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Other programming languages 

Algol (Naur 1958) 
Cobol (Hopper 1959) 

BASIC (Kennedy and Kurtz 1964) 
Pascal (Wirth 1970) 

C (Kernighan and Ritchie 1971) 
Ada (Whitaker 1979) 

 

Smalltalk (Kay 1980) 
C++ (Stroustrop 1980) 

Eiffel (Meyer 1985) 
Java (Gosling 1994) 
C# (Hejlsberg 2000) 

Act (Lieberman 1981) 
ABCL (Yonezawa 1988) 

Actalk (Briot 1989) 
Erlang (Armstrong 1990) 

E (Miller et al 1998) 
SALSA (Varela and Agha 1999) 

ML (Milner 1973) 
Scheme (Sussman and Steele 1975) 

Haskell (Hughes et al 1987) 

Python (van Rossum 1985) 
Perl (Wall 1987) 

Tcl (Ousterhout 1988) 
Lua (Ierusalimschy et al 1994) 

JavaScript (Eich 1995) 
PHP (Lerdorf 1995) 

Ruby (Matsumoto 1995) 

Imperative!

Object-Oriented!
Actor-Oriented!

Functional!

Scripting!
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Language syntax 
•  Defines what are the legal programs, i.e. programs that can 

be executed by a machine (interpreter) 
•  Syntax is defined by grammar rules 
•  A grammar defines how to make ‘sentences’ out of 
‘words’ 

•  For programming languages: sentences are called 
statements (commands, expressions) 

•  For programming languages: words are called tokens 
•  Grammar rules are used to describe both tokens and 

statements 
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Language Semantics 
•  Semantics defines what a program does when it executes 
•  Semantics should be simple and yet allows reasoning about 

programs (correctness, execution time, and memory use) 
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Lambda Calculus Syntax and Semantics 

The syntax of a λ-calculus expression is as follows: 
 

 e  ::=  v   variable 
  |  λv.e   functional abstraction 
  |  (e e)   function application 

 
 

The semantics of a λ-calculus expression is called beta-reduction: 
 

(λx.E M)  ⇒  E{M/x} 
 

where we alpha-rename the lambda abstraction E if necessary to 
avoid capturing free variables in M. 
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α-renaming 

Alpha renaming is used to prevent capturing free occurrences of 
variables when beta-reducing a lambda calculus expression. 

 
In the following, we rename x to z, (or any other fresh variable): 
 

(λx.(y x) x) 
 

(λz.(y z) x) 

Only bound variables can be renamed.  No free variables can be 
captured (become bound) in the process.  For example, we cannot 
alpha-rename x to y. 

α→ 



C. Varela 7 

β-reduction 

(λx.E M)         E{M/x} 
 
Beta-reduction may require alpha renaming to prevent capturing 
free variable occurrences.  For example: 
 

(λx.λy.(x y) (y w)) 
 

(λx.λz.(x z) (y w)) 
 

λz.((y w) z) 

Where the free y remains free.  

α→ 

β
→ 

β
→ 



C. Varela 8 

η-conversion 

λx.(E x)         E 
 

if x is not free in E. 
 
For example: 

(λx.λy.(x y) (y w)) 
 

(λx.λz.(x z) (y w)) 
 

λz.((y w) z) 
 

(y w) 

α→ 

η
→ 

β
→ 

η
→ 
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Currying 

The lambda calculus can only represent functions of one variable. 
It turns out that one-variable functions are sufficient to represent 
multiple-variable functions, using a strategy called currying. 
 
