
C. Varela 1

Programming Languages
(CSCI 4430/6430)

Part 1: Functional Programming: Summary

Carlos Varela
Rennselaer Polytechnic Institute

September 29, 2015

C. Varela 2

Other programming languages

Algol (Naur 1958)
Cobol (Hopper 1959)

BASIC (Kennedy and Kurtz 1964)
Pascal (Wirth 1970)

C (Kernighan and Ritchie 1971)
Ada (Whitaker 1979)

Smalltalk (Kay 1980)
C++ (Stroustrop 1980)

Eiffel (Meyer 1985)
Java (Gosling 1994)
C# (Hejlsberg 2000)

Act (Lieberman 1981)
ABCL (Yonezawa 1988)

Actalk (Briot 1989)
Erlang (Armstrong 1990)

E (Miller et al 1998)
SALSA (Varela and Agha 1999)

ML (Milner 1973)
Scheme (Sussman and Steele 1975)

Haskell (Hughes et al 1987)

Python (van Rossum 1985)
Perl (Wall 1987)

Tcl (Ousterhout 1988)
Lua (Ierusalimschy et al 1994)

JavaScript (Eich 1995)
PHP (Lerdorf 1995)

Ruby (Matsumoto 1995)

Imperative!

Object-Oriented!
Actor-Oriented!

Functional!

Scripting!

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Language syntax
•  Defines what are the legal programs, i.e. programs that can

be executed by a machine (interpreter)
•  Syntax is defined by grammar rules
•  A grammar defines how to make ‘sentences’ out of
‘words’

•  For programming languages: sentences are called
statements (commands, expressions)

•  For programming languages: words are called tokens
•  Grammar rules are used to describe both tokens and

statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Language Semantics
•  Semantics defines what a program does when it executes
•  Semantics should be simple and yet allows reasoning about

programs (correctness, execution time, and memory use)

C. Varela 5

Lambda Calculus Syntax and Semantics

The syntax of a λ-calculus expression is as follows:

 e ::= v variable
 | λv.e functional abstraction
 | (e e) function application

The semantics of a λ-calculus expression is called beta-reduction:

(λx.E M) ⇒ E{M/x}

where we alpha-rename the lambda abstraction E if necessary to
avoid capturing free variables in M.

C. Varela 6

α-renaming

Alpha renaming is used to prevent capturing free occurrences of
variables when beta-reducing a lambda calculus expression.

In the following, we rename x to z, (or any other fresh variable):

(λx.(y x) x)

(λz.(y z) x)

Only bound variables can be renamed. No free variables can be
captured (become bound) in the process. For example, we cannot
alpha-rename x to y.

α→

C. Varela 7

β-reduction

(λx.E M) E{M/x}

Beta-reduction may require alpha renaming to prevent capturing
free variable occurrences. For example:

(λx.λy.(x y) (y w))

(λx.λz.(x z) (y w))

λz.((y w) z)

Where the free y remains free.

α→

β
→

β
→

C. Varela 8

η-conversion

λx.(E x) E

if x is not free in E.

For example:

(λx.λy.(x y) (y w))

(λx.λz.(x z) (y w))

λz.((y w) z)

(y w)

α→

η
→

β
→

η
→

C. Varela 9

Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) = x+y
of type h: Z x Z→ Z

We can represent h as h’ of type: h’: Z→ Z→ Z
Such that

 h(x,y) = h’(x)(y) = x+y
For example,

 h’(2) = g, where g(y) = 2+y

We say that h’ is the curried version of h.

C. Varela 10

Function Composition in Lambda Calculus

S: λx.(s x) (Square)

I: λx.(i x) (Increment)

C: λf.λg.λx.(f (g x)) (Function Composition)

((C S) I)

((λf.λg.λx.(f (g x)) λx.(s x)) λx.(i x))
⇒ (λg.λx.(λx.(s x) (g x)) λx.(i x))

⇒ λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(λx.(s x) (i x))

⇒ λx.(s (i x))

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 11

Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

λx.(λx.(s x) (λx.(i x) x))

There are two possible evaluation orders:

λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(λx.(s x) (i x))

⇒ λx.(s (i x))
and:

λx.(λx.(s x) (λx.(i x) x))
⇒ λx.(s (λx.(i x) x))

⇒ λx.(s (i x))

Is the final result always the same?

