
Programming for Science Fairs
 A student’s guide to resources, usage and display

Rajalakshmi Kollengode

Contents

1.0 Resources

1.1 Learning Resources to Learn the Fundamental Concepts
1.2 Other Resources: Libraries and APIs

1.3 Resources for Math Projects
1.4 Resources for Physics Projects
1.5 Resources for Biology Projects
1.6 Resources for Chemistry Projects
1.7 Resources for Projects in Social Studies

2.0 Usage Considerations
 Some ideas on how to include programming in science fair projects
 2.1 Usage for computational projects
 2.2 Usage for non-computational projects

3.0 Coding Display Considerations
 Some recommendations for the big day
 3.1 Display guidelines for computational projects
 3.2 Display guidelines for non-computational projects

Preface

There is a wide variety of both free and paid resources available on the web. Many of them

focus on gaming as a tool to learn elements of programming. Many other sites focus on coding

for content creation (as in blogs), graphics design, collaborating and marketing. Not many of

these are directly relevant to Science Fairs. While doing a science fair project, the student’s

programming needs depend on the category and field of study the project belongs to. We can

broadly divide the projects into two groups: (a) computational sciences (software engineering,

robotics, informatics etc.) and (b) non-computational sciences (behavioral science,

biochemistry, biology, chemistry, physics, engineering and mathematics excluding algorithms

for numerical methods). For computational sciences, the main line is programming

irrespective of field of study. In this case, the project would need a great amount of coding. If

the project is not on computational sciences, some elements of programming can be included

in the project: For e.g. most projects would involve some sort of data gathering (through

experiments and/or through questionnaires) and this data is bound to contain some noise.

Software resources are available to mitigate the noise issues.

The goals here are (i) to cut through the clutter to provide the resources that are directly

applicable to the student’s needs in carrying out their science fair projects and (ii) to provide

some guidelines on how to utilize programming for non-computational projects such as those in

physics, chemistry, biology, biochemistry and social studies.

Those who are proficient in programming can skip section 1.1 and go to 1.2. And those who are

familiar with available software libraries can skip section 1.2 (and up to section 1.7) as well. If

you have suggestions on additional resources, please email me at

sciencefaircoding@yahoo.com with the title “Software Resources for Science Fairs”.

Rajalakshmi Kollengode

January 2019

Sunnyvale, CA.

mailto:sciencefaircoding@yahoo.com

1. Overview of Available Resources

We can broadly divide the resources into two categories: (i) learning resources and (ii)

library/component resources. Learning resources help students learn the basics of

programming. The fundamentals of programming can be broken into three parts: (i) computer

science basics (fundamental algorithms, data structures), (ii) programming language basics, and

(iii) tool usage basics (editors, compilers, debuggers, IDEs etc). These resources are outlined in

section 1.1.

The component/library resources provide ready-made components that can be targeted using

the APIs (Application Program Interfaces) provided. Such resources are very helpful in carrying

out science fair projects: for e.g. say the project is on a new algorithm for detecting the type of

a plant by doing an analysis on the shape of the veins of the leaves. To input shapes of leaves

into this new algorithm, to analyze the correlation of patterns on the leaves, and to output the

identification results many ready-made components can be used. These resources are listed in

sections 1.2 through 1.7.

1.1 Learning Resources to Learn the Fundamental Concepts

The top resources for learning to code include Codeacademy, Coursera and Udemy. We

recommend learning the basics first: At Codeacademy, the Computer Science Path

(https://www.codecademy.com/paths/computer-science/) provides the essentials of

programming using Python as the language. At Coursera, several introductory classes are

available to learn most common computer languages and algorithms. Python, Java, R, C/C++

are the top programming languages for usage in science fairs. And the reason is that a lot of

readymade components applicable to a wide variety of scientific applications are available in

these languages. Almost all classes at Udemy are paid: when they run ‘sales’, many classes are

available for less than $15.00. To this list we must also add GNU Octave (free) and

Matlab/Mathematica (paid) for quick experimentation with scientific concepts.

https://www.codecademy.com/paths/computer-science/

To get started it is best to use online tools to edit, compile, run and debug the program.

