Programming Language Syntax

CSE 307 - Principles of Programming Languages
Stony Brook University
http:/ /www.cs.stonybrook.edu/ $\sim_{\text {cse }} 307$

Programming Languages Syntax

- Computer languages must be precise:
- Both their form (syntax) and meaning (semantics) must be specified without ambiguity, so that both programmers and computers can tell what a program is supposed to do.
- Example: the syntax of Arabic numerals:
- A digit "is": $0 \mid$ (or) $1|2| 3|4| 5|6| 7|8| 9$
- A non_zero_digit "is" $1|2| 3|4| 5|6| 7|8| 9$
- A natural_number (>0) "is"a non_zero_digit followed by other digits (a number that doesn't start with 0) $=$ the regular expression "non_zero_digit digit*"
- Specifying the syntax for programming languages has 2 parts: Regular Expressions (RE) and Context-Free Grammars

Regular Expressions

- A regular expression is one of the following:
- a character
- the empty string, denoted by ε
- two regular expressions concatenated
- E.g., letter letter
- two regular expressions separated by | (i.e., or),
- E.g., letter (letter I digit)
- a regular expression followed by the Kleene star (concatenation of zero or more previous item)
- E.g., letter (letter | digit)*

Regular Expressions

- RE example: the syntax of numeric constants can be defined with regular expressions:
A digit"is"
0|1|2|3|
4 | 5
6|7|
8
| 9

A number"is" integer | real
An integer"is" digit digit*
A real"is"
integer exponent
\mid decimal (exponent $\mid \varepsilon$)
A decimal"is" digit* (.digit|digit.) digit*
An exponent"is" (e|E)(+|-|E)integer

Regular Expressions

- Regular expressions work well for defining tokens
- They are unable to specify nested constructs
- For example, a context free grammar in BNF form to define arithmetical expressions is:
expr \rightarrow id | number $|-\operatorname{expr}|($ expr $) \mid$ expr op expr op $\rightarrow+|-|*| /$
- Same number of open and closed parenthesis cannot be represented by RE

Chomsky Hierarchy

- Context Free Languages are strictly more powerful than Regular Expressions, BUT, Regular Expressions are way faster to recognize, so
- Regular Expressions are used to create tokens, the leafs of the syntax tree, while Context Free grammars build the syntax tree
- Chomsky Hierarchy:
- Type-3: Regular Languages (Regex) - implemented by Finite Automata (called Lexer, Scanner, Tokenizer)
- Type-2: Context-Free Languages - Pushdown Automata (called Parsers)
- Type-1: Context-Sensitive Language
- Type-0: Unrestricted Language - Turing Machine
- Types 0 and 1 are not for practical use in defining programming languages
- Type 2, for very restricted practical use ($\mathrm{O}\left(\mathrm{N}^{3}\right)$ in the worst case)

Context-Free Grammars (CFG)

- Backus-Naur Form (BNF) notation for CFG:
expr \rightarrow id \mid number \mid - expr $\mid ~($ expr) | expr op expr
op $\longrightarrow+|-|*| /$
- Each of the rules in a CFG is known as a production
- The symbols on the left-hand sides of the productions are nonterminals (or variables)
- A CFG consists of:
- a set of terminals / tokens T (that cannot appear on the left-hand side of any production)
- a set of non-terminals N
- a non-terminal start symbol S, and

Context-Free Grammars (CFG)

- John Backus was the inventor of Fortran (won the ACM Turing Award in 1977)
- John Backus and Peter Naur used the BNF form for Algol
- Peter Naur also won the ACM Turing Award in 2005 for Report on the Algorithmic Language ALGOL 60
- BNF was named by Donald Knuth

Context-Free Grammars (CFG)

- The Kleene star $\boldsymbol{*}$ and meta-level parentheses of regular expressions do not change the expressive power of the notation
id_list \rightarrow id (, id)* is shorthand for
id list \rightarrow id id list tail id_list_tail \rightarrow, id id_list_tail id_list_tail $\rightarrow \varepsilon$
or the left-recursive version

```
id list }->\mathrm{ id
id_list }->\mathrm{ id_list , id
```


Context-Free Grammars (CFG)

- From RE to BNF notation:
- Consider the RE: \mathbf{a} * ($\mathbf{b} \mathbf{a *} \mathbf{b}$) *
- Start with $\mathbf{a *}$:

As \rightarrow a As
$\mid \varepsilon$
Same with ($\mathbf{b} \mathbf{a} \boldsymbol{a} \mathbf{b}$)*. It is:
$S \rightarrow>b$ As $b s$
$\mid \boldsymbol{\varepsilon}$
Now you concatenate them into a single non-terminal:
G \rightarrow As S

Context-Free Grammars (CFG)

- Derivations and Parse Trees: A context-free grammar shows us how to generate a syntactically valid string of terminals

1. Begin with the start symbol
2. Choose a production with the start symbol on the left-hand side; replace the start symbol with the right-hand side of that production
3. Now choose a nonterminal \mathbf{A} in the resulting string, choose a production \mathbf{P} with \mathbf{A} on its left-hand side, and replace \mathbf{A} with the right-hand side of \mathbf{P}

- Repeat this process until no non-terminals remain
- The replacement strategy named right-most derivation chooses at each step to replace the right-most nonterminal with the righthand side of some production
o There are many other possible derivations, including left-most and options in between.

Context-Free Grammars (CFG)

- Example: we can use our grammar for expressions to generate the string "slope $*_{x}+$ intercept":
expr \Rightarrow expr op expr
\Rightarrow expr op id
\Rightarrow expr +id
\Rightarrow expr op expr +id
\Rightarrow expr op id +id
\Rightarrow expr $*$ id +id

Grammar:

expr \rightarrow id \mid number
|- expr | (expr)
expr op expr
$\mathrm{op} \rightarrow+|-|*| /$
\Rightarrow id $*$ id + id
$\Rightarrow \mathrm{id}($ slope $) * \mathrm{id}(x)+\mathrm{id}($ intercept $)$
Notes: The \Rightarrow metasymbol is often pronounced "derives"

- A series of replacement operations that shows how to derive a string of terminals from the start symbol is called a derivation
- Each string of symbols along the way is called a sentential form
- The final sentential form, consisting of only terminals, is called the yield of the derivation

Derivations and Parse Trees

- We can represent a derivation graphically as a parse tree
- The root of the parse tree is the start symbol of the grammar
- The leaves are its yield
- Each node with its children represent a production
- E.g., The parse tree for the expression grammar for

$$
3+4 * 5 \text { is: }
$$

Derivations and Parse Trees

- The example grammar is ambiguous (it can generate multiple parse trees for $3+4 * 5$): one corresponds to $3+(4 * 5)$ and one corresponds to $(3+4) * 5$

Context free grammars

- A better version of our expression grammar should include precedence and associativity:

