
Objectives

Some terms related to translation systems:

I transcompilation

I batch processing

I compiling

I interpretation

I interactive systems (REPL)

A programming language is distinct from its implemenation

Objectives

Types of code:

I Source code

I Bytecode

I Assembly code

I Machine code

Translation strategies:

I Just-in-time (JIT). Compilation during execution of a
program.

I Ahead-of-time (AOT).

Objectives

Notable compilers:

I GCC

I Clang (LLVM)

I ifort for Intel, IBM/Power Fortran, Cray (all commercial
compilers)

Notable virtual machines:

I Java virtual machine

I Common Language Runtime (CLR)

Literature

Besides Wikipedia and textbooks on compiler construction we
have:

1. Scott 4th, Section 1.4, page 17ff

2. Loudin & Lambert 3rd, Section 1.5, page 18ff

3. Sebesta, Chapter 1

High-Level Languages

High-level languages are created to make programming easier for
people and reduce the tedious detail of programming with the
instructions of the (low-level) computer hardware.

Computer manufacturers are likewise free to concentrate on
economical and powerful hardware without directly addressing the
need for an interface for people.

Programming language translation systems (and operating
systems) make the hardware usable.

Many High-Level Languages

I Basic

I Fortran 95

I Ada

I Python

I Haskell

I C++

I Java

Humorous advice about choosing a programming language

Java is often used as a teaching language because it has fewer
ways “to shoot yourself in the foot .”

http://www.cs.fit.edu/~ryan/compare/tpk.basic
http://www.cs.fit.edu/~ryan/compare/tpk-f95.html
http://www.cs.fit.edu/~ryan/compare/tpk-adb.html
http://www.cs.fit.edu/~ryan/compare/tpk-py.html
http://www.cs.fit.edu/~ryan/compare/tpk-hs.html
http://www.cs.fit.edu/~ryan/compare/tpk-cc.html
http://www.cs.fit.edu/~ryan/compare/TPK-java.html
http://www.cs.fit.edu/~ryan/cse4250/pl.html
http://www.cs.fit.edu/~ryan/cse4250/shoot.html

Implementation

A program in a high-level programming language must be prepared
for execution, because these languages are designed to
accommodate humans and not be executed directly by the
hardware.

This translation is too complex, tedious and error prone to be done
manually. In fact, other computer programs translate the program
to instructions a machine can understand.

Fortran was first to make this clear to a wide audience.

Each high-level programming language has one or more translators
or implementations which translates all programs in that language.

For example, there are the GNU gfortran and g77 compilers, not
to mention many commercial compilers for Fortran.

There are the Sun/Oracle JDK tools for Java, the IBM Jikes
compiler for Java (no longer being maintained), and the GNU gcj

compiler (also no longer current).

The GNU gcc compiler for the C programming language and
Clang another open source translation system for the C
programming language.

https://en.wikipedia.org/wiki/Clang

Transcompilation

For example, the Chicken programming language, a dialect of
Scheme, has an implementation in which Chicken programs are
translated into the C programming language.

Although we may consider the C programming language to be a
high-level programming, it is pretty “low” and is often used as a
target in transcompilers. Also, C has implementations that produce
efficient native code.

https://en.wikipedia.org/wiki/Chicken_(Scheme_implementation)

Ultimately you must bring the program source code to the computer.

Definition
Batch processing is execution of a series of programs (“jobs”) on a
computer without manual intervention. This is in contrast to
“online” or interactive programs which prompt the user for such
input.

An executable file, executable code, executable program, or simply
an executable or a binary is a data file that can be executed
directly by the hardware over and over again.

For example, once your payload programs where translated to
exectuable files, they could be run over and over again every week
for years.

Terminology

I transcompilation : source to source translation

I compiling (originally): linking subroutines

I compiling: translating to native (of some real machine) code
Compilers sometimes produce an object module which can
then then be executed again and again on different data.

I interpreting: running the program under the control of a
software program

I interactive: read-eval-print loop (REPL). Evaluate often
means interpret; but could be extended to compile and run.

I just-in-time compiling: a hybrid approach of translation during
execution to machine code or software emulation whichever is
predicted to make execution faster

https://en.wikipedia.org/wiki/Source-to-source_compiler

Compiler

In its usual English meaning, a compiler is one that collects and
edits material written by others into a collection.

. . . compiled by Carl Parrish, . . . edited by F. Bauer and J. Eickel

Compiler

A compiler was originally a program that “compiled”
subroutines. When in 1954 the combination “algebraic
compiler” came into use, or rather into misuse, the mean-
ing of the term had already shifted into the present one.

Friedrich L. Bauer, “Historical remarks on compiler construction”,
in Compiler Construction: An Advanced Course, edited by F. L.
Bauer and Jürgen Eickel, Lecture Notes in Computer Science #21,
Springer-Verlag, Berlin, pages 603-621, 1974.

Compiler

A compiler translates commands to native code.

Traditional Compiler

source
program

compiler

executable
file

user
input

executable/file

output

Traditional Compiler With Runtime System

source
program

compiler

runtime
system

executable
file

user
input

executable/file

output

Traditional Compiler With Dynamic Loading

source
program

compiler

dynamic
loader

executable
file

user
input

exec
file

run
sys

output

General Translation System

source
program

user
input

translator

abstract
instructions

Bytecode Translation System

source
program

translator

byte
code

byte
code

user
input

virtual
machine

output

Read, Eval, Print Loop (REPL)

Some sort of cycle

program,input

read, eval, print
system

output

Interpreter

An interpreter performs commands immediately.

