
Functional Logic
Programming

Kristjan Vedel

Imperative
● How?
● Explicit Control
● Sequences of

commands for the
computer to
execute

Declarative
● What?
● Implicit Control
● Steps to execute

specified by
language
implementation

Imperative vs Declarative
Algorithm = Logic + Control

Declarative Programming
Subparadigms

● Functional programming
○ Building blocks: (higher order) functions
○ Computation model: unidirectional, deterministic

reduction (λ-calculus, combinatory logic)
● Logic (relational) programming

○ Building blocks: predicates/relations, logical variables
○ Computation model: multidirectional, non-

deterministic search (resolution for horn clauses, 1st
order logic)

● Constraint programming
● Other examples: SQL, DSLs (Make), Regexps etc

Functional Programming

● Program - collection of function definitions
● Computation by term rewriting.
● First-class and higher-order functions
● Recursion.
● Avoid mutable data
● Prominent (research) language: Haskell
● Deterministic and unidirectional (in contrast to logic prog.)

Functional Programming

● Common reduction strategies: leftmost-outermost with
call-by-value or call-by-need

● λ-calculus reduction example (rightmost-first reduction)

(λx.x+1)((λy.y+2)3) =>> 6

 apply => apply => apply => + => 6
 / \ / \ / \ / \

 λ apply λ + λ 5 5 1
 / \ / \ / \ / \ / \

 x + λ 3 x + 3 2 x +
 / \ / \ / \ / \
 x 1 y + x 1 x 1
 / \
 y 2

Logic Programming
Resolution and Unification

● Prominent language: Prolog
● Commonly based on resolution of Horn clauses (at most

one positive literal), subset of 1st order logic
● Resolution - proof by refutation, negation of goal in

conjunction with knowledge base leads to contradiction
● Unification - unify(f(x,B), f(A,y)) --> f(A,B)
● Search (backtracking, nondeterminism)

Logic Programming
Unification example

likes(John, Jane).
likes(y, Jim).
likes(y, friend(y)).

● Substitution
UNIFY(likes(John,x), likes(John,Jane)) = {x/Jane}
UNIFY(likes(John,x), likes(y,Jim)) = {x/Jim, y/John}

● Substitution makes following two sentences identical:
UNIFY(likes(John,x), likes(y,friend(y))) = {x/John, x/friend(John)}

● Can't substitute ground term with another
UNIFY(likes(John,x), likes(x,Elizabeth)) = fail

● Variable may not occur in the term it is being unified with.
UNIFY(x, F(x)) = fail

Logic Programming
Resolution example

{C,¬A,¬B},{A},{B},{¬C}→{C,¬B},{B},{¬C}→{C},{¬C}→{}

Prolog-style:
C :- A, B.
A.
B.
Goal: C

● Proof by refutation: add "not C" and resolve to empty
set i.e. show contradiction

● Use unification where necessary

Constraint Programming

"Constraint programming represents one of the closest
approaches computer science has yet made to the Holy
Grail of programming: the user states the problem, the
computer solves it." - E.Freuder

Constraint Programming

● Model and solve a problem by specifying constraints
that fully characterize the problem. Featuring:
○ Variables that range over domains
○ Relations between variables stated as constraints.
○ Constraint satisfaction

■ (finite domains, combinatorial techniques)

○ Constraint solving
■ (infinite/complex domains, mathematical techniques)

● Constraint Satisfaction Problem (CSP)
○ Examples: Sudoku, map coloring, etc

● Usually in form of constraint logic programming
 also: functional+constraints, imperative+constraints

Constraint Programming

● Constraints over specific domain:
○ boolean, true/false constraints (SAT problem)
○ integer, rational
○ linear, for linear functions only
○ finite, constraints are defined over finite sets
○ mixed

● Solvers: systematic search
○ Generate and test
○ Backtracking

● Improvements to systematic search, heuristics, simplex,
various other domain-specific solvers etc

Logic Programming (LP)
and Constraint Logic Programming (CLP)

LP languages (like Prolog) can be viewed as a
subset of CLP with:
● ground terms (variables, constants, function symbols)

● single constraint "=" (syntactic equality)

● resolution algorithm for solving
○ backtracking
○ generate and test

Constraint Programming
Example

% Prolog + CLPFD constraint solver library.
:- use_module(library(clpfd)).
sendmore(Digits) :-
 Digits = [S,E,N,D,M,O,R,Y], % Create variables
 Digits ins 0..9, % Associate domains to variables
 S #\= 0, % Constraint: S must be different from 0
 M #\= 0,
 all_different(Digits), % all elements must take different values
 1000*S + 100*E + 10*N + D % Other constraints
 + 1000*M + 100*O + 10*R + E
 #= 10000*M + 1000*O + 100*N + 10*E + Y,
 label(Digits). % Start the search

Hybrid
Functional + Logic + Constraint

● Functional:
○ Efficiency

■ (Deterministic) reduction of function expressions
■ More control compared to logic programming

● Logic:
○ Expressive power:

■ Logical variables
■ Built-in search

● Constraint:
○ Expressiveness, efficient solving strategies

● Narrowing and/or Residuation techniques

Logic + Functional

● Extend logic language with functional
concepts

● Example: Mercury
○ Based on Prolog
○ Strong, static, polymorphic types
○ Explicit determinism system
○ Closures, Currying, and Lambda

expressions.

Functional + Logic

● Extend functional language with logic
concepts

● Example: Curry

Curry
Language overview

● General purpose functional logic programming
language.