Deferring learning about development tools (editors, compilers, debuggers, IDEs etc.) to a later

time keeps the focus on learning to code and eliminates distractions. Few of the online tools

are

https://www.tutorialspoint.com/python3_terminal_online.php

https://py3.codeskulptor.org/

https://www.tutorialspoint.com/compile_java_online.php

https://www.onlinegdb.com/online_c++_compiler

https://rextester.com/l/r_online_compiler

The main learning goals are threefold: (i) on the language front, the main parts include syntax,

basic input/output, loops, classes, inheritance, interfaces; (ii) on the computer science (CS)

front, the goal is proficiency in basic data structures (D/S) and algorithms including arrays,

linked lists, stacks, queues, trees, graphs, sorting, searching and hashing; (iii) on the tool usage

front, proficiency in using editors, compilers, debuggers, IDEs, and project management. At this

level of knowledge, students are ready to include some elements of programming in their

science fair projects.

After using an online tool to get proficient in all the three elements of programming in one

programming language, we recommend downloading a full-fledged IDE such as Eclipse

(https://www.eclipse.org/downloads/) or VisualStudio (https://visualstudio.microsoft.com/vs/).

Eventually for collaborating with others, Github (https://github.com/) is very helpful. And

packages are available to integrate Github with Eclipse and VisualStudio.

After attaining proficiency in basics, the next step would be to move onto more advanced

programming by using readily available components: For e.g. as to the data cleaning operation

mentioned in the preface, ready-made components mentioned in the next section can be used.

https://www.tutorialspoint.com/python3_terminal_online.php
https://py3.codeskulptor.org/
https://www.tutorialspoint.com/compile_java_online.php
https://www.onlinegdb.com/online_c++_compiler
https://rextester.com/l/r_online_compiler
https://www.eclipse.org/downloads/
https://visualstudio.microsoft.com/vs/
https://github.com/

1.2 Other Resources - Libraries and Packages

Advanced software applications for science fairs almost always use existing libraries as building

blocks since many of the advanced algorithms are coded and readily available. These libraries

are available mostly free of cost. We list below resources for a wide spectrum of applications.

Both Java and Python languages have built-in support for basic data structures like lists, stacks

and queues. Some common libraries in Java include Apache Commons, and Guava. Additional

packages are available in Colt (https://dst.lbl.gov/ACSSoftware/colt/).

In C++, the Standard Template Library (STL) has support for all basic data structures. If sets and

maps in STL are not sufficient, additional tree classes from boost library

(https://www.boost.org/) can be considered.

Most of the science, math, and machine learning packages are in Python, R, C++, and FORTRAN.

We recommend Python and C/C++.

In Python the advanced math and science APIs are available in NumPy, SymPy and SciPy. Sci-kit

learn (https://scikit-learn.org/stable/), Microsoft Cognitive Toolkit

(https://www.microsoft.com/en-us/cognitive-toolkit/) and Google’s Tensorflow

(https://www.tensorflow.org/) make it easy to develop machine learning applications.

There is another class of programming commonly used in science fair projects: microcontroller

programming as in Arduino programming. And most microcontroller vendors (Arduino,

Qualcomm, TI etc.) do provide a wide array of library functions.

Occasionally, third party libraries may have to be imported into these microcontroller

programming environments. And most microcontrollers including Arduino provide such a

facility. For additional details please see https://www.arduino.cc/en/hacking/libraries. Typically

microcontrollers have limited memories, and C/C++ APIs might have to be tuned for memory

consumption.

For other topics such as math, biology, chemistry, physics, and social studies we list below some

of the fundamental software resources.

1.3 Resources for Math

Aside from NumPy mentioned earlier, additional resources include ScientificPython

(https://pypi.org/project/ScientificPython/), AlgLib (http://www.alglib.net/), Intel’s MKL (in C-

Language), Eigen (http://eigen.tuxfamily.org/), Gnu Scientific Library

https://dst.lbl.gov/ACSSoftware/colt/
https://www.boost.org/
https://scikit-learn.org/stable/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.tensorflow.org/
https://www.arduino.cc/en/hacking/libraries
https://pypi.org/project/ScientificPython/
http://www.alglib.net/
http://eigen.tuxfamily.org/

(https://www.gnu.org/software/gsl/), and dlib (http://dlib.net/). Datamelt

(https://jwork.org/dmelt/) has good collections of mathematical APIs in Java and can be called

from Python and Ruby.

