case when our function doesn’t match. That’s what the third line does. We
could have written

for_location_27([[time, _, temp, rain] | tail])

but in reality we don’t care what is in the head at this point.

In the same module we define some simple test data:

lists/weather.exs

def test_data do

http://media.pragprog.com/titles/elixir/code/lists/weather.exs
http://media.pragprog.com/titles/elixir/code/lists/weather.exs

 [

 [1366225622, 26, 15, 0.125],

 [1366225622, 27, 15, 0.45],

 [1366225622, 28, 21, 0.25],

 [1366229222, 26, 19, 0.081],

 [1366229222, 27, 17, 0.468],

 [1366229222, 28, 15, 0.60],

 [1366232822, 26, 22, 0.095],

 [1366232822, 27, 21, 0.05],

 [1366232822, 28, 24, 0.03],

 [1366236422, 26, 17, 0.025]

]

end

We can use that to play with our function in iex. To make this easier, I’m using the import function. This adds the
functions in WeatherHistory to our local name scope. After calling import we don’t have to put the module name in
front of every function call.

iex> c "weather.exs"

[WeatherHistory]

iex> import WeatherHistory

nil

iex> for_location_27(test_data)

[[1366225622, 27, 15, 0.45], [1366229222, 27, 17, 0.468],

[1366232822, 27, 21, 0.05]]

Our function is specific to a particular location, which is pretty limiting. We’d like to be able to pass in the location as
a parameter. We can use pattern matching for this.

lists/weather2.exs

 defmodule WeatherHistory do

 def for_location([], _target_loc), do: []

» def for_location([[time, target_loc, temp, rain] | tail], target_loc) do

 [[time, target_loc, temp, rain] | for_location(tail, target_loc)]

 end

 def for_location([_ | tail], target_loc), do: for_location(tail, target_loc)

 end

Now the second function fires only when the location extracted from the list head equals the target location passed
as a parameter.

But we can improve on this. Our filter doesn’t care about the other three fields in the head—it just needs the
location. But we do need the value of the head itself to create the output list. Fortunately, Elixir pattern matching is
recursive and we can match patterns inside patterns.

lists/weather3.exs

 defmodule WeatherHistory do

 def for_location([], target_loc), do: []

» def for_location([head = [_, target_loc, _, _] | tail], target_loc) do

 [head | for_location(tail, target_loc)]

http://media.pragprog.com/titles/elixir/code/lists/weather2.exs
http://media.pragprog.com/titles/elixir/code/lists/weather3.exs

 end

 def for_location([_ | tail], target_loc), do: for_location(tail, target_loc)

 end

The key change here is this line:

def for_location([head = [_, target_loc, _, _] | tail], target_loc)

Compare that with the previous version:

def for_location([[time, target_loc, temp, rain] | tail], target_loc)

In the new version, we use placeholders for the fields we don’t care about. But we also match the entire four-
element array into the parameter head. It’s as if we said “match the head of the list where the second element is
matched to target_loc and then match that whole head with the variable head.” We’ve extracted an individual
component of the sublist as well as the entire sublist.

In the original body of for_location, we generated our result list using the individual fields:

def for_location([[time, target_loc, temp, rain] | tail], target_loc)

 [[time, target_loc, temp, rain] | for_location(tail, target_loc)]

end

In the new version, we can just use the head, making it a lot more clear:

def for_location([head = [_, target_loc, _, _] | tail], target_loc) do

 [head | for_location(tail, target_loc)]

end

Your Turn

Exercise: ListsAndRecursion-4
Write a function MyList.span(from, to) that returns a list of the numbers from from up to to.

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-4

The List Module in Action
The List module provides a set of functions that operate on lists.

Concatenate lists

iex> [1,2,3] ++ [4,5,6]

[1, 2, 3, 4, 5, 6]

Flatten

iex> List.flatten([[[1], 2], [[[3]]]])

[1, 2, 3]

Folding (like reduce, but can choose direction)

iex> List.foldl([1,2,3], "", fn value, acc -> "#{value}(#{acc})" end)

"3(2(1()))"

iex> List.foldr([1,2,3], "", fn value, acc -> "#{value}(#{acc})" end)

"1(2(3()))"

Merging lists and splitting them apart

iex> l = List.zip([[1,2,3], [:a,:b,:c], ["cat", "dog"]])

[{1, :a, "cat"}, {2, :b, "dog"}]

iex> List.unzip(l)

[[1, 2], [:a, :b], ["cat", "dog"]]

Accessing tuples within lists

iex> kw = [{:name, "Dave"}, {:likes, "Programming"}, {:where, "Dallas", "TX"}]

[{:name, "Dave"}, {:likes, "Programming"}, {:where, "Dallas", "TX"}]

iex> List.keyfind(kw, "Dallas", 1)

{:where, "Dallas", "TX"}

iex> List.keyfind(kw, "TX", 2)

{:where, "Dallas", "TX"}

iex> List.keyfind(kw, "TX", 1)

nil

iex> List.keyfind(kw, "TX", 1, "No city called TX")

"No city called TX"

iex> kw = List.keydelete(kw, "TX", 2)

[name: "Dave", likes: "Programming"]

iex> kw = List.keyreplace(kw, :name, 0, {:first_name, "Dave"})

[first_name: "Dave", likes: "Programming"]

Get Friendly with Lists
Lists are the natural data structure to use when you have a stream of values to handle. You’ll use them to parse
data, handle collections of values, and record the results of a series of function calls. It’s worth spending a while
getting comfortable with them.

Next we’ll look at the various dictionary types, including maps. These let us organize data into collections of
key/value pairs.

Chapter 8

Dictionaries: Maps, HashDicts,
Keywords, Sets, and Structs

In this chapter, we’ll see

The two and a half dictionary data types
The General Dictionary API
Pattern matching and updating maps
Structs
Nested data structures

A dictionary is a data type that associates keys with values.

We’ve already looked briefly at a couple of dictionary types: maps and keyword lists. In this short chapter we’ll
cover how to use them with pattern matching and how to update them. We’ll also look at HashDict, another
implementation of dictionaries. Finally we’ll look at the Keyword module, which implements a specialized dictionary
intended for storing function and program options, and the Set module, which implements sets.

First, though, let’s answer a common question—how do we choose an appropriate dictionary type for a particular
need?

How to Choose Between Maps, HashDicts, and
Keywords
Ask yourself these questions (in this order):

Will I want more than one entry with the same key?
If so, you’ll have to use the Keyword module.
Do I need to guarantee the elements are ordered?
If so, again, use the Keyword module.
Do I want to pattern-match against the contents (for example, matching a dictionary that has a key of :name
somewhere in it)?
If so, use a map.

Will I be storing more than a few hundred entries in it?
If so, use a HashDict. With R17 of the BEAM virtual machine (which runs Erlang), maps are slow,
particularly when adding new items.[13] This should improve in R18.

Dictionaries
Maps and hashdicts both implement the Dict behaviour. The Keyword module largely does, too, but with some
differences to allow for the fact that it supports duplicate keys.

In general, you’ll want to use the Dict module’s methods to access this functionality, as this allows you the flexibility
to change the underlying implementation between, say, a map and a hashdict. (This example uses Enum.into, which
is how you can easily map one kind of collection into another. We’ll look at this in The Collectable Protocol.)

maps/use_dict.exs

defmodule Sum do

 def values(dict) do

 dict |> Dict.values |> Enum.sum

 end

end

Sum a HashDict

hd = [one: 1, two: 2, three: 3] |> Enum.into HashDict.new

IO.puts Sum.values(hd) # => 6

Sum a Map

map = %{ four: 4, five: 5, six: 6 }

IO.puts Sum.values(map) # => 15

Let’s play with the Dict API:

iex> kw_list = [name: "Dave", likes: "Programming", where: "Dallas"]

[name: "Dave", likes: "Programming", where: "Dallas"]

iex> hashdict = Enum.into kw_list, HashDict.new

#HashDict<[name: "Dave", where: "Dallas", likes: "Programming"]>

iex> map = Enum.into kw_list, Map.new

http://media.pragprog.com/titles/elixir/code/maps/use_dict.exs

%{likes: "Programming", name: "Dave", where: "Dallas"}

iex> kw_list[:name]

"Dave"

iex> hashdict[:likes]

"Programming"

iex> map[:where]

"Dallas"

iex> hashdict = Dict.drop(hashdict, [:where, :likes])

#HashDict<[name: "Dave"]>

iex> hashdict = Dict.put(hashdict, :also_likes, "Ruby")

#HashDict<[name: "Dave", also_likes: "Ruby"]>

iex> combo = Dict.merge(map, hashdict)

%{also_likes: "Ruby", likes: "Programming", name: "Dave", where: "Dallas"}

Keyword lists allow duplicate values, but you have to use the Keyword module to access them:

iex> kw_list = [name: "Dave", likes: "Programming", likes: "Elixir"]

[name: "Dave", likes: "Programming", likes: "Elixir"]

iex> kw_list[:likes]

"Programming"

iex> Dict.get(kw_list, :likes)

"Programming"

iex> Keyword.get_values(kw_list, :likes)

["Programming", "Elixir"]

As usual, the full API documentation is available online.[14] You owe it to yourself to spend some time getting
familiar with it.

Pattern Matching and Updating Maps
The question we most often ask of our maps is, “Do you have the following keys (and maybe values)?”

Is there an entry with the key :name?
Are there entries for the keys :name and :height?
Does the entry with key :name have the value "Dave"?

Here’s how we ask these questions using Elixir patterns.

iex> person = %{ name: "Dave", height: 1.88 }

%{height: 1.88, name: "Dave"}

iex> %{ name: a_name } = person

%{height: 1.88, name: "Dave"}

iex> a_name

"Dave"

iex> %{ name: _, height: _ } = person

%{height: 1.88, name: "Dave"}

iex> %{ name: "Dave" } = person

%{height: 1.88, name: "Dave"}

Our map does not have the key :weight, so the following pattern match fails:

iex> %{ name: _, weight: _ } = person

** (MatchError) no match of right hand side value: %{height: 1.88, name: "Dave"}

It’s worth noting how the first pattern match destructured the map, extracting the value associated with the key
:name. We can use this in many ways. Here’s one example—we can use destructuring in a list comprehension to
give us a simple query capability.

maps/query.exs

http://media.pragprog.com/titles/elixir/code/maps/query.exs

people = [

 %{ name: "Grumpy", height: 1.24 },

 %{ name: "Dave", height: 1.88 },

 %{ name: "Dopey", height: 1.32 },

 %{ name: "Shaquille", height: 2.16 },

 %{ name: "Sneezy", height: 1.28 }

]

for person = %{ height: height } <- people,

 height > 1.5,

 do: IO.inspect person

This produces

%{height: 1.88, name: "Dave"}

%{height: 2.16, name: "Shaquille"}

In this code, we feed a list of maps to our comprehension. The generator clause binds each map (as a whole) to
person and binds the height from that map to height. The filter selects only those maps where the height exceeds
1.5, and the do block prints the whole map.

Clearly pattern matching is just pattern matching, so this maps capability works equally well in cond expressions,
function head matching, and any other circumstances in which patterns are used.

maps/book_room.exs

defmodule HotelRoom do

 def book(%{name: name, height: height})

 when height > 1.9 do

 IO.puts "Need extra long bed for #{name}"

 end

http://media.pragprog.com/titles/elixir/code/maps/book_room.exs

 def book(%{name: name, height: height})

 when height < 1.3 do

 IO.puts "Need low shower controls for #{name}"

 end

 def book(person) do

 IO.puts "Need regular bed for #{person.name}"

 end

end

people |> Enum.each(&HotelRoom.book/1)

#=> Need low shower controls for Grumpy

Need regular bed for Dave

Need regular bed for Dopey

Need extra long bed for Shaquille

Need low shower controls for Sneezy

Pattern Matching Can’t Bind Keys
Maps do not allow you to bind a value to a key during pattern matching. Thus, you can write this:

iex> %{ 2 => state } = %{ 1 => :ok, 2 => :error }

%{1 => :ok, 2 => :error}

iex> state

:error

but not this:

iex> %{ item => :ok } = %{ 1 => :ok, 2 => :error }

** (CompileError) iex:5: illegal use of variable item in map key

Updating a Map
In the previous chapter we saw how lists are updated through a combination of copying and changing the head.

With maps, we can add new key/value entries and update existing entries without traversing the whole structure.
But as with all values in Elixir, a map is immutable, and so the result of the update is a new map.

The simplest way to update a map is with this syntax:

new_map = %{ old_map | key => value, … }

This creates a new map that is a copy of the old, but the values associated with the keys on the right of the pipe
character are updated:

iex> m = %{ a: 1, b: 2, c: 3 }

%{a: 1, b: 2, c: 3}

iex> m1 = %{ m | b: "two", c: "three" }

%{a: 1, b: "two", c: "three"}

iex> m2 = %{ m1 | a: "one" }

%{a: "one", b: "two", c: "three"}

However, this syntax will not add a new key to a map. To do this, you have to use the Dict.put_new/3 function.

Maps and Structs
When Elixir sees %{ … } it knows it is looking at a map. But it doesn’t know much more than that. In particular, it
doesn’t know what you intend to do with the map, whether only certain keys are allowed, or whether some keys
should have default values.

That’s fine for anonymous maps. But what if we want to create a typed map—a map that has a fixed set of fields
and default values for those fields, and that you can pattern-match by type as well as content.

Enter the struct.

A struct is simply a module that wraps a limited form of map. It’s limited because the keys must be atoms and
because these maps don’t have Dict or Access capabilities.

The name of the module becomes the name of the map type. Inside the module, you use the defstruct macro to
define the map’s characteristics.

maps/defstruct.exs

defmodule Subscriber do

http://media.pragprog.com/titles/elixir/code/maps/defstruct.exs

 defstruct name: "", paid: false, over_18: true

end

Let’s play with this in iex:

$ iex defstruct.exs

iex> s1 = %Subscriber{}

%Subscriber{name: "", over_18: true, paid: false}

iex> s2 = %Subscriber{ name: "Dave" }

%Subscriber{name: "Dave", over_18: true, paid: false}

iex> s3 = %Subscriber{ name: "Mary", paid: true }

%Subscriber{name: "Mary", over_18: true, paid: true}

The syntax for creating a struct is the same as the syntax for creating a map—you simply add the module name
between the % and the {.

You access the fields in a struct using dot notation or pattern matching:

iex> s3.name

"Mary"

iex> %Subscriber{name: a_name} = s3

%Subscriber{name: "Mary", over_18: true, paid: true}

iex> a_name

"Mary"

And updates follow suit:

iex> s4 = %Subscriber{ s3 | name: "Marie"}

%Subscriber{name: "Marie", over_18: true, paid: true}

Why are structs wrapped in a module? The idea is that you are likely to want to add struct-specific behaviour.

maps/defstruct1.exs

defmodule Attendee do

 defstruct name: "", paid: false, over_18: true

 def may_attend_after_party(attendee = %Attendee{}) do

 attendee.paid && attendee.over_18

 end

 def print_vip_badge(%Attendee{name: name}) when name != "" do

 IO.puts "Very cheap badge for #{name}"

 end

 def print_vip_badge(%Attendee{}) do

 raise "missing name for badge"

 end

end

$ iex defstruct1.exs

iex> a1 = %Attendee{name: "Dave", over_18: true}

%Attendee{name: "Dave", over_18: true, paid: false}

iex> Attendee.may_attend_after_party(a1)

false

iex> a2 = %Attendee{a1 | paid: true}

%Attendee{name: "Dave", over_18: true, paid: true}

iex> Attendee.may_attend_after_party(a2)

http://media.pragprog.com/titles/elixir/code/maps/defstruct1.exs

true

iex> Attendee.print_vip_badge(a2)

Very cheap badge for Dave

:ok

iex> a3 = %Attendee{}

%Attendee{name: "", over_18: true, paid: false}

iex> Attendee.print_vip_badge(a3)

** (RuntimeError) missing name for badge

 defstruct1.exs:13: Attendee.print_vip_badge/1

Notice how we could call the functions in the Attendee module to manipulate the associated struct.

Structs also play a large role when implementing polymorphism, which we’ll see when we look at protocols.

Another Way to Access Structs
The previous examples accessed struct attributes using dot notation. This might have surprised you, as structs and
maps clearly have a lot in common and you access maps using some_map[:name].

The reason is that maps implement the Access protocol (which defines the ability to access fields using square-
bracket notation) and structs do not. However, you can easily add this ability to your structs by using the @derive
directive:

maps/derive.exs

defmodule Attendee do

 @derive Access

 defstruct name: "", over_18: false

end

$ iex derive.exs

iex> a = %Attendee{name: "Sally", over_18: true}

%Attendee{name: "Sally", over_18: true}

http://media.pragprog.com/titles/elixir/code/maps/derive.exs

iex> a[:name]

"Sally"

iex> a[:over_18]

true

iex> a.name

"Sally"

Nested Dictionary Structures
The various dictionary types let us associate keys with values. But those values can themselves be dictionaries. For
example, we may have a bug-reporting system in which customers report bugs. We could represent this using the
following:

maps/nested.exs

defmodule Customer do

 defstruct name: "", company: ""

end

defmodule BugReport do

 defstruct owner: %{}, details: "", severity: 1

end

Let’s create a simple report:

iex> report = %BugReport{owner: %Customer{name: "Dave", company: "Pragmatic"},

...> details: "broken"}

%BugReport{details: "broken",

 owner: %Customer{company: "Pragmatic", name: "Dave"},

 severity: 1}

http://media.pragprog.com/titles/elixir/code/maps/nested.exs

The owner attribute of the report is itself a Customer struct.

We can access nested fields using regular dot notation:

iex> report.owner.company

"Pragmatic"

But now our customer complains the company name is incorrect—it should be PragProg. Let’s fix it:

iex> report = %BugReport{ report | owner:

...> %Customer{ report.owner | company: "PragProg" }}

%BugReport{details: "broken",

owner: %Customer{company: "PragProg", name: "Dave"},

severity: 1}

That’s pretty ugly—we had to update the overall bug report’s owner attribute with an updated customer structure.
This is verbose, hard to read, and error prone.

Fortunately, Elixir has a set of nested dictionary-access functions. One of these, put_in, lets us set a value in a
nested structure:

iex> put_in(report.owner.company, "PragProg")

%BugReport{details: "broken",

owner: %Customer{company: "PragProg", name: "Dave"},

severity: 1}

This isn’t magic—it’s simply a macro that generates the long-winded code we’d have to have written otherwise.

The update_in function lets us apply a function to a value in a structure.

iex> update_in(report.owner.name, &("Mr. " <> &1))

%BugReport{details: "broken",

 owner: %Customer{company: "PragProg", name: "Mr. Dave"},

 severity: 1}

The other two nested access functions are get_in and get_and_update_in. The documentation in iex contains
everything you need for these. However, both of these functions support a cool trick: nested access.

Nested Accessors and Nonstructs

The nested accessor functions use the Access protocol to strip apart and reassemble data structures. This means
that if you are using maps or keyword lists, you can supply the keys as symbols:

iex> report = %{ owner: %{ name: "Dave", company: "Pragmatic" }, severity: 1}

%{owner: %{company: "Pragmatic", name: "Dave"}, severity: 1}

iex> put_in(report[:owner][:company], "PragProg")

%{owner: %{company: "PragProg", name: "Dave"}, severity: 1}

iex> update_in(report[:owner][:name], &("Mr. " <> &1))

%{owner: %{company: "Pragmatic", name: "Mr. Dave"}, severity: 1}

Dynamic (Runtime) Nested Accessors

The nested accessors we’ve seen so far are macros—they operate at compile time. As a result, they have some
limitations:

The number of keys you pass a particular call is static.
You can’t pass the set of keys as parameters between functions.

These are a natural consequence of the way the macros bake their parameters into code at compile time.

To overcome this, get_in, put_in, update_in, and get_and_update_in can all take a list of keys as a separate
parameter. Adding this parameter changes them from macros to function calls, so they become dynamic.

Macro Function

get_in no (dict, keys)

put_in (path, value) (dict, keys, value)

update_in (path, fn) (dict, keys, fn)

get_and_update_in (path, fn) (dict, keys, fn)

Here’s a simple example:

maps/dynamic_nested.exs

nested = %{

 buttercup: %{

 actor: %{

 first: "Robin",

 last: "Wright"

 },

 role: "princess"

 },

 westley: %{

 actor: %{

 first: "Carey",

 last: "Ewes" # typo!

 },

 role: "farm boy"

 }

}

IO.inspect get_in(nested, [:buttercup])

=> %{actor: %{first: "Robin", last: "Wright"}, role: "princess"}

IO.inspect get_in(nested, [:buttercup, :actor])

http://media.pragprog.com/titles/elixir/code/maps/dynamic_nested.exs

=> %{first: "Robin", last: "Wright"}

IO.inspect get_in(nested, [:buttercup, :actor, :first])

=> "Robin"

IO.inspect put_in(nested, [:westley, :actor, :last], "Elwes")

=> %{buttercup: %{actor: %{first: "Robin", last: "Wright"}, role: "princess"},

=> westley: %{actor: %{first: "Carey", last: "Elwes"}, role: "farm boy"}}

There’s a cool trick that the dynamic versions of both get_in and get_and_update_in support—if you pass a
function as a key, that function is invoked to return the corresponding values.

maps/get_in_func.exs

authors = [

 %{ name: "José", language: "Elixir" },

 %{ name: "Matz", language: "Ruby" },

 %{ name: "Larry", language: "Perl" }

]

languages_with_an_r = fn (:get, collection, next_fn) ->

 for row <- collection do

 if String.contains?(row.language, "r") do

 next_fn.(row)

 end

 end

end

IO.inspect get_in(authors, [languages_with_an_r, :name])

#=> ["José", nil, "Larry"]

http://media.pragprog.com/titles/elixir/code/maps/get_in_func.exs

Sets
There is currently just one implementation of sets, the HashSet.

iex> set1 = Enum.into 1..5, HashSet.new

#HashSet<[1, 2, 3, 4, 5]>

iex> Set.member? set1, 3

true

iex> set2 = Enum.into 3..8, HashSet.new

#HashSet<[3, 4, 5, 6, 7, 8]>

iex> Set.union set1, set2

#HashSet<[7, 6, 4, 1, 8, 2, 3, 5]>

iex> Set.difference set1, set2

#HashSet<[1, 2]>

iex> Set.difference set2, set1

#HashSet<[6, 7, 8]>

iex> Set.intersection set1, set2

#HashSet<[3, 4, 5]>

With Great Power Comes Great Temptation
The dictionary types are clearly a powerful tool—you’ll use them all the time. But you might also be tempted to
abuse them. Structs in particular might lead you into the darkness because you can associate functions with them in
their module definitions. At some point, the old object-orientation neurons still active in the nether regions of your
brain might burst into life and you might think, “Hey, this is a bit like a class definition.” And you’d be right. You can
write something akin to object-oriented code using structs (or maps) and modules.

This is a bad idea. Not because objects are intrinsically bad, but because you’ll be mixing paradigms and diluting the
benefits a functional approach gives you.

Stay pure, young coder. Stay pure.

As a way of refocusing you away from the dark side, the next chapter is a mini diversion into the benefits of
separating functions and the data they work on. And we disguise it in a discussion of types.

Footnotes

[13]

https://github.com/pragdave/map_performance

[14]

http://elixir-lang.org/docs/

https://github.com/pragdave/map_performance
http://elixir-lang.org/docs/

Chapter 9

An Aside—What Are Types?
The preceding two chapters described the basics of lists and dictionaries. But you may have noticed that, although I
talked about them as types, I didn’t really say what I meant.

The first thing to understand is that the primitive data types are not necessarily the same as the types they can
represent.

For example, a primitive Elixir list is just an ordered list of values. We can use the […] literal to create a list, and the
| operator to deconstruct and build lists.

Then there’s another layer. Elixir has the List module, which provides a set of functions that operate on lists. Often
these functions simply use recursion and the | operator to add this extra functionality.

In my mind, there’s a difference between the primitive list and the functionality of the List module. The primitive list
is an implementation, whereas the List module adds a layer of abstraction. Both implement types, but the type is
different. Primitive lists, for example, don’t have a flatten function.

Maps are also a primitive type. And, like lists, they have an Elixir module that implements a richer, derived map type.

The Keyword type is an Elixir module. But it is implemented as a list of tuples:

options = [{:width, 72}, {:style, "light"}, {:style, "print"}]

Clearly this is still a list, and all the list functions will work on it. But Elixir adds functionality to give you dictionary-
like behaviour.

iex> options = [{:width, 72}, {:style, "light"}, {:style, "print"}]

[width: 72, style: "light", style: "print"]

iex> List.last options

{:style, "print"}

iex> Keyword.get_values options, :style

["light", "print"]

In a way, this is a form of the duck typing that is talked about in dynamic object-oriented languages.[15] The
Keyword module doesn’t have an underlying primitive data type. It simply assumes that any value it works on is a list
that has been structured a certain way.

This means the APIs for collections in Elixir are fairly broad. Working with a keyword list, you have access to the
APIs in the primitive list type, and the List and Keyword modules. You also get Enum and Collectable, which we
talk about next.

Footnotes

[15]

http://en.wikipedia.org/wiki/Duck_typing

http://en.wikipedia.org/wiki/Duck_typing

Chapter 10

Processing Collections—Enum and Stream
In this chapter, we’ll see

The Enum module
The Stream module
The Collectable protocol
Comprehensions

Elixir comes with a number of types that act as collections. We’ve already seen lists and dictionaries. There are also
things such as ranges, files, dictionaries, and even functions. And as we’ll discuss when we look at protocols, you
can also define your own.

Collections differ in their implementation. But they all share something: you can iterate through them. Some of them
share an additional trait: you can add things to them.

Technically, things that can be iterated are said to implement the Enumerable protocol.

Elixir provides two modules that have a bunch of iteration functions. The Enum module is the workhorse for
collections. You’ll use it all the time. I strongly recommend getting to know it.

The Stream module lets you enumerate a collection lazily. This means that the next value is calculated only when it
is needed. You’ll use this less often, but when you do it’s a lifesaver.

I don’t want to fill this book with a list of all the APIs. You’ll find the definitive (and up-to-date) list online. [16]
Instead, I’ll illustrate some common uses and let you browse the documentation for yourself. (But please do
remember to do so. Much of Elixir’s power comes from these libraries.)

Enum—Processing Collections
The Enum module is probably the most used of all the Elixir libraries. Employ it to iterate, filter, combine, split, and
otherwise manipulate collections. Here are some common tasks:

Convert any collection into a list:

iex> list = Enum.to_list 1..5

[1, 2, 3, 4, 5]

Concatenate collections:

iex> Enum.concat([1,2,3], [4,5,6])

[1, 2, 3, 4, 5, 6]

iex> Enum.concat [1,2,3], 'abc'

[1, 2, 3, 97, 98, 99]

Create collections whose elements are some function of the original:

iex> Enum.map(list, &(&1 * 10))

[10, 20, 30, 40, 50]

iex> Enum.map(list, &String.duplicate("*", &1))

["*", "**", "***", "****", "*****"]

Select elements by position or criteria:

iex> Enum.at(10..20, 3)

13

iex> Enum.at(10..20, 20)

nil

iex> Enum.at(10..20, 20, :no_one_here)

:no_one_here

iex> Enum.filter(list, &(&1 > 2))

[3, 4, 5]

iex> Enum.filter(list, &Integer.is_even/1)

[2, 4]

iex> Enum.reject(list, &Integer.is_even/1)

[1, 3, 5]

Sort and compare elements:

iex> Enum.sort ["there", "was", "a", "crooked", "man"]

["a", "crooked", "man", "there", "was"]

iex> Enum.sort ["there", "was", "a", "crooked", "man"],

... &(String.length(&1) <= String.length(&2))

["a", "man", "was", "there", "crooked"]

iex(4)> Enum.max ["there", "was", "a", "crooked", "man"]

"was"

iex(5)> Enum.max_by ["there", "was", "a", "crooked", "man"], &String.length/1

"crooked"

Split a collection:

iex> Enum.take(list, 3)

[1, 2, 3]

iex> Enum.take_every list, 2

[1, 3, 5]

iex> Enum.take_while(list, &(&1 < 4))

[1, 2, 3]

iex> Enum.split(list, 3)

{[1, 2, 3], [4, 5]}

iex> Enum.split_while(list, &(&1 < 4))

{[1, 2, 3], [4, 5]}

Join a collection:

iex> Enum.join(list)

"12345"

iex> Enum.join(list, ", ")

"1, 2, 3, 4, 5"

Predicate operations:

iex> Enum.all?(list, &(&1 < 4))

false

iex> Enum.any?(list, &(&1 < 4))

true

iex> Enum.member?(list, 4)

true

iex> Enum.empty?(list)

false

Merge collections:

iex> Enum.zip(list, [:a, :b, :c])

[{1, :a}, {2, :b}, {3, :c}]

iex> Enum.with_index(["once", "upon", "a", "time"])

[{"once", 0}, {"upon", 1}, {"a", 2}, {"time", 3}]

Fold elements into a single value:

iex> Enum.reduce(1..100, &(&1+&2))

5050

iex> Enum.reduce(["now", "is", "the", "time"],fn word, longest ->

...> if String.length(word) > String.length(longest) do

...> word

...> else

...> longest

...> end

...> end)

"time"

iex> Enum.reduce(["now", "is", "the", "time"], 0, fn word, longest ->

...> if String.length(word) > longest do

...> String.length(word)

...> else

...> longest

...> end

...> end)

4

Deal a hand of cards:

iex> import Enum

iex> deck = for rank <- '23456789TJQKA', suit <- 'CDHS', do: [suit,rank]

['C2', 'D2', 'H2', 'S2', 'C3', 'D3', ...]

iex> deck |> shuffle |> take(13)

['DQ', 'S6', 'HJ', 'H4', 'C7', 'D6', 'SJ', 'S9', 'D7', 'HA', 'S4', 'C2', 'CT']

iex> hands = deck |> shuffle |> chunk(13)

[['D8', 'CQ', 'H2', 'H3', 'HK', 'H9', 'DK', 'S9', 'CT', 'ST', 'SK', 'D2', 'HA'],

['C5', 'S3', 'CK', 'HQ', 'D3', 'D4', 'CA', 'C8', 'S6', 'DQ', 'H5', 'S2', 'C4'],

['C7', 'C6', 'C2', 'D6', 'D7', 'SA', 'SQ', 'H8', 'DT', 'C3', 'H7', 'DA', 'HT'],

['S5', 'S4', 'C9', 'S8', 'D5', 'H4', 'S7', 'SJ', 'HJ', 'D9', 'DJ', 'CJ', 'H6']]

A Note on Sorting
In our example of sort, we used

Enum.sort(["once", "upon", "a", "time"],

 &(String.length(&1) <= String.length(&2))

It’s important to use <= and not just < if you want the sort to be stable.

Your Turn

Exercise: ListsAndRecursion-5
Implement the following Enum functions using no library functions or list comprehensions: all?, each, filter,
split, and take. You may need to use an if statement to implement filter. The syntax for this is

if condition do

 expression(s)

else

 expression(s)

end

Exercise: ListsAndRecursion-6
(Hard) Write a flatten(list) function that takes a list that may contain any number of sublists, which
themselves may contain sublists, to any depth. It returns the elements of these lists as a flat list.

iex> MyList.flatten([1, [2, 3, [4]], 5, [[[6]]]])

[1,2,3,4,5,6]

Hint: You may have to use Enum.reverse to get your result in the correct order.

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-5
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-6

Streams—Lazy Enumerables
In Elixir, the Enum module is greedy. This means that when you pass it a collection, it potentially consumes all the
contents of that collection. It also means the result will typically be another collection. Look at the following pipeline:

enum/pipeline.exs

[1, 2, 3, 4, 5]

|> Enum.map(&(&1*&1))

|> Enum.with_index

|> Enum.map(fn {value, index} -> value - index end)

|> IO.inspect #=> [1,3,7,13,21]

The first map function takes the original list and creates a new list of its squares. with_index takes this list and
returns a list of tuples. The next map then subtracts the index from the value, generating a list that gets passed to
IO.inspect.

So, this pipeline generates four lists on its way to outputting the final result.

Let’s look at something different. Here’s some code that reads lines from a file and returns the longest.

enum/longest_line.exs

IO.puts File.read!("/usr/share/dict/words")

 |> String.split

 |> Enum.max_by(&String.length/1)

In this case, we read the whole dictionary into memory (on my machine that’s 2.4MB), then split into a list of words
(236,000 of them) before processing it to find the longest (which happens to be formaldehydesulphoxylate).

In both of these examples, our code is suboptimal because each call to Enum is self-contained. Each call takes a
collection and returns a collection.

What we really want is to process the elements in the collection as we need them. We don’t need to store
intermediate results as full collections; we just need to pass the current element from function to function. And that’s
what streams do.

A Stream Is a Composable Enumerator
Here’s a simple example of creating a Stream:

iex> s = Stream.map [1, 3, 5, 7], &(&1 + 1)

http://media.pragprog.com/titles/elixir/code/enum/pipeline.exs
http://media.pragprog.com/titles/elixir/code/enum/longest_line.exs

#Stream<[enum: [1, 3, 5, 7], funs: [#Function<37.75994740/1 in Stream.map/2>]]>

If we’d called Enum.map, we’d have seen the result [2,4,6,8] come back immediately. Instead we get back a
stream value that contains a specification of what we intended.

How do we get the stream to start giving us results? Treat it as a collection and pass it to a function in the Enum
module:

iex> s = Stream.map [1, 3, 5, 7], &(&1 + 1)

#Stream<...>

iex> Enum.to_list s

[2, 4, 6, 8]

Because streams are enumerable, you can also pass a stream to a stream function. Because of this, we say that
streams are composable.

iex> squares = Stream.map [1, 2, 3, 4], &(&1*&1)

#Stream<[enum: [1, 2, 3, 4],

 funs: [#Function<32.133702391 in Stream.map/2>]]>

iex> plus_ones = Stream.map squares, &(&1+1)

#Stream<[enum: [1, 2, 3, 4],

 funs: [#Function<32.133702391 in Stream.map/2>,

 #Function<32.133702391 in Stream.map/2>]]>

iex> odds = Stream.filter plus_ones, fn x -> rem(x,2) == 1 end

#Stream<[enum: [1, 2, 3, 4],

 funs: [#Function<26.133702391 in Stream.filter/2>,

 #Function<32.133702391 in Stream.map/2>,

 #Function<32.133702391 in Stream.map/2>]]>

iex> Enum.to_list odds

[5, 17]

Of course, in real life we’d have written this as

enum/stream1.exs

[1,2,3,4]

|> Stream.map(&(&1*&1))

|> Stream.map(&(&1+1))

|> Stream.filter(fn x -> rem(x,2) == 1 end)

|> Enum.to_list

Note that we’re never creating intermediate lists—we’re just passing successive elements of each of the collections
to the next in the chain. The Stream values shown in the previous iex session give a hint of how this works—chained
streams are represented as a list of functions, each of which is applied in turn to each element of the stream as it is
processed.

Streams aren’t only for lists. More and more Elixir modules now support streams. For example, here’s our longest-
word code written using streams:

enum/stream2.exs

IO.puts File.open!("/usr/share/dict/words")

 |> IO.stream(:line)

 |> Enum.max_by(&String.length/1)

The magic here is the call to IO.stream, which converts an IO device (in this case the open file) into a stream that
serves one line at a time. In fact, this is such a useful concept that there’s a shortcut:

enum/stream3.exs

IO.puts File.stream!("/usr/share/dict/words") |> Enum.max_by(&String.length/1)

The good news is that there is no intermediate storage. The bad news is that it runs about two times slower than the
previous version. However, consider the case where we were reading data from a remote server or from an
external sensor (maybe temperature readings). Successive lines might arrive slowly, and they might go on for ever.
With the Enum implementation we’d have to wait for all the lines to arrive before we started processing. With
streams we can process them as they arrive.

Infinite Streams

http://media.pragprog.com/titles/elixir/code/enum/stream1.exs
http://media.pragprog.com/titles/elixir/code/enum/stream2.exs
http://media.pragprog.com/titles/elixir/code/enum/stream3.exs

Because streams are lazy, there’s no need for the whole collection to be available up front. For example, if I write

iex> Enum.map(1..10_000_000, &(&1+1)) |> Enum.take(5)

[2, 3, 4, 5, 6]

it takes about 8 seconds before I see the result. Elixir is creating a 10-million-element list, then taking the first five
elements from it. If instead I write

iex> Stream.map(1..10_000_000, &(&1+1)) |> Enum.take(5)

[2, 3, 4, 5, 6]

the result comes back instantaneously. The take call just needs five values, which it gets from the stream. Once it
has them, there’s no more processing.

In these examples the stream is bounded, but it can equally well go on forever, But to do that, we’ll need to create
streams based on functions.

Creating Your Own Streams
Streams are implemented solely in Elixir libraries—there is no specific runtime support. However, this doesn’t mean
you want to drop down to the very lowest level and create your own streamable types. The actual implementation is
complex (in the same way that string theory and dating rituals are complex). Instead, you probably want to use some
helpful wrapper functions to do the heavy lifting. There are a number of these, including cycle, repeatedly,
iterate, unfold, and resource. (If you needed proof that the internal implementation is tricky, consider the fact that
these last two names give you almost no hint of their power.)

Let’s start with the three simplest: cycle, repeatedly, and iterate.

Stream.cycle

Stream.cycle takes an enumerable and returns an infinite stream containing that enumerable’s elements. When it
gets to the end, it repeats from the beginning, indefinitely. Here’s an example that generates the rows in an HTML
table with alternating green and white classes:

iex> Stream.cycle(~w{ green white }) |>

...> Stream.zip(1..5) |>

...> Enum.map(fn {class, value} ->

...> ~s{<tr class="#{class}"><td>#{value}</td></tr>\n} end) |>

...> IO.puts

<tr class="green"><td>1</td></tr>

<tr class="white"><td>2</td></tr>

<tr class="green"><td>3</td></tr>

<tr class="white"><td>4</td></tr>

<tr class="green"><td>5</td></tr>

Stream.repeatedly

Stream.repeatedly takes a function and invokes it each time a new value is wanted.

iex> Stream.repeatedly(fn -> true end) |> Enum.take(3)

[true, true, true]

iex> Stream.repeatedly(&:random.uniform/0) |> Enum.take(3)

[0.7230402056221108, 0.94581636451987, 0.5014907142064751]

Stream.iterate

Stream.iterate(start_value, next_fun) generates an infinite stream. The first value is start_value. The next
value is generated by applying next_fun to this value. This continues for as long as the stream is being used, with
each value being the result of applying next_fun to the previous value.

Here are some examples:

iex> Stream.iterate(0, &(&1+1)) |> Enum.take(5)

[0, 1, 2, 3, 4]

iex> Stream.iterate(2, &(&1*&1)) |> Enum.take(5)

[2, 4, 16, 256, 65536]

iex> Stream.iterate([], &[&1]) |> Enum.take(5)

[[], [[]], [[[]]], [[[[]]]], [[[[[]]]]]]

Stream.unfold

Now we can get a little more adventurous. Stream.unfold is related to iterate, but you can be more explicit both

about the values output to the stream and about the values passed to the next iteration. You supply an initial value
and a function. The function uses the argument to create two values, returned as a tuple. The first is the value to be
returned by this iteration of the stream, and the second is the value to be passed to the function on the next iteration
of the stream. If the function returns nil, the stream terminates.