Traditional Compilation

Traditional Compilation

A program — software written by people like you – translates the
high-level language into a form the computer can execute.

The source program — a text file — is the input, and the output is
an an executable file for some machine.

How do you write a compiler?

How do you solve a large problem?

One important approach is to break it into well-defined
sub-problems.
(A compiler is just a big program.)

How do you write a compiler?

How do you solve a large problem?

One important approach is to break it into well-defined
sub-problems.
(A compiler is just a big program.)

Compilation Steps

When examined in more detail, compilation takes several steps.

1. preprocessing, macro processing

2. translation (compiling)

3. assembling mnemonics

4. linking other code and preparing for execution

Macros (a dangerous facility) are found in C and C++. Java does
some limited preprocessing to translate character sets and Unicode
escapes.

A More Detailed View

Input: source program

1. lexical analysis

2. syntax analysis

3. intermediate code generation

4. code optimization

5. assembly code generation

Output: Assembly program identical to the input.

Phases of the Typical Compiler

Phases of the Typical Compiler

Language Systems

Language translation and execution systems are big and complex,
because computers can execute larger and larger programs faster
and faster. The programmer or program user rarely sees the
individual steps.

IDEs, interactive language systems, JIT compilers, incremental
compilers, and dynamic linking all conspire to hide and blur the
important individual steps. (But make programming development
faster and easier).

Let us take a brief look at some of this individual steps.

Assembly

Interpreting

An interpreter is a program that takes another program as input
and executes it, possibly line-by-line, possibly without translating it
to an intermediate form. Sometimes the translation is to an
intermediate form which may be executed by a virtual or abstract
machine. Examples of abstract machines include: Forth virtual
machine, p-code machine (Pascal), Python virtual machine, SECD
machine (lambda calculus), Smalltalk virtual machine, Warren
Abstract machine (Prolog).

As hardware gets faster, the advantage of portability overtakes the
disadvantage of slow emulation, and multi-language virtual
machines are becoming more important: the Microsoft .Net
platform (C#, F#, Managed C++, Python) and the Java virtual
machine (Java, Jython, Ada, and many other languages). Since
these abstract machines execute complex source languages the
machines must also provide the run-time support these languages
expect.

Interpreting (continued)

Since an abstract machine may be abstract by virtue of having
abstract instructions or by having abstract capabilities, the term
abstract/virtual machine may be ambiguous and lead to confusion.
Abstract instructions are likely to be slower than real instructions
because of the extra software overhead of interpretation. Abstract
capabilities are likely to be faster than programmer-supplied code
because of the skill of the implementers and the use of the
underlying machine.

The key aspect of an interpreter is emulation. The key aspect of a
run-time system is support of functionality.

Interpreting (continued)

Superficially, we equate abstract and virtual machine.
Technically, abstract connotes emulation, and virtual functionality.
Hence, JVM is so-called to emphasize that the computing base of
Java is beyond a mere ordinary machine and it does not mean the
language is emulated. The base could be realized in hardware (but
attempts so-far have not proved popular). JVMs could be
interpreters, JITs, or the native executable code from compilers.

Run-time system

Modern, high-level languages require that a program have
additional support during execution. This is sometimes called the
run-time system. The run-time system contains lots of code that is
not written by the programmer, but was written by others and
used when a program in the language is run.

The run-time system may provide support for mathematical
operations (e.g., exponentiation), floating-point arithmetic,
complex numbers, high-level input and output functions,
concurrency, memory management (e.g., garbage collection), etc.
Modern languages tend to have larger and larger support systems.

The work of the run-time system may require assistance of the
translation system, for example, to insert reference counting code,
debugging code, etc. The run-time system must be available to
every program in the language so it can run correctly, but none of
the functionality might actually be used.

Run-time system

The distinction between the run-time system and the standard
libraries is not always clear. Take these two statements in Java:

printf ("%d %s %f", 4, this , Math.sqrt (2.0));
new Thread (). start ();

Both statements appear to be just simple calls to library routines,
but ultimately considerable code gets executed which the
programmer did not, could not, or would not write (in Java).

The run-time system may depend on detailed knowledge about the
program itself and the hardware. A library routine usually depends
on just its arguments.

A language with a small run-time system like C, is efficient in time
and space, but provides less of a virtual platform to support the
programmer.

The programmer needs to write more code and know more about
the hardware, but may be able to utilize the hardware more directly.

Back to translation . . .

Some Important Unix Development Tools

I gcc

I gas

I gdb

I make

I objdump

I uname

I od

http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/GNU_Assembler
http://en.wikipedia.org/wiki/Gdb
http://en.wikipedia.org/wiki/make
http://en.wikipedia.org/wiki/Objdump
http://en.wikipedia.org/wiki/Uname
http://en.wikipedia.org/wiki/Od_%28Unix%29

I assembler – like a compiler, a translator from source code to
target code; it converts symbolic machine code to binary
machine code, and from symbolic data to binary data.

I linker – combines one or more program object files and
probably some library objects files into one executable file.

I loader – An integrated part of the operating system (which
makes it essentially invisible) which loads the content of an
executable code file into memory.