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order!

Normal Order!

C. Varela 12

Church-Rosser Theorem
If a lambda calculus expression can be evaluated in two different
ways and both ways terminate, both ways will yield the same result.

 e

e1 e2

e’

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to
terminate, using normal order will cause termination.

C. Varela 13

Order of Evaluation and Termination

Consider:
(λx.y (λx.(x x) λx.(x x)))

There are two possible evaluation orders:

(λx.y (λx.(x x) λx.(x x)))
⇒ (λx.y (λx.(x x) λx.(x x)))

and:
(λx.y (λx.(x x) λx.(x x)))

⇒ y

In this example, normal order terminates whereas applicative order
does not.

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order!

Normal Order!

C. Varela 14

Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

λv.e

we say that free occurrences of variable v in expression e are bound.
All other variable occurrences are said to be free.

E.g.,

(λx.λy.(x y) (y w))

Free Variables!Bound Variables!

C. Varela 15

Combinators

A lambda calculus expression with no free variables is called a
combinator. For example:

I: λx.x (Identity)

App: λf.λx.(f x) (Application)
C: λf.λg.λx.(f (g x)) (Composition)

L: (λx.(x x) λx.(x x)) (Loop)

Cur: λf.λx.λy.((f x) y) (Currying)

Seq: λx.λy.(λz.y x) (Sequencing--normal order)

ASeq: λx.λy.(y x) (Sequencing--applicative order)

 where y denotes a thunk, i.e., a lambda abstraction
 wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.

C. Varela 16

Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}

 fun {$ X}
 fun {$ Y}
 {F X Y}
 end
 end

end

It takes a function of two arguments, F, and returns its curried
version, e.g.,

{{{Curry Plus} 2} 3} ⇒ 5

C. Varela 17

Recursion Combinator (Y or rec)

X can be defined as (Y f), where Y is the recursion combinator.

Y: λf.(λx.(f λy.((x x) y))

	
 λx.(f λy.((x x) y)))

Y: λf.(λx.(f (x x))

	
 λx.(f (x x)))

You get from the normal order to the applicative order recursion
combinator by η-expansion (η-conversion from right to left).

Applicative
Order!

Normal Order!

C. Varela 18

Natural Numbers in Lambda Calculus

|0|: λx.x (Zero)

|1|: λx.λx.x (One)

…
|n+1|: λx.|n| (N+1)

s: λn.λx.n (Successor)

(s 0)

(λn.λx.n λx.x)

⇒ λx.λx.x

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 19

Booleans and Branching (if) in λ Calculus

|true|: λx.λy.x (True)

|false|: λx.λy.y (False)

|if|: λb.λt.λe.((b t) e) (If)

(((if true) a) b)

(((λb.λt.λe.((b t) e) λx.λy.x) a) b)
⇒ ((λt.λe.((λx.λy.x t) e) a) b)
⇒ (λe.((λx.λy.x a) e) b)

⇒ ((λx.λy.x a) b)
⇒  (λy.a b)

⇒  a

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 20

Church Numerals

|0|: λf.λx.x (Zero)

|1|: λf.λx.(f x) (One)

…
|n|: λf.λx.(f … (f x)…) (N applications of f to x)

s: λn.λf.λx.(f ((n f) x)) (Successor)

(s 0)

(λn.λf.λx.(f ((n f) x)) λf.λx.x)
⇒  λf.λx.(f ((λf.λx.x f) x))
⇒  λf.λx.(f (λx.x x))

⇒  λf.λx.(f x)

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 21

Church Numerals: isZero?

isZero?: λn.((n λx.false) true) (Is n=0?)

(isZero? 0)

(λn.((n λx.false) true) λf.λx.x)
⇒  ((λf.λx.x λx.false) true)

⇒  (λx.x true)
⇒  true

(isZero? 1)

(λn.((n λx.false) true) λf.λx.(f x))
⇒  ((λf.λx.(f x) λx.false) true)
⇒  (λx.(λx.false x) true)

⇒  (λx.false true)
⇒  false

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 22

Functions
•  Compute the factorial function:
•  Start with the mathematical definition

 declare
 fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
 end

•  Fact is declared in the environment
•  Try large factorial {Browse {Fact 100}}

nnn ×−×××=)1(21!