This sounds abstract, but unfold is quite useful—it is a general way of creating a potentially infinite stream of values
where each value is some function of the previous state.

The key is the generating function. Its general form is

fn state -> { stream_value, new_state } end

For example, here’s a stream of Fibonacci numbers:

iex> Stream.unfold({0,1}, fn {f1,f2} -> {f1, {f2, f1+f2}} end) |> Enum.take(15)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Here the state is a tuple containing the current and the next number in the sequence. We seed it with the initial state
of {0, 1}. The value each iteration of the stream returns is the first of the state values. The new state moves one
down the sequence, so an initial state of {f1,f2} becomes a new state of {f2,f1+f2}.

Stream.resource

At this point you might be wondering how streams can interact with external resources. We’ve already seen how
you can turn a file’s contents into a stream of lines, but how could you implement this yourself? You’d need to open
the file when the stream first starts, return successive lines, and then close the file at the end. Or maybe you want to
turn a database result-set cursor into a stream of values. You’d have to execute the query when the stream starts,
return each row as stream values, and close the query at the end. And that’s where Stream.resource comes in.

Stream.resource builds upon Stream.unfold. It makes two changes.

The first argument to unfold is the initial value to be passed to the iteration function. But if that value is a resource,
we don’t want to open it until the stream starts delivering values, and that might not happen until long after we create
the stream. To get around this, resource takes not a value, but a function that returns the value. That’s the first
change.

Second, when the stream is done with the resource, we may need to close it. That’s what the third argument to
Stream.resource does—it takes the final accumulator value and does whatever is needed to deallocate the
resource.

Here’s an example from the library documentation:

Stream.resource(fn -> File.open("sample") end,

 fn file ->

 case IO.read(file, :line) do

 line when is_binary(line) -> { [line], file }

 _ -> {:halt, file}

 end

 end,

 fn file -> File.close!(file) end)

The first function opens the file when the stream becomes active, and passes it to the second function. This reads
the file, line by line, returning either a line and the file as a tuple, or a :halt tuple at the end of the file. The third
function closes the file.

Let’s finish with a different kind of resource: time. We’ll implement a timer that counts down the number of seconds
until the start of the next minute. It uses a stream resource to do this. The allocation function returns the number of
seconds left until the next minute starts. It does this each time the stream is evaluated, so we’ll get a countdown that
varies depending on when it is called.

The iteration function looks at the time left. If zero, it returns {:halt, 0}; otherwise it sleeps for a second and
returns the current countdown as a string, along with the decremented counter.

In this case there’s no resource deallocation, so the third function does nothing.

Here’s the code:

enum/countdown.exs

defmodule Countdown do

 def sleep(seconds) do

 receive do

 after seconds*1000 -> nil

 end

 end

 def say(text) do

 spawn fn -> :os.cmd('say #{text}') end

 end

 def timer do

http://media.pragprog.com/titles/elixir/code/enum/countdown.exs

 Stream.resource(

 fn -> # the number of seconds to the start of the next minute

 {_h,_m,s} = :erlang.time

 60 - s - 1

 end,

 fn # wait for the next second, then return its countdown

 0 ->

 {:halt, 0}

 count ->

 sleep(1)

 { [inspect(count)], count - 1 }

 end,

 fn _ -> end # nothing to deallocate

)

 end

end

(The eagle-eyed among you will have noticed a function called say in the Countdown module. This executes the shell
command say, which, on OS X, speaks its argument. You could substitute espeak on Linux and ptts on Windows.)

Let’s play with the code.

$ iex countdown.exs

iex> counter = Countdown.timer

#Function<17.133702391 in Stream.resource/3>

iex> printer = counter |> Stream.each(&IO.puts/1)

#Stream[enum: #Function<17.133702391 in Stream.resource/3>,

funs: [#Function<0.133702391 in Stream.each/2>]]>

iex> speaker = printer |> Stream.each(&Countdown.say/1)

#Stream[enum: #Function<17.133702391 in Stream.resource/3>,

funs: [#Function<0.133702391 in Stream.each/2>,

 #Function<0.133702391 in Stream.each/2>]]>

So far, we’ve built a stream that creates time events, prints the countdown value, and speaks it. But there’s been no
output, as we haven’t yet asked the stream for any values. Let’s do that now:

iex> speaker |> Enum.take(5)

37 ** numbers are output once

36 ** per second. Even cooler,the

35 ** computer says

34 ** "thirty seven", "thirty six"…

33

["37", "36", "35", "34", "33"]

Cool—we must have started it around 22 seconds into a minute, so the countdown starts at 37. Let’s use the same
stream again, a few seconds later:

iex> speaker |> Enum.take(5)

29

28

27

26

25

["29", "28", "27", "26", "25"]

Wait some more seconds, and this time let it run to the top of the minute:

iex> speaker |> Enum.to_list

6

5

4

3

2

1

["6", "5", "4", "3","2", "1"]

This is clearly not great code, as it fails to correct the sleep time for any delays introduced by our code. But it
illustrates a very cool point. Lazy streams let you deal with resources that are asynchronous to your code, and the
fact that they are initialized every time they are used means they’re effectively side-effect-free. Every time we pipe
our stream to an Enum function, we get a fresh set of values, computed at that time.

Streams in Practice
In the same way that functional programming requires you to look at problems in a new way, streams ask you to
look at iteration and collections afresh. Not every situation where you are iterating requires a stream. But consider
using a stream when you want to defer processing until you need the data, and when you need to deal with large
numbers of things without necessarily generating them all at once.

The Collectable Protocol
The Enumerable protocol lets you iterate over the elements in a type—given a collection, you can get the elements.
Collectable is in some sense the opposite—it allows you to build a collection by inserting elements into it.

Not all collections are collectable. Ranges, for example, cannot have new entries added to them.

The collectable API is pretty low-level, so you’ll typically access it via Enum.into and when using comprehensions
(which we cover in the next section). For example, we can inject the elements of a range into an empty list using

iex> Enum.into 1..5, []

[1, 2, 3, 4, 5]

If the list is not empty, the new elements are tacked onto the end:

iex> Enum.into 1..5, [100, 101]

[100, 101, 1, 2, 3, 4, 5]

Output streams are collectable, so the following code lazily copies standard input to standard output:

iex> Enum.into IO.stream(:stdio, :line), IO.stream(:stdio, :line)

Comprehensions
When you’re writing functional code, you often map and filter collections of things. To make your life easier (and
your code easier to read), Elixir provides a general-purpose shortcut for this: the comprehension.

The idea of a comprehension is fairly simple: given one or more collections, extract all combinations of values from
each, optionally filter the values, and then generate a new collection using the values that remain.

The general syntax for comprehensions is deceptively simple:

result = for generator or filter… [, into: value], do: expression

Let’s see a couple of basic examples before we get into the details.

iex> for x <- [1, 2, 3, 4, 5], do: x * x

[1, 4, 9, 16, 25]

iex> for x <- [1, 2, 3, 4, 5], x < 4, do: x * x

[1, 4, 9]

A generator specifies how you want to extract values from a collection.

pattern <- list

Any variables matched in the pattern are available in the rest of the comprehension (including the block). For
example, x <- [1,2,3] says that we want to first run the rest of the comprehension with x set to 1. Then we run it
with x set to 2, and so on. If we have two generators, their operations are nested, so

x <- [1,2], y <- [5,6]

will run the rest of the comprehension with x=1, y=5; x=1, y=6; x=2, y=5; and x=2, y=6. We can use those values of x
and y in the do block.

iex> for x <- [1,2], y <- [5,6], do: x * y

[5, 6, 10, 12]

iex> for x <- [1,2], y <- [5,6], do: {x, y}

[{1, 5}, {1, 6}, {2, 5}, {2, 6}]

You can use variables from generators in later generators:

iex> min_maxes = [{1,4}, {2,3}, {10, 15}]

[{1, 4}, {2, 3}, {10, 15}]

iex> for {min,max} <- min_maxes, n <- min..max, do: n

[1, 2, 3, 4, 2, 3, 10, 11, 12, 13, 14, 15]

A filter is a predicate. It acts as a gatekeeper for the rest of the comprehension—if the condition is false, then the
comprehension moves on to the next iteration without generating an output value.

For example, the code that follows uses a comprehension to list pairs of numbers from 1 to 8 whose product is a
multiple of 10. It uses two generators (to cycle through the pairs of numbers) and two filters. The first filter allows
only pairs in which the first number is at least the value of the second. The second filter checks to see if the product
is a multiple of 10.

iex> first8 = [1,2,3,4,5,6,7,8]

[1, 2, 3, 4, 5, 6, 7, 8]

iex> for x <- first8, y <- first8, x >= y, rem(x*y, 10)==0, do: { x, y }

[{5, 2}, {5, 4}, {6, 5}, {8, 5}]

This comprehension iterates 64 times, with x=1, y=1; x=1, y=2; and so on. However, the first filter cuts the iteration
short when x is less than y. This means the second filter runs only 36 times.

Because the first term in a generator is a pattern, we can use it to deconstruct structured data. Here’s a
comprehension that swaps the keys and values in a keyword list.

iex> reports = [dallas: :hot, minneapolis: :cold, dc: :muggy, la: :smoggy]

[dallas: :hot, minneapolis: :cold, dc: :muggy, la: :smoggy]

iex> for { city, weather } <- reports, do: { weather, city }

[hot: :dallas, cold: :minneapolis, muggy: :dc, smoggy: :la]

Comprehensions Work on Bits, Too
A bitstring (and, by extension, a binary or a string) is simply a collection of ones and zeroes. So it’s probably no
surprise that comprehensions work bits, too. What might be surprising is the syntax:

iex> for << ch <- "hello" >>, do: ch

'hello'

iex> for << ch <- "hello" >>, do: <<ch>>

["h", "e", "l", "l", "o"]

Here the generator is enclosed in << and >>, indicating a binary. In the first case, the do block returns the integer
code for each character, so the resulting list is [104, 101, 108, 108, 111], which iex displays as 'hello'.

In the second case, we convert the code back into a string, and the result is a list of those one-character strings.

Again, the thing to the left of the <- is a pattern, and so we can use binary pattern matching. Let’s convert a string
into the octal representation of its characters:

iex> for << << b1::size(2), b2::size(3), b3::size(3) >> <- "hello" >>,

...> do: "0#{b1}#{b2}#{b3}"

["0150", "0145", "0154", "0154", "0157"]

Scoping and Comprehensions
All variable assignments inside a comprehension are local to that comprehension—you will not affect the value of a
variable in the outer scope.

iex> name = "Dave"

"Dave"

iex> for name <- ["cat", "dog"], do: String.upcase(name)

["CAT", "DOG"]

iex> name

"Dave"

iex>

The Value Returned by a Comprehension

In our examples so far, the comprehension has returned a list. The list contains the values returned by the do
expression for each iteration of the comprehension.

This behavior can be changed with the into: parameter. This takes a collection that is to receive the results of the
comprehension. For example, we can populate a map using

iex> for x <- ~w{ cat dog }, into: %{}, do: { x, String.upcase(x) }

%{"cat" => "CAT", "dog" => "DOG"}

It might be more clear to use Map.new in this case:

iex> for x <- ~w{ cat dog }, into: Map.new, do: { x, String.upcase(x) }

%{"cat" => "CAT", "dog" => "DOG"}

The collection doesn’t have to be empty:

iex> for x <- ~w{ cat dog }, into: %{"ant" => "ANT"}, do: { x, String.upcase(x) }

%{"ant" => "ANT", "cat" => "CAT", "dog" => "DOG"}

In Chapter 22, Protocols—Polymorphic Functions , we’ll look at protocols, which let us specify common behaviors
across different types. The into: option takes values that implement the Collectable protocol. These include lists,
binaries, functions, maps, files, hash dicts, hash sets, and IO streams, so we can write things such as

iex> for x <- ~w{ cat dog }, into: IO.stream(:stdio,:line), do: "<<#{x}>>\n"

<<cat>>

<<dog>>

%IO.Stream{device: :standard_io, line_or_bytes: :line, raw: false}

Your Turn

Exercise: ListsAndRecursion-7
In the last exercise of Chapter 7, Lists and Recursion , you wrote a span funtion. Use it and list
comprehensions to return a list of the prime numbers from 2 to n.

Exercise: ListsAndRecursion-8
The Pragmatic Bookshelf has offices in Texas (TX) and North Carolina (NC), so we have to charge sales
tax on orders shipped to these states. The rates can be expressed as a keyword list:[17]

tax_rates = [NC: 0.075, TX: 0.08]

Here’s a list of orders:

orders = [

 [id: 123, ship_to: :NC, net_amount: 100.00],

 [id: 124, ship_to: :OK, net_amount: 35.50],

 [id: 125, ship_to: :TX, net_amount: 24.00],

 [id: 126, ship_to: :TX, net_amount: 44.80],

 [id: 127, ship_to: :NC, net_amount: 25.00],

 [id: 128, ship_to: :MA, net_amount: 10.00],

 [id: 129, ship_to: :CA, net_amount: 102.00],

 [id: 120, ship_to: :NC, net_amount: 50.00]]

Write a function that takes both lists and returns a copy of the orders, but with an extra field, total_amount,
which is the net plus sales tax. If a shipment is not to NC or TX, there’s no tax applied.

http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-7
http://forums.pragprog.com/forums/322/topics/Exercise:%20ListsAndRecursion-8

Moving Past Divinity
L. Peter Deutsch once penned, “To iterate is human, to recurse divine.” And that’s certainly the way I felt when I
first started coding Elixir. The joy of pattern-matching lists in sets of recursive functions drove my designs. After a
while, I realized that perhaps I was taking this too far.

In reality, most of our day-to-day work is better handled using the various enumerators built into Elixir. They make
your code smaller, easier to understand, and probably more efficient.

Part of the process of learning to be effective in Elixir is working out for yourself when to use recursion and when to
use enumerators. I recommend enumerating when you can.

Next we’ll look at string handling in Elixir (and Erlang).

Footnotes

[16]

http://elixir-lang.org/docs/

[17]

I wish it were that simple.…

http://elixir-lang.org/docs/

Chapter 11

Strings and Binaries
In this chapter, we’ll see

Strings and string literals
Character lists (single-quoted literals)
Pattern matching and processing strings

We’ve been happily using strings without really discussing them. Let’s rectify that.

String Literals
Elixir has two kinds of string: single-quoted and double-quoted. They differ significantly in their internal
representation. But they also have many things in common.

Strings can hold characters in UTF-8 encoding.
They may contain escape sequences:

\a BEL (0x07) \b BS (0x08) \d DEL (0x7f)

\e ESC (0x1b) \f FF (0x0c) \n NL (0x0a)

\r CR (0x0d) \s SP (0x20) \t TAB (0x09)

\v VT (0x0b) \xhhh 1–6 hex digits

They allow interpolation on Elixir expressions using the syntax #{...}.

iex> name = "dave"

"dave"

iex> "Hello, #{String.capitalize name}!"

"Hello, Dave!"

Characters that would otherwise have special meaning can be escaped with a backslash.
They support heredocs.

Heredocs
Any string can span several lines. To illustrate this, we’ll use both IO.puts and IO.write. We use write for the
multiline string because puts always appends a newline, and we want to see the contents without this.

IO.puts "start"

IO.write "

 my

 string

"

IO.puts "end"

produces:

start

 my

 string

end

Notice how the multiline string retains the leading and trailing newlines and the leading spaces on the intermediate
lines.

The heredoc notation fixes this. Triple the string delimiter (''' or """) and indent the trailing delimiter to the same
margin as your string contents, and you get this:

IO.puts "start"

IO.write """

 my

 string

 """

IO.puts "end"

produces:

start

my

string

end

Heredocs are used extensively to add documentation to functions and modules.

Sigils
Like Ruby, Elixir has an alternative syntax for some literals. We’ve already seen it with regular expressions, where
we wrote ~r{...}. In Elixir, these ~-style literals are called sigils (a symbol with magical powers).

A sigil starts with a tilde, followed by an upper- or lowercase letter, some delimited content, and perhaps some
options. The delimiters can be <…>, {…}, […], (…), |…|, /…/, "…", and '…'.

The letter determines the sigil’s type:

~C A character list with no escaping or interpolation

~c A character list, escaped and interpolated just like a single-quoted string

~R A regular expression with no escaping or interpolation

~r A regular expression, escaped and interpolated

~S A string with no escaping or interpolation

~s A string, escaped and interpolated just like a double-quoted string

~W A list of whitespace-delimited words, with no escaping or interpolation

~w A list of whitespace-delimited words, with escaping and interpolation

Here are some examples, using a variety of delimiters.

iex> ~C[1\n2#{1+2}]

'1\\n2\#{1+2}'

iex> ~c"1\n2#{1+2}"

'1\n23'

iex> ~S[1\n2#{1+2}]

"1\\n2\#{1+2}"

iex> ~s/1\n2#{1+2}/

"1\n23"

iex> ~W[the c#{'a'}t sat on the mat]

["the", "c\#{'a'}t", "sat", "on", "the", "mat"]

iex> ~w[the c#{'a'}t sat on the mat]

["the", "cat", "sat", "on", "the", "mat"]

The ~W and ~w sigils take an optional type specifier, a, c, or s, which determines whether it returns atoms, a list, or
strings of characters. (We’ve already seen the ~r options.)

iex> ~w[the c#{'a'}t sat on the mat]a

[:the, :cat, :sat, :on, :the, :mat]

iex> ~w[the c#{'a'}t sat on the mat]c

['the', 'cat', 'sat', 'on', 'the', 'mat']

iex> ~w[the c#{'a'}t sat on the mat]s

["the", "cat", "sat", "on", "the", "mat"]

The delimiter can be any nonword character. If it is (, [, {, or <, then the terminating delimiter is the corresponding
closing character. Otherwise the terminating delimiter is the next nonescaped occurrence of the opening delimiter.

Elixir does not check the nesting of delimiters, so the sigil ~s{a{b} is the three-character string a{b.

If the opening delimiter is three single or three double quotes, the sigil is treated as a heredoc.

iex> ~w"""

...> the

...> cat

...> sat

...> """

["the", "cat", "sat"]

If you want to specify modifiers with heredoc sigils (most commonly you’d do this with ~r), add them after the
trailing delimiter.

iex> ~r"""

...> hello

...> """i

~r/hello\n/i

One of the interesting things about sigils is that you can define your own. We talk about this in Part III,.

The Name “strings”
Before we get further into this, I need to explain something. In most other languages, you’d call 'cat' and "cat"
both strings. And that’s what I’ve been doing so far. But Elixir has a different convention.

In Elixir, the convention is that we call only double-quoted strings “strings.” The single-quoted form is a character
list.

This is important. The single- and double-quoted forms are very different, and libraries that work on strings work
only on the double-quoted form.

Let’s explore the differences in more detail.

Single-Quoted Strings—Lists of Character
Codes
Single-quoted strings are represented as a list of integer values, each value corresponding to a codepoint in the
string. For this reason, we refer to them as character lists (or char lists).

iex> str = 'wombat'

'wombat'

iex> is_list str

true

iex> length str

6

iex> Enum.reverse str

'tabmow'

This is confusing: iex says it is a list, but it shows the value as a string. That’s because iex prints a list of integers as
a string if it believes each number in the list is a printable character. You can try this for yourself.

iex> [67, 65, 84]

'CAT'

You can look at the internal representation in a number of ways:

iex> str = 'wombat'

'wombat'

iex> :io.format "~w~n", [str]

[119,111,109,98,97,116]

:ok

iex> List.to_tuple str

{119, 111, 109, 98, 97, 116}

iex> str ++ [0]

[119, 111, 109, 98, 97, 116, 0]

The ~w in the format string forces str to be written as an Erlang term—the underlying list of integers. The ~n is a
newline.

The last example creates a new character list with a null byte at the end. iex no longer thinks all the bytes are
printable, and so returns the underlying character codes.

If a character list contains characters Erlang considers nonprintable, you’ll see the list representation.

iex> '∂x/∂y'

[8706, 120, 47, 8706, 121]

Because a character list is a list, we can use the usual pattern matching and List functions.

iex> 'pole' ++ 'vault'

'polevault'

iex> 'pole' -- 'vault'

'poe'

iex> List.zip ['abc', '123']

[{97, 49}, {98, 50}, {99, 51}]

iex> [head | tail] = 'cat'

'cat'

iex> head

99

iex> tail

'at'

iex> [head | tail]

'cat'

Why is the head of 'cat' 99 and not c?. Remember that a char list is just a list of integer character codes, so each
individual entry is a number. It happens that 99 is the code for a lowercase c.

In fact, the notation ?c returns the integer code for the character c. This is often useful when employing patterns to
extract information from character lists. Here’s a simple module that parses the character-list representation of an
optionally signed decimal number.

strings/parse.exs

defmodule Parse do

 def number([?- | tail]), do: _number_digits(tail, 0) * -1

 def number([?+ | tail]), do: _number_digits(tail, 0)

 def number(str), do: _number_digits(str, 0)

 defp _number_digits([], value), do: value

 defp _number_digits([digit | tail], value)

 when digit in '0123456789' do

 _number_digits(tail, value*10 + digit - ?0)

 end

 defp _number_digits([non_digit | _], _) do

 raise "Invalid digit '#{[non_digit]}'"

 end

end

Let’s try it in iex.

iex> c("parse.exs")

http://media.pragprog.com/titles/elixir/code/strings/parse.exs

[Parse]

iex> Parse.number('123')

123

iex> Parse.number('-123')

-123

iex> Parse.number('+123')

123

iex> Parse.number('+9')

9

iex> Parse.number('+a')

** (RuntimeError) Invalid digit 'a'

Your Turn

Exercise: StringsAndBinaries-1
Write a function that returns true if a single-quoted string contains only printable ASCII characters (space
through tilde).

Exercise: StringsAndBinaries-2
Write an anagram?(word1, word2) that returns true if its parameters are anagrams.

Exercise: StringsAndBinaries-3
Try the following in iex:

iex> ['cat' | 'dog']

['cat',100,111,103]

Why does iex print 'cat' as a string, but 'dog' as individual numbers?

Exercise: StringsAndBinaries-4
(Hard) Write a function that takes a single-quoted string of the form number [+-*/] number and returns the
result of the calculation. The individual numbers do not have leading plus or minus signs.
calculate('123 + 27') # => 150

http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-4

Binaries
The binary type represents a sequence of bits.

A binary literal looks like << term,… >>.

The simplest term is just a number from 0 to 255. The numbers are stored as successive bytes in the binary.

iex> b = << 1, 2, 3 >>

<<1, 2, 3>>

iex> byte_size b

3

iex> bit_size b

24

You can specify modifiers to set any term’s size (in bits). This is useful when working with binary formats such as
media files and network packets.

iex> b = << 1::size(2), 1::size(3) >>

<<9::size(5)>>

iex> byte_size b

1

iex> bit_size b

5

You can store integers, floats, and other binaries in binaries.

iex> int = << 1 >>

<<1>>

iex> float = << 2.5 :: float >>

<<64, 4, 0, 0, 0, 0, 0, 0>>

iex> mix = << int :: binary, float :: binary >>

<<1, 64, 4, 0, 0, 0, 0, 0, 0>>

Let’s finish an initial look at binaries with an example of bit extraction. An IEEE 754 float has a sign bit, 11 bits of
exponent, and 52 bits of mantissa. The exponent is biased by 1023, and the mantissa is a fraction with the top bit
assumed to be 1. So we can extract the fields and then use :math.pow, which performs exponentiation, to
reassemble the number:

iex> << sign::size(1), exp::size(11), mantissa::size(52) >> = << 3.14159::float >>

iex> (1 + mantissa / :math.pow(2, 52)) * :math.pow(2, exp-1023)

3.14159

Double-Quoted Strings Are Binaries
Whereas single-quoted strings are stored as char lists, the contents of a double-quoted string (dqs) are stored as a
consecutive sequence of bytes in UTF-8 encoding. Clearly this is more efficient in terms of memory and certain
forms of access, but it does have two implications.

First, because UTF-8 characters can take more than a single byte to represent, the size of the binary is not
necessarily the length of the string.

iex> dqs = "∂x/∂y"

"∂x/∂y"

iex> String.length dqs

5

iex> byte_size dqs

9

iex> String.at(dqs, 0)

"∂"

iex> String.codepoints(dqs)

["∂", "x", "/", "∂", "y"]

iex> String.split(dqs, "/")

["∂x", "∂y"]

Second, because you’re no longer using lists, you need to learn and work with the binary syntax alongside the list
syntax in your code.

Strings and Elixir Libraries
When Elixir library documentation uses the word string (and most of the time it uses the word binary), it means
double-quoted strings.

The String module defines a number of functions that work with double-quoted strings.

at(str, offset)

Returns the grapheme at the given offset (starting at 0). Negative offsets count from the end of the string.

iex> String.at("∂og", 0)
"∂"
iex> String.at("∂og", -1)
"g"

capitalize(str)

Converts str to lowercase, and then capitalizes the first character.

iex> String.capitalize "école"

"École"

iex> String.capitalize "ÎÎÎÎÎ"

"Îîîîî"

codepoints(str)

Returns the codepoints in str.

iex> String.codepoints("José's ∂øg")
["J", "o", "s", "é", "'", "s", " ", "∂", "ø", "g"]

downcase(str)

Converts str to lowercase.

iex> String.downcase "ØRSteD"

"ørsted"

duplicate(str, n)

Returns a string containing n copies of str.

iex> String.duplicate "Ho! ", 3

"Ho! Ho! Ho! "

ends_with?(str, suffix | [suffixes])

True if str ends with any of the given suffixes.

iex> String.ends_with? "string", ["elix", "stri", "ring"]

true

first(str)

Returns the first grapheme from str.

iex> String.first "∂og"
"∂"

graphemes(str)

Returns the graphemes in the string. This is different from the codepoints function, which lists combining
characters separately.

last(str)

Returns the last grapheme from str.

iex> String.last "∂og"
"g"

length(str)

Returns the number of graphemes in str.

iex> String.length "∂x/∂y"
5

ljust(str, new_length, padding \\ " ")

Returns a new string, at least new_length characters long, containing str left-justified and padded with
padding.

iex> String.ljust("cat", 5)

"cat "

lstrip(str)

Removes leading whitespace from str.

iex> String.lstrip "\t\f Hello\t\n"

"Hello\t\n"

lstrip(str, character)

Removes leading copies of character (an integer codepoint) from str.

iex> String.lstrip "!!!SALE!!!", ?!

"SALE!!!"

next_codepoint(str)

Splits str into its leading codepoint and the rest, or nil if str is empty. This may be used as the basis of an
iterator.

strings/nextcodepoint.ex

http://media.pragprog.com/titles/elixir/code/strings/nextcodepoint.ex

defmodule MyString do

 def each(str, func), do: _each(String.next_codepoint(str), func)

 defp _each({codepoint, rest}, func) do

 func.(codepoint)

 _each(String.next_codepoint(rest), func)

 end

 defp _each(nil, _), do: []

end

MyString.each "∂og", fn c -> IO.puts c end

produces:

∂

o

g

next_grapheme(str)

Same as next_codepoint, but returns graphemes (and :no_grapheme on completion).

printable?(str)

Returns true if str contains only printable characters.

iex> String.printable? "José"

true

iex> String.printable? "\x{0000} a null"

false

replace(str, pattern, replacement, options \\ [global: true, insert_replaced: nil])

Replaces pattern with replacement in str under control of options.

If the :global option is true, all occurrences of the pattern are replaced; otherwise only the first is replaced.

If :insert_replaced is set to a number, the pattern is inserted into the replacement at that offset. If the
option is a list, it is inserted multiple times.

iex> String.replace "the cat on the mat", "at", "AT"

"the cAT on the mAT"

iex> String.replace "the cat on the mat", "at", "AT", global: false

"the cAT on the mat"

iex> String.replace "the cat on the mat", "at", "AT", insert_replaced: 0

"the catAT on the matAT"

iex> String.replace "the cat on the mat", "at", "AT", insert_replaced: [0,2]

"the catATat on the matATat"

reverse(str)

Reverses the graphemes in a string.

iex> String.reverse "pupils"

"slipup"

iex> String.reverse "∑ƒ÷∂"
"∂÷ƒ∑"

rjust(str, new_length, padding \\ " ")

Returns a new string, at least new_length characters long, containing str right-justified and padded with
padding.

iex> String.rjust("cat", 5, ?>)

">>cat"

rstrip(str)

Removes trailing whitespace from str.

iex> String.rstrip(" line \r\n")

" line"

rstrip(str, character)

Removes trailing occurrences of character from str.

iex> String.rstrip "!!!SALE!!!", ?!

"!!!SALE"

slice(str, offset, len)

Returns a len character substring starting at offset (measured from the end of str if negative).

iex> String.slice "the cat on the mat", 4, 3

"cat"

iex> String.slice "the cat on the mat", -3, 3

"mat"

split(str, pattern \\ nil, options \\ [global: true])

Splits str into substrings delimited by pattern. If :global is false, only one split is performed. pattern can

be a string, a regular expression, or nil. In the latter case, the string is split on whitespace.

iex> String.split " the cat on the mat "

["the", "cat", "on", "the", "mat"]

iex> String.split "the cat on the mat", "t"

["", "he ca", " on ", "he ma", ""]

iex> String.split "the cat on the mat", ~r{[ae]}

["th", " c", "t on th", " m", "t"]

iex> String.split "the cat on the mat", ~r{[ae]}, parts: 2

["th", " cat on the mat"]

starts_with?(str, prefix | [prefixes])

True if str starts with any of the given prefixes.

iex> String.starts_with? "string", ["elix", "stri", "ring"]

true

strip(str)

Strips leading and trailing whitespace from str.

iex> String.strip "\t Hello \r\n"

"Hello"

strip(str, character)

Strips leading and trailing instances of character from str.

iex> String.strip "!!!SALE!!!", ?!

"SALE"

upcase(str)

Returns an uppercase version of str.

iex> String.upcase "José Ørstüd"

"JOSÉ ØRSTÜD"

valid_character?(str)

Returns true if str is a single-character string containing a valid codepoint.

iex> String.valid_character? "∂"
true

iex> String.valid_character? "∂og"
false

Your Turn

Exercise: StringsAndBinaries-5
Write a function that takes a list of dqs and prints each on a separate line, centered in a column that has the
width of the longest string. Make sure it works with UTF characters.

iex> center(["cat", "zebra", "elephant"])

 cat

zebra

elephant

http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-5

Binaries and Pattern Matching
The first rule of binaries is “if in doubt, specify the type of each field.” Available types are binary, bits, bitstring,
bytes, float, integer, utf8, utf16, and utf32. You can also add qualifiers:

size(n): The size in bits of the field.
signed or unsigned: For integer fields, should it be interpreted as signed?
endianness: big, little, or native.

Use hyphens to separate multiple attributes for a field:

<< length::unsigned-integer-size(12), flags::bitstring-size(4) >> = data

However, unless you’re doing a lot of work with binary file or protocol formats, the most common use of all this
scary stuff is to process UTF-8 strings.

String Processing with Binaries
When we process lists, we use patterns that split the head from the rest of the list. With binaries that hold strings, we
can do the same kind of trick. We have to specify the type of the head (UTF-8), and make sure the tail remains a
binary.

strings/utf-iterate.ex

defmodule Utf8 do

 def each(str, func) when is_binary(str), do: _each(str, func)

 defp _each(<< head :: utf8, tail :: binary >>, func) do

 func.(head)

 _each(tail, func)

 end

 defp _each(<<>>, _func), do: []

end

Utf8.each "∂og", fn char -> IO.puts char end

produces:

http://media.pragprog.com/titles/elixir/code/strings/utf-iterate.ex

8706

111

103

The parallels with list processing are clear, but the differences are significant. Rather than use [head | tail],
we use << head::utf8, tail::binary >>. And rather than terminate when we reach the empty list, [], we look
for an empty binary, <<>>.

Your Turn

Exercise: StringsAndBinaries-6
Write a function to capitalize the sentences in a string. Each sentence is terminated by a period and a space.
Right now, the case of the characters in the string is random.

iex> capitalize_sentences("oh. a DOG. woof. ")

"Oh. A dog. Woof. "

Exercise: StringsAndBinaries-7
Chapter 7, Lists and Recursion , had an exercise about calculating sales tax. We now have the sales
information in a file of comma-separated id, ship_to, and amount values. The file looks like this:

id,ship_to,net_amount

123,:NC,100.00

124,:OK,35.50

125,:TX,24.00

126,:TX,44.80

127,:NC,25.00

128,:MA,10.00

129,:CA,102.00

120,:NC,50.00

Write a function that reads and parses this file and then passes the result to the sales_tax function.
Remember that the data should be formatted into a keyword list, and that the fields need to be the correct
types (so the id field is an integer, and so on).
You’ll need the library functions File.open, IO.read(file, :line), and IO.stream(file).

http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-6
http://forums.pragprog.com/forums/322/topics/Exercise:%20StringsAndBinaries-7

Familiar Yet Strange
String handling in Elixir is the result of a long evolutionary process in the underlying Erlang environment. If we were
starting from scratch, things would probably look a little different. But once you get over the slightly strange way that
strings are matched using binaries, you’ll find that it works out well. In particular, pattern matching makes it very
easy to look to strings that start with a particular sequence, which in turn makes simple parsing tasks a pleasure to
write.

You may have noticed that we’re a long way into the book and haven’t yet talked about control-flow constructs
such as if and case. This is deliberate: we use them less often in Elixir than in more conventional languages.
However, we still need them, so they are the subject of the next chapter.

Chapter 12

Control Flow
In this chapter, we’ll see

if and unless
cond (a multiway if)
case (a pattern-matching switch)
Exceptions

We’re quite a long way into our exploration of Elixir. But so far we haven’t seen many if statements, or anything
else that looks like a conventional control-flow statement.

There’s a good reason for that. In Elixir we write lots of small functions, and a combination of guard clauses and
pattern matching of parameters replaces most of the control flow seen in other languages.

Elixir code tries to be declarative, not imperative.

Elixir does have a small set of control-flow constructs. The reason I’ve waited so long to introduce them is that I
want you to try not to use them much. You definitely will, and should, drop the occasional if or case into your code.
But before you do, consider more functional alternatives. The benefit will become obvious as you write more code—
functions written without explicit control flow tend to be shorter and more focused. They’re easier to read, test, and
reuse. If you end up with a 10- or 20-line function in an Elixir program, it is pretty much guaranteed that it will
contain one of the constructs in this chapter and that you can simplify it.

So, forewarned, let’s go.

if and unless
In Elixir, if and its evil twin, unless, take two parameters: a condition and a keyword list, which can contain the
keys do: and else:. If the condition is truthy, the if expression evaluates the code associated with the do: key;
otherwise it evaluates the else: code. Either branch may be absent.

iex> if 1 == 1, do: "true part", else: "false part"

"true part"

iex> if 1 == 2, do: "true part", else: "false part"

"false part"

Just as it does with functions, Elixir provides some syntactic sugar. You can write the first of the previous examples
as follows:

iex> if 1 == 1 do

...> "true part"

...> else

...> "false part"

...> end

true part

unless is similar:

iex> unless 1 == 1, do: "error", else: "OK"

"OK"

iex> unless 1 == 2, do: "OK", else: "error"

"OK"

iex> unless 1 == 2 do

...> "OK"

...> else

...> "error"

...> end

"OK"

The value of if and unless is the value of the expression that was evaluated.

cond
The cond macro lets you list out a series of conditions, each with associated code. It executes the code
corresponding to the first truthy conditions.

In the game of FizzBuzz, children count up from 1. If the number is a multiple of three, they say “Fizz.” For multiples
of five, they say “Buzz.” For multiples of both, they say “FizzBuzz.” Otherwise, they say the number.

In Elixir, we could code this as follows:

control/fizzbuzz.ex

Line 1defmodule FizzBuzz do

-

- def upto(n) when n > 0, do: _upto(1, n, [])

-

5 defp _upto(_current, 0, result), do: Enum.reverse result

-

- defp _upto(current, left, result) do

- next_answer =

- cond do

10 rem(current, 3) == 0 and rem(current, 5) == 0 ->

- "FizzBuzz"

- rem(current, 3) == 0 ->

- "Fizz"

- rem(current, 5) == 0 ->

15 "Buzz"

- true ->

- current

http://media.pragprog.com/titles/elixir/code/control/fizzbuzz.ex

- end

- _upto(current+1, left-1, [next_answer | result])

20 end

- end

First, look at the use of cond starting on line 8. We assign the value of the cond expression to next_answer. Inside
the cond, we have four alternatives—the current number is a multiple of 3 and 5, just 3, just 5, or neither. Elixir
examines each in turn and returns the value of the expression following the -> for the first true one. The _upto
function then recurses to find the next value. Also note the use of true -> to handle the case where none of the
previous conditions match. This is the equivalent of the else or default stanza of a more traditional case statement.

There’s a minor problem, though. The result list we build always has the most recent value as its head. When we
finish, we’ll end up with a list that has the answers in reverse order. That’s why in the anchor case (when left is
zero), we reverse the result before returning it. This is a very common pattern. And don’t worry about performance
—list reversal is highly optimized.

Let’s try the code in iex:

iex> c("fizzbuzz.ex")

[FizzBuzz]

iex> FizzBuzz.upto(20)

[1, 2, "Fizz", 4, "Buzz", "Fizz", 7, 8, "Fizz", "Buzz", 11, "Fizz",

.. 13, 14, "FizzBuzz", 16, 17, "Fizz", 19, "Buzz"]

In this case, we could do something different and remove the call to reverse. If we process the numbers in reverse
order (so we start at n and end at 1), the resulting list will be in the correct order.

control/fizzbuzz1.ex

defmodule FizzBuzz do

 def upto(n) when n > 0, do: _downto(n, [])

 defp _downto(0, result), do: result

 defp _downto(current, result) do

 next_answer =

http://media.pragprog.com/titles/elixir/code/control/fizzbuzz1.ex

 cond do

 rem(current, 3) == 0 and rem(current, 5) == 0 ->

 "FizzBuzz"

 rem(current, 3) == 0 ->

 "Fizz"

 rem(current, 5) == 0 ->

 "Buzz"

 true ->

 current

 end

 _downto(current-1, [next_answer | result])

 end

end

This code is quite a bit cleaner than the previous version. However, it is also slightly less idiomatic—readers will
expect to traverse the numbers in a natural order and reverse the result.

But there’s a third option. The FizzBuzz code transforms a number into some value. Where possible, we like to code
things as transformations. We can use Enum.map to transform the range of numbers from 1 to n to the corresponding
FizzBuzz values.

control/fizzbuzz2.ex

defmodule FizzBuzz do

 def upto(n) when n > 0 do

 1..n |> Enum.map(&fizzbuzz/1)

 end

 defp fizzbuzz(n) do

 cond do

http://media.pragprog.com/titles/elixir/code/control/fizzbuzz2.ex

 rem(n, 3) == 0 and rem(n, 5) == 0 ->

 "FizzBuzz"

 rem(n, 3) == 0 ->

 "Fizz"

 rem(n, 5) == 0 ->

 "Buzz"

 true ->

 n

 end

 end

end

This section is intended to show you how cond works, but you’ll often find that it’s better not to use it, and instead to
take advantage of pattern matching in function calls:

control/fizzbuzz3.ex

defmodule FizzBuzz do

 def upto(n) when n > 0 do

 1..n |> Enum.map(&fizzbuzz/1)

 end

 defp fizzbuzz(n) when rem(n, 3) == 0 and rem(n, 5) == 0, do: "FizzBuzz"

 defp fizzbuzz(n) when rem(n, 3) == 0, do: "Fizz"

 defp fizzbuzz(n) when rem(n, 5) == 0, do: "Buzz"

 defp fizzbuzz(n), do: n

end

http://media.pragprog.com/titles/elixir/code/control/fizzbuzz3.ex

The choice is yours.

case
case lets you test a value against a set of patterns, executes the code associated with the first one that matches, and
returns the value of that code. The patterns may include guard clauses.

