
Programming Language Concepts

Mooly Sagiv
msagiv@acm.org

Tuesday 11-13, Schriber 317
TA: Oded Padon

Email: odedp@mail.tau.ac.il

http://www.cs.tau.ac.il/~msagiv/courses/pl17.html

Inspired by Stanford John Mitchell CS’242

Prerequisites

• Software Project

• Computational models

Textbooks

• J. Mitchell. Concepts in Programming
Languages

• B. Pierce. Types and Programming Languages

• Semantics with Applications by Flemming
Nielson and Hanne Riis Nielson

• Real World Ocaml by Anil Madhavapeddy,
Jason Hickey, and Yaron Minsky

• JavaScript: The Good Parts by Douglas
Crockford

Course Grade

• 50% Assignments (5 assignments)

– 2-3 person teams

• 50% Exam

– Must pass exam

Goals

• Learn about cool programming languages

• Learn about useful programming languages

• Understand theoretical concepts in
programming languages

• Become a better programmer in your own
programming language

• Have fun

Course Goals (Cont)

• Programming Language Concepts
– A language is a “conceptual universe” (Perlis)

• Framework for problem-solving

• Useful concepts and programming methods

– Understand the languages you use, by comparison

– Appreciate history, diversity of ideas in programming

– Be prepared for new programming methods, paradigms, tools

• Critical thought
– Identify properties of language, not syntax or sales pitch

• Language and implementation
– Every convenience has its cost

• Recognize the cost of presenting an abstract view of machine

• Understand trade-offs in programming language design

Language goals and trade-offs

Architect

Compiler,
Runtime

environ-ment

Programmer

Testing

DiagnosticTools

Programming
Language

What’s new in programming languages

• Commercial trend over past 5+ years
– Increasing use of type-safe languages: Java, C#, Scala

– Scripting languages, other languages for web applications JavaScript

• Teaching trends
– Java replaced C as most common intro language

• Less emphasis on how data, control represented in machine

• Research and development trends
– Modularity

• Java, C++: standardization of new module features

– Program analysis
• Automated error detection, programming env, compilation

– Isolation and security
• Sandboxing, language-based security, …

– Web 2.0
• Increasing client-side functionality, mashup isolation problems

What’s worth studying?

• Dominant languages and paradigms
– Leading languages for general systems programming
– Explosion of programming technologies for the web

• Important implementation ideas
• Performance challenges

– Concurrency

• Design tradeoffs
• Concepts that research community is exploring for new

programming languages and tools
• Formal methods in practice

• Grammars
• Semantics
• Types and Type Systems
…

Related Courses

• Seminar in programming Language

• Compilers

• Semantics of programming languages

• Program analysis

• Software Verification

The Fortran Programming Language

• FORmula TRANslating System

• Designed in early 50s by John Backus from
IBM

– Turing Award 1977

– Responsible for Backus Naur Form (BNF)

• Intended for Mathematicians/Scientists

• Still in use

Lisp

• The second-oldest high-level programming
language

• List Processing Language
• Designed by John McCarty 1958

– Turing Award for Contributions to AI

• Influenced by Lambda Calculus
• Pioneered the ideas of tree data structures,

automatic storage management, dynamic typing,
conditionals, higher-order functions, recursion,
and the self-hosting compiler

Lisp Design Flaw: Dynamic Scoping
procedure p;

var x: integer
procedure q ;

begin { q }
…
x
…
end { q };

procedure r ;
var x: integer
begin { r }
q ;
end; { r }

begin { p }
q ;
r ;

end { p }

The Algol 60
• ALGOrithmic Language 1960
• Designed by Researchers from Europe/US
• Led by Peter Naur 2005 Turing Award
• Pioneered: Scopes, Procedures, Static Typing

Name Year Author Country

X1 ALGOL 60 1960 Dijkstra and
Zonneveld Netherlands

Algol 1960 Irons USA

Burroughs
Algol

1961 Burroughs USA

Case ALGOL 1961 USA

… …. … …

Algol Design Flaw: Power

• E ::= ID | NUM | E + E | E – E | E * E | E / E |
E ** E

C Programming Language
• Statically typed, general purpose systems

programming language

• Computational model reflects underlying
machine

• Designed by Dennis Ritchie, ACM Turing Award
for Unix

• (Initial) Simple and efficient one pass compiler

• Replaces assembly programming

• Widely available

• Became widespread

Simple C design Flaw

• Switch cases without breaks continue to the next
case
switch (e) {
case 1: x = 1;
case 2: x = 4 ;

break;
default: x = 8;
}

A Pathological C Program

a = malloc(…) ;
b = a;
free (a);
c = malloc (…);
if (b == c) printf(“unexpected equality”);