0 if)!1(!
1!0

>−×=

=

nnnn

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Factorial in Haskell
factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 24

Structured data (lists)
•  Calculate Pascal triangle
•  Write a function that calculates the nth row as

one structured value
•  A list is a sequence of elements:

 [1 4 6 4 1]
•  The empty list is written nil
•  Lists are created by means of ”|” (cons)

 declare
 H=1
 T = [2 3 4 5]
 {Browse H|T} % This will show [1 2 3 4 5]

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 25

Pattern matching

•  Another way to take a list apart is by use of pattern
matching with a case instruction

 case L of H|T then {Browse H} {Browse T}
 else {Browse ‘empty list’}
 end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 26

Functions over lists

•  Compute the function {Pascal N}
•  Takes an integer N, and returns the

Nth row of a Pascal triangle as a list
1.  For row 1, the result is [1]
2.  For row N, shift to left row N-1 and

shift to the right row N-1
3.  Align and add the shifted rows

element-wise to get row N

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

(0) (0)

[0 1 3 3 1]

[1 3 3 1 0]

Shift right

Shift left

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 27

Functions over lists

declare
fun {Pascal N}
 if N==1 then [1]
 else
 {AddList
 {ShiftLeft {Pascal N-1}}
 {ShiftRight {Pascal N-1}}}
 end
end

AddList

ShiftLeft ShiftRight

Pascal N-1 Pascal N-1

Pascal N

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 28

Functions over lists (2)

fun {ShiftLeft L}
 case L of H|T then
 H|{ShiftLeft T}
 else [0]
 end
end

fun {ShiftRight L} 0|L end

fun {AddList L1 L2}
 case L1 of H1|T1 then
 case L2 of H2|T2 then

 H1+H2|{AddList T1 T2}
 end
 else nil end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 29

Pattern matching in Haskell

•  Another way to take a list apart is by use of pattern
matching with a case instruction:

 case l of (h:t) -> h:t

 [] -> []
 end

•  Or more typically as part of a function definition:

 id (h:t) -> h:t
 id [] -> []

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 30

Functions over lists in Haskell

--- Pascal triangle row
pascal :: Integer -> [Integer]
pascal 1 = [1]
pascal n = addList (shiftLeft (pascal (n-1)))
 (shiftRight (pascal (n-1)))
 where
 shiftLeft [] = [0]
 shiftLeft (h:t) = h:shiftLeft t
 shiftRight l = 0:l
 addList [] [] = []
 addList (h1:t1) (h2:t2) = (h1+h2):addList t1 t2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 31

Mathematical induction
•  Select one or more inputs to the function
•  Show the program is correct for the simple cases (base

cases)
•  Show that if the program is correct for a given case, it is

then correct for the next case.
•  For natural numbers, the base case is either 0 or 1, and for

any number n the next case is n+1
•  For lists, the base case is nil, or a list with one or a few

elements, and for any list T the next case is H|T

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 32

Correctness of factorial

fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
end

•  Base Case N=0: {Fact 0} returns 1
•  Inductive Case N>0: {Fact N} returns N*{Fact N-1} assume

{Fact N-1} is correct, from the spec we see that {Fact N} is
N*{Fact N-1}

nn
nFact

×−×××
−

)1(

)1(21

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33

Iterative computation
•  An iterative computation is one whose execution stack is

bounded by a constant, independent of the length of the
computation

•  Iterative computation starts with an initial state S0, and
transforms the state in a number of steps until a final state
Sfinal is reached:

s s sfinal0 1→ → →...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34

The general scheme
fun {Iterate Si}

 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}

 {Iterate Si+1}
 end

end
•  IsDone and Transform are problem dependent

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

From a general scheme
to a control abstraction (2)

fun {Iterate S IsDone Transform}
 if {IsDone S} then S

 else S1 in
 S1 = {Transform S}
 {Iterate S1 IsDone Transform}
 end

end

fun {Iterate Si}
 if {IsDone Si} then Si

 else Si+1 in
 Si+1 = {Transform Si}
 {Iterate Si+1}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Sqrt using the control abstraction
fun {Sqrt X}