E.g., given the mathematical function:  h(x,y) = x+y  
of type      h: Z x Z→ Z 
 
We can represent h as h’ of type:   h’: Z→ Z→ Z 
Such that   

   h(x,y) = h’(x)(y) = x+y  
For example,  

   h’(2) = g, where g(y) = 2+y  
 
We say that h’ is the curried version of h. 
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Function Composition in Lambda Calculus 

S:   λx.(s x)     (Square) 

I:   λx.(i x)    (Increment) 

 
C:   λf.λg.λx.(f (g x))  (Function Composition) 

 
 

((C S) I) 
 

((λf.λg.λx.(f (g x)) λx.(s x)) λx.(i x)) 
⇒ (λg.λx.(λx.(s x) (g x)) λx.(i x)) 

⇒ λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(λx.(s x) (i x)) 

⇒ λx.(s (i x)) 
 
 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Order of Evaluation in the Lambda Calculus 

Does the order of evaluation change the final result? 
Consider: 

λx.(λx.(s x) (λx.(i x) x)) 
 
There are two possible evaluation orders: 
 

λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(λx.(s x) (i x)) 

⇒ λx.(s (i x)) 
and: 

λx.(λx.(s x) (λx.(i x) x)) 
⇒ λx.(s (λx.(i x) x)) 

⇒ λx.(s (i x)) 
 

Is the final result always the same? 
 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order!

Normal Order!
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Church-Rosser Theorem 
If a lambda calculus expression can be evaluated in two different 
ways and both ways terminate, both ways will yield the same result. 

 
 e 
 

e1         e2 
 
 
e’ 
 
 

Also called the diamond or confluence property. 
 

Furthermore, if there is a way for an expression evaluation to 
terminate, using normal order will cause termination. 
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Order of Evaluation and Termination 

Consider: 
(λx.y (λx.(x x) λx.(x x))) 

 
 
 
There are two possible evaluation orders: 
 

(λx.y (λx.(x x) λx.(x x)))  
⇒ (λx.y (λx.(x x) λx.(x x))) 

and: 
(λx.y (λx.(x x) λx.(x x)))  

⇒  y 
 

In this example, normal order terminates whereas applicative order 
does not. 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order!

Normal Order!
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Free and Bound Variables 

The lambda functional abstraction is the only syntactic construct 
that binds variables.  That is, in an expression of the form: 
 

λv.e 
 
we say that free occurrences of variable v in expression e are bound.  
All other variable occurrences are said to be free. 
 
E.g., 
 

(λx.λy.(x y) (y w)) 

Free Variables!Bound Variables!
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Combinators 

A lambda calculus expression with no free variables is called a 
combinator.  For example: 
 
I:   λx.x      (Identity) 

App:   λf.λx.(f x)   (Application) 
C:   λf.λg.λx.(f (g x))  (Composition) 

L:   (λx.(x x) λx.(x x))  (Loop) 

Cur:   λf.λx.λy.((f x) y)  (Currying) 

Seq:   λx.λy.(λz.y x)   (Sequencing--normal order) 

ASeq:   λx.λy.(y x)   (Sequencing--applicative order) 

 where y denotes a thunk, i.e., a lambda abstraction  
 wrapping the second expression to evaluate. 

 
The meaning of a combinator is always the same independently of 
its context. 
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Currying Combinator in Oz 

The currying combinator can be written in Oz as follows: 
 
fun {$ F} 

 fun {$ X}  
  fun {$ Y}  
   {F X Y} 
  end 
 end 

end 
 
It takes a function of two arguments, F, and returns its curried 
version, e.g., 

{{{Curry Plus} 2} 3} ⇒ 5 
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Recursion Combinator (Y or rec) 

X can be defined as (Y f), where Y is the recursion combinator. 
 
Y:  λf.(λx.(f λy.((x x) y)) 

	
      λx.(f λy.((x x) y))) 
 
Y:  λf.(λx.(f (x x)) 

	
      λx.(f (x x))) 
 
You get from the normal order to the applicative order recursion 
combinator by η-expansion (η-conversion from right to left). 
 

Applicative 
Order!

Normal Order!
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Natural Numbers in Lambda Calculus 

|0|:   λx.x      (Zero) 

|1|:   λx.λx.x   (One) 

… 
|n+1|:   λx.|n|    (N+1) 

 
s:  λn.λx.n    (Successor) 
 
 

(s 0) 
 

(λn.λx.n λx.x) 
 

⇒ λx.λx.x 
 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Booleans and Branching (if) in λ Calculus 

|true|:   λx.λy.x      (True) 

|false|:   λx.λy.y    (False) 
 
|if|:   λb.λt.λe.((b t) e)  (If) 
 
 

(((if true) a) b) 
 