For example, the File.open function returns a two-element tuple. If the open is successful, it returns {:ok, file},
where file is an identifier for the open file. If the open fails, it returns {:error, reason}. We can use case to take
the appropriate action when we open a file. (In this case the code opens its own source file.)

control/case.ex

case File.open("case.ex") do

{ :ok, file } ->

 IO.puts "First line: #{IO.read(file, :line)}"

{ :error, reason } ->

 IO.puts "Failed to open file: #{reason}"

end

produces:

First line: case File.open("case.ex") do

If we change the file name to something that doesn’t exist and then rerun the code, we get

Failed to open file: enoent

We can use the full power of nested pattern matches:

control/case1.exs

defmodule Users do

 dave = %{ name: "Dave", state: "TX", likes: "programming" }

 case dave do

 %{state: some_state} = person ->

 IO.puts "#{person.name} lives in #{some_state}"

http://media.pragprog.com/titles/elixir/code/control/case.ex
http://media.pragprog.com/titles/elixir/code/control/case1.exs

 _ ->

 IO.puts "No matches"

 end

end

We’ve seen how to employ guard clauses to refine the pattern used when matching functions. We can do the same
with case.

control/case2.exs

defmodule Bouncer do

 dave = %{name: "Dave", age: 27}

 case dave do

 person = %{age: age} when is_number(age) and age >= 21 ->

 IO.puts "You are cleared to enter the Foo Bar, #{person.name}"

 _ ->

 IO.puts "Sorry, no admission"

 end

end

http://media.pragprog.com/titles/elixir/code/control/case2.exs

Raising Exceptions
First, the official warning: exceptions in Elixir are not control-flow structures. Instead, Elixir exceptions are intended
for things that should never happen in normal operation. That means the database going down or a name server
failing to respond could be considered exceptional. Failing to open a configuration file whose name is fixed could be
seen as exceptional. However, failing to open a file whose name a user entered is not. (You could anticipate that a
user might mistype it every now and then.)

Raise an exception with the raise function. At its simplest, you pass it a string and it generates an exception of type
RuntimeError.

iex> raise "Giving up"

** (RuntimeError) Giving up

You can also pass the type of the exception, along with other optional attributes. All exceptions implement at least
the message attribute.

iex> raise RuntimeError

** (RuntimeError) runtime error

iex> raise RuntimeError, message: "override message"

** (RuntimeError) override message

You use exceptions far less in Elixir than in other languages—the design philosophy is that errors should propagate
back up to an external, supervising process. We’ll cover this when we talk about OTP Supervisors.

Elixir has all the usual exception-catching mechanisms. To emphasize how little you should use them, I’ve described
them in an appendix.

Designing with Exceptions
If File.open succeeds, it returns {:ok, file}, where file is the service that gives you access to the file. If it fails,
it returns {:error, reason}. So, for code that knows a file open might not succeed and that wants to handle the
fact, you might write

case File.open(user_file_name) do

{:ok, file} ->

 process(file)

{:error, message} ->

 IO.puts :stderr, "Couldn't open #{user_file_name}: #{message}"

end

If instead you expect the file to open successfully every time, you could raise an exception on failure.

case File.open("config_file") do

{:ok, file} ->

 process(file)

{:error, message} ->

 raise "Failed to open config file: #{message}"

end

Or you could let Elixir raise an exception for you and write

{ :ok, file } = File.open("config_file")

process(file)

If the pattern match on the first line fails, Elixir will raise a MatchError exception. It won’t be as informative as our
version that handled the error explicitly, but if the error should never happen, this form is probably good enough (at
least until it triggers the first time and the operations folks say they’d like more information).

An even better way to handle this is to use File.open!. The trailing exclamation point in the method name is an
Elixir convention—if you see it, you know the function will raise an exception on error, and that exception will be
meaningful. So we could simply write

file = File.open!("config_file")

and get on with our lives.

Doing More with Less
Elixir has just a few forms of control flow: if, unless, cond, case, and (perhaps) raise. But surprisingly, this
doesn’t matter in practice. Elixir programs are rich and expressive without a lot of branching code. And they’re
easier to work with as a result.

That concludes our basic tour of Elixir. Now let’s start putting it all together and implement a full project.

Your Turn

Exercise: ControlFlow-1
Rewrite the FizzBuzz example using case.

Exercise: ControlFlow-2
We now have three different implementations of FizzBuzz. One uses cond, one uses case, and one uses
separate functions with guard clauses.
Take a minute to look at all three. Which do you feel best expresses the problem. Which will be easiest to
maintain?
The case style and the implementation using guard clauses are different from control structures in most other
languages. If you feel that one of these was the best implementation, can you think of ways to remind
yourself to investigate these options as you write Elixir code in the future?

Exercise: ControlFlow-3
Many built-in functions have two forms. The xxx form returns the tuple {:ok, data} and the xxx! form
returns data on success but raises an exception otherwise. However, some functions don’t have the xxx!
form.
Write an ok! function that takes an arbitrary parameter. If the parameter is the tuple {:ok, data}, return the
data. Otherwise, raise an exception containing information from the parameter.
You could use your function like this:

file = ok! File.open("somefile")

http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20ControlFlow-3

Chapter 13

Organizing a Project
In this chapter, we’ll see

Project structure
The mix build tool
ExUnit testing framework
DocTests

Let’s stop hacking and get serious.

You’ll want to organize your source code, write tests, and handle any dependencies. And you’ll want to follow Elixir
conventions, because that way you’ll get support from the tools.

In this chapter we’ll look at mix, the Elixir build tool. We’ll investigate the directory structure it uses and see how to
manage external dependencies. And we’ll end up using ExUnit to write tests for our code (and to validate the
examples in our code’s documentation). To motivate this, we’ll write a tool that downloads and lists the n oldest
issues from a GitHub project. Along the way, we’ll need to find some libraries and make some design decisions
typical of an Elixir project. We’ll call our project issues.

The Project: Fetch Issues from GitHub
GitHub provides a nice web API for fetching issues.[18] Simply issue a GET request to

https://api.github.com/repos/user/project/issues

and you’ll get back a JSON list of issues. We’ll reformat this, sort it, and filter out the oldest n, presenting the result
as a table:

| created_at | title

----+----------------------+---

889 | 2013-03-16T22:03:13Z | MIX_PATH environment variable (of sorts)

892 | 2013-03-20T19:22:07Z | Enhanced mix test --cover

893 | 2013-03-21T06:23:00Z | mix test time reports

898 | 2013-03-23T19:19:08Z | Add mix compile --warnings-as-errors

How Our Code Will Do It
Our program will run from the command line. We’ll need to pass in a GitHub user name, a project name, and an
optional count. This means we’ll need some basic command-line parsing.

We’ll need to access GitHub as an HTTP client, so we’ll have to find a library that gives us the client side of HTTP.
The response that comes back will be in JSON, so we’ll need a library that handles JSON, too. We’ll need to be
able to sort the resulting structure. And finally, we’ll need to lay out selected fields in a table.

We can think of this data transformation in terms of a production line. Raw data enters at one end and is
transformed by each of the stations in turn.

Here we see data, starting at command line and ending at pretty table . At each stage, it undergoes a

transformation (parse, fetch, and so on). These transformations are the functions we write. We’ll cover each one in
turn.

Task: Use Mix to Create Our New Project
Mix is a command-line utility that manages Elixir projects. Use it to create new projects, manage a project’s
dependencies, run tests, and run your code. If you have Elixir installed, you also have mix. Try running it now:

$ mix help

mix # Run the default task (current: mix run)

mix archive # List all archives

mix archive.build # Archive this project into a .ez file

: : : :

mix new # Create a new Elixir project

mix run # Run the given file or expression

mix test # Run a project's tests

iex -S mix # Start IEx and run the default task

This is a list of the standard tasks that come with mix. (Your list may be a little different, depending on your version
of Elixir.) For more information on a particular task, use mix help taskname.

$ mix help deps

List all dependencies and their status.

Dependencies must be specified in the `mix.exs` file in one of

the following formats:

. . .

You can also write your own mix tasks, both for a project and to share between projects.[19]

Create the Project Tree
Each Elixir project lives in its own directory tree. If you use mix to manage this tree, then you’ll need to follow the
mix conventions (which are also the conventions of the Elixir community). We’ll use these conventions in the rest of
this chapter.

We’ll call our project issues, so it will go in a directory named issues. We’ll create this directory using mix.

At the command line, navigate to a place where you want this new project to live, and type

$ mix new issues

* creating README.md

 : :

* creating test

* creating test/test_helper.exs

* creating test/issues_test.exs

Your mix project was created successfully.

You can use mix to compile it, test it, and more:

 cd issues

 mix test

Run `mix help` for more commands.

In tree form, the newly created files and directories look like this:

issues

.gitignore

README.md

config

 config.exs

lib

 issues.ex

mix.exs

test

 issues_test.exs

 test_helper.exs

Change into the issues/ directory. This is a good time to set up version control. I use Git, so I do

$ git init

$ git add .

$ git commit -m "Initial commit of new project"

(I don’t want to clutter the book with version-control stuff, so that’s the last time I’ll mention it. Make sure you
follow your own version-control practices as we go along.)

Our new project contains three directories and seven files.

.gitignore

Lists the files and directories generated as by-products of the build and not to be saved in the repository.

README.md

A place to put a description of your project (in Markdown format). If you store your project on GitHub, this
file’s contents will appear on the project’s home page.

config/

Eventually we’ll put some application-specific configuration here.

lib/

This is where our project’s source lives. Mix has already added a top-level module (issues.ex in our case).

mix.exs

This source file contains our project’s configuration options. We will be adding stuff to this as our project
progresses.

test/

A place to store our tests. Mix has already created a helper file and a stub for unit tests of the issues
module.

Now our job is to add our code. But before we do, let’s think a little about the implementation.

Transformation: Parse the Command Line
Let’s start with the command line. We really don’t want to couple the handling of command-line options into the
main body of our program, so let’s write a separate module to interface between what the user types and what our
program does. By convention this module is called Project.CLI (so our code would be in Issues.CLI). Also by
convention, the main entry point to this module will be a function called run that takes an array of command-line
arguments.

Where should we put this module?

Elixir has a convention. Inside the lib/ directory, create a subdirectory with the same name as the project (so we’d
create the directory lib/issues/). This directory will contain the main source for our application, one module per
file. And each module will be namespaced inside the Issues module—the module naming follows the directory
naming.

In this case, the module we want to write is Issues.CLI—it is the CLI module nested inside the Issues module.
Let’s reflect that in the directory structure and put cli.ex in the lib/issues directory:

lib

issues

 cli.ex

issues.ex

Elixir comes bundled with an option-parsing library,[20] so we will use that. We’ll tell it that -h and --help are
possible switches, and anything else is an argument. It returns a tuple, where the first element is a keyword list of
the options and the second is a list of the remaining arguments. Our initial CLI module looks like the following.

project/0/issues/lib/issues/cli.ex

defmodule Issues.CLI do

 @default_count 4

 @moduledoc """

 Handle the command line parsing and the dispatch to

 the various functions that end up generating a

 table of the last _n_ issues in a github project

 """

http://media.pragprog.com/titles/elixir/code/project/0/issues/lib/issues/cli.ex

 def run(argv) do

 parse_args(argv)

 end

 @doc """

 `argv` can be -h or --help, which returns :help.

 Otherwise it is a github user name, project name, and (optionally)

 the number of entries to format.

 Return a tuple of `{ user, project, count }`, or `:help` if help was given.

 """

 def parse_args(argv) do

 parse = OptionParser.parse(argv, switches: [help: :boolean],

 aliases: [h: :help])

 case parse do

 { [help: true], _, _ }

 -> :help

 { _, [user, project, count], _ }

 -> { user, project, count }

 { _, [user, project], _ }

 -> { user, project, @default_count }

 _ -> :help

 end

 end

end

Step: Write Some Basic Tests
At this point, I get a little nervous if I don’t have some tests. Fortunately, Elixir comes with a wonderful (and simple)
testing framework called ExUnit.

Have a look at the file test/issues_test.exs.

project/0/issues/test/issues_test.exs

defmodule IssuesTest do

 use ExUnit.Case

 test "the truth" do

 assert(true)

 end

end

It acts as a template for all the test files you write. I just copy and paste the boilerplate into separate test files as I
need them. So let’s write tests for our CLI module, putting those tests into the file test/cli_test.exs. We’ll test
that the option parser successfully detects the -h and --help options, and that it returns the arguments otherwise.
We’ll also check that it supplies a default value for the count if only two arguments are given.

project/1/issues/test/cli_test.exs

defmodule CliTest do

 use ExUnit.Case

 import Issues.CLI, only: [parse_args: 1]

 test ":help returned by option parsing with -h and --help options" do

 assert parse_args(["-h", "anything"]) == :help

 assert parse_args(["--help", "anything"]) == :help

 end

 test "three values returned if three given" do

 assert parse_args(["user", "project", "99"]) == { "user", "project", 99 }

http://media.pragprog.com/titles/elixir/code/project/0/issues/test/issues_test.exs
http://media.pragprog.com/titles/elixir/code/project/1/issues/test/cli_test.exs

 end

 test "count is defaulted if two values given" do

 assert parse_args(["user", "project"]) == { "user", "project", 4 }

 end

end

These tests all use the basic assert macro that ExUnit provides. This macro is clever—if an assertion fails, it can
extract the values from the expression you pass it, giving you a nice error message.

To run our tests, we’ll use the mix test task.

issues % mix test

Compiled lib/issues.ex

Compiled lib/issues/cli.ex

Generated issues.app

..

Failures:

 1) test three values returned if three given (CliTest)

 Assertion with == failed

 code: Issues.CLI.parse_args(["user", "project", "99"]) ==

 {"user", "project", 99}

 lhs: {"user", "project", "99"}

 rhs: {"user", "project", 99}

 test/cli_test.exs:10

.

Finished in 0.01 seconds

4 tests, 1 failures

Three of the four tests ran successfully. However, when we pass a count as the third parameter, it blows up. See
how the assertion shows you its type (== in this case), the line of code that failed, and the two values that we
compared. You can see the difference between the left-hand side (lhs), which is the value returned by parse_args,
and the expected value (the rhs). We were expecting to get a number as the count, but we got a string.

That’s easily fixed. The built-in function String.to_integer converts a binary (a string) into an integer.

project/1/issues/lib/issues/cli.ex

 def parse_args(argv) do

 parse = OptionParser.parse(argv, switches: [help: :boolean],

 aliases: [h: :help])

 case parse do

 { [help: true], _, _ } -> :help

» { _, [user, project, count], _ } -> { user, project, String.to_integer(count) }

 { _, [user, project], _ } -> { user, project, @default_count }

 _ -> :help

 end

 end

http://media.pragprog.com/titles/elixir/code/project/1/issues/lib/issues/cli.ex

Your Turn

Exercise: OrganizingAProject-1
Do what I did. Honest. Create the project and write and test the option parser. It’s one thing to read about it,
but you’ll be doing this a lot, so you may as well start now.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-1

Transformation: Fetch from GitHub
Now let’s continue down our data-transformation chain. Having parsed our arguments, we need to transform them
by fetching data from GitHub. So we’ll extend our run function to call a process function, passing it the value
returned from the parse_args function. We could have written this:

process(parse_args(argv))

But to understand this code, you have to read it right to left. I prefer to make the chain more explicit using the Elixir
pipe operator:

project/1/issues/lib/issues/cli.ex

def run(argv) do

 argv

 |> parse_args

 |> process

end

We need two variants of the process function. One handles the case where the user asked for help and parse_args
returned :help. The second handles the case where a user, project, and count are returned.

project/1/issues/lib/issues/cli.ex

def process(:help) do

 IO.puts """

 usage: issues <user> <project> [count | #{@default_count}]

 """

 System.halt(0)

end

def process({user, project, _count}) do

 Issues.GithubIssues.fetch(user, project)

end

http://media.pragprog.com/titles/elixir/code/project/1/issues/lib/issues/cli.ex
http://media.pragprog.com/titles/elixir/code/project/1/issues/lib/issues/cli.ex

We can use mix to run our function. Let’s first see if help gets displayed.

$ mix run -e 'Issues.CLI.run(["-h"])'

usage: issues <user> <project> [count | 4]

You pass mix run an Elixir expression, which gets evaluated in the context of your application. Mix will recompile
your application, as it is out of date before executing the expression.

If we pass it user and project names, however, it’ll blow up because we haven’t written that code yet.

% mix run -e 'Issues.CLI.run(["elixir-lang", "elixir"])'

** (UndefinedFunctionError) undefined function: Issues.GithubIssues.fetch/2

 GithubIssues.fetch("elixir-lang", "elixir")

Let’s write that code now. Our program will act as an HTTP client, accessing GitHub through its web API. So, it
looks like we’ll need an external library.

Task: Use External Libraries
If you come from a world with a single accepted package-management system (such as Ruby with its gems), you’ll
be disappointed by the lack of something similar in the Elixir world. But remember: it’s early days. There were no
drive-throughs on the frontier.

At the same time, I think you’ll be pleasantly surprised at how easy it is to integrate libraries into your project once
you find them.

Finding a Library
The first port of call is http://elixir-lang.org/docs/, the Elixir documentation. Often you’ll find a built-in library that
does what you want.

Next, check if any standard Erlang libraries do what you need. This isn’t a simple task. Visit http://erlang.org/doc/
and look in the left sidebar for Application Groups. There you’ll find libraries sorted by top-level category.

If you find what you’re looking for in either of these two places, you can stop, because all these libraries are already
available to your application. But if they don’t have what you need, you’ll have to add an external dependency.

The next place to look is http://hex.pm, the Elixir/Erlang Package Manager. This is a (small, but growing) list of
packages that integrate nicely with a mix-based project.

If all else fails, Google and GitHub are your friends. Search for terms such as elixir http client or erlang
distributed logger, and you’re likely to turn up the libraries you need.

In our case, we need an HTTP client. We find that Elixir has nothing built in, but hex.pm has a number of HTTP
client libraries.

To me, HTTPoison looks like a good option. So how do we include it in our project?

Adding a Library to Your Project
Mix takes the view that all external libraries should be copied into the project’s directory structure. The good news is
that it handles all this for us—we just need to list the dependencies, and it does the rest. Remember the mix.exs file
at the top level of our project?

project/0/issues/mix.exs

defmodule Issues.Mixfile do

 use Mix.Project

 def project do

 [app: :issues,

 version: "0.0.1",

 elixir: ">= 0.0.0",

 deps: deps]

http://elixir-lang.org/docs/
http://erlang.org/doc/
http://hex.pm
http://media.pragprog.com/titles/elixir/code/project/0/issues/mix.exs

 end

 # Configuration for the OTP application

 # Type `mix help compile.app` for more information

 def application do

 [applications: [:logger]]

 end

 # Returns the list of dependencies in the format:

 # { :foobar, git: "https://github.com/elixir-lang/foobar.git", tag: "0.1" }

 #

 # To specify particular versions, regardless of the tag, do:

 # { :barbat, "~> 0.1", github: "elixir-lang/barbat.git" }

 defp deps do

 []

 end

end

We add new dependencies to the deps function. As the project is in hex.pm, that’s very straightforward. We just
give the name and the version we want.

project/1/issues/mix.exs

defp deps do

 [

 { :httpoison, "~> 0.4" }

]

end

http://media.pragprog.com/titles/elixir/code/project/1/issues/mix.exs

In this case, we give the version as "~> 0.3". This matches any version of HTTPoison with a major version of 0
and a minor version of 3 or greater. In iex, type h Version for more details.

Once your mix.exs file is updated, you’re ready to have mix manage your dependencies.

Use mix deps to list the dependencies and their status:

$ mix deps

* httpoison (package)

 the dependency is not available, run `mix deps.get`

Download the dependencies with mix deps.get:

$ mix deps.get

Running dependency resolution

Unlocked: httpoison

Dependency resolution completed successfully

 httpoison: v0.3.0

* Getting httpoison (package)

Fetching package (http://s3.hex.pm/tarballs/httpoison-0.3.0.tar)

Unpacked package tarball (/Users/dave/.hex/packages/httpoison-0.3.0.tar)

==> httpoison

Run mix deps again:

$ mix deps

==> httpoison

==> issues

* httpoison (package)

 locked at 0.3.0

 the dependency build is outdated, please run `mix deps.compile`

This shows that the HTTPoison library is installed but that it hasn’t yet been compiled. Mix also remembers the Git
hash of each library it installs (it stores them in the file mix.lock). This means that at any point in the future you can
get the exact version of the library you use now.

We don’t worry that the library isn’t compiled—mix will automatically compile it the first time we need it.

If you look at your project tree, you’ll find a new directory called deps containing your dependencies. Note that
these dependencies are themselves just projects, so you can browse their source and read their documentation.

Your Turn

Exercise: OrganizingAProject-2
Add the dependency to your project and install it.

Back to the Transformation
So, back to our problem. We have to write the function GithubIssues.fetch, which transforms a user name and
project into a data structure containing that project’s issues. The HTTPoison page on GitHub gives us a clue,[21]
and we write a new module, Issues.GithubIssues:

project/1/issues/lib/issues/github_issues.ex

defmodule Issues.GithubIssues do

 @user_agent [{"User-agent", "Elixir dave@pragprog.com"}]

 def fetch(user, project) do

 issues_url(user, project)

 |> HTTPoison.get(@user_agent)

 |> handle_response

 end

 def issues_url(user, project) do

 "https://api.github.com/repos/#{user}/#{project}/issues"

 end

 def handle_response(%{status_code: 200, body: body}), do: { :ok, body }

 def handle_response(%{status_code: ___, body: body}), do: { :error, body }

end

We simply call get on the GitHub URL. (We also have to pass in a user-agent header to keep the GitHub API
happy.) What comes back is a structure. If we have a successful response, we return a tuple whose first element is
:ok, along with the body. Otherwise we return an :error tuple, also with the body.

But there’s one more thing. If you look at the HTTPoison GitHub page, you’ll see that the example code calls

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-2
http://media.pragprog.com/titles/elixir/code/project/1/issues/lib/issues/github_issues.ex

HTTPoison.start. That’s because HTTPoison actually runs as a separate application, outside your main process. A
lot of developers will copy this code, calling start inline like this. (I did myself, until José Valim set me straight.) But
there’s a better way. Back in our mix.exs file, there’s a function called application.

project/0/issues/mix.exs

Configuration for the OTP application

Type `mix help compile.app` for more information

def application do

 [applications: [:logger]]

end

OTP is the framework that manages suites of running applications. The application function configures the
contents of these suites. By default, this app function starts the Elixir logger. But we can use it to start extra
applications. We tell mix about starting HTTPoison here. (I found this counterintuitive at first. Erlang—and, by
extension, Elixir—programs are often structured as suites of cooperating subapplications. Frequently, the code that
would be a library in another language is a subapplication in Elixir. It might help to think of these as components or
services.)

project/1/issues/mix.exs

def application do

 [applications: [:logger, :httpoison]]

end

Don’t worry about the details here—we’ll be talking about this extensively in Part II of this book.

We can play with this in iex. Use the -S mix option to run mix before dropping into interaction mode. Because this is
the first time we’ve tried to run our code since installing the dependencies, you’ll see them get compiled:

$ iex -S mix

Erlang/OTP 17 [erts-6.0] [source] [64-bit] [smp:4:4] [async-threads:10]

 [hipe] [kernel-poll:false] [dtrace]

==> idna (compile)

Compiled src/idna_ucs.erl

http://media.pragprog.com/titles/elixir/code/project/0/issues/mix.exs
http://media.pragprog.com/titles/elixir/code/project/1/issues/mix.exs

Compiled src/idna.erl

 : :

Compiled lib/issues/cli.ex

Generated issues.app

iex(1)>

Let’s try it out:

iex> Issues.GithubIssues.fetch("elixir-lang", "elixir")

{:ok,

"[{"url":"https://api.github.com/repos/elixir-lang/elixir/issues/970",

labels_url":"https://api.github.com/repos/elixir-lang/elixir/issues/970

/labels{/name}","comments_url":"https://api.github.com/repos/elixir-lang/

elixir/issues/970/comments","events_url":"https://api.github.com/repos/

elixir-lang/elixir/issues/970/events", …

{"html_url":null,"diff_url":null,"patch_url":null},"body":""}]

This is the body of the Git response. It’s a tuple with the first element set to :ok. The second element is a single long
string containing the data encoded in JSON format.

Transformation: Convert Response
We’ll need a JSON library to convert the response into a data structure. Searching hex.pm, I found the Erlang
library jsx,[22] so let’s add its dependency to our mix.exs file.

project/2/issues/mix.exs

defp deps do

 [

 { :httpoison, "~> 0.4" },

 { :jsx, "~> 2.0" }

]

end

Run mix deps.get, and you’ll end up with jsx installed.

To convert the body from a string, we call the jsx decode function when we return the message from the GitHub
API:

project/3/issues/lib/issues/github_issues.ex

 def handle_response(%{status_code: 200, body: body}) do

» { :ok, :jsx.decode(body) }

 end

 def handle_response(%{status_code: ___, body: body}) do

» { :error, :jsx.decode(body) }

 end

We also have to deal with a possible error response from the fetch, so back in the CLI module we write a function
that decodes the body and returns it on a success response; the function extracts the error from the body and
displays it otherwise.

 def process({user, project, _count}) do

http://media.pragprog.com/titles/elixir/code/project/2/issues/mix.exs
http://media.pragprog.com/titles/elixir/code/project/3/issues/lib/issues/github_issues.ex

 Issues.GithubIssues.fetch(user, project)

» |> decode_response

 end

 def decode_response({:ok, body}), do: body

 def decode_response({:error, error}) do

 {_, message} = List.keyfind(error, "message", 0)

 IO.puts "Error fetching from Github: #{message}"

 System.halt(2)

 end

The JSON that GitHub returns for a successful response is a list with one element per GitHub issue. That element is
itself a list of key/value tuples. To make these easier (and more efficient) to work with, we’ll convert our list of lists
into a list of Elixir hashdicts, which give you fast access by key to a list of key/value pairs.[23]

We’ll do that by piping our data through this function:

def convert_to_list_of_hashdicts(list) do

 list

 |> Enum.map(&Enum.into(&1, HashDict.new))

end

Dependencies That Aren't in Hex

The dependencies y ou need are likely in hex, so mix will probably find them automatically. However, sometimes y ou’ll need to go further afield. The good news is that mix can also load
dependencies from other sources. The most common is GitHub.

For example, hackney was added to hex only toward the end of my writing this book. In earlier versions of the text, I had to add the following dependency to my mix.exs:

def deps do

 [{ . . . },

 { :hackney, github: "benoitc/hackney" }

]

end

Application Configuration
Before we move on, there’s one little tweak I’d like to make. The issues_url function hardcodes the GitHub URL.
Let’s make this configurable.

Remember that when we created the project using mix new, it added a config/ directory containing config.exs.
That file stores application-level configuration.

It should start with the line

use Mix.Config

We then write configuration information for each of the applications in our project. Here we’re configuring the
Issues application, so we write the following code.

project/3/issues/config/config.exs

use Mix.Config

config :issues, github_url: "https://api.github.com"

Each config line adds one or more key/value pairs to the given application’s _environment. If you have multiple
lines for the same application, they accumulate, with duplicate keys in later lines overriding values from earlier ones.

In our code, we use the Application.get_env function to return a value from the environment.

project/3/issues/lib/issues/github_issues.ex

use a module attribute to fetch the value at compile time

@github_url Application.get_env(:issues, :github_url)

def issues_url(user, project) do

 "#{@github_url}/repos/#{user}/#{project}/issues"

end

http://media.pragprog.com/titles/elixir/code/project/3/issues/config/config.exs
http://media.pragprog.com/titles/elixir/code/project/3/issues/lib/issues/github_issues.ex

Because the application environment is commonly used in Erlang code, you’ll find yourself using the configuration
facility to configure code you import, as well as code you write.

Sometimes you may want to vary the configuration, perhaps depending on your application’s environment. One way
is to use the import_config function, which reads configuration from a file. If your config.exs contains

use Mix.Config

import_config "#{Mix.env}.exs"

then Elixir will read dev.exs, test.exs, or prod.exs, depending on your environment.

You can override the default config file name (config/config.exs) using the --config option to elixir.

Transformation: Sort Data
Look at our original “design.”

We’re making good progress—we’ve coded all of the top conveyor belt. Our next transformation is to sort the data
on its created_at field. And this can just use a standard Elixir library function, sort/2. We could create a new
module for this, but it would be pretty lonely. For now we’ll put the function in the CLI module and keep an eye out
for opportunities to move it out if we add related functions later.

So now our CLI module contains

 def process({user, project, count}) do

 Issues.GithubIssues.fetch(user, project)

 |> decode_response

 |> convert_to_list_of_hashdicts

» |> sort_into_ascending_order

 end

 def sort_into_ascending_order(list_of_issues) do

 Enum.sort list_of_issues,

 fn i1, i2 -> i1["created_at"] <= i2["created_at"] end

 end

That sort_into_ascending_order function worries me a little—I get the comparison the wrong way around about
50% of the time, so let’s write a little CLI test.

project/3/issues/test/cli_test.exs

test "sort ascending orders the correct way" do

 result = sort_into_ascending_order(fake_created_at_list(["c", "a", "b"]))

 issues = for issue <- result, do: issue["created_at"]

 assert issues == ~w{a b c}

end

defp fake_created_at_list(values) do

 data = for value <- values,

 do: [{"created_at", value}, {"other_data", "xxx"}]

 convert_to_list_of_hashdicts data

end

Update the import line at the top of the test:

import Issues.CLI, only: [parse_args: 1,

 sort_into_ascending_order: 1,

 convert_to_list_of_hashdicts: 1]

and run it:

$ mix test

.....

Finished in 0.00 seconds

5 tests, 0 failures

http://media.pragprog.com/titles/elixir/code/project/3/issues/test/cli_test.exs

Lookin’ fine.

Transformation: Take First n Items
Our next transformation is to extract the first count entries from the list. Rather than write a function, we’ll use the
built-in Enum.take:

 def process({user, project, count}) do

 Issues.GithubIssues.fetch(user, project)

 |> decode_response

 |> convert_to_list_of_hashdicts

 |> sort_into_ascending_order

» |> Enum.take(count)

 end

Your Turn

Exercise: OrganizingAProject-3
Bring your version of this project in line with the code here.

Exercise: OrganizingAProject-4
(Tricky) Before reading the next section, see if you can write the code to format the data into columns, like
the sample output at the start of the chapter. This is probably the longest piece of Elixir code you’ll have
written. Try to do it without using if or cond.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-4

Transformation: Format the Table
All that’s left from our design is to create the formatted table. This would be a nice interface:

 def process({user, project, count}) do

 Issues.GithubIssues.fetch(user, project)

 |> decode_response

 |> convert_to_list_of_hashdicts

 |> sort_into_ascending_order

 |> Enum.take(count)

» |> print_table_for_columns(["number", "created_at", "title"])

 end

We pass the formatter the list of columns to include in the table, and it writes the table to standard output.

The formatter doesn’t add any new project- or design-related techniques, so we’ll just list it.

project/4/issues/lib/issues/table_formatter.ex

defmodule Issues.TableFormatter do

 import Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

 def print_table_for_columns(rows, headers) do

 data_by_columns = split_into_columns(rows, headers)

 column_widths = widths_of(data_by_columns)

 format = format_for(column_widths)

 puts_one_line_in_columns headers, format

 IO.puts separator(column_widths)

 puts_in_columns data_by_columns, format

http://media.pragprog.com/titles/elixir/code/project/4/issues/lib/issues/table_formatter.ex

 end

 def split_into_columns(rows, headers) do

 for header <- headers do

 for row <- rows, do: printable(row[header])

 end

 end

 def printable(str) when is_binary(str), do: str

 def printable(str), do: to_string(str)

 def widths_of(columns) do

 for column <- columns, do: column |> map(&String.length/1) |> max

 end

 def format_for(column_widths) do

 map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"

 end

 def separator(column_widths) do

 map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)

 end

 def puts_in_columns(data_by_columns, format) do

 data_by_columns

 |> List.zip

 |> map(&Tuple.to_list/1)

 |> each(&puts_one_line_in_columns(&1, format))

 end

 def puts_one_line_in_columns(fields, format) do

 :io.format(format, fields)

 end

end

And here are the tests for it.

project/4/issues/test/table_formatter_test.exs

defmodule TableFormatterTest do

 use ExUnit.Case # bring in the test functionality

 import ExUnit.CaptureIO # And allow us to capture stuff sent to stdout

 alias Issues.TableFormatter, as: TF

 def simple_test_data do

 [[c1: "r1 c1", c2: "r1 c2", c3: "r1 c3", c4: "r1+++c4"],

 [c1: "r2 c1", c2: "r2 c2", c3: "r2 c3", c4: "r2 c4"],

 [c1: "r3 c1", c2: "r3 c2", c3: "r3 c3", c4: "r3 c4"],

 [c1: "r4 c1", c2: "r4++c2", c3: "r4 c3", c4: "r4 c4"]]

 end

 def headers, do: [:c1, :c2, :c4]

 def split_with_three_columns,

 do: TF.split_into_columns(simple_test_data, headers)

 test "split_into_columns" do

http://media.pragprog.com/titles/elixir/code/project/4/issues/test/table_formatter_test.exs

 columns = split_with_three_columns

 assert length(columns) == length(headers)

 assert List.first(columns) == ["r1 c1", "r2 c1", "r3 c1", "r4 c1"]

 assert List.last(columns) == ["r1+++c4", "r2 c4", "r3 c4", "r4 c4"]

 end

 test "column_widths" do

 widths = TF.widths_of(split_with_three_columns)

 assert widths == [5, 6, 7]

 end

 test "correct format string returned" do

 assert TF.format_for([9, 10, 11]) == "~-9s | ~-10s | ~-11s~n"

 end

 test "Output is correct" do

 result = capture_io fn ->

 TF.print_table_for_columns(simple_test_data, headers)

 end

 assert result == """

 c1 | c2 | c4

 ------+--------+--------

 r1 c1 | r1 c2 | r1+++c4

 r2 c1 | r2 c2 | r2 c4

 r3 c1 | r3 c2 | r3 c4

 r4 c1 | r4++c2 | r4 c4

 """

 end

end

Rather than clutter the process function in the CLI module with a long module name, I chose to use import to make
the print function available without a module qualifier. This goes near the top of cli.ex.

import Issues.TableFormatter, only: [print_table_for_columns: 2]

This code also uses a wonderful Elixir testing feature. By importing ExUnit.CaptureIO, we get access to the
capture_io function. This runs the code passed to it, but captures anything written to standard output, returning it as
a string.

Task: Make a Command-Line Executable
Although we can run our code by calling the run function via mix, it isn’t really friendly for other users. So let’s
create something we can run from the command line.

Mix can package our code, along with its dependencies, into a single file that can be run on any Unix-based
platform. This uses Erlang’s escript utility, which can run precompiled programs stored as a Zip archive. In our
case, the program will be run as issues.

When escript runs a program, it looks in your mix.exs file for the option escript. This should return a keyword list
of escript configuration settings. The most important of these is main_module:, which must be set to the name of a
module containing a main function. It passes the command-line arguments to this main function as a list of character
lists (not binaries). As this seems to be a command-line concern, we’ll put the main function in Issues.CLI. Here’s
the update to mix.exs:

project/4/issues/mix.exs

 defmodule Issues.Mixfile do

 use Mix.Project

 def project do

 [app: :issues,

 version: "0.0.1",

 elixir: ">= 0.0.0",

» escript: escript_config,

 deps: deps]

 end

 # Configuration for the OTP application

 def application do

 [

 applications: [:logger, :httpoison, :jsx]

http://media.pragprog.com/titles/elixir/code/project/4/issues/mix.exs

]

 end

 defp deps do

 [

 { :httpoison, "~> 0.4" },

 { :jsx, "~> 2.0" }

]

 end

» defp escript_config do

» [main_module: Issues.CLI]

» end

 end

Now let’s add a main function to our CLI. In fact, all we need to do is rename the existing run function:

project/4/issues/lib/issues/cli.ex

def main(argv) do

 argv

 |> parse_args

 |> process

end

Then we package our program using mix:

http://media.pragprog.com/titles/elixir/code/project/4/issues/lib/issues/cli.ex

$ mix escript.build

Generated escript issues

Now we can run the app locally. We can also send it to a friend—it will run on any computer that has Erlang
installed.

$./issues dynamo dynamo 3

nu | created_at | title

---+----------------------+--

7 | 2012-09-15T10:48:11Z | Should have a websocket demo ?

45 | 2013-02-23T14:40:56Z | Raise an error if a layout can't be found.

46 | 2013-02-24T21:42:23Z | Force mix dynamo CamelCase to raise exception

Task: Add Some Logging
Imagine a large Elixir application—dozens of processes potentially running across a number of nodes. You’d really
want a standard way to keep track of significant events as it runs. Enter the Elixir logger.

The default mix.exs starts the logger for your application.

project/5/issues/mix.exs

def application do

 [

 applications: [:logger, :httpoison, :jsx]

]

end

The logger supports four levels of message—in increasing order of severity they are debug, info, warn, and error.
You select the level of logging in two ways.

First, you can determine at compile time the minimum level of logging to include. Logging below this level is not even
compiled into your code. The compile-time level is set in the config/config.exs file:

project/5/issues/config/config.exs

 use Mix.Config

 config :issues, github_url: "https://api.github.com"

» config :logger, compile_time_purge_level: :info

Next, you can change the minimum log level at runtime by calling Logger.configure. (Clearly, this cannot enable
log levels that you excluded at compile time.)

After all this configuration, it’s time to add some logging.

The basic logging functions are Logger.debug, .info, .warn, and .error. Each function takes either a string or a
zero-arity function:

Logger.debug "Order total #{total(order)}"

Logger.debug fn -> "Order total #{total(order)}" end

Why have the function version? Perhaps the calculation of the order total is expensive. In the first version, we’ll
always call it to interpolate the value into our string, even if the runtime log level is set to ignore debug-level
messages. In the function variant, though, the total function will be invoked only if the log message is needed.

http://media.pragprog.com/titles/elixir/code/project/5/issues/mix.exs
http://media.pragprog.com/titles/elixir/code/project/5/issues/config/config.exs

Anyway, here’s a version of our fetch function with some logging:

project/5/issues/lib/issues/github_issues.ex

 defmodule Issues.GithubIssues do

» require Logger

 @user_agent [{"User-agent", "Elixir dave@pragprog.com"}]

 def fetch(user, project) do

» Logger.info "Fetching user #{user}'s project #{project}"

 issues_url(user, project)

 |> HTTPoison.get(@user_agent)

 |> handle_response

 end

 def handle_response(%{status_code: 200, body: body}) do

» Logger.info "Successful response"

» Logger.debug fn -> inspect(body) end

 { :ok, :jsx.decode(body) }

 end

 def handle_response(%{status_code: status, body: body}) do

» Logger.error "Error #{status} returned"

http://media.pragprog.com/titles/elixir/code/project/5/issues/lib/issues/github_issues.ex

 { :error, :jsx.decode(body) }

 end

 # use a module attribute to fetch the value at compile time

 @github_url Application.get_env(:issues, :github_url)

 def issues_url(user, project) do

 "#{@github_url}/repos/#{user}/#{project}/issues"

 end

 end

Note the use of require Logger at the top of the module. If you forget this (and I do every time), you’ll get an error
when you make the first call to Logger.