 {Iterate
 1.0
 fun {$ G} {Abs X - G*G}/X < 0.000001 end

 fun {$ G} (G + X/G)/2.0 end
 }

end

Iterate could become a linguistic abstraction

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Sqrt in Haskell
let sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
 where
 goodEnough guess = (abs (x – guess*guess))/x < 0.00001
 improve guess = (guess + x/guess)/2.0
 sqrtGuesses = 1:(map improve sqrtGuesses)

This sqrt example uses infinite lists enabled by lazy
evaluation, and the map control abstraction.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Higher-order programming
•  Higher-order programming = the set of programming

techniques that are possible with procedure values
(lexically-scoped closures)

•  Basic operations
–  Procedural abstraction: creating procedure values with lexical

scoping
–  Genericity: procedure values as arguments
–  Instantiation: procedure values as return values
–  Embedding: procedure values in data structures

•  Higher-order programming is the foundation of
component-based programming and object-oriented
programming

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 39

Procedural abstraction

•  Procedural abstraction is the ability to convert any
statement into a procedure value
–  A procedure value is usually called a closure, or more precisely, a

lexically-scoped closure
–  A procedure value is a pair: it combines the procedure code with

the environment where the procedure was created (the contextual
environment)

•  Basic scheme:
–  Consider any statement <s>
–  Convert it into a procedure value: P = proc {$} <s> end
–  Executing {P} has exactly the same effect as executing <s>

S. Haridi and P. Van Roy 40

Procedure values
•  Constructing a procedure value in the store is not simple

because a procedure may have external references

local P Q in
P = proc {$ …} {Q …} end
Q = proc {$ …} {Browse hello} end
local Q in

 Q = proc {$ …} {Browse hi} end
 {P …}

end
end

S. Haridi and P. Van Roy 41

Procedure values (2)

local P Q in
P = proc {$ …} {Q …} end
Q = proc {$ …} {Browse hello} end
local Q in

 Q = proc {$ …} {Browse hi} end end
 {P …}

end
end

x1 (,)

proc {$ …} {Q …} end Q → x2

x2 (,)

proc {$ …} {Browse hello} end Browse → x0

P

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42

Genericity
•  Replace specific

entities (zero 0 and
addition +) by
function arguments

•  The same routine
can do the sum, the
product, the logical
or, etc.

fun {SumList L}
 case L
of nil then 0

 [] X|L2 then X+{SumList L2}
 end

end

fun {FoldR L F U}
 case L
of nil then U

 [] X|L2 then {F X {FoldR L2 F U}}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 43

Genericity in Haskell
•  Replace specific

entities (zero 0 and
addition +) by
function arguments

•  The same routine
can do the sum, the
product, the logical
or, etc.

sumlist :: (Num a) => [a] -> a
sumlist [] = 0
sumlist (h:t) = h+sumlist t

foldr' :: (a->b->b) -> b -> [a] -> b
foldr' _ u [] = u
foldr' f u (h:t) = f h (foldr' f u t)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 44

Instantiation

•  Instantiation is when a procedure returns a procedure value as its result
•  Calling {FoldFactory fun {$ A B} A+B end 0} returns a function that behaves identically

to SumList, which is an « instance » of a folding function

fun {FoldFactory F U}
 fun {FoldR L}
 case L

 of nil then U
 [] X|L2 then {F X {FoldR L2}}
 end
 end

in
 FoldR

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 45

Embedding
•  Embedding is when procedure values are put in data

structures
•  Embedding has many uses:

–  Modules: a module is a record that groups together a set of related
operations

–  Software components: a software component is a generic function
that takes a set of modules as its arguments and returns a new
module. It can be seen as specifying a module in terms of the
modules it needs.