● Functional: (deterministic) reduction of nested
expressions, higher-order functions, lazy evaluation

● Logic: logical variables, partial data structures, built-in
search

● Constraint: constraint structure, solvers
● Concurrent: Concurrent evaluation of constraints with

synchronization on logical variables
● Syntax is mostly Haskell

○ Missing type classes :((experimental support exists)
○ Added mainly "where x free" for logical variables

Curry
Search for solutions

● Logic variable - variable in the condition and/or right-
hand side of a rewrite rule which does not occur in the
left-hand side:
○ x == 2 + 2 where x free
○ path a z = edge a b && path b z where b free

● Search for solutions - compute values for the
arguments of functions so that the functions can be
evaluated
○ Instantiates logic variables
○ Compute all possible solutions, one at a time

Curry
Search for solutions : Example

1. Prelude> x &&(y || (not x)) where x,y free
Free variables in goal: x, y
Result: True
Bindings:
x=True
y=True ? ;

2. Result: False
Bindings: x=True
y=False ? ;

3. Result: False
Bindings: x=False
y=y ? ;

4. No more solutions.

Curry
Non-deterministic functions

● Non-deterministic insert
insert :: a -> [a] → [a]
insert x [] = [x]
insert x (y:ys) = x : y : ys
insert x (y:ys) = y : insert x ys

● Multiple result values:
coin :: Int
coin = 0
coin = 1

● Calls to non-deterministic functions?
coin + coin

● (?) :: a -> a -> a -- choice operator from Prelude

Curry
Constraints

● Types:
○ success :: Success

■ no visible literal values
■ denotes result of successfully solved constraints

● Operators:
○ Constrained equality

■ (=:=) :: a -> a -> Success
○ Parallel conjunction

■ (&) :: Success -> Success -> Success
○ Constrained expression

■ (&>) :: Success -> a -> a

Curry
Operational semantics

● Lazy evaluation of expressions with possible
instantiation of free variables in expression
○ ground expressions -> as lazy functional language
○ instantiations -> as in logic programming

● Answer expression:
○ substitution σ + expression: e (Example: {x=0,y=2}2)
○ solved if e is data term

● Disjunctive expression:
○ Multiset of answer expressions
○ { σ1e1 | σ2e2 | ... | σnen}

● Computation step: reduction in exactly one unsolved
answer expression: { σ1e1 | σ2e2 | ... | σnen}

Curry
Operational semantics

● Examples:

○ f 1 evaluates to 3
○ f x evaluates to disjunctive expression { {x=0}2 | {x=1}3 }.

● Value is demanded
○ in argument of a function call if the left-hand side of some

rule has a constructor at this position.
○ case expressions
○ arguments of external functions

● Free variables can occur where value is demanded.
Solutions:
○ Residuation
○ Narrowing

f 0 = 2
f 1 = 3

● Residuation - suspend function calls until they are
ready for deterministic evaluation (free logic variable is
bound)
○ incomplete - unable to compute solutions if

arguments of functions are not sufficiently
instantiated during computation

● Example:
○ Primitive arithmetic operators
○ Boolean equality: (==) :: a -> a -> Boolean
○ Prelude> x == 2+2 where x free

Free variables in goal: x
*** Goal suspended!

Curry
Residuation

Curry
Narrowing

● Narrowing - combination of unification for parameter
passing and reduction as evaluation mechanism
○ variable is bound to a value selected from among

alternatives imposed by constraints.
○ complete in functional sense (normal forms computed if

exist)
○ complete in logic sense (solutions computed if exist)

● Example:
○ Equational constraint: (=:=) :: a -> a -> Success
○ Prelude> x =:= 2+2 where x free

Free variables in goal: x
Result: success
Bindings: x=4 ?

Curry
Rigid and flexible operators

● Rigid - operators that residue
○ most primitive operators (arithmetic etc)

● Flexible - operators that narrow
○ all defined operators

● For ground expressions (without logic variables) - no
difference whether flexible/rigid

● ensureNotFree - primitive op to evaluate argument and
suspend if logic variable

Curry
Example

● Prelude> x ++ [3,4] =:= [1,2,3,4] where x free
Free variables in goal: x
Result: success
Bindings:
x=[1,2]
More solutions? [Y(es)/n(o)/a(ll)] y
No more solutions.

● Prelude> x + 2 =:= 4 where x free
Free variables in goal: x
*** Goal suspended!

Curry
Evaluation example

2+x =:= y & f x =:= y
-->
{x=1} 2+1 =:= y & 3 =:= y
-->
{x=1,y=3} 2+1 =:= 3
-->
{x=1,y=3} 3 =:= 3
-->
{x=1,y=3}

● another solution: {x=0, y=2}

f 0 = 2
f 1 = 3

Curry
More examples

http://www.informatik.uni-kiel.de/~curry/examples/

http://www.informatik.uni-kiel.de/~curry/examples/
http://www.informatik.uni-kiel.de/~curry/examples/

Used materials
● Antoy, Sergio. "Curry A Tutorial Introduction." (2007). http://www-ps.

informatik.uni-kiel.de/currywiki/documentation/tutorial
● Antoy, Sergio, and Michael Hanus. "Functional logic programming."

Communications of the ACM 53.4 (2010): 74-85.
● Apt, Krzysztof. Principles of constraint programming. Cambridge University

Press, 2003.
● Hanus, Michael, et al. "Curry: An integrated functional logic language

(version 0.8.3)." (2012).
● Hedman, Shawn. A first course in logic. Oxford: Oxford University Press,

2004.
● Lloyd, John W. "Practical advantages of declarative programming." Joint

Conference on Declarative Programming, GULP-PRODE. Vol. 94. 1994.
● wikipedia.org :)

http://www-ps.informatik.uni-kiel.de/currywiki/documentation/tutorial
http://www-ps.informatik.uni-kiel.de/currywiki/documentation/tutorial
http://www-ps.informatik.uni-kiel.de/currywiki/documentation/tutorial