We can play with the new code in iex:

iex> Issues.CLI.process {"elixir-lang", "elixir", 1}

21:58:27.577 [info] Fetching user elixir-lang's project elixir

21:58:28.175 [info] Successful response

numb | created_at | title

-----+----------------------+---

2396 | 2014-06-12T15:02:23Z | Elixir version checking for installed archives

:ok

Notice that the debug-level message is not displayed.

Task: Test the Comments
When I document my functions, I like to include examples of the function being used—comments saying things such
as, “Feed it these arguments, and you’ll get this result.” In the Elixir world, a common way to do this is to show the
function being used in an iex session.

Here’s an example. Our TableFormatter holds a number of self-contained functions that we can document.

project/5/issues/lib/issues/table_formatter.ex

defmodule Issues.TableFormatter do

 import Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

 @doc """

 Takes a list of row data, where each row is a HashDict, and a list of

 headers. Prints a table to STDOUT of the data from each row

 identified by each header. That is, each header identifies a column,

 and those columns are extracted and printed from the rows.

 We calculate the width of each column to fit the longest element

 in that column.

 """

 def print_table_for_columns(rows, headers) do

 data_by_columns = split_into_columns(rows, headers)

 column_widths = widths_of(data_by_columns)

 format = format_for(column_widths)

 puts_one_line_in_columns headers, format

 IO.puts separator(column_widths)

 puts_in_columns data_by_columns, format

http://media.pragprog.com/titles/elixir/code/project/5/issues/lib/issues/table_formatter.ex

 end

 @doc """

 Given a list of rows, where each row contains a keyed list

 of columns, return a list containing lists of the data in

 each column. The `headers` parameter contains the

 list of columns to extract

 ## Example

 iex> list = [Enum.into([{"a", "1"},{"b", "2"},{"c", "3"}], HashDict.new),

 ...> Enum.into([{"a", "4"},{"b", "5"},{"c", "6"}], HashDict.new)]

 iex> Issues.TableFormatter.split_into_columns(list, ["a", "b", "c"])

 [["1", "4"], ["2", "5"], ["3", "6"]]

 """

 def split_into_columns(rows, headers) do

 for header <- headers do

 for row <- rows, do: printable(row[header])

 end

 end

 @doc """

 Return a binary (string) version of our parameter.

 ## Examples

 iex> Issues.TableFormatter.printable("a")

 "a"

 iex> Issues.TableFormatter.printable(99)

 "99"

 """

 def printable(str) when is_binary(str), do: str

 def printable(str), do: to_string(str)

 @doc """

 Given a list containing sublists, where each sublist contains the data for

 a column, return a list containing the maximum width of each column

 ## Example

 iex> data = [["cat", "wombat", "elk"], ["mongoose", "ant", "gnu"]]

 iex> Issues.TableFormatter.widths_of(data)

 [6, 8]

 """

 def widths_of(columns) do

 for column <- columns, do: column |> map(&String.length/1) |> max

 end

 @doc """

 Return a format string that hard codes the widths of a set of columns.

 We put `" | "` between each column.

 ## Example

 iex> widths = [5,6,99]

 iex> Issues.TableFormatter.format_for(widths)

 "~-5s | ~-6s | ~-99s~n"

 """

 def format_for(column_widths) do

 map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"

 end

 @doc """

 Generate the line that goes below the column headings. It is a string of

 hyphens, with + signs where the vertical bar between the columns goes.

 ## Example

 iex> widths = [5,6,9]

 iex> Issues.TableFormatter.separator(widths)

 "------+--------+----------"

 """

 def separator(column_widths) do

 map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)

 end

 @doc """

 Given a list containing rows of data, a list containing the header selectors,

 and a format string, write the extracted data under control of the format string.

 """

 def puts_in_columns(data_by_columns, format) do

 data_by_columns

 |> List.zip

 |> map(&Tuple.to_list/1)

 |> each(&puts_one_line_in_columns(&1, format))

 end

 def puts_one_line_in_columns(fields, format) do

 :io.format(format, fields)

 end

end

Note how some of the documentation contains sample iex sessions.

Now we write a test that validates that each of the iex sessions returns the values shown in the @doc string. We
create a new test file, test/doc_test.exs, containing this:

project/5/issues/test/doc_test.exs

 defmodule DocTest do

 use ExUnit.Case

» doctest Issues.TableFormatter

 end

We can now run this:

$ mix test test/doc_test.exs

......

Finished in 0.00 seconds

5 tests, 0 failures

http://media.pragprog.com/titles/elixir/code/project/5/issues/test/doc_test.exs

And, of course, these tests are integrated into the overall test suite:

$ mix test

..............

Finished in 0.01 seconds

13 tests, 0 failures

Let’s force an error to see what happens:

@doc """

Return a binary (string) version of our parameter.

Examples

 iex> Issues.TableFormatter.printable("a")

 "a"

 iex> Issues.TableFormatter.printable(99)

 "99.0"

"""

def printable(str) when is_binary(str), do: str

def printable(str), do: to_string(str)

And run the tests again:

$ mix test test/doc_test.exs

.........

 1) test doc at Issues.TableFormatter.printable/1 (3) (DocTest)

 Doctest failed

 code: " Issues.TableFormatter.printable(99) should equal \"99.0\""

 lhs: "\"99\""

 stacktrace:

 lib/issues/table_formatter.ex:52: Issues.TableFormatter (module)

....

Finished in 0.01 seconds

6 tests, 1 failures

Task: Create Project Documentation
Java has Javadoc, Ruby has RDoc, and Elixir has ExDoc—a documentation tool that describes your project,
showing the modules, the things defined in them, and any documentation you’ve written for them.

Using it is easy. First, add the ExDoc dependency to your mix.exs file. This dependency is unique—rather than drag
it in from hex.pm, we’ll get it from GitHub.

project/5/issues/mix.exs

defp deps do

 [

 { :httpoison, "~> 0.4" },

 { :jsx, "~> 2.0" },

 { :ex_doc, github: "elixir-lang/ex_doc" }

]

end

While you’re in the mix.exs, you can add a project name and (if your project is in GitHub) a URL. The latter allows
ExDoc to provide live links to your source code. These parameters go in the project function:

 def project do

 [app: :issues,

 version: "0.0.1",

» name: "Issues",

» source_url: "https://github.com/pragdave/issues",

 deps: deps]

 end

Then run mix deps.get.

To generate the documentation, just run

http://media.pragprog.com/titles/elixir/code/project/5/issues/mix.exs

$ mix docs

Docs generated with success.

Open up docs/index.html in your browser to read them.

The first time you run it, this will install ExDoc. That involves compiling some C code, so you’ll need a development
environment on your machine.

Open docs/index.html in your browser, then use the sidebar on the left to search or drill down through your
modules. Here’s what I see for the start of the documentation for TableFormatter:

And that’s it. The full project is in the source download at project/5/issues.

Coding by Transforming Data
I wanted to show you how Elixir projects are written—the tools we use and the processes we follow. I wanted to
illustrate how lots of small functions can transform data, how specifying that transformation acts as an outline for the
program, and how easy testing can be in Elixir.

But mostly I wanted to show how enjoyable Elixir development is, and how thinking about the world in terms of data
and its transformation is a productive way to code.

Let’s look at our original outline:

And then at the CLI.process function:

def process({user, project, count}) do

 Issues.GithubIssues.fetch(user, project)

 |> decode_response

 |> convert_to_list_of_hashdicts

 |> sort_into_ascending_order

 |> Enum.take(count)

 |> print_table_for_columns(["number", "created_at", "title"])

end

This is a cool way to code.

Next we’ll turn our attention to concurrent programming, a key strength of Elixir.

Your Turn

Exercise: OrganizingAProject-6
In the United States, the National Oceanic and Atmospheric Administration provides hourly XML feeds of
conditions at 1,800 locations.[24] For example, the feed for a small airport close to where I’m writing this is at
http://w1.weather.gov/xml/current_obs/KDTO.xml.
Write an application that fetches this data, parses it, and displays it in a nice format.
(Hint: You might not have to download a library to handle XML parsing.)

Footnotes

[18]

http://developer.github.com/v3/

[19]

http://elixir-lang.org/getting_started/mix_otp/1.html

[20]

http://elixir-lang.org/docs/stable/elixir/OptionParser.html

[21]

https://github.com/edgurgel/httpoison

[22]

https://github.com/talentdeficit/jsx

[23]

http://elixir-lang.org/docs/stable/elixir/HashDict.html

[24]

http://w1.weather.gov/xml/current_obs

http://forums.pragprog.com/forums/322/topics/Exercise:%20OrganizingAProject-6
http://w1.weather.gov/xml/current_obs/KDTO.xml
http://developer.github.com/v3/
http://elixir-lang.org/getting_started/mix_otp/1.html
http://elixir-lang.org/docs/stable/elixir/OptionParser.html
https://github.com/edgurgel/httpoison
https://github.com/talentdeficit/jsx
http://elixir-lang.org/docs/stable/elixir/HashDict.html
http://w1.weather.gov/xml/current_obs

Part 2
Concurrent Programming

You want to write concurrent programs. That’s probably why you’re reading this book.

Let’s look at Elixir’s actor-based concurrency model. Then we’ll dig into OTP, the Erlang management
architecture that helps you create applications that are highly scalable and very reliable.

Chapter 14

Working with Multiple Processes

One of Elixir’s key features is the idea of packaging code into small chunks that can be run independently and
concurrently.

If you’ve come from a conventional programming language, this may worry you. Concurrent programming is
“known” to be difficult, and there’s a performance penalty to pay when you create lots of processes.

Elixir doesn’t have these issues, thanks to the architecture of the Erlang VM on which it runs.

Elixir uses the actor model of concurrency. An actor is an independent process that shares nothing with any other
process. You can spawn new processes, send them messages, and receive messages back. And that’s it (apart
from some details about error handling and monitoring, which we cover later).

In the past, you may have had to use threads or operating-system processes to achieve concurrency. Each time, you
probably felt you were opening Pandora’s box—there was so much that could go wrong. But that worry just
evaporates in Elixir. In fact, Elixir developers are so comfortable creating new processes, they’ll often do it at times
when you’d have created an object in a language such as Java.

One more thing—when we talk about processes in Elixir, we are not talking about native operating-system
processes. These are too slow and bulky. Instead, Elixir uses process support in Erlang. These processes will run
across all your CPUs (just like native processes), but they have very little overhead. As we’ll cover a bit later, it’s
very easy to create hundreds of thousands of Elixir processes on even a modest computer.

A Simple Process
Here’s a module that defines a function we’d like to run as a separate process.

spawn/spawn-basic.ex

defmodule SpawnBasic do

 def greet do

 IO.puts "Hello"

 end

end

Yup, that’s it. There’s nothing special—it’s just regular code.

Let’s fire up iex and play:

iex> c("spawn-basic.ex")

[SpawnBasic]

First let’s call it as a regular function:

iex> SpawnBasic.greet

Hello

:ok

Now let’s run it in a separate process:

iex> spawn(SpawnBasic, :greet, [])

Hello

#PID<0.42.0>

The spawn function kicks off a new process. It comes in many forms, but the two simplest ones let you run an
anonymous function and run a named function in a module, passing a list of arguments. (We used the latter here.)

http://media.pragprog.com/titles/elixir/code/spawn/spawn-basic.ex

The spawn returns a Process Identifier, normally called a PID. This uniquely identifies the process it creates. (This
identifier could be unique among all processes in the world, but here it’s just unique in our application.)

When we call spawn, it creates a new process to run the code we specify. We don’t know exactly when it will
execute—we know only that it is eligible to run.

In this example, we can see that our function ran and output “Hello” prior to iex reporting the PID returned by
spawn. But you can’t rely on this. Instead you’ll use messages to synchronize your processes’ activity.

Sending Messages Between Processes
Let’s rewrite our example to use messages. The top level will send greet a message containing a string, and the
greet function will respond with a greeting containing that message.

In Elixir we send a message using the send function. It takes a PID and the message to send (an Elixir value, which
we also call a term) on the right. You can send anything you want, but most Elixir developers seem to use atoms and
tuples.

We wait for messages using receive. In a way, this acts just like case, with the message body as the parameter.
Inside the block associated with the receive call, you can specify any number of patterns and associated actions.
Just as with case, the action associated with the first pattern that matches the function is run.

Here’s the updated version of our greet function.

spawn/spawn1.ex

defmodule Spawn1 do

 def greet do

 receive do

 {sender, msg} ->

 send sender, { :ok, "Hello, #{msg}" }

 end

 end

end

here's a client

pid = spawn(Spawn1, :greet, [])

send pid, {self, "World!"}

receive do

http://media.pragprog.com/titles/elixir/code/spawn/spawn1.ex

 {:ok, message} ->

 IO.puts message

end

The function uses receive to wait for a message, and then matches the message in the block. In this case, the only
pattern is a two-element tuple, where the first element is the original sender’s PID and the second is the message. In
the corresponding action, we use send sender, ... to send a formatted string back to the original message sender.
We package that string into a tuple, with :ok as its first element.

Outside the module, we call spawn to create a process, and send it a tuple:

send pid, { self, "World!" }

The function self returns its caller’s PID. Here we use it to pass our PID to the greet function so it will know
where to send the response.

We then wait for a response. Notice that we do a pattern match on {:ok, message}, extracting the second element
of the tuple, which contains the actual text.

We can run this in iex:

iex> c("spawn1.ex")

Hello, World!

[Spawn1]

Very cool. The text was sent, and greet responded with the full greeting.

Handling Multiple Messages
Let’s try sending a second message.

spawn/spawn2.ex

defmodule Spawn2 do

 def greet do

 receive do

 {sender, msg} ->

 send sender, { :ok, "Hello, #{msg}" }

http://media.pragprog.com/titles/elixir/code/spawn/spawn2.ex

 end

 end

end

here's a client

pid = spawn(Spawn2, :greet, [])

send pid, {self, "World!"}

receive do

 {:ok, message} ->

 IO.puts message

end

send pid, {self, "Kermit!"}

receive do

 {:ok, message} ->

 IO.puts message

end

Run it in iex:

iex> c("spawn2.ex")

Hello World!

.... just sits there

The first message is sent back, but the second is nowhere to be seen. What’s worse, iex just hangs, and we have to
use ^C (the control-C key sequence) to get out of it.

That’s because our greet function handles only a single message. Once it has processed the receive, it exits. As a
result, the second message we send it is never processed. The second receive at the top level then just hangs,

waiting for a response that will never come.

Let’s at least fix the hanging part. We can tell receive that we want to time out if a response is not received in so
many milliseconds. This uses a pseudopattern called after.

spawn/spawn3.ex

 defmodule Spawn3 do

 def greet do

 receive do

 {sender, msg} ->

 send sender, { :ok, "Hello, #{msg}" }

 end

 end

 end

 # here's a client

 pid = spawn(Spawn3, :greet, [])

 send pid, {self, "World!"}

 receive do

 {:ok, message} ->

 IO.puts message

 end

 send pid, {self, "Kermit!"}

 receive do

http://media.pragprog.com/titles/elixir/code/spawn/spawn3.ex

 {:ok, message} ->

 IO.puts message

» after 500 ->

» IO.puts "The greeter has gone away"

 end

iex> c("spawn3.ex")

Hello World!

... short pause ...

The greeter has gone away

[Spawn3]

But how would we make our greet function handle multiple messages? Our natural reaction is to make it loop, doing
a receive on each iteration. Elixir doesn’t have loops, but it does have recursion.

spawn/spawn4.ex

 defmodule Spawn4 do

 def greet do

 receive do

 {sender, msg} ->

 send sender, { :ok, "Hello, #{msg}" }

» greet

 end

 end

 end

http://media.pragprog.com/titles/elixir/code/spawn/spawn4.ex

 # here's a client

 pid = spawn(Spawn4, :greet, [])

 send pid, {self, "World!"}

 receive do

 {:ok, message} ->

 IO.puts message

 end

 send pid, {self, "Kermit!"}

 receive do

 {:ok, message} ->

 IO.puts message

 after 500 ->

 IO.puts "The greeter has gone away"

 end

Run this, and both messages are processed:

iex> c("spawn4.ex")

Hello World!

Hello Kermit!

[Spawn4]

Recursion, Looping, and the Stack
The recursive greet function might have worried you a little. Every time it receives a message, it ends up calling

itself. In many languages, that adds a new frame to the stack. After a large number of messages, you might run out
of memory.

This doesn’t happen in Elixir, as it implements tail-call optimization. If the very last thing a function does is call
itself, there’s no need to make the call. Instead, the runtime can simply jump back to the start of the function. If the
recursive call has arguments, then these replace the original parameters as the loop occurs.

But beware—the recursive call must be the very last thing executed. For example, the following code is not tail
recursive:

def factorial(0), do: 1

def factorial(n), do: n * factorial(n-1)

Although the recursive call is physically the last thing in the function, it is not the last thing executed. The function
has to multiply the value it returns by n.

To make it tail recursive, we need to move the multiplication into the recursive call, and this means adding an
accumulator:

spawn/fact_tr.ex

defmodule TailRecursive do

 def factorial(n), do: _fact(n, 1)

 defp _fact(0, acc), do: acc

 defp _fact(n, acc), do: _fact(n-1, acc*n)

end

http://media.pragprog.com/titles/elixir/code/spawn/fact_tr.ex

Process Overhead
At the start of the chapter, I somewhat cavalierly said Elixir processes were very low overhead. Now it is time to
back that up. Let’s write some code that creates n processes. The first will send a number to the second. It will
increment that number and pass it to the third. This will continue until we get to the last process, which will pass the
number back to the top level.

spawn/chain.exs

Line 1defmodule Chain do

- def counter(next_pid) do

- receive do

- n ->

5 send next_pid, n + 1

- end

- end

-

- def create_processes(n) do

10 last = Enum.reduce 1..n, self,

- fn (_,send_to) ->

- spawn(Chain, :counter, [send_to])

- end

-

15 # start the count by sending

- send last, 0

-

- # and wait for the result to come back to us

http://media.pragprog.com/titles/elixir/code/spawn/chain.exs

- receive do

20 final_answer when is_integer(final_answer) ->

- "Result is #{inspect(final_answer)}"

- end

- end

-

25 def run(n) do

- IO.puts inspect :timer.tc(Chain, :create_processes, [n])

- end

- end

The counter function on line 2 is the code that will be run in separate processes. It is passed the PID of the next
process in the chain. When it receives a number, it increments it and sends it on to that next process.

The create_processes function is probably the densest piece of Elixir we’ve encountered so far. Let’s break it
down.

It is passed the number of processes to create. Each process has to be passed the PID of the previous process so
that it knows who to send the updated number to. All this is done on line 11.

The reduce call will iterate over the range 1..n. Each time around, it will pass an accumulator as the second
parameter to its function. We set the initial value of that accumulator to self, our PID.

In the function, we spawn a new process that runs the counter function, using the third parameter of spawn to pass
in the accumulator’s current value (initially self). The value spawn returns is the PID of the newly created process,
which becomes the accumulator’s value for the next iteration.

Putting it another way, each time we spawn a new process, we pass it the previous process’s PID in the send_to
parameter.

The value that the reduce function returns is the accumulator’s final value, which is the PID of the last process
created.

On the next line we set the ball rolling by passing 0 to the last process. It will increment it and pass 1 to the second-
to-last process. This goes on until the very first process we created passes the result back to us. We use the
receive block to capture this, and format it into a nice message.

Our receive block contains a new feature. We’ve already seen how guard clauses can constrain pattern matching
and function calling. The same guard clauses can be used to qualify the pattern in a receive block.

Why do we need this, though? It turns out there’s a bug in some versions of Elixir. [25] When you compile and run a
program using iex -S mix, a residual message is left lying around from the compilation process (it records a
process’s termination). We ignore that message by telling the receive clause that we’re interested only in simple

integers.

The run function starts the whole thing off. It uses a built-in Erlang library, tc, which can time a function’s
execution. We pass it the module, name, and parameters, and it responds with a tuple. The first element is the
execution time in microseconds and the second is the result the function returns.

We’ll run this code from the command line rather than from iex. (You’ll see why in a second.) These results are on
my 2011 MacBook Air (2.13GHz Core 2 Duo and 4GB RAM).

$ elixir -r chain.exs -e "Chain.run(10)"

{3175,"Result is 10"}

We asked it to run 10 processes, and it came back in 3.175 ms. The answer looks correct. Let’s try 100 processes.

$ elixir -r chain.exs -e "Chain.run(100)"

{3584,"Result is 100"}

Only a small increase in the time. There’s probably some startup latency on the first process creation. Onward!
Let’s try 1,000.

$ elixir -r chain.exs -e "Chain.run(1000)"

{8838,"Result is 1000"}

Now 10,000.

$ elixir -r chain.exs -e "Chain.run(10000)"

{76550,"Result is 10000"}

Ten thousand processes created and executed in 77 ms. Let’s try for 400,000.

$ elixir -r chain.exs -e "Chain.run(400_000)"

=ERROR REPORT==== 25-Apr-2013::15:16:14 ===

Too many processes

** (SystemLimitError) a system limit has been reached

It looks like the virtual machine won’t support 400,000 processes. Fortunately, this is not a hard limit—we just
bumped into a default value. We can increase this using the VM’s +P parameter. We pass this parameter to the VM
using the --erl parameter to elixir. (This is why I chose to run from the command line.)

$ elixir --erl "+P 1000000" -r chain.exs -e "Chain.run(400_000)"

{3210704,"Result is 400000"}

One last run, this time with 1,000,000 processes.

$ elixir --erl "+P 1000000" -r chain.exs -e "Chain.run(1_000_000)"

{7225292,"Result is 1000000"}

We ran a million processes (sequentially) in about 7 seconds. This kind of performance is stunning, and it changes
the way we design code. We can now create hundreds of little helper processes. And each process can contain its
own state—in a way, processes in Elixir are like objects in an object-oriented system (but they have a better sense
of humor).

Your Turn

Exercise: WorkingWithMultipleProcesses-1
Run this code on your machine. See if you get comparable results.

Exercise: WorkingWithMultipleProcesses-2
Write a program that spawns two processes and then passes each a unique token (for example, “fred” and
“betty”). Have them send the tokens back.

Is the order in which the replies are received deterministic in theory? In practice?
If either answer is no, how could you make it so?

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-2

When Processes Die
Who gets told when a process dies? By default, no one. Obviously the VM knows and can report it to the console,
but your code will be oblivious unless you explicitly tell Elixir you want to get involved.

Here’s the default case: we spawn a function that uses the Erlang timer library to sleep for 500 ms. It then exits
with a status of 99.

The code that spawns it sits in a receive. If it receives a message, it reports that fact; otherwise, after one second it
lets us know that nothing happened.

spawn/link1.exs

defmodule Link1 do

 import :timer, only: [sleep: 1]

 def sad_function do

 sleep 500

 exit(:boom)

 end

 def run do

 Process.flag(:trap_exit, true)

 spawn(Link1, :sad_function, [])

 receive do

 msg ->

 IO.puts "MESSAGE RECEIVED: #{inspect msg}"

 after 1000 ->

 IO.puts "Nothing happened as far as I am concerned"

 end

 end

end

http://media.pragprog.com/titles/elixir/code/spawn/link1.exs

Link1.run

(Think about how you’d have written this in your old programming language.)

We can run this from the console:

$ elixir -r link1.exs

Nothing happened as far as I am concerned

As far as the top level was concerned, the spawned process exiting caused no activity.

Linking Two Processes
If we want two processes to share in each other’s pain, we can link them. When processes are linked, each can
receive information when the other exits. The spawn_link call spawns a process and links it to the caller in one
operation.

spawn/link2.exs

 defmodule Link2 do

 import :timer, only: [sleep: 1]

 def sad_function do

 sleep 500

 exit(:boom)

 end

 def run do

» spawn_link(Link2, :sad_function, [])

 receive do

 msg ->

 IO.puts "MESSAGE RECEIVED: #{inspect msg}"

 after 1000 ->

http://media.pragprog.com/titles/elixir/code/spawn/link2.exs

 IO.puts "Nothing happened as far as I am concerned"

 end

 end

 end

 Link2.run

The runtime reports the abnormal termination:

$ elixir -r link2.exs

** (EXIT from #PID<0.35.0>) :boom

So our child process died, and it killed the entire application. That’s the default behaviour of linked processes—when
one exits abnormally, it kills the other.

What if you want to handle the death of another process? Well, you probably don’t want to do this. Elixir uses the
OTP framework for constructing process trees, and OTP includes the concept of process supervision. An incredible
amount of effort has been spent getting this right, so I recommend using it most of the time. (We cover this in
Chapter 17, OTP: Supervisors .)

However, you can tell Elixir to convert the exit signals from a linked process into a message you can handle. Do this
by trapping the exit.

spawn/link3.exs

 defmodule Link3 do

 import :timer, only: [sleep: 1]

 def sad_function do

 sleep 500

 exit(:boom)

 end

http://media.pragprog.com/titles/elixir/code/spawn/link3.exs

 def run do

» Process.flag(:trap_exit, true)

 spawn_link(Link3, :sad_function, [])

 receive do

 msg ->

 IO.puts "MESSAGE RECEIVED: #{inspect msg}"

 after 1000 ->

 IO.puts "Nothing happened as far as I am concerned"

 end

 end

 end

 Link3.run

This time we see an :EXIT message when the spawned process terminates:

$ elixir -r link3.exs

MESSAGE RECEIVED: {:EXIT, #PID<0.41.0>, :boom}

It doesn’t matter why a process exits—it may simply finish processing, it may explicitly exit, or it may raise an
exception—the same :EXIT message is received. Following an error, however, it contains details of what went
wrong.

Monitoring a Process
Linking joins the calling process and another process—each receives notifications about the other. By contrast,
monitoring lets a process spawn another and be notified of its termination, but without the reverse notification—it is
one-way only.

When you monitor a process, you receive a :DOWN message when it exits or fails, or if it doesn’t exist.

You can use spawn_monitor to turn on monitoring when you spawn a process, or you can use Process.monitor to
monitor an existing process. However, if you use Process.monitor (or link to an existing process), there is a

potential race condition—if the other process dies before your monitor call completes, you may not receive a
notification. The spawn_link and spawn_monitor versions are atomic, however, so you’ll always catch a failure.

spawn/monitor1.exs

 defmodule Monitor1 do

 import :timer, only: [sleep: 1]

 def sad_method do

 sleep 500

 exit(:boom)

 end

 def run do

» res = spawn_monitor(Monitor1, :sad_method, [])

 IO.puts inspect res

 receive do

 msg ->

 IO.puts "MESSAGE RECEIVED: #{inspect msg}"

 after 1000 ->

 IO.puts "Nothing happened as far as I am concerned"

 end

 end

 end

http://media.pragprog.com/titles/elixir/code/spawn/monitor1.exs

 Monitor1.run

Run it, and the results are similar to the spawn_link version:

$ elixir -r monitor1.exs -e Monitor1.run

{#PID<0.37.0>,#Reference<0.0.0.53>}

MESSAGE RECEIVED: {:DOWN,#Reference<0.0.0.53>,:process,#PID<0.37.0>,:boom}

(The Reference record in the message is the identity of the monitor that was created. The spawn_monitor call also
returns it, along with the PID.)

So, when do you use links and when should you choose monitors?

It depends on your processes’ semantics. If the intent is that a failure in one process should terminate another, then
you need links. If instead you need to know when some other process exits for any reason, choose monitors.

Your Turn
The Erlang function timer.sleep(time_in_ms) suspends the current process for a given time. You might want to
use it to force some scenarios in the following exercises. The key with the exercises is to get used to the different
reports you’ll see when you’re developing code.

Exercise: WorkingWithMultipleProcesses-3
Use spawn_link to start a process, and have that process send a message to the parent and then exit
immediately. Meanwhile, sleep for 500 ms in the parent, then receive as many messages as are waiting.
Trace what you receive. Does it matter that you weren’t waiting for the notification from the child when it
exited?

Exercise: WorkingWithMultipleProcesses-4
Do the same, but have the child raise an exception. What difference do you see in the tracing?

Exercise: WorkingWithMultipleProcesses-5
Repeat the two, changing spawn_link to spawn_monitor.

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-5

Parallel Map—The “Hello, World” of Erlang
Devin Torres reminded me that every book in the Erlang space must, by law, include a definition of a parallel map
function. Regular map returns the list that results from applying a function to each element of a collection. The
parallel version does the same, but it applies the function to each element in a separate process.

spawn/pmap.exs

defmodule Parallel do

 def pmap(collection, fun) do

 me = self

 collection

 |> Enum.map(fn (elem) ->

 spawn_link fn -> (send me, { self, fun.(elem) }) end

 end)

 |> Enum.map(fn (pid) ->

 receive do { ^pid, result } -> result end

 end)

 end

end

Our method contains two transformations (look for the |> operator). The first transformation maps collection into
a list of PIDs, where each PID in the list runs the given function on an individual list element. If the collection
contains 1,000 items, we’ll run 1,000 processes.

The second transformation converts the list of PIDs into the results returned by the processes corresponding to each
PID in the list. Note how it uses ^pid in the receive block to get the result for each PID in turn. Without this we’d
get back the results in random order.

But does it work?

iex> c("pmap.exs")

[Parallel]

http://media.pragprog.com/titles/elixir/code/spawn/pmap.exs

iex> Parallel.pmap 1..10, &(&1 * &1)

[1,4,9,16,25,36,49,64,81,100]

That’s pretty sweet.

But it gets better, as we’ll cover when we look at tasks and agents.

Your Turn

Exercise: WorkingWithMultipleProcesses-6
In the pmap code, I assigned the value of self to the variable me at the top of the method and then used me as
the target of the message returned by the spawned processes. Why use a separate variable here?

Exercise: WorkingWithMultipleProcesses-7
Change the ^pid in pmap to _pid. This means the receive block will take responses in the order the processes
send them. Now run the code again. Do you see any difference in the output? If you’re like me, you don’t,
but the program clearly contains a bug. Are you scared by this? Can you find a way to reveal the problem
(perhaps by passing in a different function, by sleeping, or by increasing the number of processes)? Change it
back to ^pid and make sure the order is now correct.

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-6
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-7

A Fibonacci Server
Let’s round out this chapter with an example program. Its task is to calculate fib(n) for a list of n, where fib(n) is
the nth Fibonacci number. (The Fibonacci sequence starts 0, 1. Each subsequent number is the sum of the preceding
two numbers in the sequence.)[26] I chose this not because it is something we all do every day, but because the
naïve calculation of Fibonacci numbers 10 through 37 takes a measurable number of seconds on typical computers.

The twist is that we’ll write our program to calculate different Fibonacci numbers in parallel. To do this, we’ll write a
trivial server process that does the calculation, and a scheduler that assigns work to a calculation process when it
becomes free. The following diagram shows the message flow.

When the calculator is ready for the next number, it sends a :ready message to the scheduler. If there is still work
to do, the scheduler sends it to the calculator in a :fib message; otherwise it sends the calculator a :shutdown.
When a calculator receives a :fib message, it calculates the given Fibonacci number and returns it in an :answer. If
it gets a :shutdown, it simply exits.

Here’s the Fibonacci calculator module:

spawn/fib.exs

defmodule FibSolver do

 def fib(scheduler) do

 send scheduler, { :ready, self }

 receive do

 { :fib, n, client } ->

 send client, { :answer, n, fib_calc(n), self }

 fib(scheduler)

 { :shutdown } ->

 exit(:normal)

http://media.pragprog.com/titles/elixir/code/spawn/fib.exs

 end

 end

 # very inefficient, deliberately

 defp fib_calc(0), do: 0

 defp fib_calc(1), do: 1

 defp fib_calc(n), do: fib_calc(n-1) + fib_calc(n-2)

end

The public API is the fib function, which takes the scheduler PID. When it starts, it sends a :ready message to the
scheduler and then waits for a message back.

If it gets a :fib message, it calculates the answer and sends it back to the client. It then loops by calling itself
recursively. This will send another :ready message, telling the client it is ready for more work.

If it gets a :shutdown it simply exits.

The Task Scheduler
The scheduler is a little more complex, as it is designed to handle both a varying number of server processes and an
unknown amount of work.

spawn/fib.exs

defmodule Scheduler do

 def run(num_processes, module, func, to_calculate) do

 (1..num_processes)

 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)

 |> schedule_processes(to_calculate, [])

 end

 defp schedule_processes(processes, queue, results) do

 receive do

 {:ready, pid} when length(queue) > 0 ->

http://media.pragprog.com/titles/elixir/code/spawn/fib.exs

 [next | tail] = queue

 send pid, {:fib, next, self}

 schedule_processes(processes, tail, results)

 {:ready, pid} ->

 send pid, {:shutdown}

 if length(processes) > 1 do

 schedule_processes(List.delete(processes, pid), queue, results)

 else

 Enum.sort(results, fn {n1,_}, {n2,_} -> n1 <= n2 end)

 end

 {:answer, number, result, _pid} ->

 schedule_processes(processes, queue, [{number, result} | results])

 end

 end

end

The public API for the scheduler is the run function. It receives the number of processes to spawn, the module and
function to spawn, and a list of things to process. The scheduler is pleasantly ignorant of the actual task being
performed.

Let’s emphasize that last point. Our scheduler knows nothing about Fibonacci numbers. Exactly the same code will
happily manage processes working on DNA sequencing or cracking passwords.

The run function spawns the correct number of processes and records their PIDs. It then calls the workhorse
function, schedule_processes.

This function is basically a receive loop. If it gets a :ready message from a server, it sees if there is more work in
the queue. If there is, it passes the next number to the calculator and then recurses with one fewer number in the
queue.

If the work queue is empty when it receives a :ready message, it sends a shutdown to the server. If this is the last
process, then we’re done and it sorts the accumulated results. If it isn’t the last process, it removes the process from

the list of processes and recurses to handle another message.

Finally, if it gets an :answer message, it records the answer in the result accumulator and recurses to handle the
next message.

We drive the scheduler with the following code:

spawn/fib.exs

to_process = [37, 37, 37, 37, 37, 37]

Enum.each 1..10, fn num_processes ->

 {time, result} = :timer.tc(Scheduler, :run,

 [num_processes, FibSolver, :fib, to_process])

 if num_processes == 1 do

 IO.puts inspect result

 IO.puts "\n # time (s)"

 end

 :io.format "~2B ~.2f~n", [num_processes, time/1000000.0]

end

The to_process list contains the numbers we’ll be passing to our fib servers. In our case, we give it the same
number, 37, ten times. The intent here is to load each of our processors.

We run the code a total of 10 times, varying the number of spawned processes from 1 to 10. We use :timer.tc to
determine the elapsed time of each iteration, reporting the result in seconds. The first time around the loop, we also
display the numbers we calculated.

$ elixir fib.exs

[{37, 39088169}, {37, 39088169}, {37, 39088169}, {37, 39088169},

{37, 39088169}, {37, 39088169}]

time (s)

1 6.57

http://media.pragprog.com/titles/elixir/code/spawn/fib.exs

2 3.91

3 3.53

4 3.38

5 3.41

6 3.36

7 3.38

8 3.40

9 3.39

10 3.44

On my four-core system, we see a dramatic reduction in elapsed time when we increase the concurrency from one
to two, small decreases until we hit four processes, then fairly flat performance after that. If you want to see similar
results on systems with more cores, you’ll need to increase the number of entries in the to_process list.

Your Turn

Exercise: WorkingWithMultipleProcesses-8
Run the Fibonacci code on your machine. Do you get comparable timings? If your machine has multiple cores
and/or processors, do you see improvements in the timing as we increase the application’s concurrency?

Exercise: WorkingWithMultipleProcesses-9
Take this scheduler code and update it to let you run a function that finds the number of times the word “cat”
appears in each file in a given directory. Run one server process per file. The function File.ls! returns the
names of files in a directory, and File.read! reads the contents of a file as a binary. Can you write it as a
more generalized scheduler?
Run your code on a directory with a reasonable number of files (maybe around 100) so you can experiment
with the effects of concurrency.

http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-8
http://forums.pragprog.com/forums/322/topics/Exercise:%20WorkingWithMultipleProcesses-9

Agents—A Teaser
Our Fibonacci code is seriously inefficient. To calculate fib(5), we calculate this:

fib(5)

= fib(4) + fib(3)

= fib(3) + fib(2) + fib(2) + fib(1)

= fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)

= fib(1) + fib(0) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)

Look at all that duplication. If only we could cache the intermediate values.

As you know, Elixir modules are basically buckets of functions—they cannot hold state. But processes can hold
state. And Elixir comes with a library module called Agent that makes it easy to wrap a process containing state in a
nice module interface. Don’t worry about the details of the code that follows—we cover agents and tasks. For now,
just see how processes are among the tools we use to add persistence to Elixir code. (This code comes from a
mailing-list post by José Valim, written in response to some really ugly code I wrote.)

spawn/fib_agent.exs

defmodule FibAgent do

 def start_link do

 cache = Enum.into([{0, 0}, {1, 1}], HashDict.new)

 Agent.start_link(fn -> cache end)

 end

 def fib(pid, n) when n >= 0 do

 Agent.get_and_update(pid, &do_fib(&1, n))

 end

 defp do_fib(cache, n) do

 if cached = cache[n] do

http://media.pragprog.com/titles/elixir/code/spawn/fib_agent.exs

 {cached, cache}

 else

 {val, cache} = do_fib(cache, n - 1)

 result = val + cache[n-2]

 {result, Dict.put(cache, n, result)}

 end

 end

end

{:ok, agent} = FibAgent.start_link()

IO.puts FibAgent.fib(agent, 2000)

Let’s run it:

$ elixir fib_agent.exs

42246963333923048787067256023414827825798528402506810980102801373143085843701

30707224123599639141511088446087538909603607640194711643596029271983312598737

32625355580260699158591522949245390499872225679531698287448247299226390183371

67780606070116154978867198798583114688708762645973690867228840236544222952433

47964480139515349562972087652656069529806499841977448720155612802665404554171

717881930324025204312082516817125

If we’d tried to calulate fib(2000) using the noncached version, the sun would grow to engulf the Earth while we
were waiting for it to finish.

Thinking in Processes
If you first started programming with procedural languages and then moved to an object-oriented style, you’ll have
experienced a period of dislocation as you tried to get your head to think in terms of objects.

The same will be happening now as you start to think of your work in terms of processes. Just about every decent
Elixir program will have many, many processes, and by and large they’ll be just as easy to create and manage as the
objects were in object-oriented programming. But learning to think that way takes awhile. Stick with it.

So far we’ve been running our processes in the same VM. But if we’re planning on taking over the world, we need
to be able to scale. And that means running on more than one machine.

The abstraction for this is the node, and that’s the subject of the next chapter.

Footnotes

[25]

https://github.com/elixir-lang/elixir/issues/1050

[26]

http://en.wikipedia.org/wiki/Fibonacci_number

https://github.com/elixir-lang/elixir/issues/1050
http://en.wikipedia.org/wiki/Fibonacci_number

Chapter 15

Nodes—The Key to Distributing Services
There’s nothing mysterious about a node. It is simply a running Erlang VM. Throughout this book we’ve been
running our code on a node.