–  Delayed evaluation (also called explicit lazy evaluation): build just
a small part of a data structure, with functions at the extremities
that can be called to build more. The consumer can control
explicitly how much of the data structure is built.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 46

Control Abstractions
fun {FoldL Xs F U}
 case Xs
 of nil then U
 [] X|Xr then {FoldL Xr F {F X U}}
 end
end

What does this program do ?
{Browse {FoldL [1 2 3]

 fun {$ X Y} X|Y end nil}}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 47

FoldL in Haskell
foldl' :: (b->a->b) -> b -> [a] -> b
foldl' _ u [] = u
foldl' f u (h:t) = foldl' f (f u h) t

Notice the unit u is of type b, and the function f is of type b->a->b.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 48

List-based techniques

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X}|{Map Xr F}
 end
end

fun {Filter Xs P}
 case Xs
 of nil then nil
 [] X|Xr andthen {P X} then
 X|{Filter Xr P}
 [] X|Xr then {Filter Xr P}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 49

Map in Haskell
map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (h:t) = f h:map' f t

_ means that the argument is not used (read “don’t care”).
map’ is to distinguish it from the Prelude map function.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 50

Filter in Haskell
filter' :: (a-> Bool) -> [a] -> [a]
filter' _ [] = []
filter' p (h:t) = if p h then h:filter' p t
 else filter' p t

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 51

Filter as FoldR application

filter'' :: (a-> Bool) -> [a] -> [a]
filter'' p l = foldr
 (\h t -> if p h
 then h:t
 else t) [] l

fun {Filter P L}
 {FoldR fun {$ H T}

 if {P H} then
 H|T
 else T end
 end nil L}

end

C. Varela; Adapted from S. Haridi and P. Van Roy 52

Lazy evaluation
•  The functions written so far are evaluated eagerly (as soon

as they are called)
•  Another way is lazy evaluation where a computation is

done only when the results is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

•  Calculates the infinite list:
0 | 1 | 2 | 3 | ...

C. Varela; Adapted from S. Haridi and P. Van Roy 53

Lazy evaluation (2)
•  Write a function that computes as

many rows of Pascal’s triangle as
needed

•  We do not know how many
beforehand

•  A function is lazy if it is evaluated
only when its result is needed

•  The function PascalList is evaluated
when needed

fun lazy {PascalList Row}
 Row | {PascalList
 {AddList
 {ShiftLeft Row}

 {ShiftRight Row}}}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 54

Larger Example:
The Sieve of Eratosthenes

•  Produces prime numbers
•  It takes a stream 2...N, peals off 2 from the rest of the stream
•  Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys Zs

X|Zs

C. Varela; Adapted from S. Haridi and P. Van Roy 55

Lazy Sieve
fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter

 Xr
 fun {$ Y} Y mod X \= 0 end
 }}

end

fun {Primes} {Sieve {Ints 2}} end

C. Varela; Adapted from S. Haridi and P. Van Roy 56

Lazy Filter
For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end

C. Varela 57

Primes in Haskell
ints :: (Num a) => a -> [a]
ints n = n : ints (n+1)

sieve :: (Integral a) => [a] -> [a]
sieve (x:xr) = x:sieve (filter (\y -> (y `mod` x /= 0)) xr)

primes :: (Integral a) => [a]
primes = sieve (ints 2)

Functions in Haskell are lazy by default. You can use take 20
primes to get the first 20 elements of the list.

C. Varela; Adapted from S. Haridi and P. Van Roy 58

List Comprehensions
•  Abstraction provided in lazy functional languages that

allows writing higher level set-like expressions
•  In our context we produce lazy lists instead of sets
•  The mathematical set expression

–  {x*y | 1≤x ≤10, 1≤y ≤x}
•  Equivalent List comprehension expression is

–  [X*Y | X = 1..10 ; Y = 1..X]

•  Example:
–  [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]

C. Varela; Adapted from S. Haridi and P. Van Roy 59

List Comprehensions
•  The general form is
•  [f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)

 y ← gen(x, a1,...,an) ; guard(y,x,...)

]
•  No linguistic support in Mozart/Oz, but can be easily

expressed

C. Varela; Adapted from S. Haridi and P. Van Roy 60

Example 1
•  z = [x#x | x ← from(1,10)]
•  Z = {LMap {LFrom 1 10} fun{$ X} X#X end}

•  z = [x#y | x ← from(1,10), y ← from(1,x)]
•  Z = {LFlatten

 {LMap {LFrom 1 10}
 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }

C. Varela; Adapted from S. Haridi and P. Van Roy 61

Example 2
•  z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10]
•  Z ={LFilter

 {LFlatten
 {LMap {LFrom 1 10}

 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }
 fun {$ X#Y} X+Y=<10 end} }

C. Varela 62

List Comprehensions in Haskell

lc1 = [(x,y) | x <- [1..10], y <- [1..x]]

lc2 = filter (\(x,y)->(x+y<=10)) lc1

lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10]

 Haskell provides syntactic support for list comprehensions.