Context free grammars

- Parse tree for expression grammar for 10-4-3

Scanning

- The scanner and parser for a programming language are responsible for discovering the syntactic structure of a program (i.e., the syntax analysis)
- The scanner /lexer is responsible for
- tokenizing source
\bullet removing comments
- (often) dealing with pragmas (i.e., significant comments)
- saving text of identifiers, numbers, strings
- saving source locations (file, line, column) for error messages
- The Scanner turns a program into a string of tokens
- It matches regular expressions (usually written in Perl style regex) to a program and creates a list of tokens
- There are two syntaxes for regular expressions: Perl-style Regex and EBNF
- Scanners tend to be built three ways:
- Writing / Generating a finite automaton from REs
- Scanner code (usually realized as nested if/case statements)
- Table-driven DFA
- Writing / Generating a finite automaton generally yields the fastest, most compact code by doing lots of special-purpose things, although good automatically-generated scanners come very close

Scanning

- Construction of an NFA equivalent to a given regular expression: cases
(a) base case

(b) concatenation

Scanning

- Construction of an NFA equivalent to a given regular expression: cases

(d) Kleene closure

Scanning

- Construction of an NFA equivalent to the regular expression $\mathbf{d *}$ (. d \| d.) d*

Scanning

- Construction of an NFA equivalent to the regular expression d* (. . d \| d.) d*

sanning

- From an NFA to a DFA:
- Reason: With no way to "guess" the right transition to take from any given state, any practical implementation of an NFA would need to explore all possible transitions concurrently or via backtracking
- We can instead build a DFA from that NFA:
- The state of the DFA after reading any input will be the set of states that the NFA might have reached on the same input
- Our example: Initially, before it consumes any input, the NFA may be in State 1, or it may make epsilon transitions to States 2, 4, 5, or 8
o We thus create an initial State A for our DFA to represent this set: 1,2,4,5,8
(c) Paul Fodor (CS Stony Brook) and Elsevier
- On an input of d, our NFA may move from State 2 to State 3, or from State 8 to State 9.
- It has no other transitions on this input from any of the states in A.
- From State 3, however, the NFA may make epsilon transitions to any of States 2, 4, 5, or 8 .
- We therefore create DFA State B: $2,3,4,5,8,9$
- On a ., our NFA may move from State 5 to State 6
- There are no other transitions on this input from any of the states in A, and there are no epsilon transitions out of State 6.
- We therefore create the singleton DFA State C: 6
- We continue the process until we find all the states and transitions in the DFA (it is a finite process - Why?)

Scanning

- The DFA equivalent to our previous NFA:

Scanner code (usually realized as nested if/case statements)

- Suppose we are building an ad-hoc (hand-written) scanner for a Calculator:
assign \rightarrow :=
plus \rightarrow +
minus \rightarrow -
times \rightarrow *
div \rightarrow /
lparen \rightarrow (
rparen \rightarrow)
id \rightarrow letter (letter | digit)* number \rightarrow digit digit *
| digit * (. digit | digit .) digit *
comment \rightarrow /* (non-* | * non-/)* */
| // (non-newline)* newline

Scanning

- We read the characters one at a time with look-ahead
skip any initial white space (spaces, tabs, and newlines)
if cur_char $\in\{(', ~ ') ', ~ '+', ~ '-', ~ ' * '\} ~$
return the corresponding single-character token
if cur_char = ':'
read the next character
if it is '=' then return assign else announce an error
if cur_char = '/'
peek at the next character
if it is '*' or '/'
read additional characters until "*/" or newline is seen, respectively
jump back to top of code
else return div
if cur_char = .
read the next character
if it is a digit
read any additional digits
return number
else announce an error
if cur_char is a digit
read any additional digits and at most one decimal point return number
if cur_char is a letter
read any additional letters and digits
check to see whether the resulting string is read or
write
if so then return the corresponding token
else return id
else announce an error

Scanning

- Pictorial representation of
a scanner for calculator tokens, in the form of a finite automaton

Scanning

- We run the machine over and over to get one token after another
- Nearly universal rule:
- always take the longest possible token from the input thus foobar is foobar and never \mathbf{f} or $\mathbf{f 0 0}$ or foob
${ }^{\circ}$ more to the point, $\mathbf{3 . 1 4 1 5 9}$ is a real constant and never 3, . , and 14159

canning

- The rule about longest-possible tokens means you return only when the next character can't be used to continue the current token
- the next character will generally need to be saved for the next token
- In some cases, you may need to peek at more than one character of look-ahead in order to know whether to proceed
- In Pascal, for example, when you have a $\mathbf{3}$ and you a see a dot
- do you proceed (in hopes of getting 3.14)? or
- do you stop (in fear of getting 3. .5)? (declaration of arrays in Pascal, e.g., "array [1..6] of Integer")

Scanning

- Writing a pure DFA as a set of nested case statements is a surprisingly useful programming technique - use perl, awk, sed
- Table-driven DFA is what lex and scangen produce
-lex (flex) in the form of C code -scangen in the form of numeric tables (32) and a separate driver

Perl-style Regexp

- Learning by examples:
abcd-concatenation
a (b|c)d-grouping
a (b|c)*d - can apply a number of repeats to char or group
? $=0-1$
* $=0-\mathrm{inf}$
+ = 1-inf
[bc] - character class
[a-zA-Z0-9_] - ranges
. - matches any character.
\a - alpha
\d - numeric
\w - word (alpha, num, _)
\s - whitespace

Perl-style Regexp

- Learning by examples:

How do we write a regexp that matches floats?
digit*(.digit|digit.)digit*
$\backslash d *(\backslash . \backslash d \mid \backslash d \backslash.) \backslash d *$

Parsing

- The parser calls the scanner to get the tokens, assembles the tokens together into a syntax tree, and passes the tree (perhaps one subroutine at a time) to the later phases of the compiler (this process is called syntax-directed translation).
- Most use a context-free grammar (CFG)

Parsing

- It turns out that for any CFG we can create a parser that runs in $\mathbf{O}\left(\mathbf{n}^{3}\right)$ time (e.g., Earley's algorithm and the Cocke-YoungerKasami (CYK) algorithm)
- O (n^{3}) time is clearly unacceptable for a parser in a compiler - too slow even for a program of 100 tokens ($\sim 1,000,000$ cycles)

Parsing

- Fortunately, there are large classes of grammars for which we can build parsers that run in linear time
- The two most important classes are called LL and LR
- LL stands for Left-to-right, Leftmost derivation
- Leftmost derivation - work on the left side of the parse tree
- LR stands for Left-to-right, Rightmost derivation
- Rightmost derivation - work on the right side of the tree
- LL parsers are also called 'top-down', or 'predictive' parsers
- LR parsers are also called 'bottom-up', or 'shift-reduce' parsers

Top-down parsing (LL)

Consider a grammar for a comma separated list of identifiers, terminated by a semicolon:
id_list \rightarrow id id_list_tail
id_list_tail \rightarrow, id id_list_tail id_list_tail \rightarrow;

- The top-down construction of a parse tree for the string: "A, B, C;" starts from the root and applies rules and tried to identify nodes.

Bottom-up parsing (LR)

id(A)
id_list \rightarrow id id_list_tail
id_list_tail \rightarrow, id id_list_tail
id_list_tail \rightarrow;

- The bottom-up construction of a parse tree for the same string: "A, B, C;"
- The parser finds the left-most leaf of the tree is an id. The next leaf is a comma. The parser continues in this fashion, shifting new leaves from the scanner into a forest of partially completed parse tree fragments.