The Erlang VM, called Beam, is more than a simple interpreter. It’s like its own little operating system running on
top of your host operating system. It handles its own events, process scheduling, memory, naming services, and
interprocess communication. In addition to all that, a node can connect to other nodes—in the same computer,
across a LAN, or across the Internet—and provide many of the same services across these connections that it
provides to the processes it hosts locally.

Naming Nodes
So far we haven’t needed to give our node a name—we’ve had only one. If we ask Elixir what the current node is
called, it’ll give us a made-up name:

iex> Node.self

:nonode@nohost

We can set the name of a node when we start it. With iex, use either the --name or --sname option. The former sets
a fully qualified name:

$ iex --name wibble@light-boy.local

iex(wibble@light-boy.local)> Node.self

:"wibble@light-boy.local"

The latter sets a short name.

The name that’s returned is an atom—it’s in quotes because it contains characters not allowed in a literal atom.

$ iex --sname wobble

iex(wobble@light-boy)> Node.self

:"wobble@light-boy"

Note that in both cases the iex prompt contains the node’s name along with my machine’s name (light-boy).

Now I want to show you what happens when we have two nodes running. The easiest way to do this is to open two
terminal windows and run a node in each. To represent these windows in the book, I’ll show them stacked vertically.

Let’s run a node called node_one in the top window and node_two in the bottom one. We’ll then use the Elixir Node
module’s list function to display a list of known nodes, then connect from one to the other.

Window #1

$ iex --sname node_one

iex(node_one@light-boy)>

Window #2

$ iex --sname node_two

iex(node_two@light-boy)> Node.list

[]

iex(node_two@light-boy)> Node.connect :"node_one@light-boy"

true

iex(node_two@light-boy)> Node.list

[:"node_one@light-boy"]

Initially, node_two doesn’t know about any other nodes. But after we connect to node_one (notice that we pass an
atom containing that node’s name), the list shows the other node. And if we go back to node one, it will now know
about node two.

iex(node_one@light-boy)> Node.list

[:"node_two@light-boy"]

Now that we have two nodes, we can try running some code. On node one, let’s create an anonymous function that
outputs the current node name.

iex(node_one@light-boy)> func = fn -> IO.inspect Node.self end

#Function<erl_eval.20.82930912>

We can run this with the spawn function.

iex(node_one@light-boy)> spawn(func)

#PID<0.59.0>

node_one@light-boy

But spawn also lets us specify a node name. The process will be spawned on that node.

iex(node_one@light-boy)> Node.spawn(:"node_one@light-boy", func)

#PID<0.57.0>

node_one@light-boy

iex(node_one@light-boy)> Node.spawn(:"node_two@light-boy", func)

#PID<7393.48.0>

node_two@light-boy

We’re running on node one. When we tell spawn to run on node_one@light-boy, we see two lines of output. The
first is the PID spawn returns, and the second line is the value of Node.self that the function writes.

The second spawn is where it gets interesting. We pass it the name of node two and the same function we used the
first time. Again we get two lines of output. The first is the PID and the second is the node name. Notice the PID’s
contents. The first field in a PID is the node number. When running on a local node, it’s zero. But here we’re
running on a remote node, so that field has a positive value (7393). Then look at the function’s output. It reports that
it is running on node two. I think that’s pretty cool.

You may have been expecting the output from the second spawn to appear in the lower window. After all, the code
runs on node two. But it was created on node one, so it inherits its process hierarchy from node one. Part of that
hierarchy is something called the group leader , which (among other things) determines where IO.puts sends its
output. So in a way, what we’re seeing is doubly impressive. We start on node one, run a process on node two, and
when the process outputs something, it appears back on node one.

Your Turn

Exercise: Nodes-1
Set up two terminal windows, and go to a different directory in each. Then start up a named node in each. In
one window, write a function that lists the contents of the current directory.

fun = fn -> IO.puts(Enum.join(File.ls!, ",")) end

Run it twice, once on each node.

Nodes, Cookies, and Security
Although this is cool, it might also ring some alarm bells. If you can run arbitrary code on any node, then anyone with
a publicly accessible node has just handed over his machine to any random hacker.

But that’s not the case. Before a node will let another connect, it checks that the remote node has permission. It
does that by comparing that node’s cookie with its own cookie. A cookie is just an arbitrary string (ideally fairly long
and very random). As an administrator of a distributed Elixir system, you need to create a cookie and then make
sure all nodes use it.

If you are running the iex or elixir commands, you can pass in the cookie using the --cookie option.

$ iex --sname one --cookie chocolate-chip

iex(one@light-boy)> Node.get_cookie

:"chocolate-chip"

If we repeat our two-node experiment and explicitly set the cookie names to be different, what happens?

Window #1

$ iex --sname node_one --cookie cookie-one

iex(node_one@light-boy)> Node.connect :"node_two@light-boy"

false

Window #2

$ iex --sname node_two --cookie cookie-two

iex(node_two@light-boy)>

=ERROR REPORT==== 27-Apr-2013::21:27:43 ===

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-1

** Connection attempt from disallowed node 'node_one@light-boy' **

The node that attempts to connect receives false, indicating the connection was not made. And the node that it tried
to connect to logs an error describing the attempt.

But why does it succeed when we don’t specify a cookie? When Erlang starts, it looks for an .erlang.cookie file
in your home directory. If that file doesn’t exist, Erlang creates it and stores a random string in it. It uses that string
as the cookie for any node the user starts. That way, all nodes you start on a particular machine are automatically
given access to each other.

Be careful when connecting nodes over a public network—the cookie is transmitted in plain text.

Naming Your Processes
Although a PID is displayed as three numbers, it contains just two fields; the first number is the node ID and the
next two numbers are the low and high bits of the process ID. When you run a process on your current node, its
node ID will always be zero. However, when you export a PID to another node, the node ID is set to the number of
the node on which the process lives.

That works well once a system is up and running and everything is knitted together. If you want to register a
callback process on one node and an event-generating process on another, just give the callback PID to the
generator.

But how can the callback find the generator in the first place? One way is for the generator to register its PID,
giving it a name. The callback on the other node can look up the generator by name, using the PID that comes back
to send messages to it.

Here’s an example. Let’s write a simple server that sends a notification about every 2 seconds. To receive the
notification, a client has to register with the server. And we’ll arrange things so that clients on different nodes can
register.

While we’re at it, we’ll do a little packaging so that to start the server you run Ticker.start, and to start the client
you run Client.start. We’ll also add an API Ticker.register to register a client with the server.

Here’s the server code:

nodes/ticker.ex

defmodule Ticker do

 @interval 2000 # 2 seconds

 @name :ticker

 def start do

 pid = spawn(__MODULE__, :generator, [[]])

 :global.register_name(@name, pid)

 end

 def register(client_pid) do

 send :global.whereis_name(@name), { :register, client_pid }

 end

 def generator(clients) do

http://media.pragprog.com/titles/elixir/code/nodes/ticker.ex

 receive do

 { :register, pid } ->

 IO.puts "registering #{inspect pid}"

 generator([pid|clients])

 after

 @interval ->

 IO.puts "tick"

 Enum.each clients, fn client ->

 send client, { :tick }

 end

 generator(clients)

 end

 end

end

We define a start function that spawns the server process. It then uses :global.register_name to register the
PID of this server under the name :ticker.

Clients who want to register to receive ticks call the register function. This function sends a message to the
Ticker server, asking it to add those clients to its list. Clients could have done this directly by sending the :register
message to the server process. Instead, we give them an interface function that hides the registration details. This
helps decouple the client from the server and gives us more flexibility to change things in the future.

Before we look at the actual tick process, let’s stop to consider the start and register functions. These are not
part of the tick process—they are simply chunks of code in the Ticker module. This means they can be called
directly wherever we have the module loaded—no message passing required. This is a common pattern; we have a
module that is responsible both for spawning a process and for providing the external interface to that process.

Back to the code. The last function, generator, is the spawned process. It waits for two events. When it gets a
tuple containing :register and a PID, it adds the PID to the list of clients and recurses. Alternatively, it may time
out after 2 seconds, in which case it sends a {:tick} message to all registered clients.

(This code has no error handling and no means of terminating the process. I just wanted to illustrate passing PIDs
and messages between nodes.)

The client code is simple:

nodes/ticker.ex

defmodule Client do

 def start do

 pid = spawn(__MODULE__, :receiver, [])

 Ticker.register(pid)

 end

 def receiver do

 receive do

 { :tick } ->

 IO.puts "tock in client"

 receiver

 end

 end

end

It spawns a receiver to handle the incoming ticks, and passes the receiver’s PID to the server as an argument to the
register function. Again, it’s worth noting that this function call is local—it runs on the same node as the client.
However, inside the Ticker.register function, it locates the node containing the server and sends it a message. As
our client’s PID is sent to the server, it becomes an external PID, pointing back to the client’s node.

The spawned client process simply loops, writing a cheery message to the console whenever it receives a tick
message.

Let’s run it. We’ll start up our two nodes. We’ll call Ticker.start on node one. Then we’ll call Client.start on
both node one and node two.

Window #1

nodes % iex --sname one

iex(one@light-boy)> c("ticker.ex")

[Client,Ticker]

http://media.pragprog.com/titles/elixir/code/nodes/ticker.ex

iex(one@light-boy)> Node.connect :"two@light-boy"

true

iex(one@light-boy)> Ticker.start

:yes

tick

tick

iex(one@light-boy)> Client.start

registering #PID<0.59.0>

{:register,#PID<0.59.0>}

tick

tock in client

tick

tock in client

tick

tock in client

tick

tock in client

: : :

Window #2

nodes % iex --sname two

iex(two@light-boy)> c("ticker.ex")

[Client,Ticker]

iex(two@light-boy)> Client.start

{:register,#PID<0.53.0>}

tock in client

tock in client

tock in client

: : :

To stop this, you’ll need to exit iex on both nodes.

When to Name Processes
When you name something, you are recording some global state. And as we all know, global state can be
troublesome. What if two processes try to register the same name, for example?

The runtime has some tricks to help us. In particular, we can list the names our application will register in the app’s
mix.exs file. (We’ll cover how when we look at packaging an application.) However, the general rule is to register
your process names when your application starts.

Your Turn

Exercise: Nodes-2
When I introduced the interval server, I said it sent a tick “about every 2 seconds.” But in the receive loop, it
has an explicit timeout of 2,000 ms. Why did I say “about” when it looks as if the time should be pretty
accurate?

Exercise: Nodes-3
Alter the code so that successive ticks are sent to each registered client (so the first goes to the first client,
the second to the next client, and so on). Once the last client receives a tick, the process starts back at the
first. The solution should deal with new clients being added at any time.

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-3

I/O, PIDs, and Nodes
Input and output in the Erlang VM are performed using I/O servers. These are simply Erlang processes that
implement a low-level message interface. You never have to deal with this interface directly (which is a good thing,
as it is complex). Instead, you use the various Elixir and Erlang I/O libraries and let them do the heavy lifting.

In Elixir you identify an open file or device by the PID of its I/O server. And these PIDs behave just like all other
PIDs—you can, for example, send them between nodes.

If you look at the implementation of Elixir’s IO.puts function, you’ll see

def puts(device \\ group_leader(), item) do

 erl_dev = map_dev(device)

 :io.put_chars erl_dev, [to_iodata(item), ?\n]

end

(To see the source of an Elixir library module, view the online documentation at http://elixir-lang.org/docs/, navigate
to the function in question, and click the Source link.)

The default device it uses is returned by the function :erlang.group_leader. (The group_leader function is
imported from the :erlang module at the top of the IO module.) This will be the PID of an I/O server.

So, bring up two terminal windows and start a different named node in each. Connect to node one from node two,
and register the PID returned by group_leader under a global name (we use :two).

Window #1

$ iex --sname one

iex(one@light-boy) >

Window #2

$ iex --sname two

iex(two@light-boy) > Node.connect(:"one@light-boy")

true

iex(two@light-boy) > :global.register_name(:two, :erlang.group_leader)

:yes

Note that once we’ve registered the PID, we can access it from the other node. And once we’ve done that, we can
pass it to IO.puts; the output appears in the other terminal window.

http://elixir-lang.org/docs/

Window #1

iex(one@light-boy) > two = :global.whereis_name :two

#PID<7419.30.0>

iex(one@light-boy) > IO.puts(two, "Hello")

:ok

iex(one@light-boy) > IO.puts(two, "World!")

:ok

Window #2

Hello

World

iex(two@light-boy) >

Your Turn

Exercise: Nodes-4
The ticker process in this chapter is a central server that sends events to registered clients. Reimplement this
as a ring of clients. A client sends a tick to the next client in the ring. After 2 seconds, that client sends a tick
to its next client.
When thinking about how to add clients to the ring, remember to deal with the case where a client’s receive
loop times out just as you’re adding a new process. What does this say about who has to be responsible for
updating the links?

http://forums.pragprog.com/forums/322/topics/Exercise:%20Nodes-4

Nodes Are the Basis of Distribution
We’ve seen how we can create and interlink a number of Erlang virtual machines, potentially communicating across
a network. This is important, both to allow your application to scale and to increase reliability. Running all your code
on one machine is like having all your eggs in one basket. Unless you’re writing a mobile omelet app, this is probably
not a good idea.

It’s easy to write concurrent applications with Elixir. But writing code that follows the happy path is a lot easier than
writing bullet-proof, scalable, and hot-swappable world-beating apps. For that, you’re going to need some help.

In the worlds of Elixir and Erlang, that help is called OTP, and it is the subject of the next few chapters.

Chapter 16

OTP: Servers
If you’ve been following Elixir or Erlang, you’ve probably come across OTP. It is often hyped as the answer to all
high-availability distributed-application woes. It isn’t, but it certainly solves many problems that you’d otherwise need
to solve yourself, including application discovery, failure detection and management, hot code swapping, and server
structure.

First, the obligatory one-paragraph history. OTP stands for the Open Telecom Platform, but the full name is largely
of historical interest and everyone just says OTP. It was initially used to build telephone exchanges and switches.
But these devices have the same characteristics we want from any large online application, so OTP is now a
general-purpose tool for developing and managing large systems.

OTP is actually a bundle that includes Erlang, a database (wonderfully called Mnesia), and an innumerable number
of libraries. It also defines a structure for your applications. But, as with all large, complex frameworks, there is a lot
to learn. In this book we’ll focus on the essentials and I’ll point you toward other information sources.

We’ve been using OTP all along—mix, the Elixir compiler, and even our issue tracker followed OTP conventions.
But that use was implicit. Now we’ll make it explicit and start writing servers using OTP.

Some OTP Definitions
OTP defines systems in terms of hierarchies of applications. An application consists of one or more processes.
These processes follow one of a small number of OTP conventions, called behaviors (or behaviours). There is a
behavior used for general-purpose servers, one for implementing event handlers, and one for finite-state machines.
Each implementation of one of these behaviors will run in its own process (and may have additional associated
processes). In this chapter we’ll be implementing the server behavior, called GenServer.

A special behavior, called supervisor, monitors the health of these processes and implements strategies for
restarting them if needed.

We’ll look at these components from the bottom up—this chapter will look at servers, the next will explore
supervisors, and finally we’ll implement applications.

An OTP Server
When we wrote our Fibonacci server in the previous chapter,, we had to do all the message handling ourselves. It
wasn’t difficult, but it was tedious. Our scheduler also had to keep track of three pieces of state information: the
queue of numbers to process, the results generated so far, and the list of active PIDs.

Most servers have a similar set of needs, so OTP provides libraries that do all the low-level work for us.

When we write an OTP server, we write a module containing one or more callback functions with standard names.
OTP will invoke the appropriate callback to handle a particular situation. For example, when someone sends a
request to our server, OTP will call our handle_call function, passing in the request, the caller, and the current
server state. Our function responds by returning a tuple containing an action to take, the return value for the request,
and an updated state.

State and the Single Server
Way back when we summed the elements in a list,, we came across the idea of an accumulator, a value that was
passed as a parameter when a looping function calls itself recursively.

lists/sum.exs

defmodule MyList do

 def sum([], total), do: total

 def sum([head | tail], total), do: sum(tail, head+total)

end

The parameter total maintains the state while the function trundles down the list.

In our Fibonacci code, we maintained a lot of state in the schedule_processes function. In fact, all three of its
parameters were used for state information.

Now think about servers. They use recursion to loop, handling one request on each call. So they can also pass state
to themselves as a parameter in this recursive call. And that’s one of the things OTP manages for us. Our handler
functions get passed the current state (as their last parameter), and they return (among other things) a potentially
updated state. Whatever state a function returns is the state that will be passed to the next request handler.

Our First OTP Server
Let’s write what is possibly the simplest OTP server. You pass it a number when you start it up, and that becomes
the current state of the server. When you call it with a :next_number request, it returns that current state to the
caller, and at the same time increments the state, ready for the next call. Basically, each time you call it you get an
updated sequence number.

Create a New Project Using Mix

Start by creating a new mix project in your work directory. We’ll call it sequence.

$ mix new sequence

http://media.pragprog.com/titles/elixir/code/lists/sum.exs

* creating README.md

* creating .gitignore

* creating mix.exs

* creating lib

* creating lib/sequence.ex

* creating lib/sequence

* creating test

* creating test/test_helper.exs

* creating test/sequence_test.exs

Create the Basic Sequence Server

Now we’ll create Sequence.Server, our server module. Add the file server.ex to the sequence/ directory under
lib.

otp-server/1/sequence/lib/sequence/server.ex

Line 1defmodule Sequence.Server do

2 use GenServer

3

4 def handle_call(:next_number, _from, current_number) do

5 { :reply, current_number, current_number+1 }

6 end

7 end

The first thing to note is line 2. The use line effectively adds the OTP GenServer behavior to our module. This is
what lets it handle all the callbacks. It also means we don’t have to define every callback in our module—the
behavior defines defaults for them all.

When a client calls our server, GenServer invokes the handle_call function that follows. It receives

the information the client passed to the call as its first parameter,

http://media.pragprog.com/titles/elixir/code/otp-server/1/sequence/lib/sequence/server.ex

the PID of the client as the second parameter,
and the server state as the third parameter.

Our implementation is simple: we return a tuple to OTP.

{ :reply, current_number, current_number+1 }

The reply element tells OTP to reply to the client, passing back the value that is the second element. Finally, the
tuple’s third element defines the new state. This will be passed as the last parameter to handle_call the next time it
is invoked.

Fire Up Our Server Manually

We can play with our server in iex. Open it in the project’s main directory, remembering the -S mix option.

$ iex -S mix

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)

{:ok,#PID<0.71.0>}

iex> GenServer.call(pid, :next_number)

100

iex> GenServer.call(pid, :next_number)

101

iex> GenServer.call(pid, :next_number)

102

We’re using two functions from the Elixir GenServer module. The start_link function behaves like the
spawn_link function we used in the previous chapter. It asks GenServer to start a new process and link to us (so
we’ll get notifications if it fails). We pass in the module to run as a server: the initial state (100 in this case). We
could also pass GenServer options as a third parameter, but the defaults work fine here.

We get back a status (:ok) and the server’s PID. The call function takes this PID and calls the handle_call
function in the server. The call’s second parameter is passed as the first argument to handle_call.

In our case, the only value we need to pass is the identity of the action we want to perform, :next_number. If you
look at the definition of handle_call in the server, you’ll see that its first parameter is :next_number. When Elixir
invokes the function, it pattern-matches the argument in the call with this first parameter in the function. A server
can support multiple actions by implementing multiple handle_call functions with different first parameters.

If you want to pass more than one thing in the call to a server, pass a tuple. For example, our server might need a

function to reset the count to a given value. We could define the handler as

def handle_call({:set_number, new_number}, _from, _current_number) do

 { :reply, new_number, new_number }

end

and call it with

iex> GenServer.call(pid, {:set_number, 999})

999

Similarly, a handler can return multiple values by packaging them into a tuple or list.

def handle_call({:factors, number}, _, _) do

 { :reply, { :factors_of, number, factors(number)}, [] }

end

Your Turn

Exercise: OTP-Servers-1
You’re going to start creating a server that implements a stack. The call that initializes your stack will pass in
a list of the initial stack contents.
For now, implement only the pop interface. It’s acceptable for your server to crash if someone tries to pop
from an empty stack.
For example, if initialized with [5,"cat",9], successive calls to pop will return 5, "cat", and 9.

One-Way Calls

The call function calls a server and waits for a reply. But sometimes you won’t want to wait because there is no
reply coming back. In those circumstances, use the GenServer cast function. (Think of it as casting your request
into the sea of servers.)

Just like call is passed to handle_call in the server, cast is sent to handle_cast. Because there’s no response
possible, the handle_cast function takes only two parameters: the call argument and the current state. And because
it doesn’t want to send a reply, it will return the tuple {:noreply, new_state}.

Let’s modify our sequence server to support an :increment_number function. We’ll treat this as a cast, so it simply
sets the new state and returns.

otp-server/1/sequence/lib/sequence/server.ex

Line 1defmodule Sequence.Server do

- use GenServer

-

- def handle_call(:next_number, _from, current_number) do

5 { :reply, current_number, current_number+1 }

- end

-

»- def handle_cast({:increment_number, delta}, current_number) do

»- { :noreply, current_number + delta}

»10 end

- end

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-1
http://media.pragprog.com/titles/elixir/code/otp-server/1/sequence/lib/sequence/server.ex

Notice that the cast handler takes a tuple as its first parameter. The first element is :increment_number, and is used
by pattern matching to select the handlers to run. The second element of the tuple is the delta to add to our state.
The function simply returns a tuple, where the state is the previous state plus this number.

To call this from our iex session, we first have to recompile our source. The r command takes a module name and
recompiles the file containing that module.

iex> r Sequence.Server

.../sequence/lib/sequence/server.ex:2: redefining module Sequence.Server

{Sequence.Server,[Sequence.Server]]

Even though we’ve recompiled the code, the old version is still running. The VM doesn’t hot-swap code until you
explicitly access it by module name. So, to try our new functionality we’ll create a new server. When it starts, it will
pick up the latest version of the code.

iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100)

{:ok,#PID<0.60.0>}

iex> GenServer.call(pid, :next_number)

100

iex> GenServer.call(pid, :next_number)

101

iex> GenServer.cast(pid, {:increment_number, 200})

:ok

iex> GenServer.call(pid, :next_number)

302

Tracing a Server’s Execution
The third parameter to start_link is a set of options. A useful one during development is the debug trace, which
logs message activity to the console.

We enable tracing using the debug option:

» iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100, [debug: [:trace]])

 {:ok,#PID<0.68.0>}

 iex> GenServer.call(pid, :next_number)

 DBG <0.68.0> got call next_number from <0.25.0>

 DBG <0.68.0> sent 100 to <0.25.0>, new state 101

 100

 iex> GenServer.call(pid, :next_number)

 DBG <0.68.0> got call next_number from <0.25.0>

 DBG <0.68.0> sent 101 to <0.25.0>, new state 102

 101

See how it traces the incoming call and the response we send back. A nice touch is that it also shows the next state.

We can also include :statistics in the debug list to ask a server to keep some basic statistics:

 iex> {:ok,pid} = GenServer.start_link(Sequence.Server, 100,

» ...> [debug: [:statistics]])

 {:ok,#PID<0.69.0>}

 iex> GenServer.call(pid, :next_number)

 100

 iex> GenServer.call(pid, :next_number)

 101

 iex> :sys.statistics pid, :get

 {:ok,[start_time: {{2013,4,26},{18,17,16}}, current_time: {{2013,4,26},{18,17,28}},

 reductions: 50, messages_in: 2, messages_out: 0]}

Most of the fields should be fairly obvious. Timestamps are given as {{y,m,d},{h,m,s}} tuples. And the
reductions value is a measure of the amount of work the server does. It is used in process scheduling as a way of
making sure all processes get a fair share of the available CPU.

The Erlang sys module is your interface to the world of system messages. These are sent in the background
between processes—they’re a bit like the backchatter in a multiplayer video game. While two players are engaged
in an attack (their real work), they can also be sending each other background messages: “Where are you?”, “Stop
moving”, and so on.

The list associated with the debug parameter you give to GenServer is simply the names of functions to call in the
sys module. If you say [debug: [:trace, :statistics]], then those functions will be called in sys, passing in the
server’s PID. Look at the documentation for sys to see what’s available.[27]

This also means you can turn things on and off after you have started a server. For example, you can enable tracing
on an existing server using

iex> :sys.trace pid, true

:ok

iex> GenServer.call(pid, :next_number)

DBG <0.69.0> got call next_number from <0.25.0>

DBG <0.69.0> sent 105 to <0.25.0>, new state 106

105

iex> :sys.trace pid, false

:ok

iex> GenServer.call(pid, :next_number)

106

get_status is another useful sys function:

iex> :sys.get_status pid

{:status,#PID<0.57.0>,{:module,:gen_server},[["$ancestors": [#PID<0.25.0>],

"$initial_call":

{Sequence.Server,:init,1}],:running,#PID<0.25.0>,[],

[header: 'Status for generic server <0.57.0>',

data: [{'Status',:running},{'Parent',#PID<0.25.0>},{'Logged events',[]}],

data: [{'State',102}]]]}

This is the default formatting of the status message GenServer provides. You have the option to change the 'State'
part to return a more application-specific message by defining format_status. This receives an option describing
why the function was called, as well as a list containing the server’s process dictionary and the current state. (Note
that in the code that follows, the string State in the response is in single quotes.)

otp-server/1/sequence/lib/sequence/server.ex

def format_status(_reason, [_pdict, state]) do

 [data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]

end

If we ask for the status in iex, we get the new message (after restarting the server):

iex> :sys.get_status pid

{:status,#PID<0.61.0>,{:module,:gen_server},[["$ancestors": [#PID<0.25.0>],

"$initial_call": {Sequence.Server,:init,1}],:running,#PID<0.25.0>,

[trace: true],[header: 'Status for generic server <0.61.0>',

{'Parent',#PID<0.25.0>},{'Logged events',[]}],

data: [{'State',"My current state is '103', and I'm happy"}]]]}

http://media.pragprog.com/titles/elixir/code/otp-server/1/sequence/lib/sequence/server.ex

Your Turn

Exercise: OTP-Servers-2
Extend your stack server with a push interface that adds a single value to the top of the stack. This will be
implemented as a cast.
Experiment in iex with pushing and popping values.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-2

GenServer Callbacks
GenServer is an OTP protocol. OTP works by assuming that your module defines a number of callback functions
(six, in the case of a GenServer). If you were writing a GenServer in Erlang, your code would have to contain
implementations of all six.

When you add the line use GenServer to a module, Elixir creates default implementations of these six callback
functions. All we have to do is override the ones where we add our own application-specific behaviour. Our
examples so far have used the two callbacks handle_call and handle_cast. Here’s a full list:

init(start_arguments)

Called by GenServer when starting a new server. The parameter is the second argument passed to
start_link. Should return {:ok, state} on success, or {:stop, reason} if the server could not be started.

You can specify an optional timeout using {:ok, state, timeout}, in which case GenServer sends the
process a :timeout message whenever no message is received in a span of timeout ms. (The message is
passed to the handle_info function.)

The default GenServer implementation sets the server state to the argument you pass.

handle_call(request, from, state)

Invoked when a client uses GenServer.call(pid, request). The from parameter is a tuple containing the
PID of the client and a unique tag. The state parameter is the server state.

On success returns {:reply, result, new_state}. The list that follows this one,, shows other valid
responses.

The default implementation stops the server with a :bad_call error, so you’ll need to implement
handle_call for every call request type your server implements.

handle_cast(request, state)

Called in response to GenServer.cast(pid, request).

A successful response is {:noreply, new_state}. Can also return {:stop, reason, new_state}.

The default implementation stops the server with a :bad_cast error.

handle_info(info, state)

Called to handle incoming messages that are not call or cast requests. For example, timeout messages are
handled here. So are termination messages from any linked processes. In addition, messages sent to the PID
using send (so they bypass GenServer) will be routed to this function.

terminate(reason, state)

Called when the server is about to be terminated. However, as we’ll discuss in the next chapter, once we add
supervision to our servers, we don’t have to worry about this.

code_change(from_version, state, extra)

OTP lets us replace a running server without stopping the system. However, the new version of the server
may represent its state differently from the old version. The code_change callback is invoked to change from
the old state format to the new.

format_status(reason, [pdict, state])

Used to customize the state display of the server. The conventional response is [data: [{'State',

state_info}]].

The call and cast handlers return standardized responses. Some of these responses can contain an optional
:hibernate or timeout parameter. If hibernate is returned, the server state is removed from memory but is
recovered on the next request. This saves memory at the expense of some CPU. The timeout option can be the
atom :infinite (which is the default) or a number. If the latter, a :timeout message is sent if the server is idle for
the specified number of milliseconds.

The first two responses are common between call and cast.

{ :noreply, new_state [, :hibernate | timeout] }

{ :stop, reason, new_state }

Signal that the server is to terminate.

Only handle_call can use the last two.

{ :reply, response, new_state [, :hibernate | timeout] }

Send response to the client.

{ :stop, reason, reply, new_state }

Send the response and signal that the server is to terminate.

Naming a Process
The idea of referencing processes by their PID gets old quickly. Fortunately, there are a number of alternatives.

The simplest is local naming. We assign a name that is unique for all OTP processes on our server, and then we use
that name instead of the PID whenever we reference it. To create a locally named process, we use the name:
option when we start the server:

» iex> { :ok, pid } = GenServer.start_link(Sequence.Server, 100, name: :seq)

 {:ok,#PID<0.58.0>}

 iex> GenServer.call(:seq, :next_number)

 100

 iex> GenServer.call(:seq, :next_number)

 101

 iex> :sys.get_status :seq

 {:status, #PID<0.69.0>, {:module, :gen_server},

 [["$ancestors": [#PID<0.58.0>],

 "$initial_call": {Sequence.Server, :init, 1}],

 :running, #PID<0.58.0>, [],

 [header: 'Status for generic server seq',

 data: [{'Status', :running},

 {'Parent', #PID<0.58.0>},

 {'Logged events', []}],

 data: [{'State', "My current state is '102', and I'm happy"}]]]}

Tidying Up the Interface
As we left it, our server works but is ugly to use. Our callers have to make explicit GenServer calls, and they have
to know the registered name for our server process. We can do better. Let’s wrap this interface in a set of three
functions in our server module: start_link, next_number, and increment_number. The first of these calls the
GenServer start_link method. As we’ll cover in a couple of chapters when we look at supervisors, the name
start_link is a convention. start_link must return the correct status values to OTP; as our code simply delegates
to the GenServer module, this is taken care of.

Following the definition of start_link, the next two functions are the external API to issue call and cast requests to
the running server process.

We’ll also use the name of the module as our server’s registered local name (hence the name: __MODULE__ when
we start it, and the __MODULE__ parameter when we use call or cast).

otp-server/2/sequence/lib/sequence/server.ex

 defmodule Sequence.Server do

 use GenServer

 #####

 # External API

» def start_link(current_number) do

 GenServer.start_link(__MODULE__, current_number, name: __MODULE__)

 end

» def next_number do

 GenServer.call __MODULE__, :next_number

 end

» def increment_number(delta) do

http://media.pragprog.com/titles/elixir/code/otp-server/2/sequence/lib/sequence/server.ex

 GenServer.cast __MODULE__, {:increment_number, delta}

 end

 #####

 # GenServer implementation

 def handle_call(:next_number, _from, current_number) do

 { :reply, current_number, current_number+1 }

 end

 def handle_cast({:increment_number, delta}, current_number) do

 { :noreply, current_number + delta}

 end

 def format_status(_reason, [_pdict, state]) do

 [data: [{'State', "My current state is '#{inspect state}', and I'm happy"}]]

 end

 end

When we run this code in iex, it’s a lot cleaner:

$ iex -S mix

iex> Sequence.Server.start_link 123

{:ok,#PID<0.57.0>}

iex> Sequence.Server.next_number

123

iex> Sequence.Server.next_number

124

iex> Sequence.Server.increment_number 100

:ok

iex> Sequence.Server.next_number

225

This is the pattern you should use in your servers.

Your Turn

Exercise: OTP-Servers-3
Give your stack server process a name, and make sure it is accessible by that name in iex.

Exercise: OTP-Servers-4
Add the API to your stack module (the functions that wrap the GenServer calls).

Exercise: OTP-Servers-5
Implement the terminate callback in your stack handler. Use IO.puts to report the arguments it receives.
Try various ways of terminating your server. For example, popping an empty stack will raise an exception.
You might add code that calls System.halt(n) if the push handler receives a number less than 10. (This will
let you generate different return codes.) Use your imagination to try different scenarios.

An OTP GenServer is just a regular Elixir process in which the message handling has been abstracted out. The
GenServer behavior defines a message loop internally and maintains a state variable. That message loop then calls
out to various functions that we define in our server module: handle_call, handle_cast, and so on.

We also saw that GenServer provides fairly detailed tracing of the messages received and responses sent by our
server modules.

Finally, we wrapped our message-based API in module functions, which gives our users a cleaner interface and
decouples them from our implementation.

But we still have an issue if our server crashes. We’ll deal with this in the next chapter, when we look at
supervisors.

Footnotes

[27]

http://www.erlang.org/documentation/doc-5.8.3/lib/stdlib-1.17.3/doc/html/sys.html

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-4
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Servers-5
http://www.erlang.org/documentation/doc-5.8.3/lib/stdlib-1.17.3/doc/html/sys.html

Chapter 17

OTP: Supervisors
I’ve said it a few times now: the Elixir way says not to worry much about code that crashes; instead, make sure the
overall application keeps running.

This might sound contradictory, but really it is not.

Think of a typical application. If an unhandled error causes an exception to be raised, the application stops. Nothing
else gets done until it is restarted. If it’s a server handling multiple requests, they all might be lost.

The issue here is that one error takes the whole application down.

But imagine that instead your application consists of hundreds or thousands of processes, each handling just a small
part of a request. If one of those crashes, everything else carries on. You might lose the work it’s doing, but you can
design your applications to minimize even that risk. And when that process gets restarted, you’re back running at
100%.

In the Elixir and OTP worlds, supervisors perform all of this process monitoring and restarting.

Supervisors and Workers
An Elixir supervisor has just one purpose—it manages one or more worker processes. (As we’ll discuss later, it can
also manage other supervisors.)

At its simplest, a supervisor is a process that uses the OTP supervisor behavior. It is given a list of processes to
monitor and is told what to do if a process dies, and how to prevent restart loops (when a process is restarted, dies,
gets restarted, dies, and so on).

To do this, the supervisor uses the Erlang VM’s process-linking and -monitoring facilities. We talked about these
when we covered spawn.

You can write supervisors as separate modules, but the Elixir style is to include them inline. The easiest way to get
started is to create your project with the --sup flag. Let’s do this for our sequence server.

» $ mix new --sup sequence

 * creating README.md

 * creating .gitignore

 * creating mix.exs

 * creating config

 * creating config/config.exs

 * creating lib

 * creating lib/sequence.ex

 * creating test

 * creating test/test_helper.exs

 * creating test/sequence_test.exs

Nothing looks different, but open lib/sequence.ex.

defmodule Sequence do

 use Application

 def start(_type, _args) do

 import Supervisor.Spec, warn: false

 children = [

 # Define workers and child supervisors to be supervised

 # worker(Sequence.Worker, [arg1, arg2, arg3])

]

 opts = [strategy: :one_for_one, name: Sequence.Supervisor]

 Supervisor.start_link(children, opts)

 end

end

Our start function now creates a supervisor for our application. All we need to do is tell it what we want
supervised. Create a lib/sequence directory and copy the Sequence.Server module from the last chapter into it.
Then uncomment the worker call in the children list to reference it.

otp-supervisor/1/sequence/lib/sequence.ex

 def start(_type, _args) do

 import Supervisor.Spec, warn: false

 children = [

» worker(Sequence.Server, [123])

]

 opts = [strategy: :one_for_one, name: Sequence.Supervisor]

 {:ok, _pid} = Supervisor.start_link(children, opts)

 end

Let’s look at the sequence of events.

http://media.pragprog.com/titles/elixir/code/otp-supervisor/1/sequence/lib/sequence.ex

When our application starts, the start function is called.
It creates a list of child servers. It uses the worker function to create a specification of each one. In our case,
we want to start Sequence.Server and pass it the parameter 123.
We call Supervisor.start_link, passing it the list of child specifications and a set of options. This creates a
supervisor process.
Now our supervisor process calls the start_link function for each of its managed children. In our case, this
is the function in Sequence.Server. This code is unchanged—it calls GenServer.start_link to create a
GenServer process.

Now we’re up and running. Let’s try it:

$ iex -S mix

Compiled lib/sequence.ex

Compiled lib/sequence/server.ex

Generated sequence.app

iex> Sequence.Server.increment_number 3

:ok

iex> Sequence.Server.next_number

126

So far, so good. But the key thing with a supervisor is that it is supposed to manage our worker process. If it dies,
for example, we want it to be restarted. Let’s try that. If we pass increment_number something that isn’t a number,
the process should die trying to add it to the current number.

iex(3)> Sequence.Server.increment_number "cat"

:ok

iex(4)> 14:22:06.269 [error] GenServer Sequence.Server terminating

Last message: {:"$gen_cast", {:increment_number, "cat"}}

State: [data: [{'State', "My current state is '127', and I'm happy"}]]

** (exit) an exception was raised:

 ** (ArithmeticError) bad argument in arithmetic expression

 (sequence) lib/sequence/server.ex:27: Sequence.Server.handle_cast/2

 (stdlib) gen_server.erl:599: :gen_server.handle_msg/5

 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

iex(4)> Sequence.Server.next_number

123

iex(5)> Sequence.Server.next_number

124

We get a wonderful error report that shows us the exception, along with a stack trace from the process. We can
also see the message we sent that triggered the problem.

But when we then ask our server for a number, it responds as if nothing had happened. The supervisor restarted our
process for us.

This is excellent, but there’s a problem. The supervisor restarted our sequence process with the initial parameters
we passed in, and the numbers started again from 123. A reincarnated process has no memory of its past lives, and
no state is retained across a crash.

Your Turn

Exercise: OTP-Supervisors-1
Add a supervisor to your stack application. Use iex to make sure it starts the server correctly. Use the server
normally, and then crash it (try popping from an empty stack). Did it restart? What were the stack contents
after the restart?

Managing Process State Across Restarts
Some servers are effectively stateless. If we had a server that calculated the factors of numbers or responded to
network requests with the current time, we could simply restart it and let it run.

But our server is not stateless—it needs to remember the current number so it can generate an increasing sequence.

All of the approaches to this involve storing the state outside of the process. Let’s choose a simple option—we’ll
write a separate worker process that can store and retrieve a value. We’ll call it our stash. The sequence server
can store its current number in the stash whenever it terminates, and then we can recover the number when we
restart.

At this point, we have to think about lifetimes. Our sequence server should be fairly robust, but we’ve already found
one thing that crashes it. So in actuarial terms, it isn’t the fittest process in the scheduler queue. But our stash
process must be more robust—it must outlive the sequence server, at the very least.

We have to do two things to make this happen. First, we make it as simple as possible. The fewer moving parts in a
chunk of code, the less likely it is to go wrong.

Second, we have to supervise it separately. In fact, we’ll create a supervision tree. It’ll look like the following
diagram.

Here we have a top-level supervisor that is responsible for the health of two things: the stash worker and a second
supervisor. That second supervisor then manages the worker that generates the sequence.