(((λb.λt.λe.((b t) e) λx.λy.x) a) b) 
⇒ ((λt.λe.((λx.λy.x t) e) a) b) 
⇒ (λe.((λx.λy.x a) e) b) 

⇒ ((λx.λy.x a) b) 
⇒  (λy.a b) 

⇒  a 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 



C. Varela 20 

Church Numerals 

|0|:   λf.λx.x      (Zero) 

|1|:   λf.λx.(f x)   (One) 

… 
|n|:   λf.λx.(f … (f x)…)  (N applications of f to x) 

 
s:  λn.λf.λx.(f ((n f) x))  (Successor) 
 
 

(s 0) 
 

(λn.λf.λx.(f ((n f) x)) λf.λx.x) 
⇒  λf.λx.(f ((λf.λx.x f) x)) 
⇒  λf.λx.(f (λx.x x)) 

⇒  λf.λx.(f x) 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Church Numerals: isZero? 

 
isZero?:  λn.((n λx.false) true)  (Is n=0?) 

 
(isZero? 0) 

(λn.((n λx.false) true) λf.λx.x) 
⇒  ((λf.λx.x λx.false) true) 

⇒  (λx.x true) 
⇒  true 

 
(isZero? 1) 

(λn.((n λx.false) true) λf.λx.(f x)) 
⇒  ((λf.λx.(f x) λx.false) true) 
⇒  (λx.(λx.false x) true) 

⇒  (λx.false true) 
⇒  false 

 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Functions 
•  Compute the factorial function: 
•  Start with the mathematical definition 

  declare 
  fun {Fact N} 
      if N==0 then 1 else N*{Fact N-1} end 
  end 

•  Fact is declared in the environment 
•  Try large factorial {Browse {Fact 100}} 

 

nnn ×−×××= )1(21! 

0 if )!1(!
1!0

>−×=

=

nnnn
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Factorial in Haskell 
factorial :: Integer -> Integer 
factorial  0   = 1 
factorial  n | n > 0  = n * factorial (n-1) 
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Structured data (lists) 
•  Calculate Pascal triangle 
•  Write a function that calculates the nth row as 

one structured value 
•  A list is a sequence of elements: 

 [1 4 6 4 1] 
•  The empty list is written nil 
•  Lists are created by means of ”|”  (cons) 

  declare 
  H=1 
  T = [2 3 4 5] 
  {Browse H|T}  % This will show [1 2 3 4 5] 

1 
1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 
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Pattern matching 

•  Another way to take a list apart is by use of pattern 
matching with a case instruction 
 

  case L of H|T then {Browse H} {Browse T}  
    else {Browse ‘empty list’}  
  end 
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Functions over lists 

•  Compute the function {Pascal N} 
•  Takes an integer N, and returns the 

Nth row of a Pascal triangle as a list 
1.  For row 1, the result is [1] 
2.  For row N, shift to left row N-1 and 

shift to the right row N-1 
3.  Align and add the shifted rows 

element-wise to get row N 

1 
1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

(0) (0) 

[0 1 3 3 1] 
 

[1 3 3 1 0] 

Shift right 

Shift left 
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Functions over lists 

declare 
fun {Pascal N} 
   if N==1 then [1] 
   else 
      {AddList 
       {ShiftLeft {Pascal N-1}} 
       {ShiftRight {Pascal N-1}}} 
   end 
end 

AddList 

ShiftLeft ShiftRight 

Pascal N-1 Pascal N-1 

Pascal N 
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Functions over lists (2) 

fun {ShiftLeft L} 
   case L of H|T then 
      H|{ShiftLeft T} 
   else [0] 
   end 
end 
 
fun {ShiftRight L}  0|L end 

fun {AddList L1 L2} 
   case L1 of H1|T1 then 
      case L2 of H2|T2 then 

  H1+H2|{AddList T1 T2} 
      end 
   else nil end 
end 
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Pattern matching in Haskell 

•  Another way to take a list apart is by use of pattern 
matching with a case instruction: 

 
 case l of (h:t) -> h:t  

    []      -> []  
  end 

•  Or more typically as part of a function definition: 
 

 id (h:t) -> h:t  
  id []      -> []  
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Functions over lists in Haskell 