1.4 Resources for Physics

Astropy, ProjectChrono (https://projectchrono.org/), Open Dynamics Engine

(https://www.ode.org/), Computer Physics Communications Library

(http://www.cpc.cs.qub.ac.uk/) are some commonly used resources.

1.5 Resources for Biology

ScientificPython, BioPython, GenoCad (https://genocad.com/), Vcell (http://vcell.org/),

BioConductor for BioInformatics (http://www.bioconductor.org/), BioJava

(https://biojava.org/wiki/Main_Page/) cover a wide spectrum of applications in biology.

1.6 Resources for Chemistry

PyMOL (http://www.pymol.org/), OpenBabel (http://openbabel.org/wiki/Main_Page),

OpenChemistry (https://www.openchemistry.org/) Apache Chemistry

(http://chemistry.apache.org/) are the leading packages.

1.7 Resources for Social Studies

PsychoPy, BeautifulSoup (to crawl the web and gather data), R (R Foundation for Statistical

Computing), GNU PSPP (https://www.gnu.org/software/pspp/pspp.html), IBM’s SPSS (paid),

GraphPad Prism (https://www.graphpad.com/ , paid) are recommended.

https://www.gnu.org/software/gsl/
http://dlib.net/
https://jwork.org/dmelt/
https://projectchrono.org/
https://www.ode.org/
http://www.cpc.cs.qub.ac.uk/
https://genocad.com/
http://vcell.org/
http://www.bioconductor.org/
https://biojava.org/wiki/Main_Page/
http://www.pymol.org/
http://openbabel.org/wiki/Main_Page
https://www.openchemistry.org/
http://chemistry.apache.org/
https://www.gnu.org/software/pspp/pspp.html
https://www.graphpad.com/

2. Usage Considerations

Here we discuss some ways to include programming in science fair projects. The usage

considerations do depend on the project. We attempt to include a broad array of projects for

considering the usage of programming.

2.1 Usage for Computational Projects

For computational projects, the application of programming is direct. The first step is to pick the

appropriate libraries for the development environment intended for the project. The next step

is to test the libraries before using them for the project. Beware of bugs, bugs, bugs! Every API

or function used should be tested with a few known examples. This process of doing unit

testing (in addition to what others have done on their systems) is akin to calibrating

experimental apparatus: Given the complexity of software systems, some bugs may be exposed

in one particular combination of operating system, downloaded library’s version and hardware.

And other users may not encounter these bugs because of differences in hardware and/or

operating systems etc. Picture this: the API used is buggy and the results shown on the board

are incorrect and a smart judge figures it out – the entire effort comes down crushing and that

definitely is a not a great situation to be in. Testing the software components used in the

project is well worth the effort.

And if the standard verification tests do not pass, an older version of the software that

presumably is more robust can be tested for consideration. Or an alternate package can be

considered. After completing these two steps, the student can pursue the goals of the project.

2.1 Usage for Non-Computational Projects

In many cases, the application of programming is not straight forward for projects in physics,

chemistry, biology, mathematics and social studies. We provide a few guidelines on how

programming can be included for non-computational projects.

The key idea is this: opportunities exist almost at every step to include coding. However,

locating these opportunities need some thought. Some of the phases that are conducive to

applying programming include: exploratory phase (simulation of the theory), data collection

phase (sensor programming, noise mitigation), data analysis phase (statistics, AI etc.), and

correlation phase (regression fits can help find the relationship between variables, and help

compare and contrast with other studies). Software is powerful and we can utilize software for

every repeatable task/procedure. Software can furthermore provide some elements of

inference and correlation.

In every phase in which coding can be included, there are two ways to use available software

resources: (i) use standalone software packages like GNU Octave and Matlab or (ii) create new

programs in a typical programming language like C/C++, Java, Python, and R, and these new

programs can use libraries outlined in sections 1.2 through 1.7. Unit testing needs to be done

on both the functions used in standalone packages and the APIs used in the new program. As

to choosing between a standalone package and writing a new application, our recommendation

is to build on the student’s existing knowledge and pick one set of components that is closely

related to the current level of programming knowledge the student has: the goal for the

students is to challenge themselves to learn some new methodologies without sacrificing

accuracy. We next illustrate how to include coding using some examples.

