TAB

@

Programming
the Raspberry Pi’

Getting Started
with Python

Simon Monk



Programming the Raspberry Pi™



About the Author

Dr. Simon Monk (Preston, UK) has a degree in cybernetics and computer science and a Ph.D. in
software engineering. Simon spent several years as an academic before he returned to the industry,
co-founding the mobile software company Momote Ltd. Simon is now a full-time author and has
published three books in the McGraw-Hill Evil Genius series. He is also the author of Programming
Arduino and has published books on IOIO and .NET Gadgeteer. You can follow Simon on Twitter
(@simonmonk?2.



Programming the Raspberry Pi™
Getting Started with Python
Simon Monk

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto




Copyright © 2013 by The McGraw-Hill Companies. All rights reserved. Except as permitted under

the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-0-07-180784-5

MHID: 0-07-180784-5

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-180783-8,
MHID: 0-07-180783-7

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative please e-mail us at
bulksales@mcgraw-hill.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from the use of such information.
TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. ("McGrawHill") and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill's prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.


mailto:bulksales%40mcgraw-hill.com

To my brothers, Andrew and Tim Monk, for their love and wisdom.



RSN UN AW =

o

Introduction

Getting Started

Python Basics

Strings, Lists, and Dictionaries
Modules, Classes, and Methods
Files and the Internet
Graphical User Interfaces
Games Programming
Interfacing Hardware
Prototyping Project (Clock)
The RaspiRobot

What Next

Index

CONTENTS AT A GLANCE



CONTENTS
Acknowledgments
Introduction
1  Introduction
What Is the Raspberry Pi?
What Can You Do with a Raspberry Pi?
A Tour of the Raspberry Pi
Setting Up Your Raspberry Pi
Buying What You Need
Connecting Everything Together
Booting Up
Summary
2 Getting Started
Linux
The Desktop
The Internet
The Command Line
Navigating with the Terminal
sudo
Applications
Internet Resources
Summary
3  Python Basics
IDLE
Python Versions
Python Shell
Editor
Numbers
Variables
For Loops
Simulating Dice
If
Comparisons
Being Logical
Else
While
Summary
4  Strings, Lists, and Dictionaries
String Theory
Lists
Functions
Hangman
Dictionaries
Tuples
Multiple Assignment



Multiple Return Values
Exceptions
Summary of Functions
Numbers
Strings
Lists
Dictionaries
Type Conversions
Summary
5  Modules, Classes, and Methods
Modules
Using Modules
Useful Python Libraries
Installing New Modules
Object Orientation
Defining Classes
Inheritance
Summary
6  Files and the Internet
Files
Reading Files
Reading Big Files
Writing Files
The File System
Pickling
Internet
Summary
7  Graphical User Interfaces
Tkinter
Hello World
Temperature Converter
Other GUI Widgets
Checkbutton
Listbox
Spinbox
Layouts
Scrollbar
Dialogs
Color Chooser
File Chooser
Menus
The Canvas
Summary
8 Games Programming
What Is Pygame?



Hello Pygame
A Raspberry Game
Following the Mouse
One Raspberry
Catch Detection and Scoring
Timing
Lots of Raspberries
Summary
9  Interfacing Hardware
GPIO Pin Connections
Direct Connection to GPIO Pins
Expansion Boards
Pi Face
Slice of P1/O
RaspiRobotBoard
Gertboard
Prototyping Boards
Pi Cobbler
Pi Plate
Humble P1
Arduino and the Pi
Arduino and Pi Talk
Summary
10  Prototyping Project (Clock)
What You Need
Hardware Assembly
Software
Phase Two
Summary
11 The RaspiRobot
What You Need
Phase 1: A Basic Rover
Hardware Assembly
About the Software
Phase 2: Adding a Range Finder and Screen
Step 1: Assemble the Range Finder Serial Adapter
Step 2: Attach the Screen
Step 3: Update the Software
Step 4: Run It
Revised Software
Summary
12 What Next
Linux Resources
Python Resources
Raspberry Pi Resources



Other Programming Languages
Scratch
C

Applications and Projects
Media Center (Rasbmc)
Home Automation

Summary

Index



ACKNOWLEDGMENTS
As always, I thank Linda for her patience and support.

I also thank Andrew Robinson and my son, Matthew Monk, for their technical review of much of
the material in this book. Check out Andrew’s Raspberry Pi project book. I'm sure it will be
excellent.

From TAB/McGraw-Hill, my thanks go out to my patient and thoroughly nice editor Roger Stewart
and the excellent project management of Vastavikta Sharma and Patty Mon. It is always a pleasure to
work with such a great team.



INTRODUCTION

The Raspberry Pi is rapidly becoming a worldwide phenomena. People are waking up to the
possibility of a $35 (U.S.) computer that can be put to use in all sorts of settings—from a desktop
workstation to a media center to a controller for a home automation system.

This book explains in simple terms, to both nonprogrammers and programmers new to the
Raspberry Pi, how to start writing programs for the Pi in the popular Python programming language. It
then goes on to give you the basics of creating graphical user interfaces and simple games using the
pygame module.

The software in the book mostly uses Python 3, with the occasional use of Python 2 where
necessary for module availability. The Raspbian Wheezy distribution recommended by the Raspberry
Pi Foundation is used throughout the book.

The book starts with an introduction to the Raspberry Pi and covers the topics of buying the
necessary accessories and setting everything up. You then get an introduction to programming while
you gradually work your way through the next few chapters. Concepts are illustrated with sample
applications that will get you started programming your Raspberry Pi.

Three chapters are devoted to programming and using the Raspberry Pi’s GPIO connector, which
allows the device to be attached to external electronics. These chapters include two sample projects
—one for making an LED clock and the other a Raspberry Pi controller robot, complete with
ultrasonic rangefinder.

Here are the key topics covered in the book:

* Python numbers, variables, and other basic concepts

* Strings, lists, dictionaries, and other Python data structures
Modules and object orientation
Files and the Internet
Graphical user interfaces using Tkinter
* Game programming using Pygame
Interfacing with hardware via the GPIO connector

* Sample hardware projects

All the code listings in the book are available for download from the book’s website at
http://www .raspberrypibook.com, where you can also find other useful material relating to the book,
including errata.


http://www.raspberrypibook.com

1

Introduction
The Raspberry Pi went on general sale at the end of February 2012 and immediately crashed the
websites of the suppliers chosen to take orders for it. So what was so special about this little device
and why has it created so much interest?
What Is the Raspberry Pi?
The Raspberry Pi, shown in Figure 1-1, is a computer that runs the Linux operating system. It has USB
sockets you can plug a keyboard and mouse into and HDMI (High-Definition Multimedia Interface)
video output you can connect a TV or monitor into. Many monitors only have a VGA connector, and
Raspberry Pi will not work with this. However, if your monitor has a DVI connector, cheap HDMI-
to-DVI adapters are available.

Figure 1-1 The Raspberry Pi

When Raspberry Pi boots up, you get the Linux desktop shown in Figure 1-2. This really is a
proper computer, complete with an office suite, video playback capabilities, games, and the lot. It’s
not Microsoft Windows; instead, it is Windows open source rival Linux (Debian Linux), and the
windowing environment 1s called LXDE.



Figure 1-2 The Raspberry Pi desktop

Its small (the size of a credit card) and extremely affordable (starting at $25). Part of the reason for
this low cost 1s that some components are not included with the board or are optional extras. For
instance, it does not come in a case to protect it—it is just a bare board. Nor does it come with a
power supply, so you will need to find yourself a 5V micro-USB power supply, much like you would
use to charge a phone (but probably with higher power). A USB power supply and a micro-USB lead
are often used for this.

What Can You Do with a Raspberry Pi?
You can do pretty much anything on a Raspberry Pi that you can on any other Linux desktop computer,
with a few limitations. The Raspberry Pi uses an SD card in place of a hard disk, although you can
plug in a USB hard disk. You can edit office documents, browse the Internet, and play games (even
games with quite intensive graphics, such as Quake).

The low price of the Raspberry Pi means that it is also a prime candidate for use as a media center.
It can play video, and you can just about power it from the USB port you find on many T'Vs.

A Tour of the Raspberry Pi

Figure 1-3 labels the various parts of a Raspberry Pi. This figure takes you on a tour of the Model B
Raspberry Pi, which differs from the Model A by virtue of having an RJ-45 LAN connector, allowing
it to be connected to a network.



Ethernet HDMI
Connector Video

*  micro-USB
. Power Only

..........

SD Card

FHCA
Video

GPIO Fins
Qutput

Figure 1-3 The anatomy of a Raspberry Pi

The RJ-45 Ethernet connector is shown in the top-left corner of the figure. If your home hub is
handy, you can plug your Raspberry Pi directly into your local network. While we are on the subject,
it 1s worth noting that the Raspberry Pi does not have Wi-Fi built in. For wireless networking, you
will need to plug in a USB wireless adapter. This may then require some additional work installing
drivers.

Immediately below the Ethernet socket you’ll find a pair of USB sockets, one on top of the other.
You can plug a keyboard, mouse, or external hard disks into the board, but you’ll fairly rapidly run
out of sockets. For this reason, many people use a USB hub to gain a few more USB sockets.

In the bottom-left corner of the figure you’ll find an audio socket that provides a stereo analog
signal for headphones or powered speakers. The HDMI connector is also sound capable.

Next to the audio socket is an RCA video connector. You are unlikely to use this connector unless
you are using your Raspberry Pi with an older TV. You are far more likely to use the HDMI
connector immediately opposite it, shown at the top of the figure. HDMI is higher quality, includes
sound, and can be connected to DVI-equipped monitors with a cheap adapter.

To the right of the yellow RCA jack are two rows of pins. These are called GPIO (General
Purpose Input/Output) pins, and they allow the Raspberry Pi to be connected to custom electronics.
Users of the Arduino and other microcontroller boards will be used to the idea of GPIO pins. Later,
in Chapter 11, we will use these pins to enable our Raspberry Pi to be the “brain” of a little roving
robot by controlling its motors. In Chapter 10, we will use the Raspberry Pi to make an LED clock.

The Raspberry Pi has an SD card slot underneath the board. This SD card needs to be at least 2GB
in size. It contains the computer’s operating system as well as the file system in which you can store
any documents you create. The SD card is an optional extra feature when buying your Raspberry Pi.
Preparing your own SD card is a little complex to do, and suppliers such as SK Pang, Farnell, and RS
Components all sell already-prepared SD cards. Because no disk is built into your Raspberry Pi, this
card is effectively your computer, so you could take it out and put it in a different Raspberry Pi and
all your stuff would be there.

Above the SD card is a micro-USB socket. This is only used to supply power to the Raspberry Pi.



Therefore, you will need a power supply with a micro-USB connector on the end. This is the same
type of connector used by many mobile phones, including most Android phones. Do, however, check
that it is capable of supplying at least 700mA; otherwise, your Raspberry Pi may behave erratically.

For those interested in technical specs, the big square chip in the center of the board is where all
the action occurs. This is Broadcom’s “System on a Chip” and includes 256MB of memory as well as
the graphics and general-purpose processors that drive the Raspberry Pi.

You may also have noticed flat cable connectors next to the SD card and between the Ethernet and
HDMI connectors. These are for LCD displays and a camera, respectively. Look for camera and LCD
display modules becoming available for the P1 in the near future.

Setting Up Your Raspberry Pi

You can make your life easier by buying a prepared SD card and power supply when you buy your
Raspberry Pi, and for that matter you may as well get a USB keyboard and mouse (unless you have
them lurking around the house somewhere). Let’s start the setup process by looking at what you will
need and where to get it from.

Buying What You Need

Table 1-1 shows you what you will need for a fully functioning Raspberry Pi system. At the time of
writing, the Raspberry Pi itself is sold through two worldwide distributors based in the UK: Farnell
(and the related U.S. company Newark) and RS Components, which is not to be confused with
RadioShack.



Item
Raspberry Pi,
Model Aor B

USB power supply
(U.5. mains plug)

USB power supply
(UK mains plug)
USB power supply
{European mains
plug)

Micro-USB lead

Keyboard and

mouse

TV /monitor with
HDMI

HDMI lead
SD card (prepared)

Wi-Fi adapter*

USB hub*
HDMI-to-DVI
adapter*

Ethernet patch
cable*
Case®

Source and Part Number
Farnell (www.farnell.com)
MNewark (www.newark.com)
RS Components (www
Is-components.com)
Mewark: 39T2392
RadioShack: 55053163
Adafruit PID:501
Farnell: 2100374
Maplins: N15GN
Farnell: 1734526

RadioShack: 55048949
Farmnell: 2115733
Adafruit PID 592

Any computer store

Any computer/electrical store

Any computer /electrical store
SK Pang: RSP-2GBSD
Newark: 9617436

Farnell: 2113756

http:/ /elinux.org/RPi_
VerifiedPeripherals#USB_WiFi_
Adapters

Any computer store

Newark: 74AM6204

Maplins: N24C]

Farnell: 1428271

Any computer store

Adafruit, SK Pang, or Alliedelec
Lom

* These items are optional.