18

Conflicting Arrays with Pointers

• An array is treated as a pointer to first
element (syntactic sugar)

• E1[E2] is equivalent to ptr dereference:
*((E1)+(E2))

• a[i] == i[a]

• Programmers can break the abstraction

• The language is not type safe

– Even stack is exposed

Buffer Overrun Exploits

void foo (char *x) {

char buf[2];

strcpy(buf, x);

}

int main (int argc, char *argv[]) {

foo(argv[1]);

}

memory

Return address

Saved FP

char* x

buf[2]

…

ab

ra

ca

da

> ./a.out abracadabra

Segmentation fault

terminal

source code

foo

main

Buffer Overrun Exploits

int check_authentication(char *password) {
int auth_flag = 0;
char password_buffer[16];

strcpy(password_buffer, password);
if(strcmp(password_buffer, "brillig") == 0) auth_flag = 1;
if(strcmp(password_buffer, "outgrabe") == 0) auth_flag = 1;
return auth_flag;

}
int main(int argc, char *argv[]) {

if(check_authentication(argv[1])) {
printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
printf(" Access Granted.\n");
printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n"); }

else
printf("\nAccess Denied.\n");

}

(source: “hacking – the art of exploitation, 2nd Ed”)

Exploiting Buffer Overruns

Application

evil input

AAAAAAAAAAAA Something really bad happens

Summary C

• Unsafe

• Exposes the stack frame
– Parameters are computed in reverse order

• Hard to generate efficient code
– The compiler need to prove that the generated

code is correct

– Hard to utilize resources

• Ritchie quote
– “C is quirky, flawed, and a tremendous success”

The Java Programming Language

• Designed by Sun 1991-95

• Statically typed and type safe

• Clean and Powerful libraries

• Clean references and arrays

• Object Oriented with single inheritance

• Interfaces with multiple inheritance

• Portable with JVM

• Effective JIT compilers

• Support for concurrency

• Useful for Internet

Java Critique

• Downcasting reduces the effectiveness of
static type checking

– Many of the interesting errors caught at runtime

• Still better than C, C++

• Huge code blowouts

– Hard to define domain specific knowledge

– A lot of boilerplate code

– Sometimes OO stands in our way

– Generics only partially helps

– Array subtype does not work

ML programming language

• Statically typed, general-purpose programming language
– “Meta-Language” of the LCF theorem proving system

• Designed in 1973
• Type safe, with formal semantics
• Compiled language, but intended for interactive use
• Combination of Lisp and Algol-like features

– Expression-oriented
– Higher-order functions
– Garbage collection
– Abstract data types
– Module system
– Exceptions
– Encapsulated side-effects

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, …

Haskell

• Haskell programming language is
– Similar to ML: general-purpose, strongly typed, higher-order,

functional, supports type inference, interactive and compiled use

– Different from ML: lazy evaluation, purely functional core, rapidly
evolving type system

• Designed by committee in 80’s and 90’s to unify research
efforts in lazy languages
– Haskell 1.0 in 1990, Haskell ‘98, Haskell’ ongoing

– “A History of Haskell: Being Lazy with Class” HOPL 3

Paul Hudak

John Hughes

Simon

Peyton Jones

Phil Wadler

Language Evolution

Algol 60

Algol 68

ML Modula

Lisp

Many others: Algol 58, Algol W, Scheme, EL1, Mesa (PARC), Modula-2,

Oberon, Modula-3, Fortran, Ada, Perl, Python, Ruby, C#, Javascript, F#,

Scala, go

Pascal

Haskell

C

C++

Smalltalk

Java

Simula

Scala
• Designed and implemented by Martin Odersky [2001-]

• Motivated towards “ordinary” programmers

• Scalable version of software

– Focused on abstractions, composition, decomposition

• Unifies OOP and FP

– Exploit FP on a mainstream platform

– Higher order functions

– Pattern matching

– Lazy evaluation

• Interoperates with JVM and .NET

• Better support for component software

• Much smaller code

Most Research Languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Successful Research Languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

C++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete

absence of death

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs Threshold of immortality

Haskell

1,000,000

1

100

10,000

The second life?