--- Pascal triangle row 
pascal :: Integer -> [Integer] 
pascal 1 = [1] 
pascal n = addList (shiftLeft (pascal (n-1))) 
                   (shiftRight (pascal (n-1))) 
  where 
    shiftLeft []     = [0] 
    shiftLeft (h:t) = h:shiftLeft t 
    shiftRight l    = 0:l 
    addList [] []   = [] 
    addList (h1:t1) (h2:t2) = (h1+h2):addList t1 t2 
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Mathematical induction 
•  Select one or more inputs to the function 
•  Show the program is correct for the simple cases (base 

cases) 
•  Show that if the program is correct for a given case, it is 

then correct for the next case. 
•  For natural numbers, the base case is either 0 or 1, and for 

any number n the next case is n+1 
•  For lists, the base case is nil, or a list with one or a few 

elements, and for any list T the next case is H|T 
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Correctness of factorial 

fun {Fact N} 
   if N==0 then 1 else N*{Fact N-1} end 
end 
 
•  Base Case N=0: {Fact 0} returns 1 
•  Inductive Case N>0: {Fact N} returns N*{Fact N-1}  assume 

{Fact N-1} is correct, from the spec we see that {Fact N} is 
N*{Fact N-1}  

nn
nFact

×−×××
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Iterative computation 
•  An iterative computation is one whose execution stack is 

bounded by a constant, independent of the length of the 
computation 

•  Iterative computation starts with an initial state S0, and 
transforms the state in a number of steps until a final state 
Sfinal is reached: 

s s sfinal0 1→ → →...
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The general scheme 
fun {Iterate Si} 

 if {IsDone Si} then Si 

 else Si+1 in 
  Si+1 = {Transform Si} 

  {Iterate Si+1} 
 end 

end  
•  IsDone and Transform are problem dependent   
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From a general scheme 
to a control abstraction (2) 

fun {Iterate S  IsDone Transform} 
 if {IsDone S} then S 

 else S1 in 
  S1 = {Transform S} 
  {Iterate S1 IsDone Transform} 
 end 

end   

fun {Iterate Si} 
 if {IsDone Si} then Si 

 else Si+1 in 
  Si+1 = {Transform Si} 
  {Iterate Si+1} 
 end 

end   
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Sqrt using the control abstraction 
fun {Sqrt X} 

 {Iterate 
   1.0  
   fun {$ G} {Abs X - G*G}/X < 0.000001 end 

       fun {$ G} (G + X/G)/2.0 end  
 } 

end 

Iterate could become a linguistic abstraction 
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Sqrt in Haskell 
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses) 
         where 
              goodEnough guess = (abs (x – guess*guess))/x < 0.00001 
              improve guess = (guess + x/guess)/2.0 
              sqrtGuesses = 1:(map improve sqrtGuesses) 

This sqrt example uses infinite lists enabled by lazy 
evaluation, and the map control abstraction. 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38 

Higher-order programming 
•  Higher-order programming = the set of programming 

techniques that are possible with procedure values 
(lexically-scoped closures) 

•  Basic operations 
–  Procedural abstraction: creating procedure values with lexical 

scoping 
–  Genericity: procedure values as arguments 
–  Instantiation: procedure values as return values 
–  Embedding: procedure values in data structures 

•  Higher-order programming is the foundation of 
component-based programming and object-oriented 
programming 
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Procedural abstraction 

•  Procedural abstraction is the ability to convert any 
statement into a procedure value 
–  A procedure value is usually called a closure, or more precisely,  a 

lexically-scoped closure 
–  A procedure value is a pair: it combines the procedure code with 

the environment where the procedure was created (the contextual 
environment) 

•  Basic scheme: 
–  Consider any statement <s> 
–  Convert it into a procedure value: P = proc {$} <s> end 
–  Executing {P} has exactly the same effect as executing <s> 
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Procedure values 
•  Constructing a procedure value in the store is not simple 

because a procedure may have external references 

local P Q in 
P = proc {$ …}  {Q …} end 
Q = proc {$ …} {Browse hello} end 
local Q in 