Table 1-1 A4 Raspberry Pi Kit

Power Supply

Figure 1-4 show a typical USB power supply and USB-A-to-micro-USB lead.

Additional Information
The difference between the two
models is that the Model B has a
network connection.

5V USB power supply. Should be
capable of supplying 700mA (3W),
but 1A (5W) is better.

Any USB keyboard will do. Also,
wireless keyboards and mice that
come with their own USB adaptor
will work, too.

Elinux.org provides an up-to-date
list of Wi-Fi adapters.



Figure 1-4 USB power supply

You may be able to use a power supply from an old MP3 player or the like, as long as it is 5V and
can supply enough current. It is important not to overload the power supply because it could get hot
and fail (or even be a fire hazard). Therefore, the power supply should be able to supply at least
700mA, but 1A would give the Raspberry Pi a little extra when it comes to powering the devices
attached to its USB ports.

If you look closely at the specs written on the power supply, you should be able to determine its
current supply capabilities. Sometimes its power-handling capabilities will be expressed in watts
(W); if that’s the case, it should be at least 3W. If it indicates SW, this is equivalent to 1A.

Keyboard and Mouse

The Raspberry Pi will work with pretty much any USB keyboard and mouse. You can also use most
wireless USB keyboards and mice—the kind that come with their own dongle to plug into the USB
port. This is quite a good idea, especially if they come as a pair. That way, you are only using up one
of the USB ports. This will also come in quite handy in Chapter 10 when we use a wireless keyboard
to control our Raspberry Pi—based robot.

Display

Including an RCA video output on the Raspberry Pi is, frankly, a bit puzzling because most people are
going to go straight to the more modern HDMI connector. A low-cost 22-inch LCD TV will make a
perfectly adequate display for the Pi. Indeed, you may just decide to use the main family TV, just
plugging the P1 into the TV when you need it.

If you have a computer monitor with just a VGA connector, you are not going to be able to use it
without an expensive converter box. On the other hand, if your monitor has a DVI connector, an
inexpensive adapter will do the job well.

SD Card

You can use your own SD card in the Raspberry Pi, but it will need to be prepared with an operating
system disk image. This is a little fiddly, so you may just want to spend a dollar or two more and buy
an SD card that is already prepared and ready to go.

You can also find people at Raspberry Pi meet-ups who will be happy to help you prepare an SD
card. The prepared SD cards supplied by Farnell and RS Components are overpriced. Look around
on the Internet to find suppliers (such as SK Pang) who sell prepared cards, with the latest operating
system distribution, for less than you would pay for an SD card in a supermarket. If you indeed want
to “roll your own” SD card, refer to the instructions found at www.raspberrypi.org/downloads.

To prepare your own card, you must have another computer with an SD card reader. The procedure


http://www.raspberrypi.org/downloads

is different depending on whether your host computer is a Windows, Mac, or Linux machine.
However, various people have produced useful tools that try to automate the process as much as
possible.

If you decide to roll your own, be sure to follow the instructions carefully—with some tools, it is
quite easy to accidentally reformat a hard disk attached to your computer if the tool mistakes it for the
SD card! Fortunately, this process is getting better all the time as easier-to-use software tools become
available.

A big advantage of making your own SD card is that you can actually choose from a range of
operating system distributions. Table 1-2 shows the most popular ones available at the time of
writing. Check on the Raspberry Pi Foundation’s website for newer distributions.

Distribution Notes

Raspbian Wheezy This is the “standard” Raspberry Pi operating system and the
one used in all the examples in this book. It uses the LXDE
desktop.

Arch Linux ARM This distribution is more suited to Linux experts.

QtonPi This distribution is intended for people developing rich graphi-
cal programs using the (t5 graphics framework.

Occidentalis A distribution made by Adafruit and based on Raspbian

Wheezy but with improvements intended for hardware hackers.

Table 1-2 Raspberry Pi Linux Distributions

Of course, nothing is stopping you from buying a few SD cards and trying out the different
distributions to see which you prefer. However, if you are a Linux beginner, you should stick to the
standard Raspbian Wheezy distribution.
Case
The Raspberry Pi does not come in any kind of enclosure. This helps to keep the price down, but also
makes it rather vulnerable to breakage. Therefore, it is a good idea to either make or buy a case as
soon as you can. Figure 1-5 shows a few of the ready-made cases currently available.

(b) (c)

Figure 1-5 Commercial Raspberry Pi cases

The cases shown are supplied by (a) Adafruit (www.adafruit.com), (b) SK Pang
(www.skpang.co.uk/), and (¢) ModMyPi (www.modmypi.com). The case you choose will depend on
what you plan to do with your Raspberry Pi. If you have access to a 3D printer, you can also use the
following open source designs:

« www.thingiverse.con/thing:23446

» www.thingiverse.com/thing:24721
You <can also find a folded card design called the Raspberry Punnet at
www.raspberrypi.org/archives/1310.

People are having a lot of fun building their Raspberry Pi into all sorts of repurposed containers,
such as vintage computers and games consoles. One could even build a case using Legos. My first


http://www.adafruit.com
http://www.skpang.co.uk/
http://www.modmypi.com
http://www.thingiverse.com/thing%3A23446
http://www.thingiverse.com/thing%3A24721
http://www.raspberrypi.org/archives/1310

case for a Raspberry Pi was made by cutting holes in a plastic container that used to hold business
cards (see Figure 1-6).

Figure 1-6 A homemade Raspberry Pi case

Wi-Fi

Neither of the Raspberry Pi models has support for Wi-Fi. Therefore, to wirelessly connect your
Raspberry Pi to the network, you have just two options. The first is to use a USB wireless adapter
that just plugs into a USB socket (see Figure 1-7). With any luck, Linux should recognize it and
immediately allow you to connect (or show what you need to do to connect).

Figure 1-7 Wi-Fi adapter

The Wi-Fi adapters in the list referenced in Table 1-1 are purported to work with the Raspberry
Pi. However, there are sometimes problems with Wi-Fi1 drivers, so be sure to check the Raspberry Pi
forum and wiki for up-to-date information on compatible devices.



The second option for Wi-Fi is to use a Wi-Fi bridge with a Model B Raspberry Pi. These devices
are usually USB powered and plug into the Ethernet socket on the Raspberry Pi. They are often used
by the owners of game consoles that have an Ethernet socket but no Wi-Fi. This setup has the
advantage in that the Raspberry Pi does not require any special configuration.

USB Hub
Because the Raspberry Pi has just two USB ports available, you will rapidly run out of sockets. The
way to obtain more USB ports is to use a USB hub (see Figure 1-8).

Figure 1-8 A4 USB hub

These hubs are available with anywhere from three to eight ports. Make sure that the port supports
USB 2. It is also a good idea to use a “powered” USB hub so that you do not draw too much power
from the Raspberry Pi.
Connecting Everything Together
Now that you have all the parts you need, let’s get it all plugged together and boot your Raspberry Pi
for the first time. Figure 1-9 shows how everything needs to be connected.



TVIMonitor

LISB Power
Adapter

Home Internet Hub

Ethernet Parch
Cable

Mini-USBE Lead

rrrrrr

Keyboard Mouse
Figure 1-9 A4 Raspberry Pi system

Insert the SD card, connect the keyboard, mouse, and monitor to the Pi, attach the power supply,
and you are ready to go.

Booting Up
The first time you boot your Raspberry Pi, it will not immediately boot into the kind of graphical
environment you would normally see in, say, a Windows computer. Instead, it will stop to allow a

first-time configuration (see Figure 1-10). It 1s a good idea to make a number of the configuration
changes shown here.

Change memory ﬂillt Lk

Enable or dinbln




Figure 1-10 Configuration screen
First, if your SD card is larger than 2GB, the Raspberry Pi will only make use of the first 2GB
unless you select the option to expand rootfs. Select this option using the UP and DOWN ARROW keys
and ENTER.
Another change well worth making is the boot _behaviour option. If this is not set to Boot Straight
to Desktop, you will be forced to log in and start the windowing environment manually each time you
power up your Raspberry Pi (see Figure 1-11).

Figure 1-11 Boot-to-desktop option

Summary
Now that we have set up our Raspberry Pi and it is ready to use, we can start exploring some of its
features and get a grip on the basics of Linux.



2

Getting Started

The Raspberry Pi uses Linux as its operating system. This chapter introduces Linux and shows you
how to use the desktop and command line.

Linux

Linux is an open source operating system. This software has been written as a community project for
those looking for an alternative to the duopoly of Microsoft Windows and Apple OS X. It is a fully
featured operating system based on the same solid UNIX concepts that arose in the early days of
computing. It has a loyal and helpful following and has matured into an operating system that is
powerful and easy to use.

Although the operating system is called Linux, various Linux distributions (or distros) have been
produced. These involve the same basic operating system, but are packaged with different bundles of
applications or different windowing systems. Although many distros are available, the one
recommended by the Raspberry Pi foundation is called Raspbian Wheezy.

If you are only used to some flavor of Microsoft Windows, expect to experience some frustration
as you get used to a new operating system. Things work a little differently in Linux. Almost anything
you may want to change about Linux can be changed. The system is open and completely under your
control. However, as they say in Spiderman, with great power comes great responsibility. This
means that if you are not careful, you could end up breaking your operating system.

The Desktop
At the end of Chapter 1, we had just booted up our Raspberry Pi, logged in, and started up the
windowing system. Figure 2-1 serves to remind you of what the Raspberry Pi desktop looks like.

A

Figure 2-1 Raspberry Pi desktop
If you are a user of Windows or Mac computers, you will be familiar with the concept of a desktop



as a folder within the file system that acts as a sort of background to everything you do on the
computer.

Along the left side of the desktop, you see some icons that launch applications. Clicking the left-
most icon on the bar at the bottom of the screen will show us some of the applications and tools
installed on the Raspberry Pi (rather like the Start menu in Microsoft Windows). We are going to start
with the File Manager, which can be found under the Accessories.

The File Manager is just like the File Explorer in Windows or the Finder on a Mac. It allows you
to explore the file system, copy and move files, as well as launch files that are executable
(applications).

When it starts, the File Manager shows you the contents of your home directory. You may
remember that when you logged in, you gave your login name as pi. The root to your home directory
will be /home/pi. Note that like Mac’s OS X, Linux uses slash (/) characters to separate the parts of a
directory name. Therefore, / is called the root directory and /home/ 1s a directory that contains other
directories, one for each user. Our Raspberry Pi is just going to have one user (called pi), so this
directory will only ever contain a directory called pi. The current directory is shown in the address
bar at the top, and you can type directly into it to change the directory being viewed, or you can use
the navigation bar at the side. The contents of the directory /home/ pi include just the directories
Desktop and python games.

Double-clicking Desktop will open the Desktop directory, but this is not of much interest because it
just contains the shortcuts on the left side of the desktop. If you open python games, you will see
some games you can try out, as shown in Figure 2-2.

ol python gamec - 0K
| :
| Fla Edt Go PBockmarks WView Jook Help
| f‘\ ™ v ) A [hemefpipython_games (o
- - - - - - ¥
Places v =
| - - - —
A%, B N gy
i A '
_ Deskiop garrdl. png rksplspot png memerypuzdlapy  Arow_humansann
erpng
t Rubbish
| ._% Appicabions Q ﬁ ﬁ p—
|
! rrrmicblicOp2 pinkegrl prg siTuilate py lawrscher sh A ow_cormpubers
| - ey ML prg
| " mml — ' " . %
inkspil py pertarming py 4row_red.prg mnatch2 weav
beepZ.ogg Selector prg shdepuzrzie pry drow_board prg
® i m B
cat prg rrabchi, way Grass_Blockpng  Wal_Black_Tallpng
Sl viE . . - =
_‘Tﬁﬂlrwl Fras space 2.2 GB (Total 3.8 88)

Figure 2-2 The contents of python games, as shown in File Manager

You shouldn’t often need to use any of the file system outside of your home directory. You should
keep all documents, music files, and so on, housed within directories on your home folder or on an
external USB flash drive.



The Internet
If you have a home hub and can normally plug in any Internet device using an Ethernet cable, you
should have no problem getting your Raspberry Pi online. Your home hub should automatically assign
the Raspberry Pi an IP address and allow it to connect to the network.

The Raspberry Pi comes with a web browser called Midori, which you will find under the Internet
section of your start menu. You can check that your connection is okay by starting Midori and
connecting to a website of your choice, as shown in Figure 2-3.