Our sequence generator needs to know the PID of the stash in order to retrieve and store the sequence value. We
could register the stash process under a name (just as we did with the sequence worker itself), but as this is purely
a local affair, we can pass it the PID directly. However, to do that we need to get the stash worker spawned first.
This leads to a slightly different design for the top-level supervisor. We’ll move the code that starts the top-level
supervisor out of sequence.ex and into a separate module. Then we’ll initialize it with no children and add the stash
and the subsupervisor manually. Once we start the stash worker, we’ll have its PID, and we can then pass it on to
the subsupervisor (which in turn will pass it to the sequence worker). Our overall supervisor looks like this:

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Supervisors-1

otp-supervisor/2/sequence/lib/sequence/supervisor.ex

Line 1defmodule Sequence.Supervisor do

- use Supervisor

- def start_link(initial_number) do

- result = {:ok, sup } = Supervisor.start_link(__MODULE__, [initial_number])

5 start_workers(sup, initial_number)

- result

- end

- def start_workers(sup, initial_number) do

- # Start the stash worker

10 {:ok, stash} =

- Supervisor.start_child(sup, worker(Sequence.Stash, [initial_number]))

- # and then the subsupervisor for the actual sequence server

- Supervisor.start_child(sup, supervisor(Sequence.SubSupervisor, [stash]))

- end

15 def init(_) do

- supervise [], strategy: :one_for_one

- end

- end

On line 4 we start up the supervisor. This automatically invokes the init callback. This in turn calls supervise, but
passes in an empty list. The supervisor is now running but has no children.

At this point, OTP returns control to our start_link function, which then calls the start_workers function. This
starts the stash worker, passing it the initial number. We get back a status of (:ok) and a PID. We then pass the
PID to the subsupervisor.

This subsupervisor is basically the same as our very first supervisor—it simply spawns the sequence worker. But

http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence/supervisor.ex

instead of passing in a current number, it passes in the stash’s PID.

otp-supervisor/2/sequence/lib/sequence/subsupervisor.ex

defmodule Sequence.SubSupervisor do

 use Supervisor

 def start_link(stash_pid) do

 {:ok, _pid} = Supervisor.start_link(__MODULE__, stash_pid)

 end

 def init(stash_pid) do

 child_processes = [worker(Sequence.Server, [stash_pid])]

 supervise child_processes, strategy: :one_for_one

 end

end

The sequence worker has two changes. First, when it is initialized it must get the current number from the stash.
Second, when it terminates it stores the then-current number back in the stash. To make these changes, we’ll
override two more GenServer callbacks: init and terminate.

otp-supervisor/2/sequence/lib/sequence/server.ex

defmodule Sequence.Server do

 use GenServer

 #####

 # External API

 def start_link(stash_pid) do

 {:ok, _pid} = GenServer.start_link(__MODULE__, stash_pid, name: __MODULE__)

 end

 def next_number do

http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence/subsupervisor.ex
http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence/server.ex

 GenServer.call __MODULE__, :next_number

 end

 def increment_number(delta) do

 GenServer.cast __MODULE__, {:increment_number, delta}

 end

 #####

 # GenServer implementation

 def init(stash_pid) do

 current_number = Sequence.Stash.get_value stash_pid

 { :ok, {current_number, stash_pid} }

 end

 def handle_call(:next_number, _from, {current_number, stash_pid}) do

 { :reply, current_number, {current_number+1, stash_pid} }

 end

 def handle_cast({:increment_number, delta}, {current_number, stash_pid}) do

 { :noreply, {current_number + delta, stash_pid}}

 end

 def terminate(_reason, {current_number, stash_pid}) do

 Sequence.Stash.save_value stash_pid, current_number

 end

end

The stash itself is trivial:

otp-supervisor/2/sequence/lib/sequence/stash.ex

defmodule Sequence.Stash do

 use GenServer

 #####

 # External API

 def start_link(current_number) do

 {:ok,_pid} = GenServer.start_link(__MODULE__, current_number)

 end

 def save_value(pid, value) do

 GenServer.cast pid, {:save_value, value}

 end

 def get_value(pid) do

 GenServer.call pid, :get_value

 end

 #####

 # GenServer implementation

 def handle_call(:get_value, _from, current_value) do

 { :reply, current_value, current_value }

 end

 def handle_cast({:save_value, value}, _current_value) do

 { :noreply, value}

http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence/stash.ex

 end

end

And finally, our top-level module has to start the top-level supervisor:

otp-supervisor/2/sequence/lib/sequence.ex

 defmodule Sequence do

 use Application

 def start(_type, _args) do

» {:ok, _pid} = Sequence.Supervisor.start_link(123)

 end

 end

Let’s work through what is going on here.

We start the top-level supervisor, passing it an initial value for the counter. It starts up the stash worker,
giving it this number. It then starts the subsupervisor, passing it the stash’s PID.
The subsupervisor in turn starts the sequence worker. This goes to the stash, gets the current value, and uses
that value and the stash PID as its state. The next_number and increment_number functions are unchanged
(except they receive the more complex state).
If the sequence worker terminates for any reason, GenServer calls its terminate function. It stores its
current value in the stash before dying.
The subsupervisor will notice that a child has died. It will restart the child, passing in the stash PID, and the
newly incarnated worker will pick up the current value that was stored when the previous instance died.

At least that’s the theory. Let’s try it:

$ iex -S mix

Compiled lib/sequence.ex

Compiled lib/sequence/server.ex

http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence.ex

Compiled lib/sequence/stash.ex

Compiled lib/sequence/subsupervisor.ex

Compiled lib/sequence/supervisor.ex

Generated sequence.app

iex> Sequence.Server.next_number

123

iex> Sequence.Server.next_number

124

iex> Sequence.Server.increment_number 100

:ok

iex> Sequence.Server.next_number

225

iex> Sequence.Server.increment_number "cause it to crash"

:ok

iex>

14:35:07.337 [error] GenServer Sequence.Server terminating

Last message: {:"$gen_cast", {:increment_number, "cause it to crash"}}

State: {226, #PID<0.70.0>}

** (exit) an exception was raised:

 ** (ArithmeticError) bad argument in arithmetic expression

 (sequence) lib/sequence/server.ex:32: Sequence.Server.handle_cast/2

 (stdlib) gen_server.erl:599: :gen_server.handle_msg/5

 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

iex> Sequence.Server.next_number

226

iex> Sequence.Server.next_number

227

Even though we crashed our sequence worker, it got restarted and the state was preserved. Now we begin to see
how careful supervision is critical if we want to write reliable applications.

Supervisors Are the Heart of Reliability
Think about our previous example; it was both trivial and profound. It was trivial because there are many ways of
achieving some kind of fault tolerance with a library that returns successive numbers. But it was profound because it
is a concrete representation of the idea of building rings of confidence in our code. The outer ring, where our code
interacts with the world, should be as reliable as we can make it. But within that ring there are other, nested rings.
And in those rings, things can be less than perfect. The trick is to ensure that the code in each ring knows how to
deal with failures of the code in the next ring down.

And that’s where supervisors come into play. In this chapter we’ve seen only a small fraction of supervisors’
capabilities. They have different strategies for dealing with the termination of a child, different ways of terminating
children, and different ways of restarting them. There’s plenty of information online about using OTP supervisors.

But the real power of supervisors is that they exist. The fact that you use them to manage your workers means you
are forced to think about reliability and state as you design your application. And that discipline leads to applications
with very high availability—in Programming Erlang: Software for a Concurrent World [Arm13], Joe Armstrong
says OTP has been used to build systems with 99.9999999% reliability. That’s nine nines. And that ain’t bad.

There’s one more level in our lightning tour of OTP—the application. And that’s the next chapter’s topic.

Your Turn

Exercise: OTP-Supervisors-2
Rework your stack server to use a supervision tree with a separate stash process to hold the state. Verify
that it works and that when you crash the server the state is retained across a restart.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Supervisors-2

Chapter 18

OTP: Applications
So far in our quick tour of Elixir and OTP we’ve looked at server processes and the supervisors that monitor them.
There’s one more stage in our journey—the application.

This Is Not Your Father’s Application
Because OTP comes from the Erlang world, it uses Erlang names for things. And unfortunately, some of these
names are not terribly descriptive. The name application is one of these. When most of us talk about applications,
we think of a program we run to do something—maybe on our computer or phone, or via a web browser. An
application is a self-contained whole.

But in the OTP world, that’s not the case. Instead, an application is a bundle of code that comes with a descriptor.
That descriptor tells the runtime what dependencies the code has, what global names it registers, and so on. In fact,
an OTP application is more like a dynamic link library or a shared object than a conventional application.

It might help to see the word application and in your head but pronounce it component or service.

For example, back when we were fetching GitHub issues using the HTTPoison library, what we actually installed
was an independent application containing HTTPoison. Although it looked like we were just using a library, mix
automatically loaded the HTTPoison application. When we then started it, HTTPoison in turn started a couple of
other applications that it needed (SSL and Hackney), which in turn kicked off their own supervisors and workers.
And all of this was transparent to us.

I’ve said that applications are components; but there are some applications that are at the top of the tree and are
meant to be run directly.

In this chapter we’ll look at both types of application component (see what I did there?). In reality they’re virtually
the same, so let’s cover the common ground first.

The Application Specification File
You probably noticed that every now and then mix will talk about a file called name.app, where name is your
application’s name.

This file is called an application specification and is used to define your application to the runtime environment.
Mix creates this file automatically from the information in mix.exs combined with information it gleans from
compiling your application.

When you run your application this file is consulted to get things loaded.

Your application does not need to use all the OTP functionality—this file will always be created and referred to.
However, once you start using OTP supervision trees, stuff you add to mix.exs will get copied into the .app file.

Turning Our Sequence Program into an OTP
Application
So, here’s the good news. The application in the previous chapter is already a full-blown OTP application. When mix
created the initial project tree, it added a supervisor (which we then modified) and enough information to our
mix.exs file to get the application started. In particular, it filled in the application function:

def application do

 [mod: { Sequence, [] }]

end

This says that the top-level module of our application is called Sequence. OTP assumes this module will implement a
start function, and it will pass that function an empty list as a parameter.

In our previous version of the start function, we ignored the arguments and instead hard-wired the call to
start_link to pass 123 to our application. Let’s change that to take the value from mix.exs instead. First, change
mix.exs to pass an initial value (we’ll use 456):

def application do

 [mod: { Sequence, 456 }]

end

Then change the sequence.ex code to use this passed-in value:

otp-app/sequence/lib/sequence.ex

defmodule Sequence do

 use Application

 def start(_type, initial_number) do

 Sequence.Supervisor.start_link(initial_number)

 end

end

We can check that this works:

http://media.pragprog.com/titles/elixir/code/otp-app/sequence/lib/sequence.ex

$ iex -S mix

Compiled lib/sequence.ex

Compiled lib/sequence/subsupervisor.ex

Compiled lib/sequence/stash.ex

Compiled lib/sequence/server.ex

Compiled lib/sequence/supervisor.ex

Generated sequence.app

iex> Sequence.Server.next_number

456

Let’s look at the application function again.

The mod: option tells OTP the module that is the main entry point for our app. If our app is a conventional runnable
application, then it will need to start somewhere, so we’d write our kickoff function here. But even pure library
applications may need to be initialized. (For example, a logging library may start a background logger process or
connect to a central logging server.)

For the sequence app, we tell OTP that the Sequence module is the main entry point. OTP will call this module’s
start function when it starts the application. The second element of the tuple is the parameter to pass to this
function. In our case, it’s the initial number for the sequence.

There’s a second option we’ll want to add to this.

The registered: option lists the names that our application will register. We can use this to ensure each name is
unique across all loaded applications in a node or cluster. In our case, the sequence server registers itself under the
name Sequence.Server, so we’ll update the configuration to read as follows:

otp-app/sequence/mix.exs

Configuration for the OTP application

def application do

 [

 mod: { Sequence, 456 },

 registered: [Sequence.Server]

http://media.pragprog.com/titles/elixir/code/otp-app/sequence/mix.exs

]

end

Now that we’ve done the configuring in mix, we run mix compile, which both compiles the app and updates the
sequence.app application specification file with information from mix.exs. (The same thing happens if we run mix
using iex -S mix.)

 $ mix compile

 Compiled lib/sequence.ex

 Compiled lib/sequence/server.ex

 Compiled lib/sequence/stash.ex

 Compiled lib/sequence/subsupervisor.ex

 Compiled lib/sequence/supervisor.ex

» Generated sequence.app

Mix tells us it has created a sequence.app file, but where is it? You’ll find it tucked away in
_build/dev/lib/sequence/ebin. Although a little obscure, the directory structure under _build is compatible with
Erlang’s OTP way of doing things. This makes life easier when you release your code. You’ll notice that the path
has dev in it—this keeps things you’re doing in development separate from other build products.

Let’s look at the sequence.app that was generated.

otp-app/sequence/_build/dev/lib/sequence/ebin/sequence.app

{application,sequence,

 [{description,"sequence"},

 {mod,{'Elixir.Sequence',[]}},

 {registered,[sequence]},

 {env,[{initial_value,456}]},

 {vsn,"0.0.1"},

 {modules,['Elixir.Sequence','Elixir.Sequence.Server',

 'Elixir.Sequence.Stash',

http://media.pragprog.com/titles/elixir/code/otp-app/sequence/_build/dev/lib/sequence/ebin/sequence.app

 'Elixir.Sequence.SubSupervisor',

 'Elixir.Sequence.Supervisor']},

 {applications,[kernel,stdlib,elixir]}]}.

This file contains an Erlang tuple that defines the app. Some of the information comes from the project and
application section of mix.exs. Mix also automatically added a list of the names of all the compiled modules in our
app (the .beam files) and a list of the apps our app depends on (kernel, stdlib, and elixir). That’s pretty smart.

More on Application Parameters
In the previous example, we passed the integer 456 to the application as an initial parameter. Although valid(ish), we
really should have passed in a keyword list instead. That’s because Elixir provides a function,
Application.get_env, to retrieve these values from anywhere in our code. So we probably should have set up
mix.exs with

def application do

 [

 mod: { Sequence, [] },

 env: [initial_number: 456],

 registered: [:sequence]

]

end

and then accessed the value using get_env:

defmodule Sequence do

 use Application

 def start(_type, _args) do

 Sequence.Supervisor.start_link(Application.get_env(:sequence, :initial_number))

 end

end

Your call.

Supervision Is the Basis of Reliability
Let’s briefly recap. In that last example, we ran our OTP sequence application using mix. Looking at just our code,
we see that two supervisor processes and two worker processes got started. These were knitted together so our
system continued to run with no loss of state even if the worker that we talked to crashed. And any other Erlang
process on this node (including iex itself) can talk to our sequence application and enjoy its stream of freshly minted
integers.

You probably noticed that the start function takes two parameters. The second corresponds to the value we
specified in the mod: option in the mix.exs file (in our case, the counter’s initial value). The first parameter specifies
the status of the restart, which we’re not going to get into, because…

Your Turn

Exercise: OTP-Applications-1
Turn your stack server into an OTP application.

Exercise: OTP-Applications-2
So far, we haven’t written any tests for the application. Is there anything you can test? See what you can do.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-2

Hot Code-Swapping
You may have heard that OTP applications can update their code while they are running. It’s true. In fact, any Elixir
program can do it. It’s just that OTP provides a release-management framework that handles it.

However, OTP release management is complex. Something with the potential to deal with dependencies between
thousands of processes on hundreds of machines with tens of thousands of modules will, by its nature, be bigger than
a breadbox.

However, I can show you the basics.

First, the real deal is not swapping code, but rather swapping state. In an application where everything runs as
separate processes, swapping code simply means starting a process with the new code and then sending messages
to it.

However, server processes maintain state, and it is likely that changes to the server code will change the structure
of the state they hold (adding a field, changing a value, or whatever). So OTP provides a standard server callback
that lets a server inherit the state from a prior version of itself.

Alexei Sholik was kind enough to come up with this minimal example of what’s possible.

Let’s go back to the stashed version of the supervised sequence server. Its code looked like this:

otp-supervisor/2/sequence/lib/sequence/server.ex

defmodule Sequence.Server do

 use GenServer

 #####

 # External API

 def start_link(stash_pid) do

 {:ok, _pid} = GenServer.start_link(__MODULE__, stash_pid, name: __MODULE__)

 end

 def next_number do

 GenServer.call __MODULE__, :next_number

 end

 def increment_number(delta) do

 GenServer.cast __MODULE__, {:increment_number, delta}

http://media.pragprog.com/titles/elixir/code/otp-supervisor/2/sequence/lib/sequence/server.ex

 end

 #####

 # GenServer implementation

 def init(stash_pid) do

 current_number = Sequence.Stash.get_value stash_pid

 { :ok, {current_number, stash_pid} }

 end

 def handle_call(:next_number, _from, {current_number, stash_pid}) do

 { :reply, current_number, {current_number+1, stash_pid} }

 end

 def handle_cast({:increment_number, delta}, {current_number, stash_pid}) do

 { :noreply, {current_number + delta, stash_pid}}

 end

 def terminate(_reason, {current_number, stash_pid}) do

 Sequence.Stash.save_value stash_pid, current_number

 end

end

If we want to version our code and data, we have to tell OTP the version numbers of what is running. So, at the top
of our module we’ll add an @vsn directive.

otp-app/sequence_reload/lib/sequence/server.ex

defmodule Sequence.Server do

 use GenServer

 @vsn "0"

http://media.pragprog.com/titles/elixir/code/otp-app/sequence_reload/lib/sequence/server.ex

Our boss calls. We’re about to go for a second round of funding on our wildly successfully sequence-server
business, but customers have noticed a bug. We implemented increment_number to add a delta to the current
number—a one-time change. But apparently it was instead supposed to set the difference between successive
numbers we served.

Let’s try the existing code in iex.

$ iex -S mix

iex> Sequence.Supervisor.start_link 500

{:ok,#PID<0.57.0>}

iex> Sequence.Server.next_number

500

iex> Sequence.Server.increment_number 10

:ok

iex> Sequence.Server.next_number

511

iex> Sequence.Server.next_number

512

Yup, we’re applying the delta only once.

Well, that’s an easy change to the code. We simply have to keep one extra thing in the state—a delta value.We
implement the new server code.

otp-app/sequence_reload/updated_server.ex

defmodule Sequence.Server do

 use GenServer

 require Logger

 defmodule State, do: defstruct current_number: 0, stash_pid: nil, delta: 1

 @vsn "1"

http://media.pragprog.com/titles/elixir/code/otp-app/sequence_reload/updated_server.ex

 #####

 # External API

 def start_link(stash_pid) do

 GenServer.start_link(__MODULE__, stash_pid, name: __MODULE__)

 end

 def next_number do

 GenServer.call __MODULE__, :next_number

 end

 def increment_number(delta) do

 GenServer.cast __MODULE__, {:increment_number, delta}

 end

 #####

 # GenServer implementation

 def init(stash_pid) do

 current_number = Sequence.Stash.get_value stash_pid

 { :ok, %State{current_number: current_number, stash_pid: stash_pid} }

 end

 def handle_call(:next_number, _from, state) do

 {

 :reply,

 state.current_number,

 %{ state | current_number: state.current_number + state.delta }

 }

 end

 def handle_cast({:increment_number, delta}, state) do

 {

 :noreply,

 %{ state | current_number: state.current_number + delta, delta: delta }

 }

 end

 def terminate(_reason, state) do

 Sequence.Stash.save_value state.stash_pid, state.current_number

 end

 def code_change("0", old_state = { current_number, stash_pid }, _extra) do

 new_state = %State{current_number: current_number,

 stash_pid: stash_pid,

 delta: 1

 }

 Logger.info "Changing code from 0 to 1"

 Logger.info inspect(old_state)

 Logger.info inspect(new_state)

 { :ok, new_state }

 end

end

Notice that we’ve updated the version number to 1. The other big change is that we made the state a struct rather
than a tuple and added the delta value. We updated the increment handler to change the value of delta, and the next
number handler now adds in the delta each time.

If we simply stop the old server and start the new one, we’ll lose the state stored in the old one. But we can’t just
copy the state across—the old server had a single integer and the new one has a struct.

Fortunately, OTP has a callback for this. In the new server, implement the code_change function.

otp-app/sequence_reload/updated_server.ex

def code_change("0", old_state = { current_number, stash_pid }, _extra) do

 new_state = %State{current_number: current_number,

 stash_pid: stash_pid,

 delta: 1

 }

 Logger.info "Changing code from 0 to 1"

 Logger.info inspect(old_state)

 Logger.info inspect(new_state)

 { :ok, new_state }

end

The callback takes three arguments—the old version number, the old state, and an additional parameter we don’t
use. The callback’s job is to return {:ok, new_state). In our case, the new state is a struct containing the stash
PID and the old current number, along with the new delta value, initialized to 1. We’ll use the logger to report on
what we did (remembering to add it to the applications list in mix.exs and require it at the top of our server).

This is where it gets a little unrealistic. In a big, live application, we’d configure application and release descriptors
and let the OTP release manager do everything for us. But there’s too much fluff in all that for a simple example
like this, so we’ll cheat and use Erlang’s sys module to demonstrate a basic upgrade.

First we suspend the existing server.

iex> :sys.suspend Sequence.Server

We then compile and load the new version. Note that the module name is the same as the old module name.

http://media.pragprog.com/titles/elixir/code/otp-app/sequence_reload/updated_server.ex

iex> c("updated_server.ex")

.../sequence_reload/updated_server.ex:1: redefining module Sequence.Server

[Sequence.Server]

Now the fun part. We tell OTP to update the new sequence server’s state. We pass it the registered name (we can
also use a PID), the module name, the previous version number, and an extra argument. (That extra argument gets
passed as the third parameter to the code_change callback in our server.)

iex> :sys.change_code Sequence.Server, Sequence.Server, "0", []

15:36:04.908 [info] Changing code from 0 to 1

15:36:04.910 [info] {122, #PID<0.73.0>}

resuming

15:36:04.918 [info] %Sequence.Server.State{current_number: 122, delta: 1,

 stash_pid: #PID<0.73.0>}

:ok

Our callback was indeed triggered—you can see the logging.

Now let’s resume the server and try out the new behavior.

iex> :sys.resume Sequence.Server

:ok

iex> Sequence.Server.next_number

513

iex> Sequence.Server.increment_number 10

:ok

iex> Sequence.next_number

524

iex> Sequence.next_number

534

iex> Sequence.next_number

544

We updated the code while the app was running and just before the investors arrived. Our system’s users wouldn’t
have noticed any interruption.

If you’re planning on deploying a big Elixir app, you need to think about release management. Many applications
don’t require it—a little downtime while you restart is acceptable. But if you’re aiming for Joe Armstrong’s nine-
nines reliability, you’ll need to work on your supervision structure and release procedures.

But once you have it set up, you’ll find that deploying and updating are an automated and repeatable process.

OTP Is Big—Unbelievably Big
This book barely scratches OTP’s surface. But (I hope) it does introduce the major concepts and give you an idea
of what’s possible.

More advanced uses of OTP may include release management (including hot code-swapping), handling of
distributed failover, automated scaling, and so on. But if you have an application that needs such things, you likely
will already have or will soon need dedicated operations experts who know the low-level details of making OTP
apps perform the way you need them to.

There is never anything simple about scaling out to the kind of size and sophistication that is possible with OTP. But
now you know you can start small and get there.

However, there are ways of writing some OTP servers more simply, and that’s the subject of the next chapter.

Your Turn

Exercise: OTP-Applications-3
Our boss notices that after we applied our version-0-to-version-1 code change, the delta indeed works as
specified. However, she also notices that if the server crashes, the delta is forgotten—only the current
number is retained. Write a new update that stashes both values.

http://forums.pragprog.com/forums/322/topics/Exercise:%20OTP-Applications-3

Chapter 19

Tasks and Agents
This part of the book is about processes and process distribution. So far we’ve covered two extremes. In the first
chapters we looked at the spawn primitive, along with message sending and receiving and multinode operations. We
then looked at OTP, the 800-pound gorilla of process architecture.

Sometimes, though, we want something in the middle. We want to be able to run simple processes, either for
background processing or for maintaining state. But we don’t want to be bothered with the low-level details of
spawn, send, and receive, and we really don’t need the extra control that writing our own GenServer gives us.

Enter tasks and agents, two simple-to-use Elixir abstractions. These use OTP’s features but insulate us from these
details.

Tasks
An Elixir task is a function that runs in the background.

tasks/tasks1.exs

defmodule Fib do

 def of(0), do: 0

 def of(1), do: 1

 def of(n), do: Fib.of(n-1) + Fib.of(n-2)

end

IO.puts "Start the task"

worker = Task.async(fn -> Fib.of(20) end)

IO.puts "Do something else"

...

IO.puts "Wait for the task"

result = Task.await(worker)

IO.puts "The result is #{result}"

The call to Task.async creates a separate process that runs the given function. The return value of async is a task
descriptor (actually a PID and a ref) that we’ll use to identify the task later.

Once the task is running, the code continues with other work. When it wants to get the function’s value, it calls
Task.await, passing in the task descriptor. This call waits for our background task to finish and returns its value.

When we run this, we see

$ elixir tasks1.exs

Start the task

Do something else

http://media.pragprog.com/titles/elixir/code/tasks/tasks1.exs

Wait for the task

The result is 6765

We can also pass Task.async the name of a module and function, along with any arguments:

tasks/tasks2.exs

worker = Task.async(Fib, :of, [20])

result = Task.await(worker)

IO.puts "The result is #{result}"

Tasks and Supervision
Tasks are implemented as OTP servers, which means we can add them to our application’s supervision tree. We
can do this in two ways.

First, we can link a task to a currently supervised process by calling start_link instead of async. This has less
impact than you might think. If the function running in the task crashes and we use start_link, our process will be
terminated immediately. If instead we use async, our process will be terminated only when we subsequently call
await on the crashed task.

The second way to supervise tasks is to run them directly from a supervisor. This is pretty much the same as
specifying any other worker:

import Supervisor.Spec

children = [

 worker(Task, [fn -> do_something_extraordinary() end])

]

supervise children, strategy: :one_for_one

http://media.pragprog.com/titles/elixir/code/tasks/tasks2.exs

Agents
An agent is a background process that maintains state. This state can be accessed at different places within a
process or node, or across multiple nodes.

The initial state is set by a function we pass in when we start the agent.

We can interrogate the state using Agent.get, passing it the agent descriptor and a function. The agent runs the
function on its current state and returns the result.

We can also use Agent.update to change the state held by an agent. As with the get operator, we pass in a
function. Unlike with get, the function’s result becomes the new state.

Here’s a bare-bones example. We start an agent whose state is the integer 0. We then use the identity function, &
(&1), to return that state. Calling Agent.update with &(&1+1) increments the state, as verified by a subsequent get.

iex> { :ok, count } = Agent.start(fn -> 0 end)

{:ok, #PID<0.69.0>}

iex> Agent.get(count, &(&1))

0

iex> Agent.update(count, &(&1+1))

:ok

iex> Agent.update(count, &(&1+1))

:ok

iex> Agent.get(count, &(&1))

2

In the previous example, the variable count holds the agent process’s PID. We can also give agents a local or global
name and access them using this name. In this case we exploit the fact that an uppercase bareword in Elixir is
converted into an atom with the prefix Elixir., so when we say Sum it is actually the atom :Elixir.Sum.

iex> Agent.start(fn -> 1 end, name: Sum)

{:ok, #PID<0.78.0>}

iex> Agent.get(Sum, &(&1))

1

iex> Agent.update(Sum, &(&1+99))

:ok

iex> Agent.get(Sum, &(&1))

100

The following example shows a more typical use. The Frequency module maintains a list of word/frequency pairs in
a hashdict. The dictionary itself is stored in an agent, which is named after the module.

This is all initialized with the start_link function, which, presumably, is invoked during application initialization.

tasks/agent_dict.exs

defmodule Frequency do

 def start_link do

 Agent.start_link(fn -> HashDict.new end, name: __MODULE__)

 end

 def add_word(word) do

 Agent.update(__MODULE__,

 fn dict ->

 Dict.update(dict, word, 1, &(&1+1))

 end)

 end

 def count_for(word) do

 Agent.get(__MODULE__, fn dict -> Dict.get(dict, word) end)

 end

 def words do

http://media.pragprog.com/titles/elixir/code/tasks/agent_dict.exs

 Agent.get(__MODULE__, fn dict -> Dict.keys(dict) end)

 end

end

We can play with this code in iex.

iex> c "agent_dict.exs"

[Frequency]

iex> Frequency.start_link

{:ok, #PID<0.101.0>}

iex> Frequency.add_word "dave"

:ok

iex> Frequency.words

["dave"]

iex(41)> Frequency.add_word "was"

:ok

iex> Frequency.add_word "here"

:ok

iex> Frequency.add_word "he"

:ok

iex> Frequency.add_word "was"

:ok

iex> Frequency.words

["he", "dave", "was", "here"]

iex> Frequency.count_for("dave")

1

iex> Frequency.count_for("was")

2

In a way, you can look at our Frequency module as the implementation part of a gen_server—using agents has
simply abstracted away all the housekeeping we had to do.

A Bigger Example
Let’s rewrite our anagram code to use both tasks and an agent.

We’ll load words in parallel from a number of separate dictionaries. A separate task handles each dictionary. We’ll
use an agent to store the resulting list of words and signatures.

tasks/anagrams.exs

defmodule Dictionary do

 @name __MODULE__

 ##

 # External API

 def start_link,

 do: Agent.start_link(fn -> HashDict.new end, name: @name)

 def add_words(words),

 do: Agent.update(@name, &do_add_words(&1, words))

 def anagrams_of(word),

 do: Agent.get(@name, &Dict.get(&1, signature_of(word)))

 ##

 # Internal implementation

 defp do_add_words(dict, words),

 do: Enum.reduce(words, dict, &add_one_word(&1, &2))

 defp add_one_word(word, dict),

 do: Dict.update(dict, signature_of(word), [word], &[word|&1])

 defp signature_of(word),

http://media.pragprog.com/titles/elixir/code/tasks/anagrams.exs

 do: word |> to_char_list |> Enum.sort |> to_string

end

defmodule WordlistLoader do

 def load_from_files(file_names) do

 file_names

 |> Stream.map(fn name -> Task.async(fn -> load_task(name) end) end)

 |> Enum.map(&Task.await/1)

 end

 defp load_task(file_name) do

 File.stream!(file_name, [], :line)

 |> Enum.map(&String.strip/1)

 |> Dictionary.add_words

 end

end

Our four wordlist files contain the following:

list1 list2 list3 list4

angor

argon

caret

carte

cater

crate

creat

creta

ester

estre

goran

grano

groan

leapt

nagor

orang

palet

patel

pelta

petal

pleat

react

recta

reest

rogan

ronga

steer

stere

stree

terse

tsere

tepal

Let’s run it:

$ iex anagrams.exs

iex> Dictionary.start_link

iex> Enum.map(1..4, &"words/list#{&1}") |> WordlistLoader.load_from_files

iex> Dictionary.anagrams_of "organ"

["orang", "nagor", "groan", "grano", "goran", "argon", "angor"]

Making It Distributed
Because agents and tasks run as OTP servers, they can already be distributed. All we need to do is give our agent a
globally accessible name. That’s a one-line change:

@name {:global, __MODULE__}

Now we’ll load our code into two separate nodes and connect them. (Remember that we have to specify names for
the nodes so they can talk.)

Window #1

$ iex --sname one anagrams_dist.exs

iex(one@FasterAir)>

Window #2

$ iex --sname two anagrams_dist.exs

iex(two@FasterAir)> Node.connect :one@FasterAir

true

iex(two@FasterAir)> Node.list

[:one@FasterAir]

We’ll start the dictionary agent in node one—this is where the actual dictionary will end up. We’ll then load the
dictionary using both nodes one and two:

Window #1

iex(one@FasterAir)> Dictionary.start_link

{:ok, #PID<0.68.0>}

iex(one@FasterAir)> WordlistLoader.load_from_files(~w{words/list1 words/list2})

[:ok, :ok]

Window #2

iex(two@FasterAir)> WordlistLoader.load_from_files(~w{words/list3 words/list4})

[:ok, :ok]

Finally, we’ll query the agent from both nodes:

Window #1

iex(one@FasterAir)> Dictionary.anagrams_of "argon"

["ronga", "rogan", "orang", "nagor", "groan", "grano", "goran", "argon",

"angor"]

Window #2

iex(two@FasterAir)> Dictionary.anagrams_of "crate"

["recta", "react", "creta", "creat", "crate", "cater", "carte",

"caret"]

Agents and Tasks, or GenServer?
When do you use agents and tasks, and when do you use a GenServer?

The answer is to use the simplest approach that works. Agents and tasks are great when you are dealing with very-
specific background activities, whereas GenServers (as their name suggests) are more general.

You can eliminate the need to make a decision by wrapping your agents and tasks in modules, as we did in our
anagram example. That way you can always switch from the agent or task implementation to the full-blown
GenServer without affecting the rest of the code base.

It’s time to move on, and look at some advanced Elixir.

Part 3
More-Advanced Elixir

Among the joys of Elixir is that it laughs at the concept of “what you see is what you get.” Instead,
you can extend it in many different ways. This allows you to add layers of abstraction to your code,
which makes your code easier to work with.

This part covers macros (which let you extend the language’s syntax), protocols (which let you add
behaviors to existing modules), and use (which lets you add capabilities to a module). We finish with a
grab-bag chapter of miscellaneous Elixir tricks and tips.

Chapter 20

Macros and Code Evaluation
Have you ever felt frustrated that a language didn’t have just the right feature for some code you were writing? Or
have you found yourself repeating chunks of code that weren’t amenable to factoring into functions? Or have you
just wished you could program closer to your problem domain?

If so, then you’ll love this chapter.

But, before we get into the details, here’s a warning: macros can easily make your code harder to understand,
because you’re essentially rewriting parts of the language. For that reason, never use a macro when you could use a
function. Let’s repeat that:

Recipe 1: Never use a macro when you can use
a function.
In fact, you’ll probably not write a macro in regular application code. But if you’re writing a library and want to use
some of the other metaprogramming techniques that we show in later chapters, you’ll need to know how macros
work.

Implementing an if Statement
Let’s imagine Elixir didn’t have an if statement—all it has is case. Although we’re prepared to abandon our old
friend the while loop, not having an if statement is just too much to bear, so we set about implementing one.

We’ll want to call it using something like

myif condition do

 evaluate if true

else

 evaluate if false

end

We know that blocks in Elixir are converted into keyword parameters, so this is equivalent to

myif condition,

 do: evaluate if true,

 else: evaluate if false

Here’s a sample call:

My.myif 1==2, do: (IO.puts "1 == 2"), else: (IO.puts "1 != 2")

Let’s try to implement myif as a function:

defmodule My do

 def myif(condition, clauses) do

 do_clause = Keyword.get(clauses, :do, nil)

 else_clause = Keyword.get(clauses, :else, nil)

 case condition do

 val when val in [false, nil]

 -> else_clause

 _otherwise

 -> do_clause

 end

 end

end

When we run it, we’re (mildly) surprised to get the following output:

iex> My.myif 1==2, do: (IO.puts "1 == 2"), else: (IO.puts "1 != 2")

1 == 2

1 != 2

:ok

When we call the myif function, Elixir has to evaluate all of its parameters before passing them in. So both the do:
and else: clauses are evaluated, and we see their output. Because IO.puts returns :ok on success, what actually
gets passed to myif is

myif 1==2, do: :ok, else: :ok

This is why the final return value is :ok.

Clearly we need a way of delaying the execution of these clauses. And this is where macros come in. But before
we implement our myif macro, we need a little background.

Macros Inject Code
Let’s pretend we’re the Elixir compiler. We read a module’s source top to bottom and generate a representation of
the code we find. That representation is a nested Elixir tuple.

If we want to support macros, we need a way to tell the compiler that we’d like to manipulate a part of that tuple.
We do that using defmacro, quote, and unquote.

In the same way that def defines a function, defmacro defines a macro. You’ll see what that looks like shortly.
However, the real magic starts not when we define a macro, but when we use one.

When we pass parameters to a macro, Elixir doesn’t evaluate them. Instead, it passes them as tuples representing
their code. We can examine this behavior using a simple macro definition that prints out its parameter.

macros/dumper.exs

defmodule My do

 defmacro macro(param) do

 IO.inspect param

 end

end

defmodule Test do

 require My

 # These values represent themselves

 My.macro :atom #=> :atom

 My.macro 1 #=> 1

 My.macro 1.0 #=> 1.0

 My.macro [1,2,3] #=> [1,2,3]

 My.macro "binaries" #=> "binaries"

 My.macro { 1, 2 } #=> {1,2}

 My.macro do: 1 #=> [do: 1]

http://media.pragprog.com/titles/elixir/code/macros/dumper.exs

 My.macro do #=> [do: 1]

 1

 end

 # And these are represented by 3-element tuples

 My.macro { 1,2,3,4,5 } #=> {:"{}",[line: 20],[1,2,3,4,5]}

 My.macro do: (a = 1; a+a) #=>

 # [do:

 # {:__block__,[],

 # [{:=,[line: 22],[{:a,[line: 22],nil},1]},

 # {:+,[line: 22],[{:a,[line: 22],nil},{:a,[line: 22],nil}]}]}]

 My.macro do #=> [do: {:+,[line: 24],[1,2]}, else: {:+,[line: 26],[3,4]}]

 1+2

 else

 3+4

 end

end

This shows us that atoms, numbers, lists (including keyword lists), binaries, and tuples with two elements are
represented internally as themselves. All other Elixir code is represented by a three-element tuple. Right now, the
internals of that representation aren’t important.

Load Order
You may be wondering about the structure of the preceding code. We put the macro definition in one module, and
the usage of that macro in another. And that second module included a require call.

Macros are expanded before a program executes, so the macro defined in one module must be available as Elixir is
compiling another module that uses those macros. The require function tells Elixir to ensure the named module is
compiled before the current one. In practice it is used to make the macros defined in one module available in
another.

But the reason for the two modules is less clear. It has to do with the fact that Elixir first compiles source files and
then runs them.

If we have one module per source file and we reference a module in file A from file B, Elixir will load the module
from A, and everything just works. But if we have a module and the code that uses it in the same file, and the
module is defined in the same scope in which we use it, Elixir will not know to load the module’s code. We’ll get this
error:

** (CompileError)

 .../dumper.ex:7:

 module My is not loaded but was defined. This happens because you

 are trying to use a module in the same context it is defined. Try

 defining the module outside the context that requires it.

By placing the code that uses module My in a separate module, we force My to load.

The Quote Function
We’ve seen that when we pass parameters to a macro they are not evaluated. The language comes with a function,
quote, that also forces code to remain in its unevaluated form. quote takes a block and returns the internal
representation of that block. We can play with it in iex:

iex> quote do: :atom

:atom

iex> quote do: 1

1

iex> quote do: 1.0

1.0

iex> quote do: [1,2,3]

[1,2,3]

iex> quote do: "binaries"

"binaries"

iex> quote do: {1,2}

{1,2}

iex> quote do: [do: 1]

[do: 1]

iex> quote do: {1,2,3,4,5}

{:"{}",[],[1,2,3,4,5]}

iex> quote do: (a = 1; a + a)

{:__block__, [],

[{:=, [], [{:a, [], Elixir}, 1]},

 {:+, [context: Elixir, import: Kernel],

 [{:a, [], Elixir}, {:a, [], Elixir}]}]}

iex> quote do: [do: 1 + 2, else: 3 + 4]

[do: {:+, [context: Elixir, import: Kernel], [1, 2]},

else: {:+, [context: Elixir, import: Kernel], [3, 4]}]

There’s another way to think about quote. When we write "abc", we create a binary containing a string. The double
quotes say “interpret what follows as a string of characters and return the appropriate representation.”

quote is the same: it says “interpret the content of the block that follows as code, and return the internal
representation.”