 Q = proc {$ …} {Browse hi} end 
 {P …} 

end 
end 
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Procedure values (2) 

local P Q in 
P = proc {$ …}  {Q …} end 
Q = proc {$ …} {Browse hello} end 
local Q in 

 Q = proc {$ …} {Browse hi} end end 
 {P …} 

end 
end 

x1 (   ,   ) 

proc {$ …}  {Q …} end Q → x2 

x2 (   ,   ) 

proc {$ …}  {Browse hello} end Browse → x0 

P 
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Genericity 
•  Replace specific 

entities (zero 0 and 
addition +) by 
function arguments 

•  The same routine 
can do the sum, the 
product, the logical 
or, etc. 

fun {SumList L} 
 case L  
of  nil then 0 

 []  X|L2 then X+{SumList L2} 
 end 

end 

fun {FoldR L F U} 
 case L  
of  nil then U 

 []  X|L2 then {F X  {FoldR L2 F U}} 
 end 

end 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 43 

Genericity in Haskell 
•  Replace specific 

entities (zero 0 and 
addition +) by 
function arguments 

•  The same routine 
can do the sum, the 
product, the logical 
or, etc. 

sumlist :: (Num a) => [a] -> a 
sumlist []    = 0 
sumlist (h:t) = h+sumlist t 

foldr' :: (a->b->b) -> b -> [a] -> b 
foldr' _ u []    = u 
foldr' f u (h:t) = f h (foldr' f u t) 
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Instantiation 

•  Instantiation is when a procedure returns a procedure value as its result 
•  Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically 

to SumList, which is an « instance » of a folding function 

fun {FoldFactory F U} 
 fun {FoldR L} 
  case L  

 of nil then U 
  []  X|L2 then {F X  {FoldR L2}} 
  end 
 end 

in 
 FoldR 

end 
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Embedding 
•  Embedding is when procedure values are put in data 

structures 
•  Embedding has many uses: 

–  Modules: a module is a record that groups together a set of related 
operations 

–  Software components: a software component is a generic function 
that takes a set of modules as its arguments and returns a new 
module.  It can be seen as specifying a module in terms of the 
modules it needs. 

–  Delayed evaluation (also called explicit lazy evaluation): build just 
a small part of a data structure, with functions at the extremities 
that can be called to build more.  The consumer can control 
explicitly how much of the data structure is built. 
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Control Abstractions 
fun {FoldL Xs F U} 
   case Xs 
   of nil then U 
   [] X|Xr then {FoldL Xr F {F X U}} 
   end 
end 
 
What does this program do ? 
{Browse {FoldL [1 2 3] 

  fun {$ X Y} X|Y end nil}} 
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FoldL in Haskell 
foldl' :: (b->a->b) -> b -> [a] -> b 
foldl' _ u []    = u 
foldl' f u (h:t) = foldl' f (f u h) t 

Notice the unit u is of type b, and the function f is of type b->a->b. 
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List-based techniques 

fun {Map Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then 
      {F X}|{Map Xr F} 
   end 
end 
 

fun {Filter Xs P} 
   case Xs 
   of nil then nil 
   [] X|Xr andthen {P X} then 
      X|{Filter Xr P} 
   [] X|Xr then {Filter Xr P} 
   end 
end 
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Map in Haskell 
map' :: (a -> b) -> [a] -> [b] 
map' _ []    = [] 
map' f (h:t) = f h:map' f t 

_ means that the argument is not used (read “don’t care”). 
map’ is to distinguish it from the Prelude map function. 
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Filter in Haskell 
filter' :: (a-> Bool) -> [a] -> [a] 
filter' _ []    = [] 
filter' p (h:t) = if p h then h:filter' p t 
                               else filter' p t 
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Filter as FoldR application 

filter'' :: (a-> Bool) -> [a] -> [a] 
filter'' p l = foldr  
         (\h t ->  if p h  
                     then h:t  
                     else t) [] l 
 

fun {Filter P L} 
   {FoldR fun {$ H T} 

      if {P H} then 
  H|T 
      else T end 
   end nil L} 

end 
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Lazy evaluation 
•  The functions written so far are evaluated eagerly (as soon 