Compilation — gcc

#include <stdio.h>

int
main () {

fputs ("Hello world !\n", stdout);
return 0;

}

Compilation — gcc

Written primarily in C.
GCC started out using LALR parsers generated with Bison, but
gradually switched to hand-written recursive-descent parsers for
C++ in 2004,[32] and for C and Objective-C in 2006.[33]
Currently[when?] all front ends use hand-written recursive-descent
parsers.
In August 2012, the GCC steering committee announced that GCC
now uses C++ as its implementation language. This means that
to build GCC from sources, a C++ compiler is required that
understands ISO/IEC C++03 standard.

Compilation — gcc

The standard compiler releases since 7 include front ends for C
(gcc), C++ (g++), Objective-C, Objective-C++, Fortran
(gfortran), Ada (GNAT), and Go (gccgo). Version 9.1 added
support for D. Versions prior to GCC 7 also supported Java (gcj).

The Fortran front end was g77 before version 4.0, which only
supports FORTRAN 77. In newer versions, g77 is dropped in favor
of the new GNU Fortran front end (retaining most of g77’s
language extensions) that supports Fortran 95 and large parts of
Fortran 2003 and Fortran 2008 as well.

Backends: ARM, IA-32 (x86), PA-RSIC, MIPS, PowerPC, Sparc,
x86-64

GCC

GENERIC is an intermediate representation language used as a
“middle end” while compiling source code into executable binaries.
A subset, called GIMPLE, is targeted by all the front ends of GCC.

GCC Architecture

https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture

Compilation — gcc

Now the preprocessing is integrated with the tokenization in cc1.
The options -save-temps will save the intermediate files *.i *.s

by running cc1 twice.

Compilation — gcc

-no-integrated-cpp
Perform preprocessing as a separate pass before compilation. By
default, GCC performs preprocessing as an integrated part of input
tokenization and parsing. If this option is provided, the appropriate
language front end (cc1, cc1plus, or cc1obj for C, C++, and
Objective-C, respectively) is instead invoked twice, once for
preprocessing only and once for actual compilation of the
preprocessed input. This option may be useful in conjunction with
the -B or -wrapper options to specify an alternate preprocessor or
perform additional processing of the program source between
normal preprocessing and compilation.

Compilation — gcc 5.4.0

date: Thu, 10 Jan 2019 at 09:32am EST

node: cs-compute

machine: x86_64

OS: GNU/Linux

processor: x86_64

GCC version: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609

bytes name file type

86 hello.c C source, ASCII text

534 hello.s assembler source, ASCII text

1584 hello.o ELF 64-bit LSB relocatable, x86-64

8648 hello ELF 64-bit LSB executable, x86-64

Compilation — gcc 5.4.0

$ gcc -o hello -v hello.c

Target: x86_64-linux-gnu

[No cpp0!]

cc1 -v hello.c -o /tmp/cctmeoRd.s

as -v --64 -o /tmp/ccLzLAho.o /tmp/cctmeoRd.s

GNU assembler version 2.26.1 (x86_64-linux-gnu)

using BFD version (GNU Binutils for Ubuntu) 2.26.1

collect2 -m elf_x86_64 --hash-style=gnu -z relro -o hello

.../x86_64-linux-gnu/crt1.o .../x86_64-linux-gnu/crti.o

.../crtbegin.o .../crtend.o .../crtn.o

/tmp/ccLzLAho.o -lgcc -lc

Compilation — gcc

%gcc -o hello -v hello.c

Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/specs

gcc version 2.95.3 20010315 (release)

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/cpp0

-lang-c -v -D__GNUC__=2 -D__GNUC_MINOR__=95 -Dsparc -Dsun -Dunix -D__svr4__ -D__SVR4 -D__sparc__ -D__sun__ -D__unix__ -D__svr4__ -D__SVR4 -D__sparc -D__sun -D__unix

-Asystem(unix) -Asystem(svr4) -D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc) hello.c /var/tmp/cc5V4Wy1.i

GNU CPP version 2.95.3 20010315 (release) (sparc)

#include "..." search starts here:

#include <...> search starts here:

/software/solaris/gnu/include

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/../../../../sparc-sun-solaris2.6/include

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/include

/usr/include

End of search list.

The following default directories have been omitted from the search path:

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/../../../../include/g++-3

End of omitted list.

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/cc1

/var/tmp/cc5V4Wy1.i -quiet -dumpbase hello.c -version -o /var/tmp/cc47fQVU.s

GNU C version 2.95.3 20010315 (release) (sparc-sun-solaris2.6) compiled by GNU C version 3.0.3.

/software/solaris/gnu/bin/as -V -Qy -s -o /var/tmp/ccNHrBWS.o /var/tmp/cc47fQVU.s

GNU assembler version 2.11.2 (sparc-sun-solaris2.6) using BFD version 2.11.2

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/collect2

-V -Y P,/usr/ccs/lib:/usr/lib -Qy -o hello /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/ctr1.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crti.o /usr/ccs/lib/values-Xa.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtbegin.o -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3 -L/software/solaris/gnu/sparc-sun-solaris2.6/lib -L/usr/ccs/bin -L/usr/ccs/lib -L/software/solaris/gnu/lib /var/tmp/ccNHrBWS.o -lgcc -lc -lgcc /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtend.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.6/2.95.3/crtn.o

GNU ld version 2.11.2 (with BFD 2.11.2)

Supported emulations:

elf32_sparc

crt1.o is the main program.