Bottom-up parsing (LR)

id(A)

- The bottom-up construction realizes that some of those fragments constitute a complete right-hand side.
- In this grammar, that occur when the parser has seen the semicolonthe right-hand side of id_list_tail. With this right-hand side in hand, the parser reduces the semicolon to an id_list_tail.
- It then reduces ", id id_list_tail" into another id_list_tail.
- After doing this one more time it is able to reduce "id id_list_tail" into the root of the parse tree, id_list.

Parsing

- The number in LL(1), LL(2), ..., indicates how many tokens of look-ahead are required in order to parse - Almost all real compilers use one token of lookahead
- LL grammars requirements:
- no left recursion
- no common prefixes
- Every LL(1) grammar is also LR(1), though right recursion in production tends to require very deep stacks and complicates semantic analysis

An LL(1) grammar

```
program }->\mathrm{ stmt_list $$(end of file)
stmt_list }->\mathrm{ stmt stmt_list
            | \varepsilon
stmt }->\mathrm{ id := expr
                            | read id
                            | write expr
expr }->\mathrm{ term term_tail
term_tail }->\mathrm{ add_op term term_tail
    | \varepsilon
term }->\mathrm{ factor fact_tailt
fact_tail }->\mathrm{ mult_op factor fact_tail
    | \varepsilon
factor }->\mathrm{ ( expr )
    | id
    | number
    add_op }->\mathrm{ +
            | -
    mult_op }->\mathrm{ *
    | (c) Paul Fodor (CS Stony Brook) and Elsevier
```


LL Parsing

- This grammar captures associativity and precedence, but most people don't find it as pretty
- for one thing, the operands of a given operator aren't in a Right Hand Side (RHS) together!
- however, the simplicity of the parsing algorithm makes up for this weakness
- The first parsers were LL
- How do we parse a string with this grammar?
- by building the parse tree incrementally

LL Parsing

- Example (the average program):
read A
read B
sum $:=A+B$
write sum
write sum / 2 \$
- We keep a stack of non-terminals with the start symbol inserted
- We start at the top and predict needed productions on the basis of the current "left-most" non-terminal in the tree and the current input token
(c) Paul Fodor (CS Stony Brook) and Elsevier

LL Parsing

- Table-driven LL parsing: you have a big loop in which you repeatedly look up an action in a two-dimensional table based on current leftmost non-terminal and current input token
- The actions are:
(1) match a terminal
(2) predict a production OR
(3) announce a syntax error

Parsing

- First, unfold the production rules to collect for each production the possible tokens that could start it

PREDICT

1. program \longrightarrow stmt_list $\$ \$\{$ id, read, write, $\$ \$\}$
2. stmt_list \longrightarrow stmt stmt_list $\{i d$, read, write $\}$
3. stmt_list $\longrightarrow \epsilon\{\$ \$\}$
4. $\operatorname{stm} \longrightarrow$ id $:=\operatorname{expr}\{\mathrm{id}\}$
5. stmt \longrightarrow read id $\{$ read $\}$
6. stmt \longrightarrow write expr $\{$ write $\}$
7. expr \longrightarrow term term_tail $\{($, id, number $\}$
8. term_tail \longrightarrow add_op term term_tail $\{+,-\}$
9. term_tail $\longrightarrow \epsilon)$, id, read, write, $\$ \$\}$
10. term \longrightarrow factor factor_tail $\{($, id, number $\}$
11. factor_tail \longrightarrow mult_op factor factor_tail $\{*, /\}$
12. factor_tail $\longrightarrow \epsilon\{+,-$,), id, read, write, $\$ \$\}$
13. factor $\longrightarrow(\operatorname{expr})\{(\}$
14. factor \longrightarrow id $\{$ id $\}$
15. factor \longrightarrow number $\{$ number $\}$
16. add_op $\longrightarrow+\{+\}$
17. add_op $\longrightarrow-\{-\}$
18. mult_op $\longrightarrow *\{*\}$
19. mult_op $\longrightarrow /\{/\}$

Parsing

- Construct the prediction table: for each possible input token and the left-most nonterminal, what is the possible production rule that will be used?
- The non-terminal will be "used", while the RHS of the production is added to the stack.

PREDICT

1. program \longrightarrow stmt_list $\$ \$$ id, read, write, $\$ \$\}$
2. stmt_list \longrightarrow stmt stmt_list $\{\mathrm{id}$, read, write $\}$
3. stmt_list $\longrightarrow \epsilon\{\$ \$\}$
4. stmt $\longrightarrow \mathrm{id}:=\operatorname{expr}\{\mathrm{id}\}$
5. stmt \longrightarrow read id $\{$ read $\}$
6. stmt \longrightarrow write expr $\{$ write $\}$
7. expr \longrightarrow term term_tail $\{($, id, number $\}$
8. term_tail \longrightarrow add_op term term_tail $\{+,-\}$
9. term_tail $\longrightarrow \epsilon\{$), id, read, write, $\$ \$\}$
10. term \longrightarrow factor factor_tail $\{($, id, number $\}$
11. factor_tail \longrightarrow mul__op factor factor_tail $\{*, /\}$
12. factor_tail $\longrightarrow \epsilon\{+,-$,$) , id, read, write, \$ \$\}$
13. factor \longrightarrow (expr) \{(\}
14. factor \longrightarrow id $\{\mathrm{id}\}$
15. factor \longrightarrow number $\{$ number \}
16. add_op $\longrightarrow+\{+\}$
17. add_op $\longrightarrow-\{-\}$
18. mult_op $\longrightarrow *\{*\}$
19. mult_op $\longrightarrow /\{/\}$
 nonterminal id number read write $:=$ ()

program	1	-	1	1	-	-	-	-	-	-	-	1
stmt_list	2	-	2	2	-	-	-	-	-	-	-	3
stmt	4	-	5	6	-	-	-	-	-	-	-	-
expr	7	7	-	-	-	7	-	-	-	-	-	-
term_tail	9	-	9	9	-	-	9	8	8	-	-	9
term	10	10	-	-	-	10	-	-	-	-	-	-
factor_tail	12	-	12	12	-	-	12	12	12	11	11	12
factor	14	15	-	-	-	13	-	-	-	-	-	-
add_op	-	-	-	-	-	-	-	16	17	-	-	-
mult_op	-	-	-	-	-	-	-	-	-	18	19	-

LL Parsing

- LL(1) parse table for parsing for calculator language

read A
 read B

sum $:=A+B$
write sum write sum / 2 \$\$

PREDICT

1. program \longrightarrow stmt_list $\$ \$$ id, read, write, $\$ \$\}$
2. stmt_list \longrightarrow stmt stmt_list $\{\mathrm{id}$, read, write $\}$
3. stmt_list $\longrightarrow \epsilon\{\$ \$\}$
4. stmt $\longrightarrow \mathrm{id}:=\operatorname{expr}\{\mathrm{id}\}$
5. stmt \longrightarrow read id $\{$ read $\}$
6. stmt \longrightarrow write expr $\{$ write $\}$
7. expr \longrightarrow term term_tail $\{($, id, number $\}$
8. term_tail \longrightarrow add_op term term_tail $\{+,-\}$
9. term_tail $\longrightarrow \epsilon\{$), id, read, write, $\$ \$\}$
10. term \longrightarrow factor factor_tail $\{($, id, number $\}$
11. factor_tail \longrightarrow mul__op factor factor_tail $\{*, /\}$
12. factor_tail $\longrightarrow \epsilon\{+,-$,$) , id, read, write, \$ \$\}$
13. factor \longrightarrow (expr) \{(\}
14. factor \longrightarrow id $\{\mathrm{id}\}$
15. factor \longrightarrow number $\{$ number \}
16. add_op $\longrightarrow+\{+\}$
17. add_op $\longrightarrow-\{-\}$
18. mult_op $\longrightarrow *\{*\}$
19. mult_op $\longrightarrow /\{/\}$