Fle Edt \iew Co Bookmarks Tools Window Help
. Back £ 4 httpfwww, google.co.uk/ | * | Google
[Search |mages Yideos Mags Hews Shopping Gmall Mo = Google | Web History | Settings | Swgnin [

Go ug]ﬁe

Google Search | I'm Feeling Lucky
B coll snsdc o? o peebiem. Take Geaple Maps whamswr you go with pew ofkne map

Advertsing Programmes  Business Sclutions tGoogle  About Goopgle Go to Google com

£ 2012 - Privacy & Termns

Figure 2-3  The Midori web browser

The Command Line

If you are a Windows or Mac user, you may have never used the command line. If you are a Linux
user, on the other hand, you almost certainly will have done so. In fact, if you are a Linux user, then
about now you will have realized that you probably don’t need this chapter because it’s all a bit basic
for you.

Although it 1s possible to use a Linux system completely via the graphical interface, in general you
will need to type commands into the command line. You do this to install new applications and to
configure the Raspberry Pi.

From the launcher button (bottom left), open the LXTerminal, which is shown in Figure 2-4.



¥ T ——— - a
- Accessories [} B File Monager

& Education F B Image Viewer
& Intermet B L Terrming

e Other

]
b # Leafpad
B Programiming F B Root Terrmiral
B Sound & Video b B Xarchiver
k
L3

Systern Tools
Preferences
Fum

@ Logout
[ PR

Figure 2-4 The LXTerminal command line

Navigating with the Terminal

You will find yourself using three commands a lot when you are using the command line. The first
command is pwd, which is short for print working directory and shows you which directory you are
currently in. Therefore, after the $ sign in the terminal window, type pwd and press RETURN, as shown
in Figure 2-5.

Figure 2-5 The pwd command
As you can see, we are currently in /home/pi. Rather than provide a screen shot for everything we



are going to type into the terminal, I will use the convention that anything I want you to type will be

prefixed with a s sign, like this:

Spwd
Anything you should see as a response will not have s in front of it. Therefore, the whole process

of running the pwd command would look something like this:
spwd
/home/pi

The next common command we are going to discuss is 1s, which is short for /ist and shows us a
gst of the files and directories within the working directory. Try the following:

1ls
Desktop

This tells us that the only thing in /home/pi is the directory Desktop.

The final command we are going to cover for navigating around is cd (which stands for change
directory). This command changes the current working directory. It can change the directory relative
either to the old working directory or to a completely different directory if you specify the whole
directory, starting with /. So, for example, the following command will change the current working

directory to /home/pi/Desktop:
Spwd

/home /pi
scd Desktop

You could do the same thing by typing this:
cd /home/pi/Desktop

Note that when entering a directory or filename, you do not have to type all of it. Instead, at any
time after you have typed some of the name, you can press the TAB key. If the filename 1s unique at that
point, it will be automatically completed for you.
sudo
Another command that you will probably use a lot is sudo (for super-user do). This runs whatever
command you type after it as if you were a super-user. You might be wondering why, as the sole user
of this computer, you are not automatically a super-user. The answer is that, by default, your regular
user account (username: pi, password: raspberry) does not have privileges that, say, allow you to go
to some vital part of the operating system and start deleting files. Instead, to cause such mayhem, you
have to prefix those commands with sudo. This just adds a bit of protection against accidents.

For the commands we have discussed so far, you will not need to prefix them with sudo. However,

just for interest, try typing the following:
sudo 1s : o Y
This will work the same way 1s on its own works; you are still in the same working directory. The

only difference is that you will be asked for your password the first time you use sudo.

Applications
The Raspbian Wheezy distribution for Raspberry Pi is fairly sparse. However, loads of applications
can be installed. Installing new applications requires the command line again. The command apt-get
is used to both install and uninstall applications. Because installing an application often requires
super-user privileges, you should prefix apt-get commands with sudo.

The command apt-get uses a database of available packages that i1s updated over the Internet, so

the first apt-get command you should use 1S sudo apt-get update
sudo apt-get update

which updates the database of packages. You will need to be connected to the Internet for it to work.
To install a particular package, all you need to know is the package manager name for it. For



example, to install the Abiword word processor application, all you need to type is the following;
sudo apt-get install abiword

It will take a while for everything that is needed to be downloaded and installed, but at the end of
the process you will find that you have a new folder in your start menu called Office that contains the
application Abiword (see Figure 2-6).

fpnl PART I = 0O X
Eile Edit Yew |nsert Format Jools Table Collaborate Documents Help
e ol = = 7] | M page Width
Body Text » Times New Roman "|1E | A A A -

F q?1.2.3.4,5.5h -

That wall autematically log us 1y but we are not quite fireshed yet, there 15 ane other hle
we need to edit so that the windowing system starts auferratically as well So enter the
cormmand

mido nang Jete/profile
Somll nght down to the end of the file and add the fol owing on a line ofits cwn

sk AT kY

This is the command that we had to type mamially Now it wall autamatically be executed
#wery time we login

()applications

The Debian Squeeze dsnbuton for B asphemy P is farly sparse. However there are
loads of applications that can be installed.

[nstalling new spplications requires the comumand line again The command “apt-get’ is
usgad ta both install and uingall applicahions. Since installing an applicatuan vall often mequire
super-user prvilpdges wou should also prefix apt-get commands with “sudn’

Page: 1/10 | [ INS  default [ en-US
Figure 2-6 Abiword screen

You will notice that the text document in Abiword is actually part of this chapter. In fact, it is close
to this part of this chapter, as I am writing it. (I can feel myself falling into a recursive hole. I may
well vanish in a puff of logic.)

Abiword is a perfectly serviceable word processor. If I didn’t love my Mac quite so much, I
would be tempted to write this entire book on my Raspberry Pi.

While we are on the subject of office applications, the spreadsheet stable mate of Abiword is

called Gnumeric. To install it, here is all you need to type:
sudo apt-get install gnumeric

Once this application is installed, another option will have appeared in your Office menu—this one
for Gnumeric.

To find out about other packages you might want to install, look for recommendations on the
Internet, especially on the Raspberry Pi forum (www.raspberrypi.org/phpBB3). You can also browse
the list of packages available for Raspbian Wheezy at http://packages.debian.org/stable/.

Not all of these packages will work, because the Raspberry Pi does not have vast amounts of
memory and storage available to it; however, many will.

If you want to remove a package, use the following command:
sudo apt-get remove --auto-remove --purge packagename

This removes both the package and any packages it depends on that are not used by something else
that still needs them. Be sure to keep an eye on the bottom-right corner of your File Manager window;
it will tell you how much free space is available.



http://www.raspberrypi.org/phpBB3
http://packages.debian.org/stable/

Internet Resources
Aside from the business of programming the Raspberry Pi, you now have a functioning computer that
you are probably keen to explore. To help you with this, many useful Internet sites are available
where you can obtain advice and recommendations for getting the most out of your Raspberry Pi.
Table 2-1 lists some of the more useful sites relating to the Raspberry Pi. Your search engine will
happily show you many more.
Site Description
www.raspberrypi.org The home page of the Raspberry Pi Foundation. Check out the
forum and FAQs.
www.raspberrypi-spy.co.uk A blog site with useful how-to posts.
http: //elinux.org/Raspber- The main Raspberry Pi wiki. Lots of information about the
ryPiBoard Raspberry Pi, especially a useful list of verified peripherals
(http:/ felinux.org /RPi_VerifiedPeripherals).
Table 2-1 [Internet Resources for the Raspberry Pi

Summary
Now that we have everything set up and ready to go on our Raspberry Pi, it is time to start
programming in Python.



3

Python Basics
The time has come to start creating some of our own programs for the Raspberry Pi. The language
we are going to use is called Python. It has the great benefit that it is easy to learn while at the same
time being powerful enough to create some interesting programs, including some simple games and
programs that use graphics.

As with most things in life, it is necessary to learn to walk before you can run, and so we will
begin with the basics of the Python language.

Okay, so a programming language is a language for writing computer programs in. But why do we
have to use a special language anyway? Why couldn’t we just use a human language? How does the
computer use the things that we write in this language?

The reason why we don’t use English or some other human language is that human languages are
vague and ambiguous. Computer languages use English words and symbols, but in a very structured
way.

IDLE

The best way to learn a new language 1s to begin using it right away. So let’s start up the program we
are going to use to help us write Python. This program is called IDLE, and you will find it in the
programming section of your start menu. In fact, you will find more than one entry for IDLE. Select
the one labelled “IDLE 3 after it. Figure 3-1 shows IDLE and the Python Shell.

Python Shell
File Edit Debug Options Windows Help
Pythonm 3.1.3 (r313:BGB34, MWew 2B 2010, 12:049:1B) _1
[GCC 4.49.5] en lirno2
Typ= "copyright®, "ecredit=" or "licern==(]" for nor= infermation.
==== Ho SubpIiocess =————
Jrl'
Lm: 5|Col: 4

Figure 3-1 [DLE and the Python Shell
Python Versions
Python 3 was a major change over Python 2. This book is based on Python 3.1, but as you get further
into Python you may find that some of the modules you want to use are not available for Python 3.
Python Shell
What you see in Figure 3-1 is the Python Shell. This is the window where you type Python commands
and see what they do. It is very useful for little experiments, especially while you’re learning Python.
Rather like at the command prompt, you can type in commands after the prompt (in this case, >>>)
and the Python console will show you what it has done on the line below.
Arithmetic 1s something that comes naturally to all programming languages, and Python is no
exception. Therefore, type 2 + 2 after the prompt in the Python Shell and you should see the result
(4) on the line below, as shown in Figure 3-2.



Python Shell

File Edit Cebug Options Windows Help

Python 3.1.3% (r313:1B6834, Now 2B 2010, 15:D4:1R) £
IGCC 4.4.5] om 1lirnmed

Type "copyright¥, "credits™ or "license(]™ Ior more infoimation.

==== He Bubprocess ====
> 2+ 2

i
Ln: 7|Col: 4

Figure 3-2 Arithmetic in the Python Shell
Editor
The Python Shell 1s a great place to experiment, but it is not the right place to write a program. Python
programs are kept in files so that you do not have to retype them. A file may contain a long list of
programming language commands, and when you want to run all the commands, what you actually do
is run the file.

The menu bar at the top of IDLE allows us to create a new file. Therefore, select File and then
New Window from the menu bar. Figure 3-3 shows the IDLE Editor in a new window.

- Python Shell -0Ox

File Edit Debug Options Windows Help

Tyee *eopyrignt®, "ccedite~| File Edit Format Run Options Windows Help

C:I-L.,J

Ln: 1|Cal:

Figure 3-3 The IDLE Editor

Type the following two lines of code into IDLE:
print ('Hello')
print ( 'World')

You will notice that the editor does not have the >>> prompt. This is because what we write here
will not be executed immediately; instead, it will just be stored in a file until we decide to run it. If
you wanted, you could use nano or some other text editor to write the file, but the IDLE editor
integrates nicely with Python. It also has some knowledge of the Python language and can thus serve
as a memory aid when you are typing out programs.

We need a good place to keep all the Python programs we will be writing, so open the File
Browser from the start menu (its under Accessories). Right-click over the main area and select New
and then Folder from the pop-up menu (see Figure 3-4). Enter the name Python for the folder and
press the RETURN key.



. © O~ O Alhomep

P A Folder
M Cecskrop 'l | J | [) Paste Blank File
[’__ Rubbish Desktop Select All

_is;_l Applications Sort Files b

i
| - Show Hidden
|
[

¢ Properties

24 files are listed, Fré‘E’éEéE’é:"i"a"g“.':?"féi'é"ﬁ&"é'|'i"1”.é"i:j'E'i_’_'J
Figure 3-4 Creating a Python folder

Next, we need to switch back to our editor window and save the file using the File menu. Navigate
to inside the new Python directory and give the file the name hello.py, as shown in Figure 3-5.

E Python Shell - )
File Edit Debug Options Windows Help
Python 3.1.3 (r313:B86834, Ki{( *Untitledt -ox
[GEC 4.4.3] en limaoxz
Typ= "copyriant®, "cre=dit="| File Edit Foermat Run Options Windows Help
e SuUbEproceEs ——— - —g
e 7 grink | "He ] # |
| gzint| ]
Directory:  /home/pUPython | | |
T;
|Ln: 3]Col: O

I.-‘.. | &

Save

- —_‘ Cancel

File name: hello.py
Files of type: Python files (%.py, *.pyw)

Figure 3-5 Saving the program

To actually run the program and see what it does, go to the Run menu and select Run Module. You
should see the results of the program’s execution in the Python Shell. It is no great surprise that the
program prints the two words Hello and World, each on its own line.

What you type in the Python Shell does not get saved anywhere; therefore, if you exit IDLE and then
start it up again, anything you typed in the Python Shell will be lost. However, because we saved our
Editor file, we can load it at any time from the File menu.

NOTE To save this book from becoming a series of screen dumps, from now on if I want you to
type something in the Python Shell, I will proceed it with >>>. The results will then appear on
the lines below it.

Numbers
Numbers are fundamental to programming, and arithmetic is one of the things computers are very



good at. We will begin by experimenting with numbers, and the best place to experiment is the Python

Shell.

