Programming Model 2

Introduction

Objectives

At the end of this lab you should be able to:
= Use the CPU simulator to create basic CPU instructions
= Use the simulator to execute the basic CPU instructions
= Use direct and indirect addressing modes
= Create iterative loops

= Create sub-routines, sub-routine calls and return from
sub-routines

Processor (CPU) Simulators

The computer architecture tutorials are supported by simulators,
which are created to underpin theoretical concepts normally
covered during the lectures. The simulators provide visual and
animated representation of mechanisms involved and enable
the students to observe the hidden inner workings of systems,
which would be difficult or impossible to do otherwise. The
added advantage of using simulators is that they allow the
students to experiment and explore different technological
aspects of systems without having to install and configure the
real systems.

Basic Theory

The programming model of computer architecture defines those
low-level architectural components, which include the following

* Processor instruction set

» Registers

= Modes of addressing instructions and data
= Interrupts and exceptions

It also defines interaction between each of the above
components. It is this low-level programming model which
makes programmed computations possible.

Simulator Details

This section includes some basic information on the simulator, which
should enable the students to use the simulator. The tutor(s) will be
available to help anyone experiencing difficulty in using the simulator.

The simulator for this lab is an application running on a PC and is
composed of a single window.

=]
~INSTRUCTION MEMORY [RAM]—— EXECUTION lIINIT | SPECIAL REGISTERS — -REGISTER SET ———
truch
PAdd | LAdd | Instruction [Base | | eron | I% PC 2 Reg | value[c[val -
Co000 0000 MOV#0,R08 0000 IR |7JGT = Oroo 0
Oo006 0006 MOV#L,R09 0000 || = DEmDE| OpCode [J6T Oro1 0
Coo12 0012 CMP#20,R09 0000 | 5o Qprc2 SR [Oro2 0
Co018 0018 JGT 48 0000 | g | sp o Lro3 ik
Coo22 0022 MOV ROS,R03 0000 Oro4 o
C MM O RDIR | MM G FDIR ||| BR |0 COROS 0
Oo027 0027 ADD #1, R03 0000 |llew st e L i e e N .
Ooo33 0033 MOVRO3,R08 0000 || winp £ MIND MAR 18 Oro7 =
Oo033 0038 ADD #1, R09 0000 AT Cidh . -
Ooo44 0044 JMP12 0000 | 3 E><EEUTE| SHDWEAEHE---l ovOzO N Oroo 5
D0048 0048 HLT 0000 ~PROGRAM LIST ——— - HARDWARE STACK DRlU 0
Hame | Base | Start | Or11 0
FODRHEXT 0000 oooo DR12 0
Ori3 0
Or14a 0
Or1s 0
Oris6 0
Or17 0
Oris 0
SHOW PROG MEMORY. .. Or19 0
RESET | SHARE | DELETE EEE;’_ g
‘l l L‘ HEMDVEPHDG' CLEAR ALL _?R_zlz . j
—PROGRAM INSTRUCTIONS ———— PROGRAM CONTROL ~ADVAMCED ————— I2 CHAMGE | RESET ALL |
ADD IMSERT | INSERT
NEW... ABDVE...‘ BELOW... DELETEl EDIT.. STEP CDMF"LEF"“l o | \watch Paramsters:
_Ptloz:rE‘Na}e FiISeAVE T = INPUT/OUTEUT.. | FEl SETWATCHl HESET|
[4| [FoRnexT =] INTERRLIPTS... | EXIT
Baze Address Baze Addiess Copynght & 2006
P Select Besim Mustafa CLOSE
[40e sl A NEW CRLL.. | cru |0 EI | Edae Hill University

Image 1 - Main simulator window

The main window is composed of several views, which represent
different functional parts of the simulated processor. These are

= Instruction memory
= Special registers
= Register set

= Hardware stack

The parts of the simulator relevant to this lab are described below.

Instruction memory view

~INSTRUCTION MEMORY [RAM]
PAdd | LAdd | Instruction Base

This view contains the program
instructions. The instructions are
displayed as sequences of low-level
instruction mnemonics (assembler-
level format) and not as binary code.
This is done for clarity and makes code
more readable.