as they are called) 
•  Another way is lazy evaluation where a computation is 

done only when the results is needed 

declare 
fun lazy {Ints N} 
   N|{Ints N+1} 
end 

•  Calculates the infinite list: 
0 | 1 | 2 | 3 | ... 
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Lazy evaluation (2) 
•  Write a function that computes as 

many rows of Pascal’s triangle as 
needed 

•  We do not know how many 
beforehand 

•  A function is lazy if it is evaluated 
only when its result is needed 

•  The function PascalList is evaluated 
when needed 

fun lazy {PascalList Row} 
   Row | {PascalList  
                {AddList  
      {ShiftLeft Row} 

      {ShiftRight Row}}} 
end 
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Larger Example: 
The Sieve of Eratosthenes 

•  Produces prime numbers 
•  It takes a stream 2...N, peals off 2 from the rest of the stream 
•  Delivers the rest to the next sieve  

Sieve 

Filter Sieve 

Xs 

Xr 

X 

Ys Zs 

X|Zs 
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Lazy Sieve 
fun lazy {Sieve Xs} 
   X|Xr = Xs in 
   X | {Sieve {LFilter 

        Xr 
        fun {$ Y} Y mod X \= 0 end 
       }} 

end 
 
fun {Primes} {Sieve {Ints 2}} end 
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Lazy Filter 
For the Sieve program we need a lazy filter 
 
fun lazy {LFilter Xs F} 
   case Xs 
   of nil then nil 
   [] X|Xr then 
      if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end 
   end 
end 
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Primes in Haskell 
ints :: (Num a) => a -> [a] 
ints n = n : ints (n+1) 
 
sieve :: (Integral a) => [a] -> [a] 
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr) 
 
primes :: (Integral a) => [a] 
primes = sieve (ints 2) 
 

Functions in Haskell are lazy by default.  You can use take 20 
primes to get the first 20 elements of the list. 
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List Comprehensions 
•  Abstraction provided in lazy functional languages that 

allows writing higher level set-like expressions 
•  In our context we produce lazy lists instead of sets 
•  The mathematical set expression 

–  {x*y | 1≤x ≤10, 1≤y ≤x} 
•  Equivalent List comprehension expression is 

–  [X*Y | X = 1..10 ; Y = 1..X] 

•  Example: 
–  [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10] 
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List Comprehensions 
•  The general form is 
•  [ f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...) 

    y ← gen(x, a1,...,an) ; guard(y,x,...) 
  .... 

]  
•  No linguistic support in Mozart/Oz, but can be easily 

expressed 



C. Varela; Adapted from S. Haridi and P. Van Roy 60 

Example 1 
•  z = [x#x | x ← from(1,10)] 
•  Z = {LMap {LFrom 1 10} fun{$ X} X#X end} 

•  z = [x#y | x ← from(1,10), y ← from(1,x)] 
•  Z = {LFlatten 

      {LMap {LFrom 1 10}  
              fun{$ X} {LMap {LFrom 1 X} 
                                 fun {$ Y} X#Y end 
                               } 

        end     
       } 

   } 
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Example 2 
•  z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10] 
•  Z ={LFilter  

 {LFlatten 
      {LMap {LFrom 1 10}  

              fun{$ X} {LMap {LFrom 1 X} 
                                 fun {$ Y} X#Y end 
                               } 

        end     
       } 

   } 
       fun {$ X#Y} X+Y=<10 end} } 
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List Comprehensions in Haskell 
 
lc1 = [(x,y) | x <- [1..10], y <- [1..x]] 
 
lc2 = filter (\(x,y)->(x+y<=10)) lc1 
 
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10] 
 
 Haskell provides syntactic support for list comprehensions.  

List comprehensions are implemented using a built-in list 
monad. 
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Quicksort using list 
comprehensions 

 
quicksort :: (Ord a) => [a] -> [a] 
quicksort []    = [] 
quicksort (h:t) = quicksort [x | x <- t, x < h] ++ 
                          [h] ++ 
                          quicksort [x | x <-t, x >= h] 
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Types of typing 
•  Languages can be weakly typed 

–  Internal representation of types can be manipulated by a program 
•  e.g., a string in C is an array of characters ending in ‘\0’. 