Type the following into the Python Shell:
>>> 20 * 9 / 5§ 4+ 32

Eﬁfhﬁis isn’t really advancing much beyond the 2 + 2 example we tried before. However, this
example does tell us a few things:

* * means multiply.

 / means divide.

* Python does multiplication before division, and it does division before addition.

If you wanted to, you could add some parentheses to guarantee that everything happens in the right
order, like this:
>>> (20 * 9 / 5) + 32
68.0

The numbers you have there are all whole numbers (or integers as they are called by
programmers). We can also use a decimal point if we want to use such numbers. In programming,
these kinds of numbers are called floats, which is short for floating point.

Variables
Sticking with the numbers theme for a moment, let’s investigate variables. You can think of a variable
as something that has a value. It is a bit like using letters as stand-ins for numbers in algebra. To
begin, try entering the following;
»»»> k =9.0/ 5.0

The equals sign assigns a value to a variable. The variable must be on the left side and must be a

single word (no spaces); however, it can be as long as you like and can contain numbers and the
underscore character (). Also, characters can be upper- and lowercase. Those are the rules for
naming variables; however, there are also conventions. The difference is that if you break the rules,
Python will complain, whereas if you break the conventions, other programmers may snort derisively
and raise their eyebrows.

The conventions for variables are that they should start with a lowercase letter and should use an
underscore between what in English would be words (for instance, number of chickens). The
examples in Table 3-1 give you some idea of what is legal and what is conventional.

Variable Name Legal Conventional
x Yes Yes
hd Yes No
number of chickens Yos Yes
number of chickens Mo MNo
numberOf Chickens Yes No
NumbexrOf Chickens Yes No
2beOrNot2b Mo No
toBeOrNot2b Yes Mo

Table 3-1 Naming Variables

Many other languages use a different convention for variable names called bumpy-case or camel-
case, where the words are separated by making the start of each word (except the first one) uppercase
(for example, numberofchickens). You will sometimes see this in Python example code. Ultimately,
if the code is just for your own use, then how the variable is written does not really matter, but if your
code is going to be read by others, it’s a good 1dea to stick to the conventions.

By sticking to the naming conventions, it’s easy for other Python programmers to understand your



program.
If you do something Python doesn’t like or understand, you will get an error message. Try entering

the following:
>>> 2beOrNot2b = 1

SyntaxError: invalid syntax

This is an error because you are trying to define a variable that starts with a digit, which is not
allowed.

A little while ago, we assigned a value to the variable k. We can see what value it has by just

entering k, like so:
wes k

1.8
Python has remembered the value of x, so we can now use it in other expressions. Going back to

our original expression, we could enter the following;
=»» 20 * k + 32

68 _ 0
For Loops
Arithmetic is all very well, but it does not make for a very exciting program. Therefore, in this
section you will learn about looping, which means telling Python to perform a task a number of times
rather than just once. In the following example, you will need to enter more than one line of Python.
When you press RETURN and go to the second line, you will notice that Python is waiting. It has not
immediately run what you have typed because it knows that you have not finished yet. The : character
at the end of the line means that there is more to do.

These extra tasks must each appear on an indented line. Therefore, in the following program, at the
start of the second line you’ll press TAB once and then type print (x). To get this two-line program

to actually run, press RETURN twice after the second line is entered.
»»>» for x in range(l, 10):

print (x)

W o -d oy e W

==
This program has printed out the numbers between 1 and 9 rather than 1 and 10. The range

command has an exclusive end point—that it, it doesn’t include the last number in the range, but it
does include the first.

You can check this out by just taking the range bit of the program and asking it to show its values as
a list, like this:
>>> list (range (1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Some of the punctuation here needs a little explaining. The parentheses are used to contain what are
called parameters. In this case, range has two parameters: from (1) and to (10), separated by a
comma.



The for in command has two parts. After the word for there must be a variable name. This
variable will be assigned a new value each time around the loop. Therefore, the first time it will be
1, the next time 2, and so on. After the word in, Python expects to see something that works out to be
a list of items. In this case, this is a list of the numbers between 1 and 9.

The print command also takes an argument that displays it in the Python Shell. Each time around
the loop, the next value of x will be printed out.

Simulating Dice
We’ll now build on what you just learned about loops to write a program that simulates throwing a
die 10 times.

To do this, you will need to know how to generate a random number. So, first let’s work out how
to do that. If you didn’t have this book, one way to find out how to generate a random number would
be to type random numbers python into your search engine and look for fragments of code to type

into the Python Shell. However, you do have this book, so here is what you need to write:
>>> ilmport random

»>>> random.randint (1,6)

2
Try entering the second line a few times, and you will see that you are getting different random

numbers between 1 and 6.

The first line imports a library that tells Python how to generate numbers. You will learn much
more about libraries later in this book, but for now you just need to know that we have to issue this
command before we can start using the randint command that actually gives us a random number.

NOTE [ am being quite liberal with the use of the word command here. Strictly speaking, items
such as randint are actually functions, not commands, but we will come to this later.

Now that you can make a single random number, you need to combine this with your knowledge of
loops to print off 10 random numbers at a time. This is getting beyond what can sensibly be typed into
the Python Shell, so we will use the IDLE Editor.

You can either type in the examples from the text here or download all the Python examples used in
the book from the book’s website (www.raspberrypibook.com). Each programming example has a
number. Thus, this program will be contained in the file 3 1 dice.py, which can be loaded into the
IDLE Editor.

At this stage, it is worth typing in the examples to help the concepts sink in. Open up a new IDLE
Editor window, type the following into it, and then save your work:

#3 1 dice

import random

for x in range(l, 11):
random number = random.randint(l, 6)
print (random number)

The first line begins with a # character. This indicates that the entire line 1s not program code at
all, but just a comment to anyone looking at the program. Comments like this provide a useful way of
adding extra information about a program into the program file, without interfering with the operation
of the program. In other words, Python will ignore any line that starts with #.

Now, from the Run menu, select Run Module. The result should look something like Figure 3-6,
where you can see the output in the Python Shell behind the Editor window.


http://www.raspberrypibook.com

: Python Shell e = B |
File Edit Debug Options Windows Help
» randem. sandink (1) 43_1_dica.py - /homa/piDackteop/code/2_1_dica.py* -8 n
File Edit Format Run Options Windows Help
; r ardom "_1
:__ F rargell, 11) =
¥ randem _risber T ramdon. rarndint : 1, ":I
! r:'.'r1 Erar.rl-.-m_.—uml—-r:l
4
[Ln: 1|Col: O

Figure 3-6 The dice simulation
If

Now it’s time to spice up the dice program so that two dice are thrown, and if we get a total of 7 or
11, or any double, we will print a message after the throw. Type or load the following program into
the IDLE Editor:
#3 2 double dice
import random
for x in range(1l, 11):
throw 1 = random.randint (1, 6)
throw 2 = random.randint{l, &)
total = throw 1 + throw 2
print (total)
if totad == 7:
print ('Seven Thrown!')
if total == 11:
print ('Eleven Thrown!')
if throw 1 == throw 2:
print ('Double Thrown!')
When you run this program, you should see something like this:



&

)

Seven Thrown!
9

8

Double Thrown!
4

4

8

10

Double Thrown!
8

8

Double Thrown! _ .
The first thing to notice about this program is that now two random numbers between 1 and 6 are

generated. One for each of the dice. A new variable, total, is assigned to the sum of the two throws.

Next comes the interesting bit: the i £ command. The i f command is immediately followed by a
condition (in the first case, total = = 7). There is then a colon (:), and the subsequent lines will
only be executed by Python if the condition is true. At first sight, you might think there is a mistake in
the condition because it uses == rather than =. The double equal sign is used when comparing items to
see whether they are equal, whereas the single equal sign is used when assigning a value to a
variable.

The second if 1s not tabbed in, so it will be executed regardless of whether the first it is true.
This second i £ is just like the first, except that we are looking for a total of 11. The final i £ is a little
different because it compares two variables (throw 1 and throw 2) to see if they are the same,
indicating that a double has been thrown.

Now, the next time you go to play Monopoly and find that the dice are missing, you know what to
do: Just boot up your Raspberry Pi and write a little program.

Comparisons
To test to see whether two values are the same, we use ==. This is called a comparison operator.
The comparison operators we can use are shown in Table 3-2.

Comparison Description Example
== Equals total == 11
= Not equals total != 11
Greater than total > 10
< Less than total < 3
= Greater than or equal to total >= 11
<= Less than or equal to total <= 2

Table 3-2 Comparison Operators
You can do some experimenting with these comparison operators in the Python Shell. Here’s an

example:
>>> 10 > 9

True
In this case, we have basically said to Python, “Is 10 greater than 9?” Python has replied, “True.”

Now let’s ask Python whether 10 is less than 9:
>»>> 10 <« 9

False



Being Logical

You cannot fault the logic. When Python tells us “True” or “False,” it is not just displaying a message
to us. True and False are special values called logical values. Any condition we use with anif
statement will be turned into a logical value by Python when it is deciding whether or not to perform
the next line.

These logical values can be combined rather like the way you perform arithmetic operations like
plus and minus. It does not make sense to add True and True, but it does make sense sometimes to
Say True AND True.

As an example, if we wanted to display a message every time the total throw of our dice was

between 5 and 9, we could write something like this:
if total >= 5 and total <= 9:

print ('not bad')
As well as and, we can use or. We can also use not to turn True Into False, and vice versa, as
9 9 9

shown here:
»>>» not True

False
Thus, another way of saying the same thing would be to write the following:

if not (total < 5 or total > 9):

prink) 'net bad'}
Exercise
Try incorporating the preceding test into the dice program. While you are at it, add two more if
statements: one that prints “Good Throw!” if the throw is higher than 10 and one that prints
“Unlucky!” if the throw is less than 4. Try your program out. If you get stuck, you can look at the
solution in the file 3 3 double dice solution.py.
Else
In the preceding example, you will see that some of the possible throws can be followed by more than
one message. Any of the i £ lines could print an extra message if the condition is true. Sometimes you
want a slightly different type of logic, so that if the condition is true, you do one thing and otherwise

you do another. In Python, you use e1se to accomplish this:
>>> a = 7

=»>» if a > 7:

print{('a is big"')
else:

print('a is small')

a is small

e
In this case, only one of the two messages will ever be printed.

Another variation on this 1s e11if, which is short for else if. Thus, we could expand the previous
example so that there are three mutually exclusive clauses, like this:



>>> a = 7
= 1f & > 9:

prinki{'a is very big')
elif a > 7:

printi{'a is fairlyv big")
else:

print('a is small')

a is small
P
While
Another command for looping is while, which works a little differently than for. The command
while looks a bit like an i f command in that it is immediately followed by a condition. In this case,
the condition is for staying in the loop. In other words, the code inside the loop will be executed until
the condition is no longer true. This means that you have to be careful to ensure that the condition will
at some point be false; otherwise, the loop will continue forever and your program will appear to
have hung.

To illustrate the use of while, the dice program has been modified so that it just keeps on rolling
until a double 6 is rolled:
#3 4 double dice while
import random

throw 1 = random.randint (1, 6)
throw 2 = random.randint (1, 6)
while not (throw 1 == 6 and throw 2 == 6):

total = throw 1 + throw 2
print {total)

throw 1 = random.randint(l, 6)
throw 2 = random.randint (1, 6)

print ('Double Six thrown!')
This program will work. Try it out. However, it is a little bigger than it should be. We are having

to repeat the following lines twice—once before the loop starts and once inside the loop:
throw 1 = random.randint (1, 6)

throw 2 = random.randint (1, 6)

A well-known principle in programming is DRY (Don’t Repeat Yourself). Although it’s not a
concern in a little program like this, as programs get more complex, you need to avoid the situation
where the same code is used in more than one place, which makes the programs difficult to maintain.

We can use the command break to shorten the code and make it a bit “drier.” When Python
encounters the command break, it breaks out of the loop. Here is the program again, this time using

break:



#3 5 double dice while break
import random
while True:

throw 1 = random.randint (1, 6)
throw 2 = random.randint(l, 6)
total = throw 1 + throw 2

print (total)

if throw 1 == 6 and throw 2 == 6:

break

print ('Double Six thrown!')
The condition for staying in the loop is permanently set to True. The loop will continue until it gets

to break, which will only happen after throwing a double 6.

Summary
You should now be happy to play with IDLE, trying things out in the Python Shell. I strongly
recommend that you try altering some of the examples from this chapter, changing the code and seeing
how that affects what the programs do.

In the next chapter, we will move on past numbers to look at some of the other types of data you
can work with in Python.



4

Strings, Lists, and Dictionaries

This chapter could have had “and Functions” added to its title, but it was already long enough. In
this chapter, you will first explore and play with the various ways of representing data and adding
some structure to your programs in Python. You will then put everything you learned together into the
simple game of Hangman, where you have to guess a word chosen at random by asking whether that
word contains a particular letter.