Each instruction has two addresses:
the physical address (PAdd) and the
logical address (LAdd). This view also
displays the base address (Base)
against each instruction. The sequence
of instructions belonging to the same
program will have the same base
address.

Image2 - Instruction memory view

Special registers view

-SPECIAL REGISTERS — | This view presents the set of registers, which have pre-
PC |U defined specialist functions:
IR | PC: Program Counter contains the address of the next
SR |ﬂ instruction to be executed.
IR: Instruction Register contains the instruction currently
SP Iﬂ being executed.
SR: Status Register contains information pertaining to the
Iﬂ . :
BR result of the last executed instruction.
HARIU SP: Stack Pointer register points to the value maintained

el AT - at the top of the hardware stack (see below).

ov 0 z0O N O BR: Base Register contains current base address.
MAR: Memory Address Register contains the memory
address currently being accessed.

Status bits: OV: Overflow; Z: Zero; N: Negative

Image 3 - Special
registers view

Register set view

-~REGISTER SET

Reg | value|c|[val 4] The register set view shows the contents of alll
Oroo 0 the general-purpose registers, which are used
Oro1 0 to maintain temporary values as the program's
EREE g instructions are executed.
R

Egg; g In this architecture, there are 64 registers.
COro6 0 These registers are often used to hold values
COrRO7 0 | of a program's variables as defined in high-
Oros 0 level languages.

Oroo 0

Or10 0 Not all architectures have this many registers.
Or11 a4 Some have more (e.g. 128 register) and some
EEE g others have less (e.g. 8 registers). In all
Or1a 0 cases, these registers serve similar purposes.
Oris 0

Oris 0 This view displays each register's name
Or17 0 (Reg), its current value (Value) and some
Cr18 0 additional values, which are reserved for
53;3 g program debugging. It can also be used to
Do 5 reset the individual register values manually
Orz2 0 4 which is often useful for advanced debugging.
— Hegisters

[cHanGE | RESET ALL

‘Watch Parameters:

IE I_ SET W.-'-\TI:Hl RESET

Image 4 - Register set view

Hardware stack view
~-HARDWARE STACK

The hardware stack maintains temporary values
as the instructions are executed. The stack is a
LIFO (last-in-first-out) data structure. It is often
used for efficient interrupt handling and sub-routine
calls.

The instructions PSH (push) and POP are used to
store values on top of stack and pop values from
top of stack respectively.

Image 5 - Hardware stack view

Lab Exercises - Investigate and Explore

The lab exercises are a series of exercises, which are attempted by the
students under basic guidelines. The students are encouraged to carry
out further investigations on their own in order to form a better
understanding of the technology.

First we need to place some instructions in the Instruction Memory
View (i.e. representing the RAM in the real machine) before executing
any instructions. How are instructions placed in the Instruction Memory
View? Carry out the following procedure for this.

~PROGRAM INSTRUCTIONS
AN INEERT |INEEAT : =
NEW!. | SEGVE. | BELGW | bgLee || E0H
— New Program -File :
Program N arne : Frogram List
T = | YT -
Baze Addiess - | W~ Baze Address Image 6 - Program
| | Instructions View

In the Program Instructions View, first enter a Program Name, and
then enter a Base Address (this can be any number, but for this
exercise use 100). Click on the ADD button. A new program name will
be entered in the Program List View shown below. Use the SAVE... /
LOAD... buttons to save instructions in a file and load the instructions
from a file.

—PROGRAM LIST
Hame | Ba=se I Start |
Test 0100 0000

Use the DELETE button to delete the
selected program from the list; use the

A RRE MEVREY CLEAR ALL button to remove all the

programs from the list. Note that when a
RESET | SHeRE | DELETE program is deleted, its instructions are also

removed from the Instruction Memory View
REMOVE PROG CLEAR &LL too.