In many projects some sort of data collection happens. The data collection can happen from

experiments or from surveys. All data are likely to have some noise and this noise can be

mitigated using one of the several filters available in many of the packages we discussed

including SciPy (in signals), AlgLib etc. Alternately, a standalone package like GNU Octave can be

used to filter the noise.

For mathematical projects, say the project is about a new approximate solution to a set of

equations: this project can use simulations to verify. Simulations can also help during the

exploratory phase by providing a feel for the solution: say the project is on finding an

approximate solution for the trajectory of a rocket as it approaches say a planetary body. The

shape of potential trajectories can be visualized using simulations of Newton’s equations of

motion. The attempted approximate solution should mimic this simulated shape.

As an example of an engineering project, let’s consider a project that determines the terminal

velocity of a freely falling object say, a cheetah jumping to catch its prey. This project can use

software to simulate such falls in addition to the theoretical considerations. Alternately, the

student can write a program that provides the terminal velocity given the drag coefficient and

other parameters. This program can then be used to project several scenarios: for e.g. what

drag coefficient is needed such that the impact speed is less than a certain speed so as to

reduce the risk of bodily injuries.

Say the project is in biology for e.g. to find the impact of some substance/organism on plant

growth: the collected data can be filtered and processed using regression fits. Regression fits

are particularly useful for correlating data when their relationship is non-linear. Next let us

consider a project in social studies that attempts to capture online bullying behavior. Here,

there is a need to crawl the web and collect data: Many libraries like ScraPy and BeautifulSoup

can be used. And the collected data can be analyzed using GNU PSPP.

One needs to use caution while scraping for data on sites in which an account is needed: as part

of the account sign-up process, such websites might place restrictions on scraping. Facebook is

one such company that places restrictions.

3. Coding Display Considerations

Now all the hard work is accomplished and it is time to display the project in all its glory. What

aspects of the programming parts should be displayed on the project board, and by the board?

The answer depends on the impact of the algorithms/software on the project.

 3.1 Display Guidelines for Computational Projects

If the project is heavy on computational sciences (Bioinformatics, Software Engineering,

Numerical Methods etc.) several pages on the board would refer to it: objective/hypothesis

portion, the procedure portion, the design considerations portion, and the results portion.

As an example of a predominantly software oriented project, let us consider a project on an

innovative shape detection algorithm to identify the type of plants discussed earier. For this

project elements of programming would show up across the full spectrum: motivation, goals,

data gathering, data analysis, and results.

The next question is this: how much of the code should be printed out and listed next to the

board? The main goal is that the materials displayed should reveal the full scope of the project.

For computational projects all code that forms the core component of the project should be

listed: This core component would consist of code written by the student and potentially some

code written by others. The code the student wrote should be demarcated from the code others

wrote.

Only the name of the libraries and packages used should be listed. Code from the libraries

should not be listed.

3.2 Display Guidelines for Non-Computational Projects

For non-computational projects, the scope for displaying programming is limited: limited to the

portion in which programming was used. Say for a mathematical project some initial

explorations were done with programming, the display of programming related material is

limited to the motivation and goal sections.

As to listing code, the same recommendations outlined for computational projects apply: code

written by the student should be listed and clearly demarcated from code written by others for

the project. Many of these non-computational projects may use a standalone package instead

of developing a new application. In such cases, code written to use these packages should be

listed.

There is no need to list the lines of code from libraries/packages used by the project. Listing just

the name of the libraries/packages is recommended.

 Afterword
Dear Student,

I want you to have fun exploring new topics and learn a thing here, a thing there and eventually

everything would fall in place. The key here is to get a growth mindset. It is ok to fail: just that

we should learn from failures as well as successes. Hope this guide helps you and if you have

additional suggestions, please email me at sciencefaircoding@yahoo.com and title it as

“Software Resources for Science Fairs”.

Code away to decode the mysteries Big Bang has provided us in 13.8 billion years.

Rajalakshmi Kollengode

mailto:sciencefaircoding@yahoo.com