The chapter ends with a reference section that tells you all you need to know about the most useful
built-in functions for math, strings, lists, and dictionaries.

String Theory

No, this is not the Physics kind of String Theory. In programming, a string is a sequence of characters
you use in your program. In Python, to make a variable that contains a string, you can just use the
regular = operator to make the assignment, but rather than assigning the variable a number value, you

assign it a string value by enclosing that value in single quotes, like this:
>>> book name = 'Programming Raspberry Pi'

If you want to see the contents of a variable, you can do so either by entering just the variable name
into the Python Shell or by using the print command, just as we did with variables that contain a

number:
>>> book name

'Programming Raspberry P1'

>>> print (book name)

Programming Raspberry Pi

There is a subtle difference between the results of each of these methods. If you just enter the
variable name, Python puts single quotes around it so that you can tell it is a string. On the other hand,
when you use print, Python just prints the value.

NOTE You can also use double quotes to define a string, but the convention is to use single
quotes unless you have a reason for using double quotes (for example, if the string you want to
create has an apostrophe in it).

You can find out how many characters a string has in it by doing this:

>>> len (book name)

24
You can find the character at a particular place in the string like so:
>>> book name([1l]
1 T 1
Two things to notice here: first, the use of square brackets rather than the parentheses that are used
for parameters and, second, that the positions start at 0 and not 1. To find the first letter of the string,
you need to do the following:
>>> book name[0]
1 ]_:' 1
If you put a number in that is too big for the length of the string, you will see this:
>>> book name[100]
Traceback (most recent call last):

File "<stdin>", line 1, in <module:x
IndexError: string index out of range
e

This is an error, and it’s Python’s way of telling us that we have done something wrong. More



specifically, the “string index out of range” part of the message tells us that we have tried to access
something that we can’t. In this case, that’s element 100 of a string that is only 24 characters long.

You can chop lumps out of a big string into a smaller string, like this:
>>> book name[0:11]

'Programming'

The first number within the brackets is the starting position for the string we want to chop out, and
the second number is not, as you might expect, the position of the last character you want, but rather
the last character plus 1.

As an experiment, try and chop out the word raspberry from the title. If you do not specify the

second number, it will default to the end of the string:
>>> book name[12:]

'Raspberry Pi'
Similarly, if you do not specify the first number, it defaults to 0.
Finally, you can also join strings together by using + operator. Here’s an example:

>>> book name + ' by Simon Monk'
'Programming Raspberry Pi by Simon Monk'
Lists

Earlier in the book when you were experimenting with numbers, a variable could only hold a single
number. Sometimes, however, it is useful for a variable to hold a list of numbers or strings, or a
mixture of both—or even a list of lists. Figure 4-1 will help you to visualize what is going on when a
variable is a list.

numbers

numbers|0]

numbers|1]

numbers|2|

numbers|3|

numbers|4]

Figure 4-1 An array
Lists behave rather like strings. After all, a string is a list of characters. The following example

shows you how to make a list. Notice how 1en works on lists as well as strings:
=>> numbers = [123, 34, 55, 321, 9]
>>> len (numbers)

5
Square brackets are used to indicate a list, and just like with strings we can use square brackets to

find an individual element of a list or to make a shorter list from a bigger one:
>>> numbers [0]

123
s3> numbers[1l:3]
[34, 55]

What’s more, you can use = to assign a new value to one of the items in the list, like this:



>>> numbers [0] = 1
>>> numbers
[1; 34; 55; 331, 8]
This changes the first element of the list (element 0) from 123 to just 1.
As with strings, you can join lists together using the + operator:
>>> more numbers = [5, 66, 44]
>>> numbers + more numbers
[1; 34; 55, 321 8, 5. 66; 44]
If you want to sort the list, you can do this:
=>> numbers.sort ()
>>> numbers
[1, 9, 34, 55, 321]
To remove an item from a list, you use the command pop, as shown next. If you do not specify an

argument to pop, it will just remove the last element of the list and return it.
=>> hunbersa
[1;: 9, 3%, 55, 22§]
==>> numbers.pop ()
321
=>>> numbers
[1, 9, 34, 55]
If you specify a number as the argument to pop, that is the position of the element to be removed.
Here’s an example:
>>> numbers
[1, 2, 34, 55]
>>> numbers.pop (1)

9
s»> numbers
[1, 34, 55]

As well as removing items from a list, you can also insert an item into the list at a particular
position. The function insert takes two arguments. The first is the position before which to insert,

and the second argument is the item to insert.
>>> numbers

[1, 34, 55]
=>> numbers.insert (1, 66)
>>> numbers
[1, 66, 34, 55]
When you want to find out how long a list is, you use len (numbers), but when you want to sort the
list or “pop” an element off the list, you put a dot after the variable containing the list and then issue

the command, like this:
numbers.sort ()
These two different styles are a result of something called object orientation, which we will

discuss in the next chapter.

Lists can be made into quite complex structures that contain other lists and a mixture of different
types—numbers, strings, and logical values. Figure 4-2 shows the list structure that results from the
following line of code:



big_list

123
'hello’
> 'inner list'
2
True

Figure 4-2 A4 complex list
>>> big list = [123, 'hello', ['inner list', 2, Truell

»>»>> big list
[123, 'hello', ['inner list', 2, True]]

You can combine what you know about lists with for loops and write a short program that creates
a list and then prints out each element of the list on a separate line:
#4 1 list and for
list = [1l, 'one', 2, True]
for item in list:

print (item)

Here’s the output of this program:

1

one
2

True

Functions

When you are writing small programs like the ones we have been writing so far, they only really
perform one function, so there is little need to break them up. It is fairly easy to see what they are
trying to achieve. As programs get larger, however, things get more complicated and it becomes
necessary to break up your programs into units called functions. When we get even further into
programming, we will look at better ways still of structuring our programs using classes and modules.

Many of the things I have been referring to as commands are actually functions that are built into
Python. Examples of this are range and print.

The biggest problem in software development of any sort is managing complexity. The best
programmers write software that is easy to look at and understand and requires very little in the way
of extra explanation. Functions are a key tool in creating easy-to-understand programs that can be
changed without difficulty or risk of the whole thing falling into a crumpled mess.

A function is a little like a program within a program. We can use it to wrap up a sequence of
commands we want to do. A function that we define can be called from anywhere in our program and
will contain its own variables and its own list of commands. When the commands have been run, we
are returned to just after wherever it was in the code we called the function in the first place.

As an example, let’s create a function that simply takes a string as an argument and adds the word
please to the end of it. Load the following file—or even better, type it in to a new Editor window—
and then run it to see what happens:



#4 2 polite function

def make polite(sentence):
polite sentence = sentence + ' please!'
return polite sentence

print (make polite('Pass the salt'))

The function starts with the keyword def. This 1s followed by the name of the function, which
follows the same naming conventions as variables. After that come the parameters inside parentheses
and separated by commas if there are more than one. The first line must end with a colon.

Inside the function, we are using a new variable called polite sentence that takes the parameter
passed into the function and adds * please” to it (including the leading space). This variable can only
be used from inside the function.

The last line of the function is a return command. This specifies what value the function should
give back to the code that called it. This is just like trigonometric functions such as sin, where you
pass in an angle and get back a number. In this case, what is returned is the value in the variable
polite sentence.

To use the function, we just specify its name and supply it with the appropriate arguments. A return
value is not mandatory, and some functions will just do something rather than calculate something.
For example, we could write a rather pointless function that prints “Hello” a specified number of
times:

#4 3 hello n
def say hello(n):
for x in range (0, n):
printi{'Hello")

say hello(5)
This covers the basics of what we will need to do to write our game of Hangman. Although you’ll
need to learn some other things, we can come back to these later.

Hangman
Hangman 1s a word-guessing game, usually played with pen and paper. One player chooses a word
and draws a dash for each letter of the word, and the other player has to guess the word. They guess a
letter at a time. If the letter guessed is not in the word, they lose a life and part of the hangman’s
scaffold is drawn. If the letter 1s in the word, all occurrences of the letter are shown by replacing the
dashes with the letters.

We are going to let Python think of a word and we will have to guess what it is. Rather than draw a
scaffold, Python is just going to tell us how many lives we have left.

You are going to start with how to give Python a list of words to chose from. This sounds like a job
for a list of strings:
words = ['chicken', 'dog', 'cat', 'mouse', 'frog']

The next thing the program needs to do is to pick one of those words at random. We can write a
function that does that and test it on its own:



#4 4 hangman words
import random

words = ['chicken', 'dog', 'cat', 'mouse', 'frog']

def pick_a_word():
word position = random.randint (0, len(words) - 1)
return words [word_position]

print (pick a word())

Run this program a few times to check that it is picking different words from the list.

This 1s a good start, but it needs to fit into the structure of the game. The next thing to do is to define
a new variable called 1ives remaining. This will be an integer that we can start off at 14 and
decrease by 1 every time a wrong guess is made. This type of variable is called a global variable,
because unlike variables defined in functions, we can access it from anywhere in the program.

As well as a new variable, we are also going to write a function called p1ay that controls the
game. We know what p1ay should do, we just don’t have all the details yet. Therefore, we can write
the functionplay and make up other functions that it will call, such asget guess and
process guess, as well as use the functionpick a word we’ve just written. Here it is:
def play () :

word = pick a word()
while True:
guess = dget guess (word)
if process guess(guess, word):
print ('You win! Well Done!')

break
if lives _remaining == 0:
print ('You are Hung!')
print ('The word was: ' + word)
break

A game of Hangman first involves picking a word. There is then a loop that continues until either
the word 1s guessed (process guess returns True) or lives remaining has been reduced to zero.
Each time around the loop, we ask the user for another guess.

We cannot run this at the moment because the functions get guess and process guess don’t exist
yet. However, we can write what are called stubs for them that will at least let us try out our play
function. Stubs are just versions of functions that don’t do much; they are stand-ins for when the full

versions of the functions are written.
def get guess (word) :

return 'a'

def process guess(guess, word):
global lives remaining
lives remaining = lives remaining - 1
return False
The stub for get guess just simulates the player always guessing the letter a, and the stub for
process_guess always assumes that the player guessed wrong and, thus, decreases
lives remaining by | and returns False to indicate that they didn’t win.



The stub for process guess is a bit more complicated. The first line tells Python that the
lives remaining variable is the global variable of that name. Without that line, Python assumes that
it is a new variable local to the function. The stub then reduces the lives remaining by 1 and returns
False to indicate that the user has not won yet. Eventually, we will put in checks to see if the player
has guessed all the letters or the whole word.

Open the file 4 5 hangman play.py and run it. You will get a result similar to this:
You are Hung!

The word was: dog

What happened here is that we have whizzed through all 14 guesses very quickly, and Python has
told us what the word was and that we have lost.

All we need to do to complete the program is to replace the stub functions with real functions,
starting with get guess, shown here:
def get guess (word) :

print word with blanks (word)

print ('Lives Remaining: ' + str(lives_remaining))
guess = input (' Guess a letter or whole word?')
return guess

The first thing get guess does is to tell the player the current state of their efforts at guessing
(something like “c--c--n") using the function print word. This is going to be another stub function
for now. The player is then told how many lives they have left. Note that because we want to append
a number (lives remaining) after the stringLives Remaining:, the number variable must be
converted into a string using the built-in st r function.

The built-in function input prints the message in its parameter as a prompt and then returns
anything that the user types. Note that in Python 2, the input function was called raw input.
Therefore, if you decide to use Python 2, change this function to raw input.

Finally, the get guess function returns whatever the user has typed.

The stub function print word just reminds us that we have something else to write later:
def print word with blanks (word) :

print ('print word with blanks:not done yet')

Open the file 4 6 hangman get guess.py and run it. You will get a result similar to this:
not done yet
Lives Remaining: 14

Guess a letter or whole word?x
not done yet
Lives Remaining: 13

Guess a letter or whole word?y
not done yet
Lives Remaining: 12

Guess a letter or whole word? _ _
Enter guesses until all your lives are gone to verify that you get the “losing” message.

Next, we can create the proper version of print word. This function needs to display something
like “c--c--n, 7 so it needs to know which letters the player has guessed and which they haven’t. To
do this, 1t uses a new global variable (this time a string) that contains all the guessed letters. Every

time a letter is guessed, it gets added to this string:
guessed letters = '

Here is the function itself:



def print word with blanks (word) :
display word = ''
for letter in word:
if guessed letters.find(letter) > -1:
# letter found
display word = display word + letter
else:

# letter not found
display word = display word + '-'
print display word

This function starts with an empty string and then steps through each letter in the word. If the letter
is one of the letters that the player has already guessed, it is added to display word; otherwise, a
hyphen (-) is added. The built-in function find 1s used to check whether the letter is in the
guessed letters. The find function returns -1 if the letter is not there; otherwise, it returns the
position of the letter. All we really care about is whether or not it is there, so we just check that the
result 1s greater than -1. Finally, the word 1is printed out.