crt0 (also known as c0) is a set of start-up routines linked into a
C program that performs any initialization work required before
calling the program’s main function. It generally takes the form of
an object file called crt0.o, often written in assembly language,
which is automatically included by the linker into every executable
file it builds.
crt0 contains the most basic parts of the runtime library. As such,
the exact work it performs depends on the program’s compiler,
operating system and C standard library implementation. Beside
the initialization work required by the environment and tool chain,
crt0 can perform additional operations defined by the programmer,
such as executing C++ global constructors and C functions
carrying the GCC’s ((constructor)) attribute.
“crt” stands for “C runtime”, and the zero stands for “the very
beginning”. However, when programs are compiled using GCC, it
is also used for languages other than C. Alternative versions of crt0
are available for special usage scenarios; for example, the profiler
gprof requires its programs to be compiled with gcrt0.

cs> gcc -S hello.c -o hello.s

.file "hello.c"
gcc2_compiled .:
.section ".rodata"

.align 8
.LLC0:

.asciz "Hello world !\n"
.section ".text"

.align 4

.global main

.type main ,# function

.proc 04
main:

!#PROLOGUE# 0
save %sp , -112, %sp
!#PROLOGUE# 1
sethi %hi(.LLC0), %o1
or %o1 , %lo(.LLC0), %o0
sethi %hi(__iob +16), %o2
or %o2 , %lo(__iob +16), %o1
call fputs , 0
nop
mov 0, %i0
b .LL2
nop

.LL2:
ret
restore

.LLfe1:
.size main ,.LLfe1 -main
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

gcc compiles C tonative code

cs> gcc -S hello.c -o hello.s

.file "hello.c"
gcc2_compiled .:
.section ".rodata"

.align 8
.LLC0:

.asciz "Hello world !\n"
.section ".text"

.align 4

.global main

.type main ,# function

.proc 04
main:

!#PROLOGUE# 0
save %sp , -112, %sp
!#PROLOGUE# 1
sethi %hi(.LLC0), %o1
or %o1 , %lo(.LLC0), %o0
sethi %hi(__iob +16), %o2
or %o2 , %lo(__iob +16), %o1
call fputs , 0
nop
mov 0, %i0
b .LL2
nop

.LL2:
ret
restore

.LLfe1:
.size main ,.LLfe1 -main
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

gcc compiles C tonative code

ELF Executable File
7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 01 00 03 00

01 00 00 00 00 00 00 00 00 00 00 00 fc 00 00 00 00 00 00 00

34 00 00 00 00 00 28 00 0b 00 08 00 8d 4c 24 04 83 e4 f0 ff

71 fc 55 89 e5 51 83 ec 14 a1 00 00 00 00 89 44 24 0c c7 44

24 08 0d 00 00 00 c7 44 24 04 01 00 00 00 c7 04 24 00 00 00

00 e8 fc ff ff ff b8 00 00 00 00 83 c4 14 59 5d 8d 61 fc c3

48 65 6c 6c 6f 20 77 6f 72 6c 64 21 0a 00 00 47 43 43 3a 20

28 55 62 75 6e 74 75 20 34 2e 33 2e 32 2d 31 75 62 75 6e 74

75 31 32 29 20 34 2e 33 2e 32 00 00 2e 73 79 6d 74 61 62 00

2e 73 74 72 74 61 62 00 2e 73 68 73 74 72 74 61 62 00 2e 72

65 6c 2e 74 65 78 74 00 2e 64 61 74 61 00 2e 62 73 73 00 2e

72 6f 64 61 74 61 00 2e 63 6f 6d 6d 65 6e 74 00 2e 6e 6f 74

65 2e 47 4e 55 2d 73 74 61 63 6b 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 1f 00 00 00 01 00 00 00

06 00 00 00 00 00 00 00 34 00 00 00 44 00 00 00 00 00 00 00

00 00 00 00 04 00 00 00 00 00 00 00 1b 00 00 00 09 00 00 00

00 00 00 00 00 00 00 00 80 03 00 00 18 00 00 00 09 00 00 00

01 00 00 00 04 00 00 00 08 00 00 00 25 00 00 00 01 00 00 00

03 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 04 00 00 00 00 00 00 00 2b 00 00 00 08 00 00 00

03 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 04 00 00 00 00 00 00 00 30 00 00 00 01 00 00 00

02 00 00 00 00 00 00 00 78 00 00 00 0e 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 38 00 00 00 01 00 00 00

00 00 00 00 00 00 00 00 86 00 00 00 25 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 41 00 00 00 01 00 00 00

00 00 00 00 00 00 00 00 ab 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 11 00 00 00 03 00 00 00

00 00 00 00 00 00 00 00 ab 00 00 00 51 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 01 00 00 00 02 00 00 00

00 00 00 00 00 00 00 00 b4 02 00 00 b0 00 00 00 0a 00 00 00

08 00 00 00 04 00 00 00 10 00 00 00 09 00 00 00 03 00 00 00

00 00 00 00 00 00 00 00 64 03 00 00 1c 00 00 00 00 00 00 00

00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

04 00 f1 ff 00 00 00 00 00 00 00 00 00 00 00 00 03 00 01 00

00 00 00 00 00 00 00 00 00 00 00 00 03 00 03 00 00 00 00 00

00 00 00 00 00 00 00 00 03 00 04 00 00 00 00 00 00 00 00 00

00 00 00 00 03 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00

03 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 06 00

09 00 00 00 00 00 00 00 44 00 00 00 12 00 01 00 0e 00 00 00

00 00 00 00 00 00 00 00 10 00 00 00 15 00 00 00 00 00 00 00

00 00 00 00 10 00 00 00 00 68 65 6c 6c 6f 2e 63 00 6d 61 69

6e 00 73 74 64 6f 75 74 00 66 77 72 69 74 65 00 12 00 00 00

01 09 00 00 2d 00 00 00 01 05 00 00 32 00 00 00 02 0a 00 00

Executable and Linkable Format (ELF, formerly called Extensible
Linking Format) is a common standard file format for executables,
object code, shared libraries, and core dumps. First published in
the System V Application Binary Interface specification, and later
in the Tool Interface Standard, it was quickly accepted among
different vendors of Unix systems. In 1999 it was chosen as the
standard binary file format for Unix and Unix-like systems on x86
by the 86open project. It has replaced a.out and COFF formats in
Unix-like operating systems.
ELF is flexible and extensible, and it is not bound to any particular
processor or architecture. This has allowed it to be adopted by
many different operating systems on many different platforms.