Using the Representation As Code
When we extract the internal representation of some code (either via a macro parameter or using quote), we stop
Elixir from adding it automatically to the tuples of code it is building during compilation—we’ve effectively created a
free-standing island of code. How do we inject that code back into our program’s internal representation?

There are two ways.

The first is our old friend the macro. Just like with a function, the value a macro returns is the last expression
evaluated in that macro. That expression is expected to be a fragment of code in Elixir’s internal representation. But
Elixir does not return this representation to the code that invoked the macro. Instead it injects the code back into the
internal representation of our program and returns to the caller the result of executing that code. But that execution
takes place only if needed.

We can demonstrate this in two steps. First, here’s a macro that simply returns its parameter (after printing it out).
The code we give it when we invoke the macro is passed as an internal representation, and when the macro returns
that code, that representation is injected back into the compile tree.

macros/eg.exs

defmodule My do

 defmacro macro(code) do

 IO.inspect code

 code

 end

end

defmodule Test do

 require My

 My.macro(IO.puts("hello"))

end

When we run this, we see

{{:.,[line: 11],[{:__aliases__,[line: 11],[:IO]},:puts]},

 [line: 11],["hello"]}

http://media.pragprog.com/titles/elixir/code/macros/eg.exs

hello

Now we’ll change that file to return a different piece of code. We use quote to generate the internal form:

macros/eg1.exs

defmodule My do

 defmacro macro(code) do

 IO.inspect code

 quote do: IO.puts "Different code"

 end

end

defmodule Test do

 require My

 My.macro(IO.puts("hello"))

end

This generates

{{:.,[line: 11],[{:__aliases__,[line: 11],[:IO]},:puts]},

 [line: 11],["hello"]}

Different code

Even though we passed IO.puts("hello") as a parameter, it was never executed. Instead, the code fragment we
returned using quote was.

Before we can write our version of if, we need one more trick—the ability to substitute existing code into a quoted
block. There are two ways of doing this: by using the unquote function and with bindings.

The Unquote Function
Let’s get two things out of the way. First, we can use unquote only inside a quote block. Second, unquote is a silly
name. It should really be something like inject_code_fragment.

Let’s see why we need this. Here’s a simple macro that tries to output the result of evaluating the code we pass it:

http://media.pragprog.com/titles/elixir/code/macros/eg1.exs

defmacro macro(code) do

 quote do

 IO.inspect(code)

 end

end

Unfortunately, when we run it, it reports an error:

** (CompileError).../eg2.ex:11: function code/0 undefined

Inside the quote block, Elixir is just parsing regular code, so the name code is inserted literally into the code fragment
it returns. But we don’t want that. We want Elixir to insert the evaluation of the code we pass in. And that’s where
we use unquote. It temporarily turns off quoting and simply injects a code fragment into the sequence of code being
returned by quote.

defmodule My do

 defmacro macro(code) do

 quote do

 IO.inspect(unquote(code))

 end

 end

end

Inside the quote block, Elixir is busy parsing the code and generating its internal representation. But when it hits the
unquote, it stops parsing and simply copies the code parameter into the generated code. After unquote, it goes back
to regular parsing.

There’s another way of thinking about this. Using unquote inside a quote is a way of deferring the execution of the
unquoted code. It doesn’t run when the quote block is parsed. Instead it runs when the code generated by the quote
block is executed.

Or, we can think in terms of our quote-as-string-literal analogy. In this case, we can make a (slightly tenuous) case
that unquote is a little like the interpolation we can do in strings. When we write "sum=#{1+2}", Elixir evaluates 1+2

and interpolates the result into the quoted string. When we write quote do: def unquote(name) do end, Elixir
interpolates the contents of name into the code representation it is building as part of the list.

Expanding a List—unquote_splicing

Consider this code:

iex> Code.eval_quoted(quote do: [1,2,unquote([3,4])])

{[1,2,[3,4]],[]}

The list [3,4] is inserted, as a list, into the overall quoted list, resulting in [1,2,[3,4]].

If we instead wanted to insert just the elements of the list, we could use unquote_splicing.

iex> Code.eval_quoted(quote do: [1,2,unquote_splicing([3,4])])

{[1,2,3,4],[]}

Remembering that single-quoted strings are lists of characters, this means we can write

iex> Code.eval_quoted(quote do: [?a, ?= ,unquote_splicing('1234')])

{'a=1234',[]}

Back to Our myif Macro
We now have everything we need to implement an if macro.

macros/myif.ex

defmodule My do

 defmacro if(condition, clauses) do

 do_clause = Keyword.get(clauses, :do, nil)

 else_clause = Keyword.get(clauses, :else, nil)

 quote do

 case unquote(condition) do

 val when val in [false, nil] -> unquote(else_clause)

http://media.pragprog.com/titles/elixir/code/macros/myif.ex

 _ -> unquote(do_clause)

 end

 end

 end

end

defmodule Test do

 require My

 My.if 1==2 do

 IO.puts "1 == 2"

 else

 IO.puts "1 != 2"

 end

end

It’s worth studying this code.

The if macro receives a condition and a keyword list. The condition and any entries in the keyword list are passed
as code fragments.

The macro extracts the do: and/or else: clauses from that list. It is then ready to generate the code for our if
statement, so it opens a quote block. That block contains an Elixir case expression. This case expression has to
evaluate the condition that is passed in, so it uses unquote to inject that condition’s code as its parameter.

When Elixir executes this case statement, it evaluates the condition. At that point, case will match the first clause if
the result is nil or false; otherwise it matches the second clause. When a clause matches (and only then), we want
to execute the code that was passed in either the do: or else: values in the keyword list, so we use unquote again
to inject that code into the case.

Your Turn

Exercise: MacrosAndCodeEvaluation-1
Write a macro called myunless that implements the standard unless functionality. You’re allowed to use the
regular if expression in it.

Exercise: MacrosAndCodeEvaluation-2
Write a macro called times_n that takes a single numeric argument. It should define a function called
times_n in the caller’s module that itself takes a single argument, and that multiplies that argument by n. So,
calling times_n(3) should create a function called times_3, and calling times_3(4) should return 12. Here’s
an example of it in use:

defmodule Test do

 require Times

 Times.times_n(3)

 Times.times_n(4)

end

IO.puts Test.times_3(4) #=> 12

IO.puts Test.times_4(5) #=> 20

http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-2

Using Bindings to Inject Values
Remember that there are two ways of injecting values into quoted blocks. One is unquote. The other is to use a
binding. However, the two have different uses and different semantics.

A binding is simply a keyword list of variable names and their values. When we pass a binding to quote the variables
are set inside the body of that quote.

This is useful because macros are executed at compile time. This means they don’t have access to values that are
calculated at runtime.

Here’s an example. The intent is to have a macro that defines a function that returns its own name:

defmacro mydef(name) do

 quote do

 def unquote(name)(), do: unquote(name)

 end

end

We try this out using something like mydef(:some_name). Sure enough, that defines a function that, when called,
returns :some_name.

Buoyed by our success, we try something more ambitious:

macros/macro_no_binding.exs

defmodule My do

 defmacro mydef(name) do

 quote do

 def unquote(name)(), do: unquote(name)

 end

 end

end

defmodule Test do

http://media.pragprog.com/titles/elixir/code/macros/macro_no_binding.exs

 require My

 [:fred, :bert] |> Enum.each(&My.mydef(&1))

end

IO.puts Test.fred

And we’re rewarded with this:

macro_no_binding.exs:12: invalid syntax in def _@1()

At the time the macro is called, the each loop hasn’t yet executed, so we have no valid name to pass it. This is
where bindings come in:

macros/macro_binding.exs

defmodule My do

 defmacro mydef(name) do

 quote bind_quoted: [name: name] do

 def unquote(name)(), do: unquote(name)

 end

 end

end

defmodule Test do

 require My

 [:fred, :bert] |> Enum.each(&My.mydef(&1))

end

IO.puts Test.fred #=> fred

Two things happen here. First, the binding makes the current value of name available inside the body of the quoted
block. Second, the presence of the bind_quoted: option automatically defers the execution of the unquote calls in
the body. This way, the methods are defined at runtime.

http://media.pragprog.com/titles/elixir/code/macros/macro_binding.exs

As its name implies, bind_quoted takes a quoted code fragment. Simple things such as tuples are the same as
normal and quoted code, but for most values you probably want to quote them or use Macro.escape to ensure that
your code fragment will be interpreted correctly.

Macros Are Hygienic
It is tempting to think of macros as some kind of textual substitution—a macro’s body is expanded as text and then
compiled at the point of call. But that’s not the case. Consider this example:

macros/hygiene.ex

defmodule Scope do

 defmacro update_local(val) do

 local = "some value"

 result = quote do

 local = unquote(val)

 IO.puts "End of macro body, local = #{local}"

 end

 IO.puts "In macro definition, local = #{local}"

 result

 end

end

defmodule Test do

 require Scope

 local = 123

 Scope.update_local("cat")

 IO.puts "On return, local = #{local}"

end

Here’s the result of running that code:

http://media.pragprog.com/titles/elixir/code/macros/hygiene.ex

In macro definition, local = some value

End of macro body, local = cat

On return, local = 123

If the macro body was just substituted in at the point of call, both it and the module Test would share the same
scope, and the macro would overwrite the variable local, so we’d see

In macro definition, local = some value

End of macro body, local = cat

On return, local = cat

But that isn’t what happens. Instead the macro definition has both its own scope and a scope during execution of the
quoted macro body. Both are distinct to the scope within the Test module. The upshot is that macros will not clobber
each other’s variables or the variables of modules and functions that use them.

The import and alias functions are also locally scoped. See the documentation for quote for a full description. This
also describes how to turn off hygiene for variables and how to control the stack trace’s format if things go wrong
while executing a macro.

Other Ways to Run Code Fragments
We can use the function Code.eval_quoted to evaluate code fragments, such as those returned by quote.

iex> fragment = quote do: IO.puts("hello")

{{:.,[],[{:__aliases__,[alias: false],[:IO]},:puts]},[],["hello"]}

iex> Code.eval_quoted fragment

hello

{:ok,[]}

By default, the quoted fragment is hygienic, and so does not have access to variables outside its scope. Using var!
(:name), we can disable this feature and allow a quoted block to access variables in the containing scope. In this
case, we pass the binding to eval_quoted as a keyword list.

iex> fragment = quote do: IO.puts(var!(a))

{{:., [], [{:__aliases__, [alias: false], [:IO]}, :puts]}, [],

[{:var!, [context: Elixir, import: Kernel], [{:a, [], Elixir}]}]}

iex> Code.eval_quoted fragment, [a: "cat"]

cat

{:ok,[a: "cat"]}

Code.string_to_quoted converts a string containing code to its quoted form, and Macro.to_string converts a
code fragment back into a string.

iex> fragment = Code.string_to_quoted("defmodule A do def b(c) do c+1 end end")

{:ok,{:defmodule,[line: 1],[{:__aliases__,[line: 1],[:A]},

[do: {:def,[line: 1],[{:b,[line: 1],[{:c,[line: 1],nil}]},

[do: {:+,[line: 1],[{:c,[line: 1],nil},1]}]]}]]}}

iex> Macro.to_string(fragment)

"{:ok, defmodule(A) do\n def(b(c)) do\n c + 1\n end\nend}"

We can also evaluate a string directly using Code.eval_string.

iex> Code.eval_string("[a, a*b, c]", [a: 2, b: 3, c: 4])

{[2,6,4],[a: 2, b: 3, c: 4]}

Macros and Operators
(This is definitely dangerous ground.)

We can override the unary and binary operators in Elixir using macros. To do so, we need to remove any existing
definition first.

For example, the operator + (which adds two numbers) is defined in the Kernel module. To remove the Kernel
definition and substitute our own, we’d need to do something like the following (which redefines addition to
concatenate the string representation of the left and right arguments).

macros/operators.ex

defmodule Operators do

 defmacro a + b do

 quote do

 to_string(unquote(a)) <> to_string(unquote(b))

 end

 end

end

defmodule Test do

 IO.puts(123 + 456) #=> "579"

 import Kernel, except: [+: 2]

 import Operators

 IO.puts(123 + 456) #=> "123456"

end

IO.puts(123 + 456) #=> "579"

Note that the macro’s definition is lexically scoped—the + operator is overridden from the point when we import the
Operators module through the end of the module that imports it. We could also have done the import inside a single
method, and the scoping would be just that method.

The Macro module has two functions that list the unary and binary operators:

http://media.pragprog.com/titles/elixir/code/macros/operators.ex

iex> require Macro

nil

iex> Macro.binary_ops

[:===, :!==, :==, :!=, :<=, :>=, :&&, :||, :<>, :++, :--, :\\, :::, :<-, :..,

:|>, :=~, :<, :>, :->, :+, :-, :*, :/, :=, :|, :., :and, :or, :when, :in,

:~>>, :<<~, :~>, :<~, :<~>, :<|>, :<<<, :>>>, :|||, :&&&, :^^^, :~~~]

iex> Macro.unary_ops

[:!, :@, :^, :not, :+, :-, :~~~, :&]

Digging Deeper
The Code and Macro modules contain the functions that manipulate the internal representation of code.

Check the source of the Kernel module for a list of the majority of the operator macros, along with macros for
things such as def, defmodule, alias, and so on. If we look at the source code, we’ll see the calling sequence for
these. However, many of the bodies will be absent, as the macros are defined within the Elixir source.

Digging Ridiculously Deep
Here’s the internal representation of a simple expression:

iex(1)> quote do: 1 + 2

{:+, [context: Elixir, import: Kernel], [1, 2]}

It’s just a three-element tuple. In this particular case, the first element is the function (or macro), the second is
housekeeping metadata, and the third is the arguments.

We know we can evaluate this code fragment using eval_quoted, and we can save typing by leaving off the
metadata:

iex> Code.eval_quoted {:+, [], [1,2]}

{3,[]}

And now we can start to see the promise (and danger) of a homoiconic language. Because code is just tuples and
because we can manipulate those tuples, we rewrite the definitions of existing functions. We can create new code
on the fly. And we can do it in a safe way because we can control the scope of both the changes and the access to
variables.

Next we’ll look at protocols, a way of adding functionality to built-in code and of integrating our code into other
people’s modules.

Your Turn

Exercise: MacrosAndCodeEvaluation-3
The Elixir test framework, ExUnit, uses some clever code-quoting tricks. For example, if you assert

assert 5 < 4

You’ll get the error “expected 5 to be less than 4.”
The Elixir source code is on GitHub (at https://github.com/elixir-lang/elixir). The implementation of this is in
the file elixir/lib/ex_unit/lib/ex_unit/assertions.ex. Spend some time reading this file, and work out
how it implements this trick.
(Hard) Once you’ve done that, see if you can use the same technique to implement a function that takes an
arbitrary arithmetic expression and returns a natural language version.

explain do: 2 + 3 * 4

#=> multiply 3 and 4, then add 2

http://forums.pragprog.com/forums/322/topics/Exercise:%20MacrosAndCodeEvaluation-3
https://github.com/elixir-lang/elixir

Chapter 21

Linking Modules: Behavio(u)rs and Use
When we wrote our OTP server, we wrote a module that started with code

defmodule Sequence.Server do

 use GenServer

 ...

In this chapter we’ll explore what lines such as use GenServer actually do, and how we can write modules that
extend the capabilities of other modules that use them.

Behaviours
An Elixir behaviour is nothing more than a list of functions. A module that declares that it implements a particular
behaviour must implement all of the associated functions. If it doesn’t, Elixir will generate a compilation warning.

A behaviour is therefore a little like an interface in Java. A module uses it to declare that it implements a particular
interface. For example, an OTP GenServer should implement a standard set of callbacks (handle_call,
handle_cast, and so on). By declaring that our module implements that behaviour, we let the compiler validate that
we have actually supplied the necessary interface. This reduces the chance of an unexpected runtime error.

Defining Behaviours
We define a behaviour using the Elixir Behaviour module, combined with defcallback definitions.

For example, Elixir comes with a URI parsing library. This library delegates a couple of functions to protocol-
specific libraries (so there’s a library for HTTP, one for FTP, and so on). These protocol-specific libraries must
define two functions: parse and default_port.

The interface to these sublibraries is defined in a URI.Parser module. It looks like this:

defmodule URI.Parser do

 @moduledoc """

 Defines the behavior for each URI.Parser.

 Check URI.HTTP for a possible implementation.

 """

 use Behaviour

 @doc """

 Responsible for parsing extra URL information.

 """

 defcallback parse(uri_info :: URI.Info.t) :: URI.Info.t

 @doc """

 Responsible for returning the default port.

 """

 defcallback default_port() :: integer

end

This module defines the interface that modules implementing the behaviour must support. There are two parts to
this. First, it has the line use Behaviour. This adds the functionality we need to define behaviours.

Next, it uses defcallback to define the functions in the behaviour. But the syntax looks a little different. That’s
because we’re using a minilanguage: Erlang type specifications. For example, the parse function takes a single
parameter, which should be a URI.Info record, and it returns a value of the same type. The default_port function
takes no arguments and returns an integer. For more information on these type specifications, see Appendix 2, Type
Specifications and Type Checking .

In addition to the type specification, we can include module and function-level documentation with our behaviour
definitions.

Declaring Behaviours
Having defined the behaviour, we can declare that some other module implements it using the @behaviour attribute.

defmodule URI.HTTP do

 @behaviour URI.Parser

 def default_port(), do: 80

 def parse(info), do: info

end

This module will compile cleanly. However, imagine we’d misspelled default_port:

 defmodule URI.HTTP do

 @behaviour URI.Parser

» def default_prot(), do: 80

 def parse(info), do: info

 end

When we compile the module, we’d get this error:

http.ex:8: undefined behaviour function default_port/0 (for behaviour URI.Parser)

Behaviours give us a way of both documenting and enforcing the public functions that a module should implement.

Use and __using__
In one sense, use is a trivial function. You pass it a module along with an optional argument, and it invokes the
function or macro __using__ in that module, passing it the argument.

Yet this simple interface gives you a powerful extension facility. For example, in our unit tests we write use
ExUnit.Case and we get the test macro and assertion support. When we write an OTP server, we write use
GenServer and we get both a behaviour that documents the gen_server callback and default implementations of
those callbacks.

Typically, the __using__ callback will be implemented as a macro, as it will be used to invoke code in the original
module.

Putting It Together—Tracing Method Calls
Let’s work through a larger example. We want to write a module called Tracer. If we use Tracer in another
module, entry and exit tracing will be added to any subsequently defined function. For example, given the following:

use/tracer.ex

defmodule Test do

 use Tracer

 def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)

 def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)

Test.add_list([5,6,7,8])

we’d get this output:

==> call puts_sum_three(1, 2, 3)

6

<== returns 6

==> call add_list([5,6,7,8])

<== returns 26

My approach to writing this kind of code is to start by exploring what we have to work with, and then to generalize.
The goal is to metaprogram as little as possible.

It looks as if we have to override the def macro, which is defined in Kernel. So let’s do that and see what gets
passed to def when we define a method.

use/tracer1.ex

defmodule Tracer do

 defmacro def(definition, do: _content) do

http://media.pragprog.com/titles/elixir/code/use/tracer.ex
http://media.pragprog.com/titles/elixir/code/use/tracer1.ex

 IO.inspect definition

 quote do: {}

 end

end

defmodule Test do

 import Kernel, except: [def: 2]

 import Tracer, only: [def: 2]

 def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)

 def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)

Test.add_list([5,6,7,8])

This outputs

{:puts_sum_three, [line: 15],

[{:a, [line: 15], nil}, {:b, [line: 15], nil}, {:c, [line: 15], nil}]}

{:add_list, [line: 16], [{:list, [line: 16], nil}]}

tracer1.ex:12: unused import Kernel

** (UndefinedFunctionError) undefined function: Test.puts_sum_three/3

The definition part of each method is a three-element tuple. The first element is the name, the second is the line on
which it is defined, and the third is a list of the parameters, where each parameter is itself a tuple.

We also get an error: puts_sum_three is undefined. That’s not surprising—we intercepted the def that defined it,
and we didn’t create the function.

You may be wondering about the form of the macro definition: defmacro def(definition, do: _content)…. The
do: in the parameters is not special syntax: it’s simply a pattern match on the block passed as the function body,

which is a keyword list.

You may also be wondering whether we have affected the built-in Kernel.def macro. The answer is no. We’ve
created another macro, also called def, which is defined in the scope of the Tracer module. In our Test module we
tell Elixir not to import the Kernel version of def but instead to import the version from Tracer. Shortly, we’ll make
use of the fact that the original Kernel implementation is unaffected.

Now let’s see if we can define a real function given this information. That turns out to be surprisingly easy. We
already have the two arguments passed to def. All we have to do is pass them on.

use/tracer2.ex

defmodule Tracer do

 defmacro def(definition, do: content) do

 quote do

 Kernel.def(unquote(definition)) do

 unquote(content)

 end

 end

 end

end

defmodule Test do

 import Kernel, except: [def: 2]

 import Tracer, only: [def: 2]

 def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)

 def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)

Test.add_list([5,6,7,8])

http://media.pragprog.com/titles/elixir/code/use/tracer2.ex

When we run this, we see 6, the output from puts_sum_three.

Now it’s time to add some tracing.

use/tracer3.ex

defmodule Tracer do

 def dump_args(args) do

 args |> Enum.map(&inspect/1) |> Enum.join(", ")

 end

 def dump_defn(name, args) do

 "#{name}(#{dump_args(args)})"

 end

 defmacro def(definition={name,_,args}, do: content) do

 quote do

 Kernel.def(unquote(definition)) do

 IO.puts "==> call: #{Tracer.dump_defn(unquote(name), unquote(args))}"

 result = unquote(content)

 IO.puts "<== result: #{result}"

 result

 end

 end

 end

end

defmodule Test do

http://media.pragprog.com/titles/elixir/code/use/tracer3.ex

 import Kernel, except: [def: 2]

 import Tracer, only: [def: 2]

 def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)

 def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)

Test.add_list([5,6,7,8])

Looking good:

==> call: puts_sum_three(1, 2, 3)

6

<== result: 6

==> call: add_list([5,6,7,8])

<== result: 26

Now let’s package our Tracer module so clients only have to add use Tracer to their own modules. We’ll
implement the __using__ callback. The tricky part here is differentiating between the two modules: Tracer and the
module that uses it.

use/tracer4.ex

defmodule Tracer do

 def dump_args(args) do

 args |> Enum.map(&inspect/1) |> Enum.join(", ")

 end

 def dump_defn(name, args) do

 "#{name}(#{dump_args(args)})"

http://media.pragprog.com/titles/elixir/code/use/tracer4.ex

 end

 defmacro def(definition={name,_,args}, do: content) do

 quote do

 Kernel.def(unquote(definition)) do

 IO.puts "==> call: #{Tracer.dump_defn(unquote(name), unquote(args))}"

 result = unquote(content)

 IO.puts "<== result: #{result}"

 result

 end

 end

 end

 defmacro __using__(_opts) do

 quote do

 import Kernel, except: [def: 2]

 import unquote(__MODULE__), only: [def: 2]

 end

 end

end

defmodule Test do

 use Tracer

 def puts_sum_three(a,b,c), do: IO.inspect(a+b+c)

 def add_list(list), do: Enum.reduce(list, 0, &(&1+&2))

end

Test.puts_sum_three(1,2,3)

Test.add_list([5,6,7,8])

Use use
Elixir behaviours are fantastic—they let you easily inject functionality into modules you write. And they’re not just
for library creators—use them in your own code to cut down on duplication and boilerplate.

Although behaviours let you add to modules that you are writing, you sometimes need to extend the functionality of
modules written by others—code that you can’t change. Fortunately, Elixir comes with protocols, the subject of the
next chapter.

Your Turn

Exercise: LinkingModules-BehavioursAndUse-1
In the body of the def macro, there’s a quote block that defines the actual method. It contains

IO.puts "==> call: #{Tracer.dump_definition(unquote(name), unquote(args))}"

result = unquote(content)

IO.puts "<== result: #{result}"

Why does the first call to puts have to unquote the values in its interpolation but the second call does not?

Exercise: LinkingModules-BehavioursAndUse-2
The built-in function IO.ANSI.escape will insert ANSI escape sequences in a string. If you put the resulting
strings into a terminal, you can add colors and bold or underlined text. Explore the library, and then use it to
colorize our tracing’s output.

Exercise: LinkingModules-BehavioursAndUse-3
(Hard) Try adding a method definition with a guard clause to the Test module. You’ll find that the tracing no
longer works.

Find out why.
See if you can fix it.

http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20LinkingModules-BehavioursAndUse-3

Chapter 22

Protocols—Polymorphic Functions
We have used the inspect function many times in this book. It returns a printable representation of any value as a
binary (which is what we hard-core folks call strings).

But stop and think for a minute. Just how can Elixir, which doesn’t have objects, know what to call to do the
conversion to a binary? You can pass inspect anything, and Elixir somehow makes sense of it.

It could be done using guard clauses:

def inspect(value) when is_atom(value), do: ...

def inspect(value) when is_binary(value), do: ...

 : :

But there’s a better way.

Elixir has the concept of protocols. A protocol is a little like the behaviours we saw in the previous chapter in that it
defines the functions that must be provided to achieve something. But a behaviour is internal to a module—the
module implements the behaviour. Protocols are different—you can place a protocol’s implementation completely
outside the module. This means you can extend modules’ functionality without having to add code to them—in fact,
you can extend the functionality even if you don’t have the modules’ source code.

Defining a Protocol
Protocol definitions are very similar to basic module definitions. They can contain module- and function-level
documentation (@moduledoc and @doc), and they will contain one or more function definitions. However, these
functions will not have bodies—they are there simply to declare the interface that the protocol requires.

For example, here is the definition of the Inspect protocol:

defprotocol Inspect do

 def inspect(thing, opts)

end

Just like a module, the protocol defines one or more functions. But we implement the code separately.

Implementing a Protocol
The defimpl macro lets you give Elixir the implementation of a protocol for one or more types. The code that
follows is the implementation of the Inspect protocol for PIDs and references.

defimpl Inspect, for: PID do

 def inspect(pid, _opts) do

 "#PID" <> iolist_to_binary(pid_to_list(pid))

 end

end

defimpl Inspect, for: Reference do

 def inspect(ref, _opts) do

 '#Ref' ++ rest = :erlang.ref_to_list(ref)

 "#Reference" <> iolist_to_binary(rest)

 end

end

Finally, the Kernel module implements inspect, which calls Inspect.inspect with its parameter. This means that
when you call inspect(self), it becomes a call to Inspect.inspect(self). And because self is a PID, this in
turn resolves to something like "#PID<0.25.0>".

Behind the scenes, defimpl puts the implementation for each protocol-and-type combination into a separate module.
The protocol for Inspect for the PID type is in the module Inspect.PID. And because you can recompile modules,
you can change the implementation of functions accessed via protocols.

iex> inspect self

"#PID<0.25.0>"

iex> defimpl Inspect, for: PID do

...> def inspect(pid, _) do

...> "#Process: " <> iolist_to_binary(:erlang.pid_to_list(pid)) <> "!!"

...> end

...> end

iex:3: redefining module Inspect.PID

{:module, Inspect.PID, <<70,79....

iex> inspect self

"#Process: <0.25.0>!!"

The Available Types
You can define implementations for one or more of the following types:

Any Atom BitString Float Function Integer

List PID Port Record Reference Tuple

The type BitString is used in place of Binary.

The type Any is a catchall, allowing you to match an implementation with any type. Just as with function definitions,
you’ll want to put the implementations for specific types before an implementation for Any.

You can list multiple types on a single defimpl. For example, the following protocol can be called to determine if a
type is a collection:

protocols/is_collection.exs

defprotocol Collection do

 @fallback_to_any true

 def is_collection?(value)

end

defimpl Collection, for: [List, Tuple, BitString] do

 def is_collection?(_), do: true

end

defimpl Collection, for: Any do

 def is_collection?(_), do: false

end

Enum.each [1, 1.0, [1,2], {1,2}, HashDict.new, "cat"], fn value ->

 IO.puts "#{inspect value}: #{Collection.is_collection?(value)}"

end

http://media.pragprog.com/titles/elixir/code/protocols/is_collection.exs

We write defimpl stanzas for the three collection types: List, Tuple, and BitString. But what about the other
types? To handle those, we use the special type Any in a second defimpl. If we use Any, though, we also have to
add an annotation to the protocol definition. Thats what the @fallback_to_any line does.

This produces

1: false

1.0: false

[1,2]: true

{1,2}: true

#HashDict<[]>: true

"cat": true

Your Turn

Exercise: Protocols-1
A basic Caesar cypher consists of shifting the letters in a message by a fixed offset. For an offset of 1, for
example, a will become b, b will become c, and z will become a. If the offset is 13, we have the ROT13
algorithm.
Lists and binaries can both be stringlike. Write a Caesar protocol that applies to both. It would include two
functions: encrypt(string, shift) and rot13(string).

Exercise: Protocols-2
Using a list of words in your language, write a program to look for words where the result of calling
rot13(word) is also a word in the list. (For various English word lists, look at http://wordlist.sourceforge.net/.
The SCOWL collection looks promising, as it already has words divided by size.)

http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-2
http://wordlist.sourceforge.net/

Protocols and Structs
Elixir doesn’t have classes, but (perhaps surprisingly) it does have user-defined types. It pulls off this magic using
structs and a few conventions.

Let’s play with a simple struct. Here’s the definition:

protocols/basic.exs

defmodule Blob do

 defstruct content: nil

end

And here we use it in iex:

iex> c "basic.exs"

[Blob]

iex> b = %Blob{content: 123}

%Blob{content: 123}

iex> inspect b

"%Blob{content: 123}"

It looks for all the world as if we’ve created some new type, the blob. But that’s only because Elixir is hiding
something from us. By default, inspect recognizes structs. If we turn this off using the structs: false option,
inspect reveals the true nature of our blob value:

iex> inspect b, structs: false

"%{__struct__: Blob, content: 123}"

A struct value is actually just a map with the key __struct__ referencing the struct’s module (Blob in this case) and
the remaining elements containing the keys and values for this instance. The inspect implementation for maps
checks for this—if you ask it to inspect a map containing a key __struct__ that references a module, it displays it
as a struct.

Many built-in types in Elixir are represented as structs internally. It’s instructive to try creating values and inspecting
them with structs: false.

http://media.pragprog.com/titles/elixir/code/protocols/basic.exs

Built-in Protocols: Access
Let’s define a type Bitmap that lets us access the individual bits in a number’s binary representation. To do this,
we’ll create a struct that contains a single field, value.

protocols/bitmap.exs

defmodule Bitmap do

 defstruct value: 0

end

The built-in Access protocol defines the [] operator for accessing members of a collection. We can use this to
access the bits in our value, so accessing a bitmap value with value[0] would return the least-significant bit. The
implementation that follows uses the Bitwise module that comes with Elixir—this gives us the &&& and <<< bitwise
and and shift operators. (Note that the Access protocol may be removed from future versions of Elixir.)

protocols/bitmap_access.exs

defmodule Bitmap do

 defstruct value: 0

 defimpl Access do

 use Bitwise

 def get(%Bitmap{value: value}, bit) do

 if (value &&& (1 <<< bit)) == 0, do: 0, else: 1

 end

 def get_and_update(bitmap = %Bitmap{value: value}, bit, accessor_fn) do

 old_value = get(bitmap, bit)

 new_value = accessor_fn.(old_value)

 value = (value &&& bnot(1 <<< bit)) ||| (new_value <<< bit)

 %Bitmap{value: value}

 end

http://media.pragprog.com/titles/elixir/code/protocols/bitmap.exs
http://media.pragprog.com/titles/elixir/code/protocols/bitmap_access.exs

 end

end

Let’s try it:

$ iex bitmap_access.exs

iex> fifty = %Bitmap{value: 50}

%Bitmap{value: 50}

iex> [5,4,3,2,1,0] |> Enum.each(fn bit -> IO.puts fifty[bit] end)

1

1

0

0

1

0

:ok

iex> get_and_update_in fifty[1], fn bit -> 1 - bit end

%Bitmap{value: 48}

When we write fifty[bit] on the second line of our code, we’re actually invoking the Access protocol. The
handler for this sees that its value type is a map and that the map has a __struct__ key. It looks up the
corresponding value and finds the Bitmap module. It then looks for a module called Bitmap.Access and invokes its
access function, passing in the original value and the parameter between the square brackets. (Don’t tell anyone, but
this is quite like method dispatch in an object-oriented language.) Similarly, get_and_update_in ends up calling our
get_and_update function.

Built-in Protocols: Enumerable
The Enumerable protocol is the basis of all the functions in the Enum module—any type implementing it can be used
as a collection argument to Enum functions.

The protocol is defined in terms of three functions:

defprotocol Enumerable do

 def count(collection)

 def member?(collection, value)

 def reduce(collection, acc, fun)

end

count returns the number of elements in the collection, member? is truthy if the collection contains value, and reduce
applies the given function to successive values in the collection and the accumulator; the value it reduces becomes
the next accumulator. Perhaps surprisingly, all the Enum functions can be defined in terms of these three.

However, life isn’t quite that simple. Maybe you’re using Enum.find to find a value in a large collection. Once
you’ve found it, you want to halt the iteration—continuing is pointless. Similarly, you may want to suspend an
iteration and resume it sometime later. These two features become particularly important when we talk about
streams, which let you enumerate a collection lazily.

Let’s look at implementing the count part of the enumerable protocol. We return the number of bits required to
represent the value.

protocols/bitmap_enumerable.exs

defmodule Bitmap do

 defstruct value: 0

 defimpl Enumerable do

 import :math, only: [log: 1]

 def count(%Bitmap{value: value}) do

 { :ok, trunc(log(abs(value))/log(2)) + 1 }

 end

 end

end

fifty = %Bitmap{value: 50}

http://media.pragprog.com/titles/elixir/code/protocols/bitmap_enumerable.exs

IO.puts Enum.count fifty # => 6

Our count method returns a tuple containing :ok and the actual count. If our collection was not countable (perhaps it
represents data coming over a network connection), we would return {:error, __MODULE__}.

I’ve decided the member? function should return true if the number you pass it is greater than or equal to zero and
less than the number of bits in our value. Again the implementation returns a tuple:

protocols/bitmap_enumerable.exs

def member?(value, bit_number) do

 { :ok, 0 <= bit_number && bit_number < Enum.count(value) }

end

IO.puts Enum.member? fifty, 4 # => true

IO.puts Enum.member? fifty, 6 # => false

However, the meaning of the :ok part is slightly different. You’ll normally return {:ok, boolean} for all collections
where you know the size, and {:error, __MODULE__} otherwise. In this way, it is like count. However, the reason
you do it is different. If you return :ok it means you have a fast way of determining membership. If you return
:error, you’re saying you don’t. In this case, the enumerable code will simply perform a linear search.

Finally, we get to reduce. First, remember the general form of the reduce function:

reduce(enumerable, accumulator, function)

Reduce takes each item in turn from enumerable, passing it and the current value of the accumulator to the function.
The value the function returns becomes the accumulator’s next value.

The reduce function we implement for the Enumerable protocol is the same. But it has some additional conventions
associated with it. These conventions are used to manage the early halting and suspension when iterating over
streams.

The first convention is that the accumulator value is passed as the second element of a tuple. The first element is a
verb telling our reduce function what to do:

:cont Continue processing.

:halt Terminate processing.

:suspend Temporarily suspend processing.

The second convention is that the value returned by reduce is another tuple. Again, the second element is the
updated accumulator value. The first element passed back the state of the enumerator:

http://media.pragprog.com/titles/elixir/code/protocols/bitmap_enumerable.exs

:done This is the final value—we’ve reached the end of the enumerable.

:halted We terminated the enumeration because we were passed :halt.

:suspended Response to a suspend.

The suspended case is special. Rather than return a new accumulator, we return a function that represents the
current state of the enumeration. The library can call this function to kick off the enumeration again.

Once we implement this, our bitmap can participate in all the features of the Enum module:

protocols/bitmap_enumerable.exs

def reduce(bitmap, {:cont, acc}, fun) do

 bit_count = Enum.count(bitmap)

 _reduce({bitmap, bit_count}, { :cont, acc }, fun)

end

defp _reduce({_bitmap, -1}, { :cont, acc }, _fun), do: { :done, acc }

defp _reduce({bitmap, bit_number}, { :cont, acc }, fun) do

 _reduce({bitmap, bit_number-1}, fun.(bitmap[bit_number], acc), fun)

end

defp _reduce({_bitmap, _bit_number}, { :halt, acc }, _fun), do: { :halted, acc }

defp _reduce({bitmap, bit_number}, { :suspend, acc }, fun),

do: { :suspended, acc, &_reduce({bitmap, bit_number}, &1, fun), fun }

IO.inspect Enum.reverse fifty # => [0, 1, 0, 0, 1, 1, 0]

IO.inspect Enum.join fifty, ":" # => "0:1:1:0:0:1:0"

If you think this is complicated—well, you’re correct. It is. In part that’s because these conventions allow all
enumerable values to be used both eagerly and lazily. And when you’re dealing with big (or even infinite) collections,
this is a big deal.

Built-in Protocols: String.Chars

http://media.pragprog.com/titles/elixir/code/protocols/bitmap_enumerable.exs

The String.Chars protocol is used to convert a value to a string (binary). It consists of a single method, to_string.
This is the protocol used for string interpolation:

protocols/bitmap_string.exs

defmodule Bitmap do

 defstruct value: 0

 defimpl String.Chars do

 def to_string(value), do: Enum.join(value, "")

 end

end

fifty = %Bitmap{value: 50}

IO.puts "Fifty in bits is #{fifty}" # => Fifty in bits is 0110010

Built-in Protocols: Inspect
This is the protocol that is used to inspect a value. The rule is simple—if you can return a representation that is a
valid Elixir literal, do so. Otherwise, prefix the representation with #Typename.

We could just delegate the inspect function to the Elixir default. For our value 50, this would be %Bitmap{value:
50}. But let’s override it. We need to implement the inspect function. It takes a value and some options.

protocols/bitmap_inspect.exs

defmodule Bitmap do

 defstruct value: 0

 defimpl Inspect do

 def inspect(%Bitmap{value: value}, _opts) do

 "%Bitmap{#{value}=#{as_binary(value)}}"

 end

 defp as_binary(value) do

 to_string(:io_lib.format("~.2B", [value]))

http://media.pragprog.com/titles/elixir/code/protocols/bitmap_string.exs
http://media.pragprog.com/titles/elixir/code/protocols/bitmap_inspect.exs

 end

 end

end

fifty = %Bitmap{value: 50}

IO.inspect fifty # => %Bitmap{50=0110010}

IO.inspect fifty, structs: false # => %{__struct__: Bitmap, value: 50}

Run this, and you’ll see

#Bitmap[50=0110010]

{Bitmap,50}

There’s a wrinkle here. If you pass structs: true to IO.inspect (or Kernel.inspect), it never calls our inspect
function. Instead, it formats it as a tuple.