Currently, every time process guess is called, it doesn’t do anything with the guess because it’s
still a stub. We can make it a bit less of a stub by having it add the guessed letter to
guessed letters, like so:
def process guess(guess, word):

global lives remaining

global guessed letters

lives remaining = lives remaining - 1
guessed letters = guessed letters + guess

return False _ . _ o _
Open the file 4 7 hangman print word.py and run it. You will get a result something like this:

Lives Remaining: 14

Guess a letter or whole word?c
c--Q---
Lives Remaining: 13

Guess a letter or whole word?h
ch-c---

Lives Remaining: 12

Guess a letter or whole word? o
It’s starting to look like the proper game now. However, there is still the stub for process guess

to fill out. We will do that next:
def process guess(guess, word):

if len(guess) > 1:

return whole word guess (guess, word)
else: B B

return single letter guess(guess, word)

When the player enters a guess, they have two choices: They can either enter a single-letter guess
or attempt to guess the whole word. In this method, we just decide which type of guess it is and call
either whole word guess Or single letter guess. Because these functions are both pretty
straightforward, we will implement them directly rather than as stubs:



def single letter guess(guess, word) :
global guessed letters
global lives remaining
if word.find{guess) == =1:
# word guess was incorrect
lives remaining = lives remaining - 1
guessed letters = guessed letters + guess

if all letters guessed(word) :
return True

def all_letters_guessed(word) :
for letter in word:
if guessed letters.find(letter) == -1:
return False
return True

The function whole word guess 1s actually easier thanthe single letter guess function:
letter guess function:

def whole word guese (guess, word) :

global lives remaining

if guess.lower() == word.lower () :
return True

elae:
lives remaining = lives remaining - 1
return Falgse

All we have to do 1s compare the guess and the actual word to see if they are the same when they

are both converted to lowercase. If they are not the same, a life is lost. The function returns True if
the guess was correct; otherwise, it returns False.
That’s the complete program. Open up 4 8 hangman_full.py in the IDLE Editor and run it. The full

listing i1s shown here for convenience:
#04 08 hangman_ full
import random

worde = ['chicken', 'dog', 'cat', 'mouse', 'frog']
lives remaining = 14
guessed_letters = ''

def play() :
word = pick a word()
while True:
guess = get guess (word)
if process guess(guess, word):
print ('You win! Well Done!')

break
if lives_remaining == 0:
print ('You are Hung!')
print ('The word was: ' + word)

break



def pick_a word():
word position = random.randint (0, len(words) - 1)
return words [word_position]

def get_ guess (word) :
print_word_with_blanks (word)
print ('Lives Remaining: ' + str(lives_remaining))
guess = input (' Guess a letter or whole word?')
return guess

def print word with blanks (word) :
display word = ''
for letter in word:
if guessed letters.find(letter) > -1:
# letter found
display word = display word + letter
else:
# letter not found
display word = display word + '-'
print (display_word)

def process_guess (guess, word):
if len(guess) > 1:
return whole word guess (guess, word)
else:
return single letter guess(guess, word)

def whole word guess(guess, worxd):
global lives_remaining
if guess == word:
return True
else:
lives remaining = lives_remaining - 1
return False

def single letter_ guess (guess, word):

global guessed letters

global lives remaining

if word.find(guess) == -1:
# letter guess was incorrect
lives_remaining = lives_remaining - 1

guessed letters = guessed letters + guess

if all letters guessed(word):
return True

return False
def all letters guessed(word) :

for letter in word:
if gquessed letters.find(letter) == -1:
return False
return True

play ()
The game as it stands has a few limitations. First, it is case sensitive, so you have to enter your

guesses 1n lowercase, the same as the words in the words array. Second, if you accidentally type aa
instead of a as a guess, it will treat this as a whole-word guess, even though it is too short to be the
whole word. The game should probably spot this and only consider guesses the same length as the



secret word to be whole-word guesses.

As an exercise, you might like to try and correct these problems. Hint: For the case-sensitivity
problem, experiment with the built-in function 1ower. You can look at a corrected version in the file
4 8 hangman full solution.py.

Dictionaries

Lists are great when you want to access your data starting at the beginning and working your way
through, but they can be slow and inefficient when they get large and you have a lot of data to trawl
through (for example, looking for a particular entry). It’s a bit like having a book with no index or
table of contents. To find what you want, you have to read through the whole thing.

Dictionaries, as you might guess, provide a more efficient means of accessing a data structure when
you want to go straight to an item of interest. When you use a dictionary, you associate a value with a
key. Whenever you want that value, you ask for it using the key. It’s a little bit like how a variable
name has a value associated with it; however, the difference is that with a dictionary, the keys and
values are created while the program is running.

Let’s look at an example:
>>> eggs per week = {'Penny': 7, 'Amy': 6, 'Bernadette': 0}
>>> eggs_per week['Penny']
7
>>> eggs per week['Penny'] = 5
>>> eggs_per_ week
{"Amy': 6, 'Bernadette': 0
2
This example is concerned with recording the number of eggs each of my chickens is currently

laying. Associated with each chicken’s name is a number of eggs per week. When we want to retrieve
the value for one of the hens (let’s say Penny), we use that name in square brackets instead of the
index number that we would use with a list. We can use the same syntax in assignments to change one
of the values.

For example, if Bernadette were to a lay an egg, we could update our records by doing this:
eggs per week|['Bernadette'] =1

You may have noticed that when the dictionary is printed, the items in it are not in the same order
as we defined them. The dictionary does not keep track of the order in which items were defined.
Also note that although we have used a string as the key and a number as the value, the key could be a
string, a number, or a tuple (see the next section), but the value could be anything, including a list or
another dictionary.

'Penny': 5}

I

Tuples
On the face of it, tuples look just like lists, but without the square brackets. Therefore, we can define
and access a tuple like this:
22> tupde = L, 2, 3
>>> tuple
ey 2 3
>>> tuple[0]
i
However, if we try to change an element of a tuple, we get an error message, like this one:
=>> tuple[0] = 6
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment



The reason for this error message is that tuples are immutable, meaning that you cannot change
them. Strings and numbers are the same. Although you can change a variable to refer to a different
string, number, or tuple, you cannot change the number itself. On the other hand, if the variable
references a list, you could alter that list by adding, removing, or changing elements in it.

So, if a tuple is just a list that you cannot do much with, you might be wondering why you would
want to use one. The answer is, tuples provide a useful way of creating a temporary collection of
items. Python lets you do a couple of next tricks using tuples, as described in the next two
subsections.

Multiple Assignment

To asslign a value to a variable, you just use = operator, like this:

) Python also lets you do multiple assignments in a single line, like this:
=% a, b, ¢ =1, 2, 3

=== 4

1

smas

2

=== C

3

Multiple Return Values

Sometimes in a function, you want to return more than one value at a time. As an example, imagine a
function that takes a list of numbers and returns the minimum and the maximum. Here is such an

example:
#04 09 stats

def stats (numbers) :
numbers .sort ()
return (numbers[0], numbers[-1])

liast = [5;
min, max =
print (min)
print (max)

This method of finding the minimum and maximum is not terribly efficient, but it is a simple
example. The list is sorted and then we take the first and last numbers. Note that numbers[-1] returns
the last number because when you supply a negative index to an array or string, Python counts
backward from the end of the list or string. Therefore, the position -1 indicates the last element, -2
the second to last, and so on.

12 4 8]

45,
stats{list)

Exceptions

Python uses exceptions to flag that something has gone wrong in your program. Errors can occur in
any number of ways while your program is running. A common way we have already discussed is
when you try to access an element of a list or string that is outside of the allowed range. Here’s an
example:



>>> list =

=== list [4]

Traceback (most recent call last) :
File "<stdin=", line 1, in <modules

IndexError: list index out of range
If someone gets an error message like this while they are using your program, they will find it

confusing to say the least. Therefore, Python provides a mechanism for intercepting such errors and

allowing you to handle them in your own way:
Loyt

[, 2; 3, 4]

list =
list [4]
except IndexError:
print | 'oocps'}
We cover exceptions again in the next chapter, where you will learn about the hierarchy of the
different types of error that can be caught.

Summary of Functions

This chapter was written to get you up to speed with the most important features of Python as quickly
as possible. By necessity, we have glossed over a few things and left a few things out. Therefore, this
section provides a reference of some of the key features and functions available for the main types we
have discussed. Treat it as a resource you can refer back to as you progress though the book, and be
sure to try out some of the functions to see how they work. There is no need to go through everything
in this section—just know that it is here when you need it. Remember, the Python Shell is your friend.

[ 25 35 41

For full details of everything in Python, refer to http://docs.python.org/py3k.

Numbers
Table 4-1 shows some of the functions you can use with numbers.
Function Description Example
abs (x) Returns the absolute value s>>abs(-12.3)
(removes the - sign). 1243
bin (x) Used to convert to binary string. >>> bin(23)
'0bl0111"

complex (r,i)

Creates a complex number with real
and imaginary components. Used in
science and engineering,

>>> complex(2,3)
(2+37)

hex (x) Used to convert to hexadecimal string. >>> hex(255)
'Oxff’

oct (x) Used to convert to octal string. »>>> oct (9)
'Jcll!

round (x, n)
math.
factorial (n)

math.log(x)

math.pow(x, ¥)

usex " y). 256.0
math.sgrt (x) Sqummrﬂot >>> math.sgrt (16)
4.0
math.sin, cos, Trigonometry functions (radians). >>> math.sin(math.pi
tan, asin, / 2)
acos, atan 1.0

Round x to n decimal places.
Factorial function{asin4=x 3= 2 = 1).

Natural logarithm.

Raises x to the power of y (alternatively,

»»> round(1.111111,
1.11

>>> math.factorial
(4)24

>>> math.leg(10)
2.302585092994046

>>> math.pow(2, 8)

Z)


http://docs.python.org/py3k

Table 4-1 Number Functions
Strings
String constants can be enclosed either with single quotes (most common) or with double quotes.

Double quotes are useful if you want to include single quotes in the string, like this:
8 = "Its 3 o'clock" _ _ . _
On some occasions you’ll want to include special characters such as end-of-lines and tabs into a

string. To do this, you use what are called escape characters, which begin with a backslash (\)

character. Here are the only ones you are likely to need:
* \t Tab character
* \n Newline character
Table 4-2 shows some of the functions you can use with strings.

Function
8.capitalize ()

&.center (width)

&8.endawith (astr)

a.find(atx)

a.format (args)

8.isalnum()

&.isalpha ()

s.1aspace ()

&8.ljust (width)
&.lowear ()

g.replace(old, new)

a.aplit()

g.splitlines ()

8.stxrip()

a.upper ()

Description
Capitalizes the first letter and
makes the rest lowercase.
Pads the string with spaces,
centering it. An optional extra
parameter is used for the fill
character.

Returns True if the end of
the string matches.

Returns the position of a
substring. Optional extra
arguments for the start and
end positions can be used to
limit the search.

Formats a string using tem-
plate markers using { }.

Returns True if all the char-
acters in the string are letters
or digits.

Returns True if all the char-
acters are alphabetic.
Returns True if the charac-
ter is a space, tab, or other
whitespace character.

Like center (), but left-
justified.

Converts a string into low-
ercase.

Replaces all occurrences of
old with new.

Returns a list of all the words
in the string, separated by
spaces. An optional param-
eter can be used to indicate a
different splitting character.
The end of line character (\n)
is a popular choice.

Splits the string on the new-
line character.

Removes whitespace from
both ends of the string.
Refer to 1 ower (), earlier in
this table.

Example
>>> 'aBec'.capitalize ()
I Abc L

>>> 'abc'.center (10, '-')

'---abgo----"

»»> 'abodef!
.endawith('def')

True

=2>> 'abcdef'.find('de')
3

>>> "Its {0} pm".for-
mat('12")

"Tts 12 pm"

»»> 'l123abec’'.isalnumi()
True

»»>> 'l123abe'.isalphal)
False

»»> ' \t'.isspace/()
True

=>> 'abe'.ljust (10, '-')

=»> 'AbBCAE'.lower ()
'abecde’
'hello world'

.replace | "world',

>

'there') 'hello there'
==> 'abc def'.split()
[fabe', 'def']

»mn ! ab '.etrip()
I_a bl



Table 4-2 String Functions

Lists
We have already looked at most of the features of lists. Table 4-3 summarizes these features.
Function Description Example
del(ali:j]) Deletes elements from the array, from >»> a = ['a', "b', "e']
element i to element 5-1. =33 del (a[l:2])
>>> &
[ 1a1 : 'I’: ] ]
a.append (x) Appends an element to the end of the s»> a = ['a', "b', "e']
list. »»> a.append('d')
>»> A
[lal; Wbr, e, ign]
a.count (x) Counts the occurrences of a particular >>>a = ['a', 'B', 'a']
element. =»> a.count ('a')
2
a.index (x) Returns the index position of the firstoc- >»>> a = ['a', 'b', 'e']
currence of x in a. Optional parameters  >>> a.index('b')
can be used for the start and end index. 1
a.insert Inserts x at position i in the list. =>>a = ['a', 'c']
(i, x} »>>> a.insert(l, 'b'")
x> 3
['a', 'B’, 'e']
a.pop () Returns the last element of the list and s [Fat, Bt et
removes it. An optional parameter lets =>> a.pop(l)
you specify another index position for ‘B!
the removal. >>> a
[ i a ] ; i o i ]
a.remove(x)  Removes the element specified. >>> a= ['a', 'b', 'e']
s> a.remove('c')
>>> A
et bl
a.reverse()  Reverses the list. s m [ Rt ML e ]
»=> a.reverse()
=22> g
[ L] o L] % lb L] £ L] a L] ]
a.sort () Sorts the list. Advanced options are

available when sorting lists of objects.
See the next chapter for details.