•  Strongly typed programming languages can be further 
subdivided into: 
–  Dynamically typed languages 

•  Variables can be bound to entities of any type, so in general 
the type is only known at run-time, e.g., Oz, SALSA. 

–  Statically typed languages 
•  Variable types are known at compile-time, e.g., C++, Java. 
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Type Checking and Inference 

•  Type checking is the process of ensuring a program is well-
typed. 
–  One strategy often used is abstract interpretation:  

•  The principle of getting partial information about the answers 
from partial information about the inputs 

•  Programmer supplies types of variables and type-checker 
deduces types of other expressions for consistency 

•  Type inference frees programmers from annotating 
variable types: types are inferred from variable usage, e.g. 
ML, Haskell. 
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Abstract data types 
•  A datatype is a set of values and an associated set of 

operations 
•  A datatype is abstract only if it is completely described by 

its set of operations regardless of its implementation 
•  This means that it is possible to change the implementation 

of the datatype without changing its use 
•  The datatype is thus described by a set of procedures 
•  These operations are the only thing that a user of the 

abstraction can assume 
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Example: A Stack 
•  Assume we want to define a new datatype 〈stack T〉 whose 

elements are of any type T 
fun {NewStack}: 〈Stack T〉 
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉 
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉  

•  These operations normally satisfy certain laws: 
{IsEmpty {NewStack}} = true 
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold 
{Pop {NewStack} E} raises error 
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Stack (another implementation) 
fun {NewStack} nil end 
fun {Push S E} E|S end 
fun {Pop S E} case S of  X|S1 then E = X  S1 end end 
fun {IsEmpty S} S==nil end 
 
fun {NewStack} emptyStack end 
fun {Push S E} stack(E S) end 
fun {Pop S E} case S of stack(X S1) then E = X S1 end end 
fun {IsEmpty S} S==emptyStack end 
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Stack data type in Haskell 
data Stack a  = Empty | Stack a (Stack a) 
 
newStack :: Stack a 
newStack = Empty 
push :: Stack a -> a -> Stack a  
push s e = Stack e s 
pop :: Stack a -> (Stack a,a) 
pop (Stack e s) = (s,e) 
isempty :: Stack a -> Bool 
isempty Empty = True 
isempty (Stack _ _) = False 
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Secure abstract data types: 
A secure stack 

With the wrapper & unwrapper we can build 
a secure stack 

 
local Wrap Unwrap in 

 {NewWrapper Wrap Unwrap} 
 fun {NewStack} {Wrap nil} end 
 fun {Push S E} {Wrap E|{Unwrap S}} end 
 fun {Pop S E} 
  case {Unwrap S} of X|S1 then  

                           E=X  {Wrap S1} end 
 end 
 fun {IsEmpty S} {Unwrap S}==nil end 

end 

proc {NewWrapper  
            ?Wrap ?Unwrap}  
    Key={NewName}  
in  
    fun {Wrap X}  
            fun {$ K}  
               if K==Key then X end  
            end 
    end  
    fun {Unwrap C}  
            {C Key} 
   end  
end 
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Stack abstract data type as a 
module in Haskell 

 
module StackADT (Stack,newStack,push,pop,isEmpty) where 
 
data Stack a  = Empty | Stack a (Stack a) 
newStack = Empty 
… 

•  Modules can then be imported by other modules, e.g.: 
 
module Main (main) where 
import StackADT ( Stack, newStack,push,pop,isEmpty ) 
 
main = do print (push (push newStack 1) 2) 
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Declarative operations (1) 
•  An  operation is declarative if whenever it is called with 

the same arguments, it returns the same results 
independent of any other computation state 

•  A declarative operation is: 
–  Independent (depends only on its arguments, nothing else) 
–  Stateless (no internal state is remembered between calls) 
–  Deterministic (call with same operations always give same results) 

•  Declarative operations can be composed together to yield 
other declarative components  
–  All basic operations of the declarative model are declarative and 

combining them always gives declarative components 
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Why declarative components (1) 

•  There are two reasons why they are important: 
•  (Programming in the large) A declarative component can be written,  

tested, and proved correct independent of other components and of its 
own past history. 