Top-of-stack nonterminal	id	number	read	$\begin{aligned} & \text { Curre } \\ & \text { write } \end{aligned}$: $=$	ut	ker	+	-	*	/	\$\$
program	1	-	1	1	-	-	-	-	-	-	-	1
stmt_list	2	-	2	2	-	-	-	-	-	-	-	3
stmt	4	-	5	6	-	-	-	-	-	-	-	-
expr	7	7	-	-	-	7	-	-	-	-	-	-
term_tail	9	-	9	9	-	-	9	8	8	-	-	9
term	10	10	-	-	-	10	-	-	-	-	-	-
factor_tail	12	-	12	12	-	-	12	12	12	11	11	12
factor	14	15	-	-	-	13	-	-	-	-	-	-
add_op	-	-	-	-	-	-	-	16	17	-	-	-
mult_op	-	-	-	-	-	-	-	-	-	18	19	-

Parse stack

program
stmt_list \$\$
stmt stmt_list $\mathbf{\$ \$}$
read id stmt_list $\$ \mathbf{\$}$
id stmt_list \$\$
stmt_list \$\$
stmt stmt_list $\mathbf{\$ \$}$
read id stmt_list $\$ \mathbf{\$}$
id stmt_list \$\$
stmt_list \$\$
stmt stmt_list \$\$
id $:=$ expr stmt_list $\$ \$$
$:=$ expr stmt_list $\$ \$$
expr stmt_list $\$ \mathbf{\$}$
term term_tail stmt_list \$\$
factor factor_tail term_tail stmt_list \$\$
id factor_tail term_tail stmt_list \$\$
factor_tail term_tail stmt_list $\$ \mathbf{\$}$
term_tail stmt_list \$\$
add_op term term_tail stmt_list \$\$

+ term term_tail stmt_list $\$ \$$
term term_tail stmt_list \$\$
factor factor_tail term_tail stmt_list \$\$ id factor_tail term_tail stmt_list $\$ \mathbf{\$}$
factor_tail term_tail stmt_list \$\$
term_tail stmt_list $\mathbf{\$} \mathbf{\$}$
stmt_list \$\$
stmt stmt_list \$\$
write expr stmt_list $\$ \$$

Input stream

read A read B..
read A read B...
read A read B...
read A read B ..
A read B...
read B sum :=
read B sum :=...
read B sum :=..
B sum :=...
sum $:=A+B \ldots$
sum $:=A+B \ldots$
sum $:=A+B \ldots$
$:=A+B \ldots$
$A+B \ldots$
$A+B \ldots$
$A+B \ldots$
$A+B \ldots$

+ B write sum...
+ B write sum..
+ B write sum...
+ B write sum..
B write sum..
B write sum...
B write sum...
write sum...
write sum write
write sum write
write sum write
write sum write ... predict stmt \longrightarrow write expr
predict program \longrightarrow stmt_list $\$ \mathbf{\$}$
predict stmt_list \longrightarrow stmt stmt_list
predict stmt \longrightarrow read id
match read
match id
predict stmt_list \longrightarrow stmt stmt_list
predict stmt \longrightarrow read id
match read
match id
predict stmt_list \longrightarrow stmt stmt_list
predict stmt \longrightarrow id $:=$ expr
match id
match :=
predict expr \longrightarrow term term_tail
predict term \longrightarrow factor factor_tail
predict factor \longrightarrow id
match id
predict factor_tail $\longrightarrow \epsilon$
predict term_tail \longrightarrow add_op term term_tail
predict add_op $\longrightarrow+$
match +
predict term \longrightarrow factor factor_tail
predict factor \longrightarrow id
match id
predict factor_tail $\longrightarrow \epsilon$
predict term_tail $\longrightarrow \epsilon$
predict stmt_list \longrightarrow stmt stmt_list

Comment

expr stmt_list \$\$

term term_tail stmt_list \$\$

factor factor_tail term_tail stmt_list \$\$ id factor_tail term_tail stmt_list \$\$
factor_tail term_tail stmt_list \$\$
term_tail stmt_list \$\$

stmt_list \$\$

stmt stmt_list \$\$
write expr stmt_list \$\$
expr stmt_list \$\$
term term_tail stmt_list \$\$
factor factor_tail term_tail stmt_list $\$ \$$ id factor_tail term_tail stmt_list \$\$ factor_tail term_tail stmt_list $\$ \$$ mult_op factor factor_tail term_tail stmt_list \$\$ / factor factor_tail term_tail stmt_list \$\$ factor factor_tail term_tail stmt_list $\$ \$$ number factor_tail term_tail stmt_list \$\$ factor_tail term_tail stmt_list $\$ \$$

term_tail stmt_list \$\$

stmt_list \$\$
\$\$
sum write sum / 2 match write
sum write sum / 2 predict expr \longrightarrow term term_tail
sum write sum / 2 predict term \longrightarrow factor factor_tail
sum write sum / 2 predict factor \longrightarrow id
write sum / 2
/ 2
/ 2
/ 2
2
2
|

Parse tree for the average program

LL Parsing

- Problems trying to make a grammar LL(1) -left recursion
- example:
id_list \rightarrow id_list , id id_list \rightarrow id
we can get rid of all left recursion mechanically in any grammar
id_list \rightarrow id id_list_tail
id_list_tail \rightarrow, id id_list_tail
id_list_tail $\rightarrow \boldsymbol{\varepsilon}$

LL Parsing

- Problems trying to make a grammar LL(1) - common prefixes
- example:
stmt \rightarrow id := expr
| id (arg_list)
- we can eliminate left-factor mechanically $=$ "left-factoring"
stmt \rightarrow id id_stmt_tail
id_stmt_tail \rightarrow := expr
| (arg_list)

LL Parsing

- Eliminating left recursion and common prefixes still does NOT make a grammar LL
- there are infinitely many non-LL LANGUAGES, and the mechanical transformations work on them just fine
- Problems trying to make a grammar LL(1)
- the"dangling else" problem prevents grammars from being LL(1) (or in fact LL(k) for any k)
- the following natural (Pascal) grammar fragment is ambiguous: stmt \rightarrow if cond then_clause else_clause | other_stuff
then_clause \rightarrow then stmt
else_clause \rightarrow else stmt | ε
Example String:"if C1 then if C2 then S1 else S2"
Ambiguity: the else can be paired with either if then!!!
(c) Paul Fodor (CS Stony Brook) and Elsevier

LL Parsing

- Desired effect: pair the else with the nearest then.
- The less natural grammar fragment:
stmt \rightarrow balanced_stmt | unbalanced_stmt balanced_stmt \rightarrow if cond then balanced_stmt else balanced stmt
| other_stuff
unbalanced_stmt \rightarrow if cond then stmt | if cond then balanced_stmt else unbalanced_stmt
- A balanced_stmt is one with the same number of thens and elses.
- An unbalanced_stmt has more thens.