Table 4-3 List Functions
Dictionaries
Table 4-4 details a few things about dictionaries that you should know.



Function Description Example

len(d) Returns the number of items in x> d = {'a':l, 'b':2}
the dictionary. === len(d)
2
del (d[key] ) Deletes an item from the dictionary. >>>d = {'a':1, "b':2}
»»> del(d['a'])
s> d
f'bt: 2}
key in d Returns True if the dictionary (d) aabidim {Palt oY Rt ]
contains the key. s»> 'a' in d
True
d.clear() Removes all items from the dictionary. »>> d = {'a':1, 'b':2}
»>> d.clear()
=ms d
{}
get (key, Returns the value for the key, or default =»>> d = {'a':1, 'b':2}
default) if the key is not there. =>»> d.gat {'c', ‘a')

g
Table 4-4 Dictionary Functions

Type Conversions

We have already discussed the situation where we want to convert a number into a string so that we
can append it to another string. Python contains some built-in functions for converting items of one
type to another, as detailed in Table 4-5.

Function Description Example
float (x) Converts x to a floating-point number. >>> float ('12.34"')
12.34
»>»> float (12)
12.0
int (x) Optional argument used to specity the >>> int (12.34)
number base. 12
>>> int ('"FF', 16)
255
list (x) Converts x to a list. This is also a handy way >>> list('abc')
to get a list of dictionaries keys. [ N it 5]
>>> d = {'a':1,
b2}
>>> list (d)
[‘a', 'b']
Table 4-5 Type Conversions

Summary
Many things in Python you will discover gradually. Therefore, do not despair at the thought of
learning all these commands. Doing so is really not necessary because you can always search for
Python commands or look them up.

In the next chapter, we take the next step and see how Python manages object orientation.



S

Modules, Classes, and Methods

In this chapter, we discuss how to make and use our own modules, like the random module we used
in Chapter 3. We also discuss how Python implements object orientation, which allows programs to
be structured into classes, each responsible for its own behavior. This helps to keep a check on the
complexity of our programs and generally makes them easier to manage. The main mechanisms for
doing this are classes and methods. You have already used built-in classes and methods in earlier
chapters without necessarily knowing it.

Modules

Most computer languages have a concept like modules that allows you to create a group of functions

that are in a convenient form for others to use—or even for yourself to use on different projects.
Python does this grouping of functions in a very simple and elegant way. Essentially, any file with

Python code in it can be thought of as a module with the same name as the file. However, before we

get into writing our own modules, let’s look at how we use the modules already installed with Python.

Using Modules

When we used the random module previously, we did something like this:
>>> 1lmport random

=>> random.randint (1, &)

The first thing we do here is tell Python that we want to use the random module by using the
import command. Somewhere in the Python installation is a file called random.py that contains a
randint function as well as some other functions.

With so many modules available to us, there is a real danger that different modules might have
functions with the same name. In such a case, how would Python know which one to use? Fortunately,
we do not have to worry about this happening because we have imported the module, and none of the
functions in the module are visible unless we prepend the module name and then a dot onto the front

of the function name. Try omitting the module name, like this:
>>> 1lmport random

=>> randint (1, &)
Traceback (most recent call last):
File "<stdin=", line 1, in <module:

NameError: name 'randint' is not defined _ _
Having to put the module name in front of every call to a function that’s used a lot can get tedious.

Fortunately, we can make this a little easier by adding to the import command as follows:

>>> 1lmport random as r

=>> r.randint (1,6)

’ This gives the module a local name within our program of just r rather than random, which saves
us a bit of typing.

If you are certain a function you want to use from a library is not going to conflict with anything in
your program, you can take things a stage further, as follows:
>>> from random import randint
>>> randint(l, &)
-

o
To go even further, you can import everything from the module in one fell swoop. Unless you know



exactly what is in the module, however, this is not normally a good idea, but you can do it. Here’s

how:
>>> from random import *

>>> randint (1, &)

2
In this case, the asterisk (*) means “everything.”

Useful Python Libraries
So far we have used the random module, but other modules are included in Python. These modules
are often called Python’s standard library. There are too many of these modules to list in full.
However, you <can always find a complete list of Python modules at
http://docs.python.org/release/3.1.5/library/index.html. Here are some of the most useful modules you
should take a look at:

* string String utilities

* datetime For manipulating dates and times

* math Math functions (sin, cos, and so on)

* pickle For saving and restoring data structures on file (see Chapter 6)

* urllib.request For reading web pages (see Chapter 6)

* tkinter For creating graphical user interfaces (see Chapter 7)
Installing New Modules
In addition to the standard library modules, thousands of modules have been contributed by the Python
community. One very popular module is pygame, which we will use in Chapter 8. It’s often available

as a binary package, so you can install it by typing something like this:
sudo apt-get install python-pygame

For many modules, however, this is not the case, and you have to go through a bit more effort to
install them.

Any module good enough to use will be packaged in the standard Python way. This means that to
install it, you need to download a compressed file containing a directory for the module. Let’s use the
rRPi.GP10 module we will use in Chapter 11 as an example. To install this module, you first go to the
module’s website, find the Downloads section, and then fetch the archive file. This is shown in
Figure 5-1. The next step is to save the file to a convenient directory (for this example, use the Python
directory we created in Chapter 3).

& APLGPRD 0. 315 1 Python Packags indes - Mideri - B x
Eile Edt View Go Bookmarks Jools Window Help *
& "‘ Back 0 & http: Hpypl.python. org/ovplRPLGRIOID. 3. 1afdownlo [ * | & Google

<RPI.GPIO 0.3.1... D |Speed dial

B Open http/ pypipythonergipec., be FI07 Toe FELBESGaT0 1 dI8SaF _

Fie
PPLOMD-D.3 Later g= (FeiS)

Open or download file
Authvor; Ben Croston -
Homa Paga: frpcote grage do
Neywords: Paspherry Fi GRO

File Type: unknown (‘applicationfocter-stream’)

Lie m::::m*m . n Save | n Save As ﬂﬂaﬂcel ol Qpen
Categories

Devekopment Swus — 1 - Alpha
Finrded Audence - Developers
Liceoac OS] donrmesd ML LCsnas

Figure 5-1 Downloading the rrPi.crP10 module

Once the file has been saved, open LXTerminal and use cd to get to the Python directory, like so:
pi@raspberrypi:~/Pythons 1ls
RPi.GPIO-0.3.la.tar.gz

Next, you need to extract the directory from the archive by entering the following command:


http://docs.python.org/release/3.1.5/library/index.html

pi@raspberrypi:~/Python$ tar -xzf RPi.GPIO-0.3.la.tar.gz
pi@raspberrypi:~/Python$ ls
RPi.GPIO-0.2.1a RPi.GPIO-0.3.la.tar.gz

Now that you have a new folder for the module, you need to “cd” into it and then run the install
command. However, it is always worth checking the instructions first to see if there’s anything else
you need to do. To see the instructions, type more INSTALL. txt.

Good thing you checked! The instructions state that you need to do the following;
sudo apt-get install python3-dev

Finally, you are ready to run the module installer itself:
pi@raspberrypi:~/Python$ cd RPi.GPIC-0.3.1a
pi@raspberrypi:~/Python/RPi.GPI0O-0.3.1a$ sudo python3
setup.py install

Once the module is installed, you will be able to import it from the Python Shell.

Object Orientation

Object orientation has much in common with modules. It shares the same goals of trying to group
related items together so that they are easy to maintain and find. As the name suggests, object
orientation 1s about objects. We have been unobtrusively using objects already. A string is an object,

for example. Thus, when we type
>>> 'abec' .upper|()

We are telling the string 'abc' that we want a copy of it, but in uppercase. In object-oriented
terms, abc 1S an instance of the built-in class str and upper 1s a method on the class str.

We can actually find out the class of an object, as shown here (note double underscores before and
after the word c1ass):

>>> 'abe'. eclass_
<class 'str's>

»>> [1] . class
<class 'list's

==z 12.34. eclass.
<class 'float's>
Defining Classes

That’s enough of other people’s classes; let’s make some of our own. We are going to start by
creating a class that does the job of converting measurements from one unit to another by multiplying
a value by a scale factor.

We will give the class the catchy name scaleconverter. Here is the listing for the whole class,

plus a few lines of code to test it:
#05 01 converter

class ScaleConverter:



def _ init__ (self, units_from, units_to, factor):
self.units from = units from
self.units _to = units to
gelf.factor = factor

def description (self):
return 'Convert ' + self.units_from + ' to ' + self.units to

def convert (self, wvalue):
return value * gelf.factor

cl = ScaleConverter('inches', 'mm', 25)
print (cl.description())

print ('converting 2 inches')

print (str(el.convert(2)) + cl.units to)

This requires some explanation. The first line is fairly obvious: It states that we are beginning the
definition of a class called scaleconverter. The colon (:) on the end indicates that all that follows
is part of the class definition until we get back to an indent level of the left margin again.

Inside the scaleconverter, we can see what look like three function definitions. These functions
belong to the class; they cannot be used except via an instance of the class. These kinds of functions
that belong to a class are called methods.

The first method, init , looks a bit strange—its name has two underscore characters on either
side. When Python is creating a new instance of a class, it automatically calls the method init .
The number of parameters that init  should have depends on how many parameters are supplied
when an instance of the class is made. To unravel that, we need to look at this line at the end of the
file:

¢l = ScaleConverter('inches', 'mm', 25)
This line creates a new instance of the scaleconverter, specifying what the units being converted

from and to are, as well as the scaling factor. The init method must have all these parameters,
but it must also have a parameter called se1f as the first parameter:
def init (self, units from, units to, factor):

The parameter se1f refers to the object itself. Now, looking at the body of the init  method,

Wwe see some assignments:
self .units from = units from

self.units to = units_to

self.factor = factor . . o
Each of these assignments creates a variable that belongs to the object and has its initial value set

from the parameters passed into _ init .

To recap, when we create a new scaleConverter by typing something like
¢l = ScaleConverter('inches', 'mm', 25)
Python creates a new instance of scaleConverter and assigns the values 'inches', 'mm', and 25 to

its three variables: sel1f.units from, self.units to,and self.factor.

The termencapsulation is often used in discussions of classes. It is the job of a class to
encapsulate everything to do with the class. That means storing data (like the three variables) and
things that you might want to do with the data in the form of the description and convert methods.

The first of these (description) takes the information that the converter knows about its units
and creates a string that describes it. As with init , all methods must have a first parameter of
self. The method will probably need it to access the data of the class to which it belongs.

Try it yourself by running program 05_01 converter.py and then typing the following in the Python
Shell:



»>> 8illy converter = ScaleConverter('apples', 'grapes',K 74)
»>> 8illy converter.description()
'Convert apples to grapes'

The convert method has two parameters: the mandatory se1f parameter and a parameter called
value. The method simply returns the result of multiplying the value passed in by se1f.scale:
>>> silly converter.convert (3)
222
Inheritance
The scaleconverter class is okay for units of length and things like that; however, it would not
work for something like converting temperature from degrees Celsius (C) to degrees Fahrenheit (F).
The formula for this is F = C * 1.8 + 32. There is both a scale factor (1.8) and an offset (32).

Let’s create a class called scaleAndoffsetConverter thatis just like scaleconverter, but with
a factor as well as anoffset. One way to do this would simply be to copy the whole of the code
for scaleconverter and change it a bit by adding the extra variable. It might, in fact, look something
like this:
#05_02_converter offset bad

class ScaleandoffsetConverter:

def _ init_ (self, units_from, units to, factor, offset):
gelf.units from = units from
self.units to = units to
self.factor = factor
self.offset = offset

def descriptloniself):
return 'Convert ' + gelf.units from + ' to ' + self.units to

def converti(self, value):
return value * gelf.factor + self.offset

c2 = ScaleandoffeetConverter('ct, *'F', 1.8, 32)
print (cz2.desgcription())
print{'converting 20C%)
print (str(c2.convert (20)) + c2.units to)
Assuming we want both types of converters in the program we are writing, then this is a bad way

of doing it. It’s bad because we are repeating code. The description method is actually identical,
and init _ 1s almost the same. A much better way is to use something called inheritance.