Compilation

0000 7f45 4c46 0102 0100 0000 0000 0000 0000 del E L F soh stx soh nul nul nul nul nul nul nul nul nul

0020 0001 0002 0000 0001 0000 0000 0000 0000 nul soh nul stx nul nul nul soh nul nul nul nul nul nul nul nul

0040 0000 00e8 0000 0000 0034 0000 0000 0028 nul nul nul h nul nul nul nul nul 4 nul nul nul nul nul (

0060 000a 0007 9de3 bf90 1300 0000 9012 6000 nul nl nul bel gs c ? dle dc3 nul nul nul dle dc2 ‘ nul

0100 1500 0000 9212 a000 4000 0000 0100 0000 nak nul nul nul dc2 dc2 sp nul @ nul nul nul soh nul nul nul

0120 b010 2000 1080 0002 0100 0000 81c7 e008 0 dle sp nul dle nul nul stx soh nul nul nul soh G ‘ bs

0140 81e8 0000 0000 0000 4865 6c6c 6f20 776f soh h nul nul nul nul nul nul H e l l o sp w o

0160 726c 6421 0a00 0000 0047 4343 3a20 2847 r l d ! nl nul nul nul nul G C C : sp (G

0200 4e55 2920 322e 3935 2e33 2032 3030 3130 N U) sp 2 . 9 5 . 3 sp 2 0 0 1 0

0220 3331 3520 2872 656c 6561 7365 2900 002e 3 1 5 sp (r e l e a s e) nul nul .

0240 7379 6d74 6162 002e 7374 7274 6162 002e s y m t a b nul . s t r t a b nul .

0260 7368 7374 7274 6162 002e 7465 7874 002e s h s t r t a b nul . t e x t nul .

0300 7265 6c61 2e74 6578 7400 2e64 6174 6100 r e l a . t e x t nul . d a t a nul

0320 2e62 7373 002e 726f 6461 7461 002e 636f . b s s nul . r o d a t a nul . c o

0340 6d6d 656e 7400 0000 0000 0000 0000 0000 m m e n t nul nul nul nul nul nul nul nul nul nul nul

0360 0000 0000 0000 0000 0000 0000 0000 0000 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*

0420 0000 001b 0000 0001 0000 0006 0000 0000 nul nul nul esc nul nul nul soh nul nul nul ack nul nul nul nul

0440 0000 0034 0000 0030 0000 0000 0000 0000 nul nul nul 4 nul nul nul 0 nul nul nul nul nul nul nul nul

0460 0000 0004 0000 0000 0000 0021 0000 0004 nul nul nul eot nul nul nul nul nul nul nul ! nul nul nul eot

0500 0000 0000 0000 0000 0000 0368 0000 003c nul nul nul nul nul nul nul nul nul nul etx h nul nul nul <

0520 0000 0008 0000 0001 0000 0004 0000 000c nul nul nul bs nul nul nul soh nul nul nul eot nul nul nul ff

0540 0000 002c 0000 0001 0000 0003 0000 0000 nul nul nul , nul nul nul soh nul nul nul etx nul nul nul nul

0560 0000 0064 0000 0000 0000 0000 0000 0000 nul nul nul d nul nul nul nul nul nul nul nul nul nul nul nul

0600 0000 0001 0000 0000 0000 0032 0000 0008 nul nul nul soh nul nul nul nul nul nul nul 2 nul nul nul bs

0620 0000 0003 0000 0000 0000 0064 0000 0000 nul nul nul etx nul nul nul nul nul nul nul d nul nul nul nul

0640 0000 0000 0000 0000 0000 0001 0000 0000 nul nul nul nul nul nul nul nul nul nul nul soh nul nul nul nul

0660 0000 0037 0000 0001 0000 0002 0000 0000 nul nul nul 7 nul nul nul soh nul nul nul stx nul nul nul nul

0700 0000 0068 0000 0010 0000 0000 0000 0000 nul nul nul h nul nul nul dle nul nul nul nul nul nul nul nul

Compilation

hello.o: file format elf32-sparc

Contents of section .text:

0000 9de3bf90 13000000 90126000 15000000‘.....

0010 9212a000 40000000 01000000 b0102000@......... .

0020 10800002 01000000 81c7e008 81e80000

Contents of section .data:

Contents of section .rodata:

0000 48656c6c 6f20776f 726c6421 0a000000 Hello world!....

Contents of section .comment:

0000 00474343 3a202847 4e552920 322e3935 .GCC: (GNU) 2.95

0010 2e332032 30303130 33313520 2872656c .3 20010315 (rel

0020 65617365 2900 ease).