Image 7 - Program List View

In the following exercises, you'll need to see the contents of user
memory assigned to your program. To do this click on the SHOW
PROG MEMORY. ... button (see Image 7 above) in the PROGRAM
LIST view. The memory contents are displayed in a separate window
as shown below. For convenience the addresses are displayed in
decimal and the memory data are displayed in hexadecimal formats.

i
- RAM DATA
padd |1add | Bo| B1i| Bz | B3| B4 BS| BE| B7 | Data |
OracE o

D oooo o000 o0 Oo 00 00O 00 00 00 00 @...eee.
Oooos oogs 00 00 00 oo 0dd 00 o0 a0 o...e....
Oooie 0dle OO0 OO0 00 0o 0dd 0o o0 oo o.......
Oooza ooz4 00 00 00 oo 0dd 00 o0 oo o.......
Ooozz ooz 00 00 0o oo 0o o0 o0 a0
O ooao 0040 00 00 00 00 00 00 00 00 c...e.eaas o
Oooas 0045 00 00 00 00 0dd 00 00 00 c..wwaas
Oooss 0gose 00 OO0 00 00 0dd 00 00 00
Ooosa ode4 OO0 OO0 00O 00 0 00 00 a0
Ooovz 0o7: 00 00 00 oo 0dd 00 o000 o0 o....e...
Ooosn LI L | o 1 1 | o
Ooosa ggss 00 00 00 oo dd 00 o0 oo
Oooss L= | [[o o 1 | o
o104 0104 00 00 00 00 00 00 00 00 (...eeaas
Mni1z niiz T O W e A O e PP .:!

— Debug control Statis:
Check boxes to suspend when cormesponding :
data bute addrezses are modified by code.

OB Stayontop [RESET
Bl E1 B2 B2 B4 BH BE EF

god@omaal] |

Image 8 - Program memory page

IMPORTANT NOTE:

Before you carry on with the following tutorial exercises, first click on
the SHOW PIPELINE... button in the CPU Simulator window and
check the checkbox labelled No instruction pipeline. Close the
window.

You are now ready to enter instructions into this view. You do this by
clicking on the ADD NEW... button. This will display the Instructions:
CPUO window. Use this window to enter the instructions. For your
reference Appendix provides a list of instructions for the CPU
simulator.

Now, do the following activities:

1. Inthe Appendix, locate the instruction, which is used to store a
byte of data in a memory location.

2. Use it to store 1-byte number 65 in address location 20 (all numbers
are in decimal). This is an example of direct addressing.

3. Create an instruction to move number 22 to register RO1 and
execute it.

4. Create an instruction to store number 51 in address location
currently stored in register RO1 and execute it. This is an example
of indirect addressing.

5. Verify that the specified bytes are written to the correct address
locations (see Image 8). You should see an A and a 3 under the
Data column.

6. Now, let’s create a loop: First set RO2 to 0 (zero). Increment R02's
value by 1 (one). If RO2's value is 5 then exit this loop and stop the
program; otherwise continue the loop. Verify that this loop works.

7. Next, let’s plant a short text into memory (we are hacking now!).
Click and highlight memory location 0024 (under PAdd column).
Now enter 02, 'h, 'e,'l, 'l, '0, OD (i.e. decimal 13), OA (i.e. decimal
10) in boxes BO to B7 and click on the UPDATE button. The text
"hello" should now be in memory (starting from address location
24). What do the last two hex bytes ODOA do (step 9 below will
reveal the answer)?

8. Modify the above loop so that the text hello is displayed 5 times on
the console. To do this you need to insert an OUT instruction in an
appropriate place in the loop.

9. Verify that when the loop is executed, the text "hello" is displayed
5 times under each other. To see the text click on the
INPUT/OUTPUT... button in ADVANCED view (see Image 1
above). Now, go to the memory window and change OD and OA in
boxes B6 and B7 to 00’s (use UPDATE button to change in the
memory) and repeat. How does this display differ?

10. Convert your loop to a subroutine. Then add the necessary
instructions to call this subroutine.

11. Observe the contents of the PC register and the Program Stack
just before the subroutine call. Observe these again just after the
subroutine return instruction is executed. Explain your observations.