–  The complexity (reasoning complexity) of a program composed of 
declarative components is the sum of the complexity of the components 

–  In general the reasoning complexity of programs that are composed of 
nondeclarative components explodes because of the intimate interaction 
between components 

•  (Programming in the small) Programs written in the declarative model 
are much easier to reason about than programs written in more 
expressive models (e.g., an object-oriented model). 

–  Simple algebraic and logical reasoning techniques can be used 
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Monads 
•  Purely functional programming is declarative in nature: 

whenever a function is called with the same arguments, it 
returns the same results independent of any other 
computation state. 

•  How to model the real world (that may have context 
dependences, state, nondeterminism) in a purely functional 
programming language? 
–  Context dependences: e.g., does file exist in expected directory? 
–  State: e.g., is there money in the bank account? 
–  Nondeterminism: e.g., does bank account deposit happen before or 

after interest accrual? 

•  Monads to the rescue! 
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Monad class 
•  The Monad class defines two basic operations: 

class Monad m where 
 (>>=)                ::   m a -> (a -> m b) -> m b   -- bind 
 return               ::   a -> m a 
 fail                    ::  String -> m a 
 m >> k             =   m >>= \_ -> k 

•  The >>= infix operation binds two monadic values, while 
the return operation injects a value into the monad 
(container). 

•  Example monadic classes are IO, lists ([]) and Maybe. 
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do syntactic sugar 
•  In the IO class, x >>= y, performs two actions sequentially 

(like the Seq combinator in the lambda-calculus) passing 
the result of the first into the second. 

•  Chains of monadic operations can use do: 
 do e1 ; e2  =   e1 >> e2 
 do p <- e1; e2  =   e1 >>= \p -> e2   

•  Pattern match can fail, so the full translation is: 
 do p <- e1; e2  =   e1 >>= (\v -> case of p -> e2 
                                      _ -> fail “s”) 

•  Failure in IO monad produces an error, whereas failure in 
the List monad produces the empty list. 
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Monad class laws 
•  All instances of the Monad class should respect the 

following laws: 
 return a >>= k   = k a 
 m >>= return   = m 
 xs >>= return . f   = fmap f xs 
 m >>= (\x -> k x >>= h)  = (m >>= k) >>= h 

•  These laws ensure that we can bind together monadic 
values with >>= and inject values into the monad 
(container) using return in consistent ways.  

•  The MonadPlus class includes an mzero element and an 
mplus operation.  For lists, mzero is the empty list ([]), and 
the mplus operation is list concatenation (++). 
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List comprehensions with monads 
lc1 = [(x,y) | x <- [1..10], y <- [1..x]] 
 
lc1' = do x <- [1..10] 
              y <- [1..x] 
              return (x,y) 
 
lc1'' = [1..10] >>=  (\x ->  
                              [1..x] >>= (\y -> 
                                               return (x,y))) 
 

List comprehensions are 
implemented using a built-in 
list monad.  Binding (l >>= f) 

applies the function f to all the 
elements of the list l and 

concatenates the results. The 
return function creates a 

singleton list. 



C. Varela 79 

List comprehensions with monads (2) 
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10] 
lc3' = do x <- [1..10] 
          y <- [1..x] 
          True <- return (x+y<=10) 
          return (x,y) 
 
lc3'' = [1..10] >>=  (\x ->  
             [1..x] >>= (\y -> 
                 return (x+y<=10) >>=  
                     (\b -> case b of True -> return (x,y); _ -> fail ""))) 
 
 
 

Guards in list 
comprehensions assume 
that fail in the List monad 

returns an empty list. 
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Monads summary 
•  Monads enable keeping track of imperative features (state) 

in a way that is modular with purely functional 
components. 
–  For example, fib remains functional, yet the R monad enables us to 

keep a count of instructions separately. 

•  Input/output, list comprehensions, and optional values 
(Maybe class) are built-in monads in Haskell. 

•  Monads are useful to modularly define semantics of 
domain-specific languages. 