The formatting of our bitmap leaves a little to be desired for large numbers:

iex> Bitmap.new(value: 12345678901234567890)

%Bitmap{12345678901234567890=0101010110101010010101001100011001110

1011000111110000101011010010}

The output was all on one line, and was wrapped by the console. To fix this, we use a feature called algebra
documents. An algebra document is a tree structure that represents some data you’d like to pretty-print.[28] Your
job is to create the structure based on the data you want to inspect, and Elixir will then find a nice way to display it.

In our case, I’d like the bitmap values to display on a single line if they fit, and I’d like them to break intelligently onto
multiple lines if not.

We do this by having our inspect function return an algebra document rather than a string. In that document, we
indicate places where breaks are allowed (but not required) and we show how the nesting works:

protocols/bitmap_algebra.exs

defmodule Bitmap do

 defstruct value: 0

http://media.pragprog.com/titles/elixir/code/protocols/bitmap_algebra.exs

 defimpl Inspect, for: Bitmap do

 import Inspect.Algebra

 def inspect(%Bitmap{value: value}, _opts) do

 concat([

 nest(

 concat([

 "%Bitmap{",

 break(""),

 nest(concat([to_string(value),

 "=",

 break(""),

 as_binary(value)]),

 2),

]), 2),

 break(""),

 "}"])

 end

 defp as_binary(value) do

 to_string(:io_lib.format("~.2B", [value]))

 end

 end

end

big_bitmap = %Bitmap{value: 12345678901234567890}

IO.inspect big_bitmap

IO.inspect big_bitmap, structs: false

We get this output:

iex> %Bitmap{value: 12345}

%Bitmap{12345=011000000111001}

iex> %Bitmap{value: 123456789123456789}

%Bitmap{

 123456789123456789=

 0110110110100110110100101110101100110100000101111100010101

}

For more information, see the documentation for Inspect.Algebra.

Protocols Are Polymorphism
When you want to write a function that behaves differently depending on the type of its arguments, you’re looking at
a polymorphic function. Elixir protocols give you a tidy and controlled way to implement this. Whether you’re
integrating your types into the existing Elixir library or creating a new library with a flexible interface, protocols let
you package the behaviour in a well-documented and disciplined way.

And with that, we’re almost done. But when you write about a language, there are always little details that don’t
seem to fit anywhere. That’s why the next chapter is full of odds and ends.

Your Turn

Exercise: Protocols-3
Collections that implement the Enumerable protocol define count, member?, and reduce functions. The Enum
module uses these to implement methods such as each, filter, and map.
Implement your own versions of each, filter, and map in terms of reduce.

Exercise: Protocols-4
In many cases, inspect will return a valid Elixir literal for the value being inspected. Update the inspect
function for structs so that it returns valid Elixir code to construct a new struct equal to the value being
inspected.

Footnotes

[28]

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2200

http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-3
http://forums.pragprog.com/forums/322/topics/Exercise:%20Protocols-4
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2200

Chapter 23

More Cool Stuff
Elixir is packed with features that make coding a joy. This chapter contains a smattering of them.

Writing Your Own Sigils
You know by now that you can create strings and regular-expression literals using sigils:

string = ~s{now is the time}

regex = ~r{..h..}

Have you ever wished you could extend these sigils to add your own specific literal types? You can.

When you write a sigil such as ~s{...}, Elixir converts it into a call to the function sigil_s. It passes the function
two values. The first is the string between the delimiters. The second is a list containing any lowercase letters that
immediately follow the closing delimiter. (This second parameter is used to pick up any options you pass to a regex
literal, such as ~r/cat/if.)

Here’s the implementation of a sigil ~l that takes a multiline string and returns a list containing each line as a
separate string. We know that ~l… is converted into a call to sigil_l, so we just write a simple function in the
LineSigil module.

odds/line_sigil.exs

defmodule LineSigil do

 @doc """

 Implement the `~l` sigil, which takes a string containing

 multiple lines and returns a list of those lines.

 ## Example usage

 iex> import LineSigil

 nil

 iex> ~l"""

 ...> one

 ...> two

 ...> three

 ...> """

http://media.pragprog.com/titles/elixir/code/odds/line_sigil.exs

 ["one","two","three"]

 """

 def sigil_l(lines, _opts) do

 lines |> String.rstrip |> String.split("\n")

 end

end

We can play with this in a separate module:

odds/line_sigil.exs

defmodule Example do

 import LineSigil

 def lines do

 ~l"""

 line 1

 line 2

 and another line in #{__MODULE__}

 """

 end

end

IO.inspect Example.lines

This produces ["line 1","line 2","and another line in Elixir.Example"].

Because we import the sigil_l function inside the example module, the ~l sigil is lexically scoped to this module.
Note also that Elixir performs interpolation before passing the string to our method. That’s because we used a
lowercase l. If our sigil were ~L{…} and the function were renamed sigil_L, no interpolation would be performed.

The predefined sigil functions are sigil_C, sigil_c, sigil_R, sigil_r, sigil_S, sigil_s, sigil_W, and sigil_w. If
you want to override one of these, you’ll need to explicitly import the Kernel module and use an except clause to

http://media.pragprog.com/titles/elixir/code/odds/line_sigil.exs

exclude it.

In this example, we used the heredoc syntax ("""). This passes our function a multiline string with leading spaces
removed. Sigil options are not supported with heredocs, so we’ll switch to a regular literal syntax to play with them.

Picking Up the Options
Let’s write a sigil that enables us to specify color constants. If we say ~c{red}, we’ll get 0xff0000, the RGB
representation. We’ll also support the option h to return an HSB value, so ~c{red}h will be {0,100,100}.

Here’s the code:

odds/color.exs

defmodule ColorSigil do

 @color_map [

 rgb: [red: 0xff0000, green: 0x00ff00, blue: 0x0000ff, # ...

],

 hsb: [red: {0,100,100}, green: {120,100,100}, blue: {240,100,100}

]

]

 def sigil_c(color_name, []), do: _c(color_name, :rgb)

 def sigil_c(color_name, 'r'), do: _c(color_name, :rgb)

 def sigil_c(color_name, 'h'), do: _c(color_name, :hsb)

 defp _c(color_name, color_space) do

 @color_map[color_space][binary_to_atom(color_name)]

 end

 defmacro __using__(_opts) do

 quote do

 import Kernel, except: [sigil_c: 2]

http://media.pragprog.com/titles/elixir/code/odds/color.exs

 import unquote(__MODULE__), only: [sigil_c: 2]

 end

 end

end

defmodule Example do

 use ColorSigil

 def rgb, do: IO.inspect ~c{red}

 def hsb, do: IO.inspect ~c{red}h

end

Example.rgb #=> 16711680 (== 0xff0000)

Example.hsb #=> {0,100,100}

The three clauses for the sigil_c function let us select the colorspace to use based on the option passed. As the
single-quoted string 'r' is actually represented by the list [?r], we can use the string literal to pattern match the
options parameter.

Because I’m overriding a built-in sigil, I decided to implement a __using__ macro that automatically removes the
Kernel version and adds our own (but only in the lexical scope that calls use on our module).

The fact that we can write our own sigils is liberating. But misuse could lead to some pretty impenetrable code.

Your Turn

Exercise: MoreCoolStuff-1
Write a sigil ~v that parses multiple lines of comma-separated data, returning a list where each element is a
row of data and each row is a list of values. Don’t worry about quoting—just assume each field is separated
by a comma.

csv = ~v"""

1,2,3

cat,dog

"""

would generate [["1","2","3"], ["cat","dog"]].

Exercise: MoreCoolStuff-2
The function Float.parse converts leading characters of a string to a float, returning either a tuple containing
the value and the rest of the string, or the atom :error.
Update your CSV sigil so that numbers are automatically converted.

csv = ~v"""

1,2,3.14

cat,dog

"""

should generate [[1.0,2.0,3.14], ["cat","dog"]].

Exercise: MoreCoolStuff-3
(Hard) Sometimes the first line of a CSV file is a list of the column names. Update your code to support this,
and return the values in each row as a keyword list, using the column names as the keys.

csv = ~v"""

http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-1
http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-2
http://forums.pragprog.com/forums/322/topics/Exercise:%20MoreCoolStuff-3

Item,Qty,Price

Teddy bear,4,34.95

Milk,1,2.99

Battery,6,8.00

"""

would generate

[

 [Item: "Teddy bear", Qty: 4, Price: 34.95],

 [Item: "Milk", Qty: 1, Price: 2.99],

 [Item: "Battery", Qty: 6, Price: 8.00]

]

Multi-app Umbrella Projects
It is unfortunate that Erlang chose to call self-contained bundles of code apps. In many ways, they are closer to
being shared libraries. And as your projects grow, you may find yourself wanting to split your code into multiple
libraries, or apps. Fortunately, mix makes this painless.

To illustrate the process, we’ll create a simple Elixir evaluator. Given a set of input lines, it will return the result of
evaluating each. This will be one app.

To test it, we’ll need to pass in lists of lines. We’ve already written a trivial ~l sigil that creates lists of lines for us,
so we’ll make that sigil code into a separate application.

Elixir calls these multi-app projects umbrella projects.

Create an Umbrella Project
We use mix new to create an umbrella project, passing it the --umbrella option.

$ mix new --umbrella eval

* creating README.md

* creating mix.exs

* creating apps

Compared to a normal mix project, the umbrella is pretty lightweight—just a mix file and an apps directory.

Create the Subprojects
Subprojects are stored in the apps directory. There’s nothing special about them—they are simply regular projects
created using mix new. Let’s create our two projects now:

$ cd eval/apps

$ mix new line_sigil

* creating README.md

... and so on

$ mix new evaluator

* creating README.md

... and so on

* creating test/evaluator_test.exs

At this point we can try out our umbrella project. Go back to the overall project directory and try mix compile.

$ cd ..

$ mix compile

==> evaluator

Compiled lib/evaluator.ex

Generated evaluator.app

==> line_sigil

Compiled lib/line_sigil.ex

Generated line_sigil.app

Now we have an umbrella project containing two regular projects. Because there’s nothing special about the
subprojects, you can use all the regular mix commands in them. At the top level, though, you can build all the
subprojects as a unit.

Making the Subproject Decision

The fact that subprojects are just regular mix projects means you don’t have to worry about whether to start a new
project using an umbrella. Simply start as a simple project. If you later discover the need for an umbrella project,
create it and move your existing simple project into the apps directory.

The LineSigil Project
This project is trivial—just copy the LineSigil module from the previous section into
apps/line_sigil/lib/line_sigil.ex. Verify it builds by running mix compile—in either the top-level directory or
the line_sigil directory.

The Evaluator Project
The evaluator takes a list of strings containing Elixir expressions and evaluates them. It returns a list containing the
expressions intermixed with the value of each. For example, given

a = 3

b = 4

a + b

Our code will return

code> a = 3

value> 3

code> b = 4

value> 4

code> a + b

value> 7

We’ll use Code.eval_string to execute the Elixir expressions. To have the values of variables pass from one
expression to the next, we’ll also need to explicitly maintain the current binding.

Here’s the code:

odds/eval/apps/evaluator/lib/evaluator.ex

defmodule Evaluator do

 def eval(list_of_expressions) do

 { result, _final_binding } =

 Enum.reduce(list_of_expressions,

 {_result = [], _binding = binding()},

 &evaluate_with_binding/2)

 Enum.reverse result

 end

 defp evaluate_with_binding(expression, { result, binding }) do

 { next_result, new_binding } = Code.eval_string(expression, binding)

 { ["value> #{next_result}", "code> #{expression}" | result], new_binding }

 end

http://media.pragprog.com/titles/elixir/code/odds/eval/apps/evaluator/lib/evaluator.ex

end

Linking the Subprojects
Now we need to test our evaluator. It makes sense to use our ~l sigil to create lists of expressions, so let’s write our
tests that way.

Here are some of the tests we want to write:

odds/eval/apps/evaluator/test/evaluator_test.exs

defmodule EvaluatorTest do

 use ExUnit.Case

 import LineSigil

 test "evaluates a basic expression" do

 input = ~l"""

 1 + 2

 """

 output = ~l"""

 code> 1 + 2

 value> 3

 """

 run_test input, output

 end

 test "variables are propogated" do

 input = ~l"""

 a = 123

 a + 1

http://media.pragprog.com/titles/elixir/code/odds/eval/apps/evaluator/test/evaluator_test.exs

 """

 output = ~l"""

 code> a = 123

 value> 123

 code> a + 1

 value> 124

 """

 run_test input, output

 end

 defp run_test(lines, output) do

 assert output == Evaluator.eval(lines)

 end

end

But if we simply run this, Elixir won’t be able to find the LineSigil module. To remedy that we need to add it as a
dependency of our project. But we want that dependency only in the test environment, so our mix.exs gets a little
more complicated.

odds/eval/apps/evaluator/mix.exs

defmodule Evaluator.Mixfile do

 use Mix.Project

 def project do

 [app: :evaluator,

 version: "0.0.1",

 deps: deps(Mix.env)]

http://media.pragprog.com/titles/elixir/code/odds/eval/apps/evaluator/mix.exs

 end

 # Configuration for the OTP application

 def application do

 []

 end

 defp deps(:test) do

 [{ :line_sigil, path: "../line_sigil" }] ++ deps(:default)

 end

 defp deps(_) do

 []

 end

end

Now we can run tests from the top-level directory.

$ mix test

...

Finished in 0.06 seconds (0.06s on load, 0.00s on tests)

3 tests, 0 failures

Finished in 0.00 seconds

0 tests, 0 failures

The first stanza of test output is for the evaluator tests, and the second is for line_sigil, which currently is test-
free.

But Wait! There’s More!
We’ve reached the end of our Elixir exploration.

This book was never intended to be exhaustive. Instead, it is intended to hit the highlights, and to give you enough
information to start coding apps in Elixir yourself.

That means there’s a lot more to learn, both about the language and about how to write great apps in it.

And I think that’s fun. Enjoy!

Appendix 1

Exceptions: raise and try, catch and throw
Elixir (like Erlang) takes the view that errors should normally be fatal to the processes in which they occur. A typical
Elixir application’s design involves many processes, which means the effects of an error will be localized. A
supervisor will detect the failing process, and the restart will be handled at that level.

For that reason, you won’t find much exception-handling code in Elixir programs. Exceptions are raised, but you
rarely catch them.

Use exceptions for things that are exceptional—things that should never happen.

Exceptions do exist. This appendix is an overview of how to generate them and how to catch them when they occur.

Raising an Exception
You can raise an exception using the raise function. At its simplest, you pass it a string and it generates an
exception of type RuntimeError.

iex> raise "Giving up"

** (RuntimeError) Giving up

 erl_eval.erl:572: :erl_eval.do_apply/6

You can also pass the type of the exception, along with other optional fields. All exceptions implement at least the
message field.

iex> raise RuntimeError

** (RuntimeError) runtime error

 erl_eval.erl:572: :erl_eval.do_apply/6

iex> raise RuntimeError, message: "override message"

** (RuntimeError) override message

 erl_eval.erl:572: :erl_eval.do_apply/6

You can intercept exceptions using the try function. It takes a block of code to execute, and optional rescue, catch,
and after clauses.

The rescue and catch clauses look a bit like the body of a case function—they take patterns and code to execute if
the pattern matches. The subject of the pattern is the exception that was raised.

Here’s an example of exception handling in action. We define a module that has a public function, start. It calls a
different helper function depending on the value of its parameter. With 0, it runs smoothly. With 1, 2, or 3, it causes
the VM to raise an error, which we catch and report.

exceptions/exception.ex

defmodule Boom do

 def start(n) do

 try do

 raise_error(n)

http://media.pragprog.com/titles/elixir/code/exceptions/exception.ex

 rescue

 [FunctionClauseError, RuntimeError] ->

 IO.puts "no function match or runtime error"

 error in [ArithmeticError] ->

 IO.puts "Uh-oh! Arithmetic error: #{error.message}"

 raise error, [message: "too late, we're doomed"], System.stacktrace

 other_errors ->

 IO.puts "Disaster! #{other_errors.message}"

 after

 IO.puts "DONE!"

 end

 end

 defp raise_error(0) do

 IO.puts "No error"

 end

 defp raise_error(1) do

 IO.puts "About to divide by zero"

 1 / 0

 end

 defp raise_error(2) do

 IO.puts "About to call a function that doesn't exist"

 raise_error(99)

 end

 defp raise_error(3) do

 IO.puts "About to try creating a directory with no permission"

 File.mkdir!("/not_allowed")

 end

end

We define three different exception patterns. The first matches one of the two exceptions, FunctionClauseError or
RuntimeError. The second matches an ArithmeticError and stores the exception value in the variable error. And
the last clause catches any exception into the variable other_error.

We also include an after clause. This will always run at the end of the try function, regardless of whether an
exception was raised.

Finally, look at the handling of ArithmeticError. As well as reporting the error, we call raise again, passing in the
existing exception but overriding its message. We also pass in the stack trace (which is actually the stack trace at
the point the original exception was raised). Let’s see all this in iex:

iex c("exception.ex")

.../exception.ex:19: this expression will fail with a 'badarith' exception

[Boom]

iex> Boom.start 1

About to divide by zero

Uh-oh! Arithmetic error: bad argument in arithmetic expression

DONE!

** (ArithmeticError) too late, we're doomed

 exception.ex:25: Boom.raise_error/1

 exception.ex:5: Boom.start/1

iex> Boom.start 2

About to call a function that doesn't exist

no function match or runtime error

DONE!

:ok

iex> Boom.start 3

About to try creating a directory with no permission

Disaster! could not make directory /not_allowed: permission denied

DONE!

:ok

catch, exit, and throw
Elixir code (and the underlying Erlang libraries) can raise a second kind of error. These are generated when a
process calls error, exit, or throw. All three take a parameter, which is available to the catch handler.

Here’s an example:

exceptions/catch.ex

defmodule Catch do

 def start(n) do

 try do

 incite(n)

 catch

 :exit, code -> "Exited with code #{inspect code}"

 :throw, value -> "throw called with #{inspect value}"

 what, value -> "Caught #{inspect what} with #{inspect value}"

 end

 end

 defp incite(1) do

 exit(:something_bad_happened)

 end

 defp incite(2) do

 throw {:animal, "wombat"}

 end

 defp incite(3) do

 :erlang.error "Oh no!"

http://media.pragprog.com/titles/elixir/code/exceptions/catch.ex

 end

end

Calling the start function with 1, 2, or 3 will cause an exit, a throw, or an error to be thrown. Just to illustrate
wildcard pattern matching, we handle the last case by matching any type into the variable what.

iex> c("catch.ex")

[Catch]

iex> Catch.start 1

"Exited with code :something_bad_happened"

iex> Catch.start 2

"throw called with {:animal,\"wombat\"}"

iex> Catch.start 3

"Caught :error with \"Oh no!\""

Defining Your Own Exceptions
Exceptions in Elixir are basically records. You can define your own exceptions by creating a module. Inside it, use
defexception to define the various fields in the exception, along with their default values. Because you’re creating a
module, you can also add functions—often these are used to format the exception’s fields into meaningful messages.

Say we’re writing a library to talk to a Microsoft Kinect controller. It might want to raise an exception on various
kinds of communication error. Some of these are permanent, but others are likely to be transient and can be retried.
We’ll define our exception with its (required) message field and an additional can_retry field. We’ll also add a
function that formats these two fields into a nice message.

exceptions/defexception.ex

defmodule KinectProtocolError do

 defexception message: "Kinect protocol error",

 can_retry: false

 def full_message(me) do

 "Kinect failed: #{me.message}, retriable: #{me.can_retry}"

 end

end

Users of our library could write code like this:

exceptions/defexception.ex

try do

 talk_to_kinect

rescue

 error in [KinectProtocolError] ->

 IO.puts KinectProtocolError.full_message(error)

 if error.can_retry, do: schedule_retry

end

If an exception gets raised, the code handles it and possibly retries:

http://media.pragprog.com/titles/elixir/code/exceptions/defexception.ex
http://media.pragprog.com/titles/elixir/code/exceptions/defexception.ex

Kinect failed: usb unplugged, retriable: true

Retrying in 10 seconds

Now Ignore This Appendix
The Elixir source code for the mix utility contains no exception handlers. The Elixir compiler itself contains a total of
five (but it is doing some pretty funky things).

If you find yourself defining new exceptions, ask if you should be isolating the code in a separate process instead.
After all, if it can go wrong, wouldn’t you want to isolate it?

Appendix 2

Type Specifications and Type Checking
When we looked at defcallback,, we saw that we defined callbacks in terms of their parameter types and return
value. For example, we might write

defcallback parse(uri_info :: URI.Info.t) :: URI.Info.t

defcallback default_port() :: integer

The terms URI.Info.t and integer are examples of type specifications. And, as José Valim pointed out to me, the
cool thing is that they are implemented (by Yurii Rashkovskii) directly in the Elixir language itself—no special
parsing is involved. This is a fantastic illustration of the power of Elixir metaprogramming.

In this appendix we’ll discuss how to specify types in Elixir. But before we do, there’s another question to address:
Why bother?

When Specifications Are Used
Elixir type specifications come from Erlang. It is very common to see Erlang code where every exported (public)
function is preceded by a -spec line. This is metadata that gives type information. The following code comes from
the Elixir parser (which is [currently] written in Erlang). It says the return_error function takes two parameters, an
integer and any type, and never returns.

-spec return_error(integer(), any()) -> no_return().

return_error(Line, Message) ->

 throw({error, {Line, ?MODULE, Message}}).

One of the reasons the Erlang folks do this is to document their code. You can read it inline while reading the
source, and you can also read it in the pages created by their documentation tool.

The other reason is that they have tools such as dialyzer that perform static analysis of Erlang code and report on
some kinds of type mismatches.[29]

These same benefits can apply to Elixir code. We have the @spec module attribute for documenting a function’s type
specification; in iex we have the s helper for displaying specifications and the t helper for showing user-defined
types. You can also run Erlang tools such as dialyzer on compiled Elixir .beam files.

However, type specifications are not currently in wide use in the Elixir world. Whether you use them is a matter of
personal taste.

Specifying a Type
A type is simply a subset of all possible values in a language. For example, the type integer means all the possible
integer values, but excludes lists, binaries, PIDs, and so on.

The basic types in Elixir are any, atom, char_list (a single-quoted string), float, fun, integer, map, none, pid,
port, reference, and tuple.

The type any (and its alias, _) is the set of all values, and none is the empty set.

A literal atom or integer is the set containing just that value.

The value nil can be represented as [] or nil.

Collection Types
A list is represented as [type], where type is any of the basic or combined types. This notation does not signify a list
of one element—it simply says that elements of the list will be of the given type. If you want to specify a nonempty
list, use [type, ...]. As a convenience, the type list is an alias for [any].

Binaries are represented using this syntax:

<< >>

An empty binary (size 0)

<< _ : size >>

A sequence of size bits. This is called a bitstring.

<< _ : size * unit_size >>

A sequence of size units, where each unit is unit_size bits long.

In the last two instances, size can be specified as _, in which case the binary has an arbitrary number of bits/units.

The predefined type bitstring is equivalent to <<_::_>>, an arbitrarily sized sequence of bits. Similarly, binary is
defined as <<_::_*8>>, an arbitrary sequence of 8-bit bytes.

Tuples are represented as { type, type,… }, or using the type tuple, so both {atom,integer} and
tuple(atom,integer} represent a tuple whose first element is an atom and whose second element is an integer.

Combining Types
The range operator (..) can be used with literal integers to create a type representing that range. The three built-in
types non_neg_integer, pos_integer, and neg_integer represent integers that are greater than or equal to, greater
than, or less than zero, respectively.

The union operator (|) indicates that the acceptable values are the unions of its arguments.

Parentheses may be used to group terms in a type specification.

Types and Structures
As structures are basically maps, you could just use the map type for them, but doing so throws away a lot of useful
information. Instead, I recommend that you define a specific type for each struct:

defmodule LineItem do

 defstruct sku: "", quantity: 1

 @type t :: %LineItem{sku: String.t, quantity: integer}

end

You can then reference this type as LineItem.t.

Anonymous Functions
Anonymous functions are specified using (head -> return_type).

The head specifies the arity and possibly the types of the function parameters. It can be ..., meaning an arbitrary
number of arbitrarily typed arguments, or a list of types, in which case the number of types is the function’s arity.

(... -> integer) # Arbitrary parameters; returns an integer

(list(integer) -> integer) # Takes a list of integers and returns an integer

(() -> String.t) # Takes no parameters and returns an Elixir string

(integer, atom -> list(atom)) # Takes an integer and an atom and returns

 # a list of atoms

You can put parentheses around the head if you find it more clear:

(atom, float -> list)

((atom, float) -> list)

(list(integer) -> integer)

((list(integer)) -> integer)

Handling Truthy Values
The type as_boolean(T) says that the actual value matched will be of type T, but the function that uses the value
will treat it as a truthy value (anything other than nil or false is considered true). Thus the specification for the
Elixir function Enum.count is

@spec count(t, (element -> as_boolean(term))) :: non_neg_integer

Some Examples
integer | float

Any number (Elixir has an alias for this).

[{atom, any}]

list(atom, any)

A list of key/value pairs. The two forms are the same.

non_neg_integer | {:error, String.t}

An integer greater than or equal to zero, or a tuple containing the atom :error and a string.

(integer, atom -> { :pair, atom, integer })

An anonymous function that takes an integer and an atom and returns a tuple containing the atom :pair, an
atom, and an integer.

<< _ :: _ * 4 >>

A sequence of 4-bit nibbles.

Defining New Types
The attribute @type can be used to define new types.

@type type_name :: type_specification

Elixir uses this to predefine some built-in types and aliases.

@type term :: any

@type binary :: <<_::_*8>>

@type bitstring :: <<_::_*1>>

@type boolean :: false | true

@type byte :: 0..255

@type char :: 0..0x10ffff

@type list :: [any]

@type list(t) :: [t]

@type number :: integer | float

@type module :: atom

@type mfa :: {module, atom, byte}

@type node :: atom

@type timeout :: :infinity | non_neg_integer

@type no_return :: none

As the list entries show, you can parameterize the types in a new definition. Simply use one or more identifiers as
parameters on the left side, and use these identifiers where you’d otherwise use type names on the left. Then when
you use the newly defined type, pass in actual types for each of these parameters:

@type variant(type_name, type) = { :variant, type_name, type)

@spec create_string_tuple(:string, String.t) :: variant(:string, String.t)

As well as @type, Elixir has the @typep and @opaque module attributes. They have the same syntax as @type, and do
basically the same thing. The difference is in the visibility of the result.

@typep defines a type that is local to the module that contains it—the type is private. @opaque defines a type whose
name may be known outside the module but whose definition is not.

Specs for Functions and Callbacks
The @spec specifies a function’s parameter count, types, and return-value type. It can appear anywhere in a module
that defines the function, but by convention it sits immediately before the function definition, following any function
documentation.

We’ve already seen the syntax:

@spec function_name(param1_type, …) :: return_type

Let’s see some examples. These come from the built-in Dict module.

Line 1@type key :: any

2 @type value :: any

3 @type keys :: [key]

4 @type t :: tuple | list # `t` is the type of the collection

5

6 @spec values(t) :: [value]

7 @spec size(t) :: non_neg_integer

8 @spec has_key?(t, key) :: boolean

9 @spec update(t, key, value, (value -> value)) :: t

Line 6

values takes a collection (tuple or list) and returns a list of values (any).

Line 7

size takes a collection and returns an integer (>= 0).

Line 8

has_key? takes a collection and a key, and returns true or false.

Line 9

update takes a collection, a key, a value, and a function that maps a value to a value. It returns a (new)
collection.

For functions with multiple heads (or those that have default values), you can specify multiple @spec attributes.
Here’s an example from the Enum module:

@spec at(t, index) :: element | nil

@spec at(t, index, default) :: element | default

def at(collection, n, default \\ nil) when n >= 0 do

 ...

end

The Enum module also has many examples of the use of as_boolean:

@spec filter(t, (element -> as_boolean(term))) :: list

def filter(collection, fun) when is_list(collection) do

 ...

end

This says filter takes something enumerable and a function. That function maps an element to a term (which is an
alias for any), and the filter function treats that value as being truthy. filter returns a list.

For more information on Elixir support for type specifications, look at the documentation for the Kernel.Typespec
module.[30]

Using Dialyzer
Dialyzer analyzes code that runs on the Erlang VM, looking for potential errors. To use it with Elixir, we have to
compile our source into .beam files and make sure that the debug_info compiler option is set (which it is when
running mix in the default, development mode). Let’s see how to do that by creating a trivial project with two source
files. We’ll also remove the supervisor that mix creates, because we don’t want to drag OTP into this exercise.

$ mix new simple

...

$ cd simple

$ rm lib/simple/supervisor.ex

Inside the project, let’s create a simple function. Being lazy, I haven’t implemented the body yet.

defmodule Simple do

 @type atom_list :: list(atom)

 @spec count_atoms(atom_list) :: non_neg_integer

 def count_atoms(list) do

 # ...

 end

end

Let’s run dialyzer on our code. Because it works from .beam files, we have to remember to compile before we run
dialyzer.

$ mix compile

.../simple/lib/simple.ex:4: variable list is unused

Compiled lib/simple.ex

Generated simple.app

$ dialyzer _build/dev/lib/simple/ebin

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date...

dialyzer: Could not find the PLT: /Users/dave/.dialyzer_plt

Use the options:

 --build_plt to build a new PLT; or

 --add_to_plt to add to an existing PLT

For example, use a command like the following:

 dialyzer --build_plt --apps erts kernel stdlib mnesia

Note that building a PLT such as the above may take 20 mins or so

If you later need information about other applications, say crypto,

you can extend the PLT by the command:

 dialyzer --add_to_plt --apps crypto

For applications that are not in Erlang/OTP use an absolute file name.

Oops. This looks serious, but it’s not. Dialyzer needs the specifications for all the runtime libraries you’re using. It
stores them in a cache, which it calls a persistent lookup table, or plt. For now we’ll initialize this with the basic
Erlang runtime (erts), and the basic Elixir runtime. You can always add more apps to it later.

To do this, you first have to find your Elixir libraries. Fire up iex, and run:

iex> :code.lib_dir(:elixir)

/users/dave/Play/elixir/lib/elixir

The path on my system is a little unusual, as I build locally. But take whatever path it shows you, and add /ebin to it
—that’s what we’ll give to dialyzer. (This will take several minutes.)

$ dialyzer --build_plt --apps erts /Users/dave/Play/elixir/lib/elixir/ebin

 Creating PLT /Users/dave/.dialyzer_plt ...

Unknown functions:

 'Elixir.Access.BitString':'__impl__'/1

 'Elixir.Access.Float':'__impl__'/1

 'Elixir.Access.Function':'__impl__'/1

 : :

You can safely ignore the warnings about unknown functions and types.

Now let’s rerun our project analysis.

$ dialyzer _build/dev/lib/simple/ebin

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis...

simple.ex:1: Invalid type specification for function

'Elixir.Simple':count_atoms/1. The success typing is (_) -> 'nil'

done in 0m0.29s

done (warnings were emitted)

It’s complaining that the typespec for count_atoms doesn’t agree with the implementation. The success typing
(think of this as the actual type)[31] returns nil, but the spec says it is an integer. Dialyzer has caught our stubbed-
out body. Let’s fix that:

defmodule Simple do

 @type atom_list :: list(atom)

 @spec count_atoms(atom_list) :: non_neg_integer

 def count_atoms(list) do

 length list

 end

end

Compile and dialyze:

$ mix compile

Compiled lib/simple.ex

Generated simple.app

$ dialyzer _build/dev/lib/simple/ebin

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis... done in 0m0.29s

done (passed successfully)

Let’s add a second module that calls our count_atoms function:

typespecs/simple/lib/simple/client.ex

defmodule Client do

 @spec other_function() :: non_neg_integer

 def other_function do

 Simple.count_atoms [1, 2, 3]

 end

end

Compile and dialyze:

$ mix compile

Compiled lib/client.ex

Compiled lib/simple.ex

Generated simple.app

http://media.pragprog.com/titles/elixir/code/typespecs/simple/lib/simple/client.ex

$ dialyzer _build/dev/lib/simple/ebin

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis...

client.ex:4: Function other_function/0 has no local return

client.ex:5: The call 'Elixir.Simple':count_atoms([1 | 2 | 3,...])

breaks the contract (atom_list()) -> non_neg_integer()

done in 0m0.29s

That’s pretty cool. Dialyzer noticed that we called count_atoms with a list of integers, and it is specified to receive a
list of atoms. It also decided this would raise an error, so the function would never return (that’s the no local return
warning). Let’s fix that.

defmodule Client do

 @spec other_function() :: non_neg_integer

 def other_function do

 Simple.count_atoms [:a, :b, :c]

 end

end

$ mix compile

Compiled lib/client.ex

Compiled lib/simple.ex

Generated simple.app

$ dialyzer _build/dev/lib/simple/ebin

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis... done in 0m0.27s

done (passed successfully)

And so it goes…

Dialyzer and Type Inference
In this appendix, we’ve shown dialyzer working with type specs that we added to our functions. But it also does a
credible job with unannotated code. This is because dialyzer knows the types of the built-in functions (remember
when we ran it with --build_plt?) and can infer (some of) your function types from this. Here’s a simple example:

defmodule NoSpecs do

 def length_plus_n(list, n) do

 length(list) + n

 end

 def call_it do

 length_plus_n(2, 1)

 end

end

Compile this, and run dialyzer on the .beam file:

$ dialyzer _build/dev/lib/simple/ebin/Elixir.NoSpecs.beam

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis...

no_specs.ex:7: Function call_it/0 has no local return

no_specs.ex:8: The call 'Elixir.NoSpecs':length_plus_n(2,1) will never

return since it differs in the 1st argument from the success typing

arguments: ([any()],number())

done in 0m0.28s

done (warnings were emitted)

Here it noticed that the length_plus_n function called length on its first parameter, and length requires a list as an
argument. This means length_plus_n also needs a list argument, and so it complains.

What happens if we change the call to Simple.count_atoms [[:a, :b], :c]?

$ dialyzer _build/dev/lib/simple/ebin/Elixir.NoSpecs.beam

 Checking whether the PLT /Users/dave/.dialyzer_plt is up-to-date... yes

 Proceeding with analysis...

no_specs.ex:7: Function call_it/0 has no local return

no_specs.ex:8: The call 'Elixir.NoSpecs':length_plus_n(['a', 'b'],'c')

will never return since it differs in the 2nd argument from the

success typing arguments: ([any()],number())

done in 0m0.29s

done (warnings were emitted)

This is even cooler. It knows that + (which is implemented as a function) takes two numeric arguments. When we
pass an atom as the second parameter, dialyzer recognizes that this makes no sense, and complains. But look at the
error. It isn’t complaining about the addition. Instead, it has assigned a default typespec to our function, based on its
analysis of what we call inside that function.

This is success typing. Dialyzer attempts to infer the most permissive types that are compatible with the code—it
assumes the code is correct until it finds a contradiction. This makes it a powerful tool, as it can make assumptions
as it runs.

Does that mean you don’t need @spec attributes? That’s your call. Try it with and without. Often, adding a @spec
will further constrain a function’s type signature. We saw this with our count_of_atoms function, where the spec
made it explicit that we expected a list of atoms as an argument.

Ultimately, dialyzer is a tool, not a test of your coding chops. Use it as such, but don’t waste time adding specs to get
a gold star.

Footnotes

[29]

http://www.erlang.org/doc/man/dialyzer.html

[30]

http://elixir-lang.org/docs/stable/elixir/Kernel.Typespec.html

http://www.erlang.org/doc/man/dialyzer.html
http://elixir-lang.org/docs/stable/elixir/Kernel.Typespec.html

[31]

http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf

http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf

Bibliography
[Arm13]

Joe Armstrong. Programming Erlang: Software for a Concurrent World . The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, Second edition, 2013.

About Pragmatic Bookshelf
The Pragmatic Programmers is an agile publishing company. We’re here because we want to improve the lives of
developers. We do this by creating timely, practical titles, written by programmers for programmers. Our ebooks do
not contain any Digital Restrictions Management, and have always been DRM-free.

We pioneered the beta book concept, where you can purchase and read a book while it’s still being written, and
provide feedback to the author to help make a better book for everyone.

Free resources for all purchasers include source code downloads (if applicable), errata and discussion forums, all
available on the book's home page at pragprog.com.

We’re here to make your life easier.

http://pragprog.com

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers? Just create an account on
pragprog.com (email address and password is all it takes) and select the checkbox to receive newsletters. You can
also follow us on twitter @pragprog.

http://pragprog.com

About Ebook Formats
If you buy directly from our website at pragprog.com, you get ebooks in all available formats for one price. You can
have your ebook emailed directly to your Kindle, and you can synch your ebooks amongst all your devices (including
iPhone/iPad, Android, laptops, etc.) via Dropbox, including free updates for the life of the edition. And of course, you
can always come back and re-download your books when needed.

Ebooks bought from the Amazon Kindle store are subject to Amazon's polices.

Limitations in Amazon's file format may cause ebooks to display differently on different devices. For more
information, please see our FAQ at pragprog.com/frequently-asked-questions/ebooks.

To learn more about this book and access the free resources, go to pragprog.com and search on the title to get to the
book's homepage.

Thanks for your continued support,

Andy Hunt

Dave Thomas

The Pragmatic Programmers

http://pragprog.com
http://pragprog.com/frequently-asked-questions/ebooks
http://pragprog.com

Table of Contents
Cover

PROGRAMMING ELIXIR

Foreword

A Vain Attempt at a Justification

Take the Red Pill

CONVENTIONAL PROGRAMMING

Pattern Matching

Immutability

Elixir Basics

Anonymous Functions

Modules and Named Functions

Lists and Recursion

Dictionaries: Maps, HashDicts, Keywords, Sets, and Structs

An Aside—What Are Types?

Processing Collections—Enum and Stream

Strings and Binaries

Control Flow

Organizing a Project

CONCURRENT PROGRAMMING

Working with Multiple Processes

Nodes—The Key to Distributing Services

OTP: Servers

OTP: Supervisors

OTP: Applications

Tasks and Agents

MORE-ADVANCED ELIXIR

Macros and Code Evaluation

Linking Modules: Behavio(u)rs and Use

Protocols—Polymorphic Functions

More Cool Stuff

Exceptions: raise and try, catch and throw

Type Specifications and Type Checking

Bibliography

Back Page

	Cover
	PROGRAMMING ELIXIR
	Foreword
	A Vain Attempt at a Justification
	Take the Red Pill
	CONVENTIONAL PROGRAMMING
	Pattern Matching
	Immutability
	Elixir Basics
	Anonymous Functions
	Modules and Named Functions
	Lists and Recursion
	Dictionaries: Maps, HashDicts, Keywords, Sets, and Structs
	An Aside—What Are Types?
	Processing Collections—Enum and Stream
	Strings and Binaries
	Control Flow
	Organizing a Project
	CONCURRENT PROGRAMMING
	Working with Multiple Processes
	Nodes—The Key to Distributing Services
	OTP: Servers
	OTP: Supervisors
	OTP: Applications
	Tasks and Agents
	MORE-ADVANCED ELIXIR
	Macros and Code Evaluation
	Linking Modules: Behavio�⠀甀)rs and Use
	Protocols—Polymorphic Functions
	More Cool Stuff
	Exceptions: raise and try, catch and throw
	Type Specifications and Type Checking
	Bibliography
	Back Page