Disassembly of section .text:

00000000 <main>:

0: 9d e3 bf 90 save %sp, -112, %sp

4: 13 00 00 00 sethi %hi(0), %o1

8: 90 12 60 00 mov %o1, %o0 ! 0 <main>

c: 15 00 00 00 sethi %hi(0), %o2

10: 92 12 a0 00 mov %o2, %o1 ! 0 <main>

14: 40 00 00 00 call 14 <main+0x14>

18: 01 00 00 00 nop

1c: b0 10 20 00 clr %i0 ! 0 <main>

20: 10 80 00 02 b 28 <main+0x28>

24: 01 00 00 00 nop

28: 81 c7 e0 08 ret

2c: 81 e8 00 00 restore

Compilation
hello.o: file format elf32-i386

Contents of section .text:

0000 8d4c2404 83e4f0ff 71fc5589 e55183ec .L$.....q.U..Q..

0010 14a10000 00008944 240cc744 24080d00D$..D$...

0020 0000c744 24040100 0000c704 24000000 ...D$.......$...

0030 00e8fcff ffffb800 00000083 c414595dY]

0040 8d61fcc3 .a..

Contents of section .rodata:

0000 48656c6c 6f20776f 726c6421 0a00 Hello world!..

Contents of section .comment:

0000 00474343 3a202855 62756e74 7520342e .GCC: (Ubuntu 4.

0010 332e322d 31756275 6e747531 32292034 3.2-1ubuntu12) 4

0020 2e332e32 00 .3.2.

Disassembly of section .text:

00000000 <main>:

0: 8d 4c 24 04 lea 0x4(%esp),%ecx

4: 83 e4 f0 and $0xfffffff0,%esp

7: ff 71 fc pushl -0x4(%ecx)

a: 55 push %ebp

b: 89 e5 mov %esp,%ebp

d: 51 push %ecx

e: 83 ec 14 sub $0x14,%esp

11: a1 00 00 00 00 mov 0x0,%eax

16: 89 44 24 0c mov %eax,0xc(%esp)

1a: c7 44 24 08 0d 00 00 movl $0xd,0x8(%esp)

21: 00

22: c7 44 24 04 01 00 00 movl $0x1,0x4(%esp)

29: 00

2a: c7 04 24 00 00 00 00 movl $0x0,(%esp)

31: e8 fc ff ff ff call 32 <main+0x32>

36: b8 00 00 00 00 mov $0x0,%eax

3b: 83 c4 14 add $0x14,%esp

3e: 59 pop %ecx

3f: 5d pop %ebp

40: 8d 61 fc lea -0x4(%ecx),%esp

43: c3 ret

ELF – Executable and Linkable Format

ELF – Executable and Linkable Format

typedef struct {

unsigned char e_ident[16]; /* version and other info */

uint16_t e_type; /* none, relocatable, executable, shared, core */

uint16_t e_machine; /* none, SPARC, Intel, Motorol, MIPS, ... */

uint32_t e_version;

uintN_t e_entry; /* entry point */

...

} ElfN_Ehdr;

Note objdump (GNU/Linux), readelf (Unix), and elfdump

(Solaris) all view elf files. Note otool (Darwin) to view Mach-o
files.

Mach-O

Mach-O

(Pronounced “macho.”)

/* From #include <mach-o/loader.h> */

/* Mach header of the object file for 32-bit architectures. */

struct mach_header

uint32_t magic; /* mach magic number identifier */

cpu_type_t cputype; /* PowerPC, I386 */

cpu_subtype_t cpusubtype; /* machine specifier */

uint32_t filetype; /* ovject, executable, shared, core,*/

uint32_t ncmds; /* number of load commands */

uint32_t sizeofcmds; /* the size of all the load commands */

uint32_t flags; /* flags */

;

/* Constant for the magic field of the mach_header (32-bit architectures) */

#define MH_MAGIC 0xfeedface /* the mach magic number */

#define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */

The traditional compiler produces machine instructions to be
executed by the CPU.

The traditional compiler produces an executable file which can be
used over and over again.

The traditional compiler links in all the support code. (With
dynamic linking the additional code might not be a part of the
initial executable file, but might be added while the program is
running.)

Translating Java

A wide range of techniques are used in translating Java into
executable form. Several translators exist (or did exist) for the
language.

1. IBM Jikes

2. GNU gcj

3. Sun/Oracle Java 2 SDK

We begin by looking at GNU gcj to see a traditional translator in
action. Then we move to the Sun/Oracle Java 2 SDK and see the
important role of byte code.

http://www.ibm.com/developerworks/opensource/jikes/
http://gcc.gnu.org/java/
http://java.sun.com/j2se/

Translating Java

A wide range of techniques are used in translating Java into
executable form. Several translators exist (or did exist) for the
language.

1. IBM Jikes

2. GNU gcj

3. Sun/Oracle Java 2 SDK

We begin by looking at GNU gcj to see a traditional translator in
action. Then we move to the Sun/Oracle Java 2 SDK and see the
important role of byte code.

http://www.ibm.com/developerworks/opensource/jikes/
http://gcc.gnu.org/java/
http://java.sun.com/j2se/

Compilation — gcj

public class Hello {

public static void main (String [] args) {
System.out.println ("Hello world!");

}

}

Compilation — gcj

Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/specs

Reading specs from /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../libgcj.spec

rename spec lib to liborig

Configured with: ./configure --prefix=/software/solaris/gnu --with-ld=/software/solaris/gnu/bin/ls --with-as=/software/solaris/gnu/as --enable-threads=posix --with-local-prefix=/software/solaris/cmn : (reconfigured) ./configure --prefix=/software/solaris/gnu --with-ld=/software/solaris/gnu/bin/ld --with-as=/software/solaris/gnu/as --enable-threads=posix --with-local-prefix=/software/solaris/cmn

Thread model: posix

gcc version 3.3.2

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/jc1 Hello.java -fuse-divide-subroutine -fcheck-references -fuse-boehm-gc -fkeep-inline-functions -quiet -dumpbase Hello.java -auxbase Hello -g1 -version -o /var/tmp//ccgEgJBv.s

GNU Java version 3.3.2 (sparc-sun-solaris2.9)

compiled by GNU C version 2.95.3 20010315 (release).