List comprehensions are implemented using a built-in list
monad.

C. Varela 63

Quicksort using list
comprehensions

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (h:t) = quicksort [x | x <- t, x < h] ++
 [h] ++
 quicksort [x | x <-t, x >= h]

C. Varela 64

Types of typing
•  Languages can be weakly typed

–  Internal representation of types can be manipulated by a program
•  e.g., a string in C is an array of characters ending in ‘\0’.

•  Strongly typed programming languages can be further
subdivided into:
–  Dynamically typed languages

•  Variables can be bound to entities of any type, so in general
the type is only known at run-time, e.g., Oz, SALSA.

–  Statically typed languages
•  Variable types are known at compile-time, e.g., C++, Java.

C. Varela 65

Type Checking and Inference

•  Type checking is the process of ensuring a program is well-
typed.
–  One strategy often used is abstract interpretation:

•  The principle of getting partial information about the answers
from partial information about the inputs

•  Programmer supplies types of variables and type-checker
deduces types of other expressions for consistency

•  Type inference frees programmers from annotating
variable types: types are inferred from variable usage, e.g.
ML, Haskell.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 66

Abstract data types
•  A datatype is a set of values and an associated set of

operations
•  A datatype is abstract only if it is completely described by

its set of operations regardless of its implementation
•  This means that it is possible to change the implementation

of the datatype without changing its use
•  The datatype is thus described by a set of procedures
•  These operations are the only thing that a user of the

abstraction can assume

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 67

Example: A Stack
•  Assume we want to define a new datatype 〈stack T〉 whose

elements are of any type T
fun {NewStack}: 〈Stack T〉
fun {Push 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {Pop 〈Stack T〉 〈T〉 }: 〈Stack T〉
fun {IsEmpty 〈Stack T〉 }: 〈Bool〉

•  These operations normally satisfy certain laws:
{IsEmpty {NewStack}} = true
for any E and S0, S1={Push S0 E} and S0 ={Pop S1 E} hold
{Pop {NewStack} E} raises error

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 68

Stack (another implementation)
fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E = X S1 end end
fun {IsEmpty S} S==nil end

fun {NewStack} emptyStack end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E = X S1 end end
fun {IsEmpty S} S==emptyStack end

C. Varela 69

Stack data type in Haskell
data Stack a = Empty | Stack a (Stack a)

newStack :: Stack a
newStack = Empty
push :: Stack a -> a -> Stack a
push s e = Stack e s
pop :: Stack a -> (Stack a,a)
pop (Stack e s) = (s,e)
isempty :: Stack a -> Bool
isempty Empty = True
isempty (Stack _ _) = False

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 70

Secure abstract data types:
A secure stack

With the wrapper & unwrapper we can build
a secure stack

local Wrap Unwrap in

 {NewWrapper Wrap Unwrap}
 fun {NewStack} {Wrap nil} end
 fun {Push S E} {Wrap E|{Unwrap S}} end
 fun {Pop S E}
 case {Unwrap S} of X|S1 then

 E=X {Wrap S1} end
 end
 fun {IsEmpty S} {Unwrap S}==nil end

end

proc {NewWrapper
 ?Wrap ?Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 fun {$ K}
 if K==Key then X end
 end
 end
 fun {Unwrap C}
 {C Key}
 end
end

C. Varela 71

Stack abstract data type as a
module in Haskell

module StackADT (Stack,newStack,push,pop,isEmpty) where

data Stack a = Empty | Stack a (Stack a)
newStack = Empty
…

•  Modules can then be imported by other modules, e.g.:

module Main (main) where
import StackADT (Stack, newStack,push,pop,isEmpty)

main = do print (push (push newStack 1) 2)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 72

Declarative operations (1)
•  An operation is declarative if whenever it is called with

the same arguments, it returns the same results
independent of any other computation state

•  A declarative operation is:
–  Independent (depends only on its arguments, nothing else)
–  Stateless (no internal state is remembered between calls)
–  Deterministic (call with same operations always give same results)

•  Declarative operations can be composed together to yield
other declarative components
–  All basic operations of the declarative model are declarative and

combining them always gives declarative components

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 73

Why declarative components (1)

•  There are two reasons why they are important:
•  (Programming in the large) A declarative component can be written,

tested, and proved correct independent of other components and of its
own past history.