12.Save the instructions in the Instruction Memory view in a file by
clicking on the SAVE... button.

The above exercises are intended to help you understand the construction of
basic CPU instruction loops, and the mechanism involved in subroutine calls
and returns, which can be found in most modern CPU architectures. As often
is the case, there is more to these architectures than the above basic
instructions.

Appendix - Simulator Instruction Sub-set

Instruction

Description and examples of usage

Data transfer instructions

MOV

Move data to register; move register to register

e.g.

MOV #2, RO1 ;moves number 2 into register RO1

MOV RO1, RO3 ;moves contents of register RO1 into register RO3

LDB

Load a byte from memory to register

e.g.

LDB 1000, R0O2 ;loads one byte value from memory location 1000
LDB @ROO, RO1 ;memory location is specified in register ROO

LDW

Load a word (2 bytes) from memory to register

e.g.

LDW 1000, RO2 ;loads two-byte value from memory location 1000
LDW @ROO, RO1 ;memory location is specified in register ROO

STB

Store a byte from register to memory

e.g.

STB #2, 1000 ;stores value 2 into memory location 1000
STB R0O2, @RO1 ;memory location is specified in register RO1

STW

Store a word (2 bytes) from register to memory

e.g.

STW RO4, 1000 ;stores register RO4 into memory location 1000
STW R0O2, @2000 ;memory location is specified in memory 2000

PSH

Push data to top of hardware stack (TOS); push register to TOS
e.g.

PSH #6 ;pushes number 6 on top of the stack

PSH RO3 ;pushes the contents of register RO3 on top of the stack

POP

Pop data from top of hardware stack to register

e.g.
POP RO5 ;pops contents of top of stack into register R0O5

Arithmetic instructions

Add number to register; add register to register

e.g.

ADD ADD #3, RO2 ;adds number 3 to contents of register RO2 and
stores the result in register RO2.
ADD ROO, RO1 ;adds contents of register ROO to contents of
register RO1 and stores the result in register RO1.

SUB Subtract number from register; subtract register from register

MUL Multiply number with register; multiply register with register

DIV Divide number with register; divide register with register

Control trans

fer instructions

JMP

Jump to instruction address unconditionally

e.g.
JMP 100 ;unconditionally jumps to address location 100

JLT

Jump to instruction address if less than (after last comparison)

e.g.

JLT 1000 ;jumps to address location 1000 if the previous
comparison instruction result indicates that CMP operand 2 is less
than operand 1.

JGT

Jump to instruction address if greater than (after last comparison)

JEQ

Jump to instruction address if equal (after last comparison)

e.g.

JEQ 200 ;jumps to address location 200 if the previous comparison
instruction result indicates that the two CMP operands are equal.

JNE

Jump to instruction address if not equal (after last comparison)

CAL

Jump to subroutine address

e.g. To call a subroutine starting at address location 1000 use the
following sequence of instructions

MSF ;always needed just before the following instruction

CAL 1000 ;will cause a jump to address location 1000

RET

Return from subroutine

e.g. The last instruction in a subroutine must always be the following
instruction

RET ;will jump to the instruction after the last CAL instruction.

SWI Software interrupt (used to request OS help)
Halt simulation. This must be the last instruction.
HLT e.g.

HLT ;stops the simulation run (not the simulator itself)

Comparison i

nstruction

CMP

Compare number with register; compare register with register

e.g.

CMP #5, RO2 compare number 5 with the contents of register R02
CMP RO1, RO3 compare the contents of registers RO1 and R03
Note:

If RO3 = RO1 then the status flag Z will be set

If RO3 > RO1 then non of the status flags will be set

If RO3 < RO1 then the status flag N will be set

Input, output instructions

IN Get input data (if available) from an external 10 device

Output data to an external 10 device

e.g. to display a string starting in memory address 120 (decimal) on
ouT console device do the following

OUT 120, O ;the string is in address location 120 (direct addressing)
OUT @RO02, O ;register RO2 has number 120 (indirect addressing)

10