GGC heuristics: --param ggc-min-expand=47 --param ggc-min-heapsize=32768

Class path starts here:

./

/software/solaris/gnu/share/java/libgcj-3.3.2.jar/ (system) (zip)

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/bin/as -V -Qy -s -o /var/tmp//cck00sbY.o /var/tmp//ccgEgJBv.s

GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/jvgenmain Hellomain /var/tmp//ccWJ2hCQ.i

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/cc1 /var/tmp//ccWJ2hCQ.i -quiet -dumpbase Hellomain.c -g1 -version -fdollars-in-identifiers -o /var/tmp//ccgEgJBv.s

GNU C version 3.3.2 (sparc-sun-solaris2.9)

compiled by GNU C version 2.95.3 20010315 (release).

GGC heuristics: --param ggc-min-expand=47 --param ggc-min-heapsize=32768

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/bin/as -V -Qy -s -o /var/tmp//ccqKIYe3.o /var/tmp//ccgEgJBv.s

GNU assembler version 2.14 (sparc-sun-solaris2.9) using BFD version 2.14 20030612

/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/collect2 -V -Y P,/usr/ccs/lib:/usr/lib -Qy -o hello /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crt1.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crti.o /usr/ccs/lib/values-Xa.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtbegin.o -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2 -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../../../sparc-sun-solaris2.9/lib -L/usr/ccs/bin -L/usr/ccs/lib -L/software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/../../.. /var/tmp//ccqKIYe3.o /var/tmp//cck00sbY.o -lgcc_s -lgcc -lgcj -lm -lpthread -lrt -lsocket -ldl -lgcc_s -lgcc -lc -lgcc_s -lgcc -lgcj -lm -lpthread -lrt -lsocket -ldl -lgcc_s -lgcc -lc /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtend.o /software/solaris/gnu/lib/gcc-lib/sparc-sun-solaris2.9/3.3.2/crtn.o

GNU ld version 2.14 20030612

Supported emulations:

elf32_sparc

elf64_sparc

jc1 does the translation (and preprocessing) of the Java source
code into assembly code.

The main program is generated in the C programming language by
jvgemain.

cs> gcj -S Hello.java -o hello.s

_ZN5Hello4mainEP6JArrayIPN4java4lang6StringEE:
!#PROLOGUE# 0
save %sp , -128, %sp

.LLCFI0:
!#PROLOGUE# 1
st %i0 , [%fp+68]

.LLBB2:
sethi %hi(_ZN4java4lang6System6class$E), %g1
or %g1 , %lo(_ZN4java4lang6System6class$E), %g1
mov 1, %o4
stb %o4 , [%fp -18]
ldub [%g1+90], %g1
sll %g1 , 24, %g1
sra %g1 , 24, %g1
cmp %g1 , 14
bge .LL2
nop
...

gcj compiles Java tonative code

cs> gcj -S Hello.java -o hello.s

_ZN5Hello4mainEP6JArrayIPN4java4lang6StringEE:
!#PROLOGUE# 0
save %sp , -128, %sp

.LLCFI0:
!#PROLOGUE# 1
st %i0 , [%fp+68]

.LLBB2:
sethi %hi(_ZN4java4lang6System6class$E), %g1
or %g1 , %lo(_ZN4java4lang6System6class$E), %g1
mov 1, %o4
stb %o4 , [%fp -18]
ldub [%g1+90], %g1
sll %g1 , 24, %g1
sra %g1 , 24, %g1
cmp %g1 , 14
bge .LL2
nop
...

gcj compiles Java tonative code

Same kind of assembler output, ELF file, etc, etc.

The point is that the traditional compiler produces machine
instructions to be executed by the CPU.
The traditional compiler produces an executable file (object
module) which can be used over and over again.
The traditional compiler links in all the support code. (With
dynamic linking the additional code might not be a part of the
initial executable file, but might be added while the program is
running.)

Translators, assemblers, and linkers are just program. They are not
magic. You can write one, if you understand what the input is and
what the output is.

Translation — Sun/Oracle JDK

There are two translation tools in the Sun/Oracle JDK.

javac java

compiler? JVM

Translation — Sun JDK

Same program again.

public class HelloWorld {

public static void main (String args []) {
System.out.println ("Hello World!");

}

}

Translation — Sun JDK
The output of the javac is a binary file known as a class file. This
file contains the programming instructions in what is known as
byte code.