LL Parsing

- The usual approach, whether top-down OR bottom-up, is to use the ambiguous grammar together with a disambiguating rule that says: - else goes with the closest then or
- more generally, the first of two possible productions is the one to predict (or reduce) stmt \rightarrow if cond then_clause else_clause | other_stuff then_clause \rightarrow then stmt else_clause \rightarrow else stmt | ε

LL Parsing

- Better yet, languages (since Pascal) generally employ explicit end-markers, which eliminate this problem.
- In Modula-2, for example, one says:
if $A=B$ then
if $C=D$ then $E:=F$ end
else

$$
\mathrm{G}:=\mathrm{H}
$$

end

- Ada says 'end if'; other languages say 'fi'

LL Parsing

- One problem with end markers is that they tend to bunch up. In Pascal you say
if $A=B$ then ...
else if $A=C$ then ...
else if $A=D$ then ...
else if $A=E$ then ...
else ...;
- With end markers this becomes
if $A=B$ then ...
else if $A=C$ then ...
else if $A=D$ then ...
else if $A=E$ then ...
else ...;
end; end; end; end; end; end; ...

LR Parsing

- LR parsers are almost always table-driven:
- like a table-driven LL parser, an LR parser uses a big loop in which it repeatedly inspects a twodimensional table to find out what action to take
- unlike the LL parser, however, the LR driver has non-trivial state (like a DFA), and the table is indexed by current input token and current state
- also the stack contains a record of what has been seen SO FAR (NOT what is expected)

LR Parsing

- LR keeps the roots of its partially
completed subtrees on a stack
- When it accepts a new token from the scanner, it shifts the token into the stack
- When it recognizes that the top few symbols on the stack constitute a right-hand side, it reduces those symbols to their left-hand side by popping them off the stack and pushing the left-hand side in their place identifiers grammar:

```
    Stack contents (roots of partial trees)
\epsilon
id (A)
id (A) ,
id (A) , id (B)
id (A) , id (B) ,
id (A) , id (B) , id (C)
id (A) , id (B) , id (C) ;
id (A) , id (B) , id (C) id_list_tail
id (A) , id (B) id_list_tail
id (A) id_list_tail
id_list
```


LR Parsing
 - LR(1) grammar for the calculator language:

1. program \longrightarrow stmt_list $\$ \$$
2. stmt_list \longrightarrow stmt_list stmt
3. stmt_list \longrightarrow stmt
4. stmt \longrightarrow id $:=$ expr
5. stmt \longrightarrow read id
6. stmt \longrightarrow write expr
7. expr \longrightarrow term
8. expr \longrightarrow expr add_op term
9. term \longrightarrow factor
10. term \longrightarrow term mult_op factor
11. factor \longrightarrow (expr)
12. factor \longrightarrow id
13. factor \longrightarrow number
14. add_op $\longrightarrow+$
15. add_op $\longrightarrow-$
16. mult_op $\longrightarrow *$
17. mult_op $\longrightarrow /$

LR Parsing

- Example (the average program): read A read B
sum $:=A+B$
write sum
write sum / 2 \$\$

LR Parsing

- When we begin execution, the parse stack is empty and we are at the beginning of the production for program:

program \rightarrow. stmt_list \$\$

- When augmented with a •, a production is called an $L R$ item
- This original item (program \rightarrow. stmt_list \$\$) is called the basis of the list.

LR Parsing

- Since the . in this item is immediately in front of a nonterminal—namely stmt_list —we may be about to see the yield of that nonterminal coming up on the input.
program \rightarrow. stmt_list \$\$ stmt_list \rightarrow. stmt_list stmt stmt_list \rightarrow. stmt

LR Parsing

- Since $\boldsymbol{s t m t}$ is a nonterminal, we may also be at the beginning of any production whose left-hand side is $\boldsymbol{s t m t}$:
program \rightarrow. stmt_list \$\$ stmt_list \rightarrow. stmt_list stmt stmt list \rightarrow. stmt stmt \rightarrow. id := expr stmt \rightarrow. read id stmt \rightarrow. write expr
- The additional items to the basis are its closure.

LR Parsing

- Our upcoming token is a read
- Once we shift it onto the stack, we know we are in the following state:

stmt \rightarrow read . id

- This state has a single basis item and an empty closure-the . precedes a terminal.
- After shifting the A, we have:
stmt \rightarrow read id .

LR Parsing

- We now know that read id is the handle, and we must reduce.
- The reduction pops two symbols off the parse stack and pushes a stmt in their place
- Since one of the items in State 0 was
stmt_list \rightarrow. stmt we now have
stmt_list \rightarrow stmt .
Again we must reduce: remove the stmt from the stack and push a stmt list in its place.

LR Parsing

- Our new state:
program \rightarrow stmt_list . \$\$ stmt_list \rightarrow stmt_list . stmt stmt \rightarrow. id $:=$ expr stmt \rightarrow. read id stmt \rightarrow. write expr

State

0. program \longrightarrow •stmt_list $\$ \$$
stmt_list \longrightarrow • stmt_list stmt stmt_list \longrightarrow • stmt
stmt \longrightarrow • id $:=$ expr
stmt \longrightarrow • read id
stmt \longrightarrow • write expr
1. stmt \longrightarrow read • id
2. program \longrightarrow stmt_list • \$\$
stmt_list \longrightarrow stmt_list • stmt
stmt \longrightarrow • id $:=\operatorname{expr}$
stmt \longrightarrow • read id
stmt \longrightarrow • write expr
3. stmt \longrightarrow id $\bullet:=$ expr
4. stmt \longrightarrow write expr
expr \longrightarrow • term
expr $\longrightarrow \bullet$ expr add_op term
term $\longrightarrow \bullet$ factor
term \longrightarrow • term mult_op factor
factor \longrightarrow • (expr)
factor \longrightarrow • id
factor $\longrightarrow \bullet$ number

Transitions

on stmt_list shift and goto 2
on stmt shift and reduce (pop 1 state, push stmt_list on input) on id shift and goto 3
on read shift and goto 1
on write shift and goto 4
on id shift and reduce (pop 2 states, push stmt on input)
on $\$ \$$ shift and reduce (pop 2 states, push program on input) on stmt shift and reduce (pop 2 states, push stmt_list on input)
on id shift and goto 3
on read shift and goto 1
on write shift and goto 4
on := shift and goto 5
on expr shift and goto 6
on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)
on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)
5.
5. stmt \longrightarrow id $:=$ e expr
on expr shift and goto 9
expr \longrightarrow • term
expr \longrightarrow • expr add_op term
term \longrightarrow • factor
term \longrightarrow • term mult_op factor
factor \longrightarrow • (expr)
factor \longrightarrow • id
factor \longrightarrow • number
6. stmt \longrightarrow write expr •
expr \longrightarrow expr • add_op term
add_op \longrightarrow • +
add_op \longrightarrow • -
7. expr \longrightarrow term •
term \longrightarrow term • mult_op factor

on term shift and goto 7
on (shift and goto 8
on add_op shift and goto 10
on mult_op shift and goto 11
on factor shift and reduce (pop 1 state, push term on input)
on id shift and reduce (pop 1 state, push factor on input) on number shift and reduce (pop 1 state, push factor on input)
on FOLLOW $($ stmt $)=\{$ id, read, write, $\$ \$\}$ reduce (pop 2 states, push stmt on input)
on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)
on FOLLOW $($ expr $)=\{$ id, read, write, $\$ \$),,+,-\}$ reduce (pop 1 state, push expr on input)
on $*$ shift and reduce (pop 1 state, push mult_op on input)
on / shift and reduce (pop 1 state, push mult_op on input)
8.