“Learning Haskell is a great way of

training yourself to think functionally so

you are ready to take full advantage of

C# 3.0 when it comes out”

(blog Apr 2007)

“I'm already looking at coding

problems and my mental

perspective is now shifting

back and forth between purely

OO and more FP styled

solutions”

(blog Mar 2007)

1990 1995 2000 2005 2010

G
e
e
k
s

P
ra

c
ti
ti
o
n
e
rs

Programming Language Paradigms
• Imperative

– Algol, PL1, Fortran, Pascal, Ada, Modula, and C
– Closely related to “von Neumann” Computers

• Object-oriented
– Simula, Smalltalk, Modula3, C++, Java, C#, Python
– Data abstraction and ‘evolutionary’

form of program development
• Class An implementation of an abstract data type (data+code)
• Objects Instances of a class
• Fields Data (structure fields)

• Methods Code (procedures/functions with overloading)
• Inheritance Refining the functionality of a class with different fields and

methods

• Functional
– Lisp, Scheme, ML, Miranda, Hope, Haskel, OCaml, F#

• Functional/Imperative
– Rubby

• Logic Programming

– Prolog

Other Languages
• Hardware description languages

– VHDL

– The program describes Hardware components

– The compiler generates hardware layouts

• Scripting languages
– Shell, C-shell, REXX, Perl

– Include primitives constructs from the current software environment

• Web/Internet

– HTML, Telescript, JAVA, Javascript

• Graphics and Text processing
TeX, LaTeX, postscript
– The compiler generates page layouts

• Domain Specific
– SQL

– yacc/lex/bison/awk

• Intermediate-languages

– P-Code, Java bytecode, IDL, CLR

What make PL successful?

• Beautiful syntax
• Good design
• Good productivity
• Good performance
• Safety
• Poretability
• Good environment

– Compiler
– Interpreter

• Influential designers
• Solves a need

– C efficient system programming
– Javascript Browsers

Instructor’s Background

• First programming language Pascal
• Soon switched to C (unix)

• Efficient low level programming was the key
• Small programs did amazing things

• Led a big project was written in common lisp
• Semi-automatically port low level IBM OS code between 16 and 32 bit

architectures

• The programming setting has dramatically changed:
• Object oriented
• Garbage collection
• Huge programs
• Performance depends on many issues
• Productivity is sometimes more importance than performance
• Software reuse is a key

Other Lessons Learned

• Futuristic ideas may be useful problem-
solving methods now, and may be part of
languages you use in the future
• Examples

• Recursion
• Object orientation
• Garbage collection
• High level concurrency support
• Higher order functions
• Pattern matching

More examples of practical use of
futuristic ideas

• Function passing: pass functions in C by building your own
closures, as in STL “function objects”

• Blocks are a nonstandard extension added by Apple to C
that uses a lambda expression like syntax to create
closures

• Continuations: used in web languages for workflow
processing

• Monads: programming technique from functional
programming

• Concurrency: atomicity instead of locking
• Decorators in Python to dynamically change the behavior

of a function
• Mapreduce for distributed programming

Unique Aspects of PL

• The ability to formally define the syntax of a
programming language

• The ability to formally define the semantics of
the programming language (operational,
axiomatic, denotational)

• The ability to prove that a
compiler/interpreter is correct

• Useful concepts: Closures, Monads,
Continuations, …

Theoretical Topics Covered

• Syntax of PLs

• Semantics of PLs

– Operational Semantics

–  calculus

• Program Verification

– Floyd-Hoare style verification

• Types

Languages Covered

• Python (Used but not taught)

• ML (Ocaml)

• Javascript

• Scala

• Go & Cloud computing

Interesting Topics not covered

• Concurrency

• Modularity

• Object orientation

• Aspect oriented

• Garbage collection

• Virtual Machines

• Compilation techniques

Part 1: Principles

Date Lecture Targil Assignment

30/10 Overview No Targil

6/11 Syntax of Programming
Languages

Recursive Decent
Parsing

Ex. 1 – Syntax

13/11 Natural Operational
Semantics

=

Ex. 2 – Semantics20/11 Small Step Operational
Semantics (SOS)

=

27/3 Lambda Calculus
=

4/12 Typed Lambda Calculus =
Ex3--– Lambda Calculus

11/12 More lambda
calculus

Part 2: Applications
Date Lecture Targil Assignment

11/12 Basic ML More lambda calculus

Ex 4– ML Project
18/12 Advanced ML ML

25/12 No lecture ML

1/1 Type Inference ML

8/1 Basic Javascript Type Inference

Ex. 5– JavaScript Project15/1 Advanced Javascript Javascipt

22/1 Go Javascript

29/1 Exam Rehersal No targil

Summary

• Learn cool programming languages

• Learn useful programming language concepts

• But be prepared to program

– Public domain software