000 ca fe ba be 00 00 00 31 00 1a 0a 00 06 00 0c 09 00 0d

018 00 0e 08 00 0f 0a 00 10 00 11 07 00 12 07 00 13 01 00

036 06 3c 69 6e 69 74 3e 01 00 03 28 29 56 01 00 04 43 6f

054 64 65 01 00 04 6d 61 69 6e 01 00 16 28 5b 4c 6a 61 76

072 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 56 0c 00

090 07 00 08 07 00 14 0c 00 15 00 16 01 00 0c 48 65 6c 6c

108 6f 20 57 6f 72 6c 64 21 07 00 17 0c 00 18 00 19 01 00

126 0a 48 65 6c 6c 6f 57 6f 72 6c 64 01 00 10 6a 61 76 61

144 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 01 00 10 6a 61 76

162 61 2f 6c 61 6e 67 2f 53 79 73 74 65 6d 01 00 03 6f 75

180 74 01 00 15 4c 6a 61 76 61 2f 69 6f 2f 50 72 69 6e 74

198 53 74 72 65 61 6d 3b 01 00 13 6a 61 76 61 2f 69 6f 2f

216 50 72 69 6e 74 53 74 72 65 61 6d 01 00 07 70 72 69 6e

234 74 6c 6e 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f

252 53 74 72 69 6e 67 3b 29 56 00 20 00 05 00 06 00 00 00

270 00 00 02 00 00 00 07 00 08 00 01 00 09 00 00 00 11 00

288 01 00 01 00 00 00 05 2a b7 00 01 b1 00 00 00 00 00 09

306 00 0a 00 0b 00 01 00 09 00 00 00 15 00 02 00 01 00 00

324 00 09 b2 00 02 12 03 b6 00 04 b1 00 00 00 00 00 00

Magic Number

Note the magic number of a Java class file. It is “cafebabe.”

There are two meanings for the phrase “magic number.”

1. An indication at the beginning of a file as a hint to the
operating system about the file’s format

2. A number that appears in a the source code of a program that
is surprising, unmotivated, or undocumented.

Class File Format

Class File Format

Further topics:

1. Bytecode verification

2. Bytecode enginering, e.g.,BCEL from Apache Foundation

https://en.wikipedia.org/wiki/Byte_Code_Engineering_Library

Reverse Engineering

You can convert a class back to mnemonics to get an idea of what
information is in the class file.

> javap -c HelloWorld

class HelloWorld extends java.lang.Object {

HelloWorld();

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

public static void main(java.lang.String[]);

0: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;

3: ldc #3; //String Hello World!

5: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V

8: return

}

Java virtual machine instructions:

I Load and store (e.g., aload 0, istore)

I Arithmetic and logic (e.g., ladd, fcmpl)

I Control transfer (e.g., ifeq, goto)

I Type conversion (e.g., i2b, d2i)

I Object creation and manipulation (e.g., new, putfield)

I Operand stack management (e.g., swap, dup2)

I Method invocation and return (e.g., invokespecial,
areturn)

Virtual machine instructions have the advantage of being portal
(because it is relatively easy to write a virtual machine, and virtual
impossible to translate a set of machine instructions into the
machine instructions of another kind of machine.)

A class file is machine independent, like a PNG or JPG file.

Java gained wide-spread notice in the 1990s by providing the first
mechanism for dynamic content on the WWW: applets.

Java – Just-In-Time

Although the byte-code of a Java program can be interpreted, the
byte-code could be just as well be compiled to native code. It is
even possible to compile only some of the byte-code—the parts
that are executed a lot—and not other parts.

Sun Microsystems calls the program java a “launcher” as details
of the actions differ from typical compilers or interpreters. Such a
translation/execution system does not have a good name — a
virtual machine, perhaps — This hybrid interpreter/compiler may
only compile parts of the byte-code by a JIT compiler when (and
if) they are reached or executed often.

Unlike the traditional compiler, the JIT compiler does not begin
compiling to native code until the user of the program launches
execution!

Compilation of programs is so fast these days that the user does
not usually mind the extra execution time devoted to compilation.
(If the program is run by the developer and modified frequently,
the total amount of time might even be less than the traditional
compilation approach.)

Furthermore, java does not even look for the class files containing
the byte code to translate until after the user launches the
programs. This make Java difficult to deploy as the user my be
uncertain if all the class files are available when the program is
launched.

Do not confuse a language with its implementation.

Benchmarks mean very little.

1.0 C++ GNU g++ 1.35
1.7 Java 6 -server 2.29
1.7 C GNU gcc 2.31
2.3 Haskell GHC 3.14
2.7 Intel Fortran 3.71
2.8 Pascal Free Pascal 3.74
3.3 C# Mono 4.44
3.8 Ada 2005 GNAT 5.09
12 Java 6 -Xint 16.03
17 Smalltalk VisualWorks 23.12
26 Python 35.43
33 Mozart/Oz 44.62
44 Perl 59.81
51 PHP 68.79
77 Ruby 104.01

Computer Language Benchmarks Game. January 2009. Platform:
Ubuntu, 2.4Ghz Intel Q6600 quad-core. First number is ratio to
GNU C++ of the third column: geometric mean of the measure
for the language to the best measurement for any language over all
11 benchmarks.

Box-and-whisker plot : Maximum, third quartile, median, first
quartile, minimum

[Ordered how? Interquartile range (IQR)?]

How not to lie with statistics

https://en.wikipedia.org/wiki/Box_plot
https://dl.acm.org/doi/10.1145/5666.5673

Unqualified statements such as

1. “Language X is compiled.”

2. “Language X is slow.”

are nonsense, because the speed of execution and the type of
translation depend on the implementation and the program. Of
course, the language may influence or seek to influence the
implementation. A language may be closely associated with a
particular implementation. But a language itself is not an
implementation.