factor $\longrightarrow(\bullet$ expr $)$
expr $\longrightarrow \bullet$ term
expr $\longrightarrow \bullet$ expr add_op term
term \longrightarrow factor
term $\longrightarrow \bullet$ term mult_op factor
factor $\longrightarrow \bullet($ expr $)$
factor $\longrightarrow \bullet$ id
factor $\longrightarrow \bullet$ number

9. stmt $\longrightarrow \mathrm{id}:=\operatorname{expr}$ • expr \longrightarrow expr • add_op term
add_op \longrightarrow •+
add_op $\longrightarrow \bullet-$
10. expr \longrightarrow expr add_op • term
term \longrightarrow • factor
term \longrightarrow • term mult_op factor
factor \longrightarrow • (expr)
factor \longrightarrow • id
factor \longrightarrow • number
on expr shift and goto 12
on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)
on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)
on FOLLOW (stmt $)=\{$ id, read, write, $\$ \$\}$ reduce (pop 3 states, push stmt on input)
on add_op shift and goto 10
on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)
on term shift and goto 13
on factor shift and reduce (pop 1 state, push term on input)
on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)
11. term \longrightarrow term mult_op • factor
factor \longrightarrow • (expr)
factor \longrightarrow • id
factor $\longrightarrow \bullet$ number
12. factor \longrightarrow (expr •)
expr \longrightarrow expr • add_op term
add_op $\longrightarrow \bullet+$
add_op \longrightarrow •-
13. expr \longrightarrow expr add_op term
term \longrightarrow term • mult_op factor
mult_op \longrightarrow •*
mult_op $\longrightarrow \bullet /$
on factor shift and reduce (pop 3 states, push term on input)
on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input) on number shift and reduce (pop 1 state, push factor on input)
on) shift and reduce (pop 3 states, push factor on input) on add_op shift and goto 10
on + shift and reduce (pop 1 state, push add_op on input) on - shift and reduce (pop 1 state, push add_op on input)
on FOLLOW $($ expr $)=\{$ id, read, write, $\$ \$$, $),+,-\}$ reduce
(pop 3 states, push expr on input)
on mult_op shift and goto 11
on $*$ shift and reduce (pop 1 state, push mult_op on input) on / shift and reduce (pop 1 state, push mult_op on input)

Top-of-								urren	inpu	sym									
state	$s l$	s	e	t	f	ao	mo	id	lit	r	w	: $=$	()	+	-	*	/	\$\$
0	s2	b3	-	-	-	-	-	s3	-	s1	s4	-	-	-	-	-	-	-	-
1	-	-	-	-	-	-	-	b5	-	-	-	-	-	-	-	-	-	-	-
2	-	b2	-	-	-	-	-	s3	-	s1	s4	-	-	-	-	-	-	-	b1
3	-	-	-	-	-	-	-	-	-	-	-	s5	-	-	-	-	-	-	-
4	-	-	s6	s7	b9	-	-	b12	b13	-	-	-	s8	-	-	-	-	-	-
5	-	-	s9	s7	b9	-	-	b12	b13	-	-	-	s8	-	-	-	-	-	-
6	-	-	-	_	_	s10	-	r6	-	r6	r6	-	-	-	b14	b15	-	-	r6
7	-	-	-	-	-	-	s11	r7	-	r7	r7	-	-	r7	r7	r7	b16	b17	r7
8	-	-	s12	s7	b9	-	-	b12	b13	-	-	-	s8	-	-	-	-	-	-
9	-	-	-	-	-	s10	-	r4	-	r4	r4	-	-	-	b14	b15	-	-	r4
10	-	-	-	s13	b9	-	-	b12	b13	-	-	-	s8	-	-	-	-	-	-
11	-	-	-	-	b10	-	-	b12	b13	-	-	-	s8	-	-	-	-	-	-
12	-	-	-	-	-	s10	-	-	-	-	-	-	-	b11	b14	b15	-	-	-
13	-	-	-	-		-	s11	r8	-	r8	r8	-	-	r8	r8	r8	b16	b17	r8

Table entries indicate whether to shift (s), reduce (r), or shift and then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized when (shifting and) reducing

Driver for a table-driven LR(1) parser

```
parse_stack.push(\langlenull, start_state))
cur_sym : symbol := scan
    -- get new token from scanner
loop
    cur_state : state := parse_stack.top.st -- peek at state at top of stack
    if cur_state = start_state and cur_sym = start_symbol
    return -- success!
    ar : action_rec := parse_tab[cur_state, cur_sym]
    case ar.action
        shift:
            parse_stack.push(\langlecur_sym, ar.new_state\)
            cur_sym := scan -- get new token from scanner
        reduce:
            cur_sym := prod_tab[ar.prod].Ihs
            parse_stack.pop(prod_tab[ar.prod].rhs_len)
    shift_reduce:
        cur_sym := prod_tab[ar.prod].lhs
    parse_stack.pop(prod_tab[ar.prod].rhs_len-1)
    error:
        parse_error
```


Parsing summary

- A scanner is a DFA
- it can be specified with a state diagram
- An LL or LR parser is a PDA (push down automata)
- a PDA can be specified with a state diagram and a stack
- the state diagram looks just like a DFA state diagram, except the arcs are labeled with <input symbol, top-of-stack symbol> pairs, and in addition to moving to a new state the PDA has the option of pushing or popping a finite number of symbols onto / off the stack
- Early's algorithm does NOT use PDAs, but dynamic programming

Actions

- We can run actions when a rule triggers: - Often used to construct an AST for a compiler.
- For simple languages, can interpret code directly
- We can use actions to fix the Top-Down Parsing problems

Programming

- A compiler-compiler (or parser generator, compiler generator) is a programming tool that creates a parser, interpreter, or compiler from some form of formal description of a language and machine
- the input is a grammar (usually in BNF) of a programming language
- the generated output is the source code of a parser
- Examples of parser generators:
- classical parsing tools: lex, Yacc, bison, flex, ANTLR
- PLY: python implementation of lex and yacc
- Python TPG parser
- ANTLR for python

Classic Parsing Tools

lex - original UNIX Lexical analysis (tokenizing) generator

- create a C function that will parse input according to a set of regular expressions
yacc - Yet Another Compiler Compiler (parsing)
- generate a C program for a parser from BNF rules
bison and flex ("fast lex") - more powerful, free versions of yacc and lex, from GNU Software Fnd'n.