–  The complexity (reasoning complexity) of a program composed of
declarative components is the sum of the complexity of the components

–  In general the reasoning complexity of programs that are composed of
nondeclarative components explodes because of the intimate interaction
between components

•  (Programming in the small) Programs written in the declarative model
are much easier to reason about than programs written in more
expressive models (e.g., an object-oriented model).

–  Simple algebraic and logical reasoning techniques can be used

C. Varela 74

Monads
•  Purely functional programming is declarative in nature:

whenever a function is called with the same arguments, it
returns the same results independent of any other
computation state.

•  How to model the real world (that may have context
dependences, state, nondeterminism) in a purely functional
programming language?
–  Context dependences: e.g., does file exist in expected directory?
–  State: e.g., is there money in the bank account?
–  Nondeterminism: e.g., does bank account deposit happen before or

after interest accrual?

•  Monads to the rescue!

C. Varela 75

Monad class
•  The Monad class defines two basic operations:

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b -- bind
 return :: a -> m a
 fail :: String -> m a
 m >> k = m >>= _ -> k

•  The >>= infix operation binds two monadic values, while
the return operation injects a value into the monad
(container).

•  Example monadic classes are IO, lists ([]) and Maybe.

C. Varela 76

do syntactic sugar
•  In the IO class, x >>= y, performs two actions sequentially

(like the Seq combinator in the lambda-calculus) passing
the result of the first into the second.

•  Chains of monadic operations can use do:
 do e1 ; e2 = e1 >> e2
 do p <- e1; e2 = e1 >>= \p -> e2

•  Pattern match can fail, so the full translation is:
 do p <- e1; e2 = e1 >>= (\v -> case of p -> e2
 _ -> fail “s”)

•  Failure in IO monad produces an error, whereas failure in
the List monad produces the empty list.

C. Varela 77

Monad class laws
•  All instances of the Monad class should respect the

following laws:
 return a >>= k = k a
 m >>= return = m
 xs >>= return . f = fmap f xs
 m >>= (\x -> k x >>= h) = (m >>= k) >>= h

•  These laws ensure that we can bind together monadic
values with >>= and inject values into the monad
(container) using return in consistent ways.

•  The MonadPlus class includes an mzero element and an
mplus operation. For lists, mzero is the empty list ([]), and
the mplus operation is list concatenation (++).

C. Varela 78

List comprehensions with monads
lc1 = [(x,y) | x <- [1..10], y <- [1..x]]

lc1' = do x <- [1..10]
 y <- [1..x]
 return (x,y)

lc1'' = [1..10] >>= (\x ->
 [1..x] >>= (\y ->
 return (x,y)))

List comprehensions are
implemented using a built-in
list monad. Binding (l >>= f)

applies the function f to all the
elements of the list l and

concatenates the results. The
return function creates a

singleton list.

C. Varela 79

List comprehensions with monads (2)
lc3 = [(x,y) | x <- [1..10], y <- [1..x], x+y<= 10]
lc3' = do x <- [1..10]
 y <- [1..x]
 True <- return (x+y<=10)
 return (x,y)

lc3'' = [1..10] >>= (\x ->
 [1..x] >>= (\y ->
 return (x+y<=10) >>=
 (\b -> case b of True -> return (x,y); _ -> fail "")))

Guards in list
comprehensions assume
that fail in the List monad

returns an empty list.

C. Varela 80

Monads summary
•  Monads enable keeping track of imperative features (state)

in a way that is modular with purely functional
components.
–  For example, fib remains functional, yet the R monad enables us to

keep a count of instructions separately.

•  Input/output, list comprehensions, and optional values
(Maybe class) are built-in monads in Haskell.

•  Monads are useful to modularly define semantics of
domain-specific languages.