[^0]
Classic Parsing Tools

- Lex and Yacc generate C code for your analyzer \& parser

Lex and Yacc the big picture

ex Example

```
/* lexer.l */
%{
#include "header.h"
int lineno = 1;
%}
%%
[ \t]* ; /* Ignore whitespace */
\n { lineno++; }
lexer.l
    token
specification
lexer.c
```



```
[0-9]+ { yylval.val = atoi (yytext);
                                    return NUMBER; }
[a-zA-Z_][a-zA-Z0-9_]* { yylval.name = strdup(yytext);
                                    return ID; }
\+ { return PLUS; }
- { return MINUS; }
\* { return TIMES; }
\/ { return DIVIDE; }
= { return EQUALS; }
%%
```


Yacc Example

```
/* parser.y */
%{
#include "header.h"
% }
%union {
    char *name;
    int val;
}
%token PLUS MINUS TIMES DIVIDE EQUALS
%token<name> ID;
%token<val> NUMBER;
%%
start : ID EQUALS expr;
expr : expr PLUS term
                            | expr MINUS term
                            | term
    ;
```

parser.y
grammar
specification

Bison Overview

$\frac{\text { myparser.tab.c }}{\text { parser source code }}$

The programmer puts BNF rules and token rules for the parser he wants in a bison source file myparser.y
run bison to create a C program (*.tab.c) containing a parser function.

The programmer must also supply a tokenizer named yylex()

> gcc -o myprog myparser.tab.c yylex.c

myprog
 executable program

- PLY: Python Lex-Yacc $=$ an implementation of lex and yacc parsing tools for Python by David Beazley: http:/ / www.dabeaz.com/ply /
- A bit of history:
\bullet Yacc :~1973. Stephen Johnson (AT\&T)
\bullet Lex : ~1974. Eric Schmidt and Mike Lesk (AT\&T)
-PLY: 2001
- PLY is not a code generator
- PLY consists of two Python modules ply.lex = A module for writing lexers

Tokens specified using regular expressions Provides functions for reading input text ply.yacc $=$ A module for writing grammars

- You simply import the modules to use them
- The grammar must be in a file
- ply.lex example:

```
import ply.lex as lex
tokens = [ 'NAME','NUMBER','PLUS'.'MINUS'.'TIMES'.
    'DIVIDE', EQUALS' ]
t_ignore = ' \t'
t_PLUS < r'\+'
t_MINUS = r'-'
t TIMES = r'\*'
t DIVIDE = r'/'
t EQUALS = r'='
t_TOKNAME
t_NAME = r'[a-zA-Z_][a-zA-ZO-9_]*'

Functions are used when special action code must execute
lex.lex() \# Build the lexer

Each token has a matching declaration of the form t_TOKNAME
```

def t_NUMBER(t):

```
def t_NUMBER(t):
    r'\d+'
    r'\d+'
    t.value = int(t.value)
    t.value = int(t.value)
    return t
```

```
    return t
```

```

Builds the lexer by creating a master regular expression
- Two functions: input() and token()
lex.lex() \# Build the lexer
lex.input("x \(\left.=3 * 4+5 * 6{ }^{\prime \prime}\right) \longleftarrow\) input() feeds a string into the lexer while True:
token() returns the next token or None if not tok: break
\# Use token
 tok.lexpos

Position in input text
,
import ply.yacc as yacc
token information imported from lexer
import mylexer
tokens = mylexer.tokens
def p_assign (p):
'''assign : NAME EQUALS expr'''
\# Import lexer information \# Need token list
grammar rules encoded as functions with names P_rulename def p_expr(p):
\[
\begin{gathered}
\text { '''expr }: \text { expr PLUS term } \\
\text { | expr MINUS term } \\
\text { | term''' }
\end{gathered}
\] grammar rules from BNF
def p_term(p):
            '''term : term TIMES factor
                | term DIVIDE factor
                            | factor'''
def p_factor (p):
    '''factor : NUMBER'''
yacc.yacc() \# Build the parser
data \(=\) "x = 3*4+5*6"
- Parameter p contains grammar symbol values

\section*{def P_factor (p): 'factor : NUMBER' \(\mathrm{p}[0]=\mathrm{p}[1]\)}
- PLY does Bottom-up parsing
- Rule functions process values on right hand side of grammar rule
- Result is then stored in left hand side
- Results propagate up through the grammar

\section*{PLY Calculator Example def p_assign(p): \\ '''assign : NAME EQUALS expr'"' \(\operatorname{vars}[\mathrm{p}[1]]=\mathrm{p}[3]\)}
```

def p_expr_plus(p):
'''expr : expr PLUS term'''
$\mathrm{p}[0]=\mathrm{p}[1]+\mathrm{p}[3]$
def p_term_mul(p):
'''term : term TIMES factor','
$\mathrm{p}[0]=\mathrm{p}[1]$ * $\mathrm{p}[3]$

```
def p_term_factor(p):
    '''term : factor'''
    \(\mathrm{p}[0]=\mathrm{p}[1]\)
def p_factor(p):
    ','factor : NUMBER'''
    \(\mathrm{p}[0]=\mathrm{p}[1]\)

\title{
Build a parse tree using tuples
}
\[
\begin{aligned}
& \text { def p_assign(p) : } \\
& \text { '''assign : NAME EQUALS expr''' } \\
& \mathrm{p}[0]=\left({ }^{\prime} A S S I G N ', p[1], p[3]\right)
\end{aligned}
\]
def p_expr_plus(p):
'''expr : expr PLUS term'''
\(\mathrm{p}[0]=\left({ }^{\prime}+{ }^{\prime}, \mathrm{p}[1], \mathrm{p}[3]\right)\)
def p_term_mul(p):
'''term : term TIMES factor','
\(\mathrm{p}[0]=\left({ }^{\prime *}, \mathrm{p}[1], \mathrm{p}[3]\right)\)
def p_term_factor(p):
'''term : factor'''
\(\mathrm{p}[0]=\mathrm{p}[1]\)
def p_factor(p):
','factor : NUMBER','
\(\mathrm{p}[0]=\left({ }^{\prime} \mathrm{NUM}^{\prime}, \mathrm{p}[1]\right)\)
(c) Paul Fodor (CS Stony Brook) and Elsevier
\(\ggg \mathrm{t}=\) yacc.parse("x \(=3 * 4+5 * 6 ")\)
>>> t
('ASSIGN', 'x',('+',
('*',('NUM', 3), ('NUM', 4)),
('*',('NUM',5),('NUM', 6))
)

(c) Paul Fodor (CS Stony Brook) and Elsevier

\section*{PLY Precedence Specifiers}
- Precedence Specifiers (most precedence at bottom): precedence \(=(\)
('left','PLUS','MINUS'),
('left','TIMES','DIVIDE'),
('nonassoc','UMINUS'),
)
def p_expr_uminus (p):
'expr : MINUS expr \%prec UMINUS'
\(\mathrm{p}[0]=-\mathrm{p}[1]\)

\section*{PLY Best Documentation}
- Google Mailing list/group:
http:/ / groups.google.com/group/ply-hack
- TGP is a lexical and syntactic parser generator for Python
- YACC is too complex to use in simple cases (calculators, configuration files, small programming languages, ...)
- You can also add Python code directly into grammar rules and build abstract syntax trees while parsing

\section*{Python TPG Lexer}
- Toy Parser Generator (TPG): http:/ / cdsoft.fr / tpg
- Syntax:
token <name> <regex> <function> ; separator <name> <regex>;
- Example:
token integer '\d+' int; token float '\d+\.\d*|\.\d+' float; token rbrace '\{'; separator space '\s+';

\section*{Python TPG Lexer}
- EmbedTPG in Python:
import tpg
class Calc:
r"""
separator spaces: '\s+' ; token number: '\d+' ; token add: '[+-]' ; token mul: '[*/]' ;

\author{
\| \| \|
}

Try it in Python: download TGP from

\section*{TPG example}
- Defining the grammar:
- Non-terminal productions:

START -> Expr ;
Expr -> Term ( add Term )* ; Term -> Fact ( mul Fact )* ; Fact -> number | '\\(' Expr '\\)' ;

\section*{TPG example}
import tpg
class Calc:
r"""
separator spaces: '\s+' ;
token number: '\d+' ;
token add: '[+-]' ; token mul: '[*/]' ;
START -> Expr ;
Expr -> Term ( add Term )* ;
Term -> Fact ( mul Fact )* ;
Fact -> number | '\\(' Expr '\\)' ;

\section*{TPG example}
- Reading the input and returning values:
separator spaces: '\s+' ; token number: '\d+' int ;
token add: '[+-]' make_op; token mul: '[*/]' make_op;
- Transform tokens into defined operations: def make_op(s): return \{
'+': lambda \(x, y: x+y\),
'-': lambda \(x, y: x-y\),
'*': lambda x,y: x*y,
'/': lambda x,y: x/y,
\} [s]

\section*{TPG example}

After a terminal symbol is recognized we will store it in a Python variable: for example to save a number in a variable \(n\) : number/n.

Include Python code example:
Expr/t -> Term/t ( add/op Term/f \$t=op(t,f)\$ )* ; Term/f -> Fact/f ( mul/op Fact/a \$f=op(f,a) \$ )* ; Fact/a -> number/a | '\\(' Expr/a '\\)' ;
import math
\# Simple calculator calc.py
import operator
import string
import tpg
def make_op(s):
return \{
'+': lambda \(x, y: x+y\),
'-': lambda \(x, y: x-y\),
'*': lambda \(x, y: x * y\),
'/': lambda x,y: x/y,
\} [s]
class Calc(tpg.Parser):
r"""
separator spaces: '\s+' ;
token number: '\d+' int ;
token add: '[+-]' make_op ;
token mul: '[*/]' make_op ;
START/e -> Term/e ;
(c) Paul Fodor (CS Stony Brook) and Elsevier
```

Term/t -> Fact/t (add/op Fact/f \$ t = op(t,f) \$)* ;
Fact/f -> Atom/f (mul/op Atom/a \$ f = op(f,a) \$)* ;
Atom/a -> number/a | '$' Term/a '$' ;
"""

```
calc = Calc()
if tpg.__python__ \(==3\) :
    operator.div = operator.truediv
    raw_input \(=\) input
expr = raw_input('Enter an expression: ')
print(expr, '=', calc(expr))

\section*{\#!/usr/bin/env python}
```


Larger example: scientific_calc.py

```
import math
import operator
import string
import tpg
if tpg.__python__ \(==3\) :
    operator.div = operator.truediv
    raw_input = input
def make_op (op) :
    return \{
    '+' : operator.add,
    '-' : operator.sub,
    '*' : operator.mul,
    '/' : operator.div,
    '\%' : operator.mod,
    '^' : lambda x,y:x**y,
    '**' : lambda x,y:x**y,
    'cos' : math.cos,
    'sin' : math.sin,
    'tan' : math.tan,
'acos': math.acos,
```

'asin': math.asin,
'atan': math.atan,
'sqr' : lambda x:x*x,
'sqrt': math.sqrt,
'abs' : abs,
'norm': lambda x,y:math.sqrt(x*x+y*y),
} [op]
class Calc(tpg.Parser, dict):
r"""
separator space '\s+' ;
token pow_op '\^|**' \$ make_op
token add_op '[+-]' \$ make_op
token mul_op '[*/%]' \$ make_op
token funct1 '(cos|sin|tan|acos|asin|atan|sqr|sqrt|abs)\b' \$ make_op
token funct2 '(norm)\b' \$ make_op
token real '(\d+\.\d*|\d*\.\d+)([eE][-+]?\d+)?|\d+[eE][-+]?\d+'
\$ float
token integer '\d+' \$ int
token VarId '[a-zA-Z_]\w*'
;

```
```

START/e ->
'vars'
| VarId/v '=' Expr/e \$ self[v]=e
| Expr/e
;
Var/$self.get(v,0)$ -> VarId/v ;
Expr/e -> Term/e (add_op/op Term/t \$ e=op(e,t)
)*
;
Term/t -> Fact/t (mul_op/op Fact/f \$ t=op(t,f)
)*
;
Fact/f ->
add_op/op Fact/f \$ f=op (0,f)
l Pow/f
;
Pow/f -> Atom/f (pow_op/op Fact/e \$ f=op(f,e)
)?
;

```
```

 Atom/a ->
 real/a
 | integer/a
 | Function/a
 | Var/a
 | '\(' Expr/a '\)'
 ;
 Function/y ->
 funct1/f '\(' Expr/x '\)' $ y = f(x)
 | funct2/f '\(' Expr/x1 ',' Expr/x2 '\)' $ y = f(x1,x2)
 ;
 " ""
def mem(self):
vars = sorted(self.items())
memory = ["%s = %s"%(var, val) for (var, val) in vars]
return "\n\t" + "\n\t".join(memory)

```

\section*{print("Calc (TPG example)")}
calc = Calc()
while 1:
1 = raw_input("\n:")
if l:
try:
print(calc(1))
except Exception:
print(tpg.exc())
else:
break

\section*{AntLR}

ANother Tool for Language Recognition is an LL(k) parser and translator generator tool which can create
- lexers
- parsers
- abstract syntax trees (AST’s)
in which you describe the language grammatically
and in return receive a program that can recognize and translate that language

\section*{Tasks Divided}
- Lexical Analysis (scanning)
- Semantic Analysis (parsing)
- Tree Generation
- Abstract Syntax Tree (AST) is a structure which keeps information in an easily traversable form (such as operator at a node, operands at children of the node)
- ignores form-dependent superficial details
- Code Generation

\section*{The Java Code}
- The code to invoke the parser:
import java.io.*;
class Main \{
public static void main(String[] args) \{ try \{
// use DataInputStream to grab bytes MyLexer lexer = new MyLexer (
new DataInputStream(System.in));
MyParser parser = new MyParser (lexer); int \(x=\) parser.expr(); System.out.println(x);
\} catch (Exception e) \{ System.err.println("exception: "+e);
\}
\}
\}

\section*{Abstract Syntax Trees}
- Abstract Syntax Tree: Like a parse tree, without unnecessary information
- Two-dimensional trees that can encode the structure of the input as well as the input symbols
- An AST for \((3+4)\) might be represented as

- No parentheses are included in the tree!```


[^0]:    (c) Paul Fodor (CS Stony Brook) and Elsevier