The idea behind inheritance in classes is that when you want a specialized version of a class that
already exists, you inherit all the parent class’s variables and methods and just add new ones or
override the ones that are different. Figure 5-2 shows a class diagram for the two classes, indicating
how scaleandoffsetConverter inherits from scaleConverter, adds a new variable (offset),
and overrides the method convert (because it will work a bit differently).



ScaleConverter
units_from
units_to
factor
description
convert

ScaleAndOffsetConverter

offset
convert

Figure 5-2 An example of using inheritance

Here is the class definition for scaleAndoffsetConverter using inheritance:
class ScaleAndOffsetConverter (ScaleConverter) :

def init (self, units from, units to, factor, offset):
ScaleConverter. init (self, units from, units to, factor)
gelf . offset = cffset

def convert (self, wvalue):
return value * gelf.factor + self.offset

The first thing to notice is that the class definition for scaleAndoffsetConverter has
ScaleConverter 1n parentheses immediately after it. That is how you specify the parent class for a
class.

The init  method for the new “subclass” of scaleconverter first invokes the init
method of scaleconverter before defining the new variable offset. The convert method will
override the convert method in the parent class because we need to add on the offset for this kind of
converter. You can run and experiment with the two classes together by running

05 03 converters_final.py:
=>> ¢l = ScaleConverter('inches', 'mm', 25)

>>> print(cl.description())

Convert inches to mm

>>> print ('converting 2 inches')

converting 2 inches

>>> print(str(cl.convert(2)) + cl.units to)
50mm

=>> ¢2 = ScaleAndOffsetConvertexr('C', 'F', 1.8, 32)
>>> print (c2.description())

Convert C to F

>>> print('converting 20C'")

converting 20C

>>> print (str(c2.convert(20)) + c2.units to)

68.0F
It’s a simple matter to convert these two classes into a module that we can use in other programs.

In fact, we will use this module in Chapter 7, where we attach a graphical user interface to it.

To turn this file into a module, we should first take the test code off the end of it and then give the
file a more sensible name. Let’s call it converters.py. You will find this file in the downloads for this
book. The module must be in the same directory as any program that wants to use it.

To use the module now, just do this:



>>> import converters

>>> ¢l = converters.ScaleConverter('inches', 'mm', 25)
>>> print (cl.description(})

Convert inches to mm

>>> print ('converting 2 inches')

converting 2 inches
>>> print(str(cl.convert(2)) + cl.units to)
5 0mm
Summary
Lots of modules are available for Python, and some are specifically for the Raspberry Pi, such as the
RPi.GPIO library for controlling the GPIO pins. As you work through this book, you will encounter
various modules. You will also find that as the programs you write get more complex, the benefits of
an object-oriented approach to designing and coding your projects will keep everything more
manageable.

In the next chapter, we look at using files and the Internet.



6

Files and the Internet

Python makes it easy for your programs to use files and connect to the Internet. You can read data
from files, write data to files, and fetch content from the Internet. You can even check for new mail
and tweet—all from your program.

Files
When you run a Python program, any values you have in variables will be lost. Files provide a means
of making data more permanent.

Reading Files

Python makes reading the contents of a file extremely easy. As an example, we can convert the
Hangman program from Chapter 4 to read the list of words from a file rather than have them fixed in
the program.

First of all, start a new file in IDLE and put some words in it, one per line. Then save the file with
the name hangman words.txt in the same directory as the Hangman program from Chapter 4
(04 _08 hangman full.py). Note that in the Save dialog you will have to change the file type to .txt
(see Figure 6-1).

1

— #Unitlsade =
|£“E it e 1 T Fle Edt Format Run Options Windows Help
!;.I-.:..:.I ;I- 'r: .:..._;:I;::-_...:_r a s
Type "copyright™, "credits” -__IFI
He Bubprecess : _I
sinnese | Rirectory:  fhome/pifPython =
- 51 book

™ RPI.GPIO-0.3.1a

[« I

File pame: Eh angman words.txt Save

Files of type:  Text files (") - Cancel

Figure 6-1 Creating a text file in IDLE

Before we modify the Hangman program itself, we can just experiment with reading the file in the
Python console. Enter the following into the console:
>>> £ = open/('Python/hangman words.txt')

Note that the Python console has a current directory of /home/pi, so the directory Python (or
wherever you saved the file) must be included.

Next enter the following into the Python console:
=»»» Words = f£.read()
=nm Words
'elephant\ncat\ntiger\ndog\nlion\nhorse\ngiraffe\nbird\ndeer\n'
>>> words.splitlines ()
['elephant', 'cat',6 'tiger', 'deog', 'lion', 'horse', 'giraffe'

, "bird', 'deer']
-

[ told you it was easy! All we need to do to add this file to the Hangman program is replace the line



words = ['chicken', 'dog', 'cat', 'mouse', 'frog']
with the following lines:

f = open('hangman words.txt')
words = f.read() .splitlines()
f.close()

The line £.close () has been added. You should always call the c1ose command when you are
done with a file to free up operating system resources. Leaving a file open can lead to problems.

The full program is contained in the file 06 01 hangman file.py, and a suitable list of animal
names can be found in the file hangman words.txt. This program does nothing to check that the file
exists before trying to read it. So, if there file isn’t there, we get an error that looks something like
this:

Traceback (most recent call last):
File "06 01 hangman file.py", line 4, in <module>

f = open('hangman words.txt')
ICError: [Errno 2] No such file or directory: 'hangman words.txt'
To make this a bit more user friendly, the file-reading code needs to be inside a try command, like

this:
Ery:

f = open('hangman words.txt')

words = f.read() .splitlines()

f.cloge()

except IOError:
print ("Cannot find file 'hangman words.txt'")
exit ()

Python will try to open the file, but because the file 1s missing it will not be able to. Therefore, the
except part of the program will apply, and the more friendly message will be displayed. Because we
cannot do anything without a list of words to guess, there is no point in continuing, so the exit
command is used to quit.

In writing the error message, we have repeated the name of the file. Sticking strictly to the Don’t
Repeat Yourself (DRY) principle, the filename should be put in a variable, as shown next. That way,
if we decide to use a different file, we only have to change the code in one place.

words file = 'hangman words.txt'
LNy s
f = open(words file)
words = f.read() .splitlines()
f.closel()
except IOError:
print ("Cannot find file: " + words file)
exit ()

A modified version of Hangman with this code in it can be found in the file
06 02 hangman file try.py.
Reading Big Files
The way we did things in the previous section is fine for a small file containing some words.
However, if we were reading a really huge file (say, several megabytes), then two things would
happen. First, it would take a significant amount of time for Python to read all the data. Second,
because all the data is read at once, at least as much memory as the file size would be used, and for
truly enormous files, that might result in Python running out of memory.

If you find yourself in the situation where you are reading a big file, you need to think about how



you are going to handle it. For example, if you were searching a file for a particular string, you could

just read one line of the file at a time, like this:
#06 03 file readline
words file = 'hangman words.txt'
Ery:
f = open(words file)
line = f.readline()
while line !=
if line == 'elephant'n':
print ('There is an elephant in the file')
break
line = f.readline ()
f.oclose()
except I0OError:
print ("Cannot find file: " + words file)

When the function readiine gets to the last line of the file, it returns an empty string (' ').
Otherwise, it returns the contents of the line, including the end-of-line character (\n). If it reads a
blank line that is actually just a gap between lines and not the end of the file, it will return just the
end-of-line character (\n). By the program only reading one line at a time, the memory being used is
only ever equivalent to one full line.

If the file is not broken into convenient lines, you can specify an argument in read that limits the

number of characters read. For example, the following will just read the first 20 characters of a file:
»>>> f = open('hangman words.txt')

>>> f.read(20)
'"elephant\ncat\ntiger\nd'
>>> f.close()
Writing Files
Writing files is almost as simple. When a file is opened, as well as specifying the name of the file to
open, you can also specify the mode in which to open the file. The mode is represented by a
character, and if no mode is specified it is assumed to be r for read. The modes are as follows:

* r (read).

* w (write) Replaces the contents of any existing file with that name.

* a (append) Appends anything to be written onto the end of an existing file.

* r+ Opens the file for both reading and writing (not often used).

To write a file, you open it with a second parameter of * w', ' a',or ' r+'. Here’s an example:
2> T = open('test.kxt";, "w'}
>>> f.write('This file is not empty')

»ax» E.close (]
The File System

Occasionally, you will need to do some file-system-type operations on files (moving them, copying
them, and so on). Python uses Linux to perform these actions, but provides a nice Python-style way of
doing them. Many of these functions are in the shuti1 (shell utility) package. There’s a number of
subtle variations on the basic copy and move features that deal with file permissions and metadata. In
this section, we just deal with the basic operations. You can refer to the official Python
documentation for any other functions (http://docs.python.org/release/3.1.5/library).

Here’s how to copy a file:
>>> ilmport shutil

>>> shutil.copy('test.txt', 'test copy.txt')


http://docs.python.org/release/3.l.5/library

To move a file, either to change its name or move it to a different directory:
shutil .move('test copy.txt', 'test dup.txt')

This works on directories as well as files. If you want to copy an entire folder—including all its
contents and its content’s contents—you can use the function copytree. The rather dangerous function
rmtree, on the other hand, will recursively remove a directory and all its contents—exercise extreme
caution with this one!

The nicest way of finding out what is in a directory 1s via globbing. The package glob allows you

to create a list of files in a directory by specifying a wildcard (*). Here’s an example:
>>> import glob

glob.gleb{'*.txkt')
['hangman words.txt', 'test.txt', 'test dup.txt']
If you just want all the files in the folder, you could use this:
glob.glob('*')
Pickling
Pickling involves saving the contents of a variable to a file in such a way that the file can be later
loaded to get the original value back. The most common reason for wanting to do this is to save data
between runs of a program. As an example, we can create a complex list containing another list and
various other data objects and then pickle it into a file called mylist.pickle, like so:
=2> mylist = [Ya', 3123, [4, 5, True]]
>>> mylist
['a', 123, [4, 5, Truell
>>> 1lmport pickle
>>» £ = open('mylist.pickle', 'w')
>>> pickle.dump (mylist, f)
>>> E.close()
If you find the file and open it in an editor to have a look, you will see something cryptic that looks

like this:
(1lpO
=g
pl
allz23
a(lp2
I4

alsb
aloll

aa.
That 1s to be expected; it 1s text, but it is not meant to be in human-readable form. To reconstruct a

pickle file into an object, here is what you do:

>>> f = open('mylist.pickle')

>>> other array = pickle.load(f)

>>> f.close()

>>> other array

[rat, 123, [4, 5, Truell]

Internet

Most applications use the Internet in one way or another, even if it is just to check whether a new
version of the application is available to remind the user about. You interact with a web server by
sending HTTP (Hypertext Transfer Protocol) requests to it. The web server then sends a stream of



text back as a response. This text will be HTML (Hypertext Markup Language), the language used to
create web pages.

Try entering the following code into the Python console.
==>> lmport urllib.request

== U = 'http://www.amazon.com/s/ref=nb sb nossvfleld-keywords=raspberry+pl"’
==» £ = urllib.request.urlopen (u)
=== oontente = f.read()

. lots of HTML
=== [.Cloge()
Note that you will need to execute the read line as soon as possible after opening the URL. What

you have done here is to send a web request to www.amazon.com, asking it to search on “raspberry
pi.” This has sent back the HTML for Amazon’s web page that would display (if you were using a
browser) the list of search results.

If you look carefully at the structure of this web page, you can see that you can use it to provide a
list of Raspberry Pi—related items found by Amazon. If you scroll around the text, you will find some
lines like these:

ediv clasam"productTitle"s<a href="http://www.amazon
.com/Raspberry-User-Guide

-Gareth-Halfacree/dp/1118456446X" > Raapberry Pi User Guide</a> <span

class="ptEBrand">by <a href="/Gareth-Halfacree/e

/BO0O8BCASZM" >Gareth
Halfacree</a> and Eben Upton</span><span

class="binding"> (<span class

="format">Paperback</span> - Nov. 13, 2012)</span></div>
They key thing here is <div class="productTitle">. There is one instance of this before each

of the search results. (It helps to have the same web page open in a browser for comparison.) What
you want to do is copy out the actual title text. You could do this by finding the position of the text
productTitle, counting two > characters, and then taking the text from that position until the next <
character, like so:


http://www.amazon.com

#06_04 amazon_scraping
import urllib.request

u = 'http://www.amazon.com/s/ref=nb sb noss?field-
keywords=raspberry+pi’
f = urllib.request.urlopen (u)
contents = str(f.readl())
f.close()
i =D
while True:
i = contents.find('productTitle', i)
if 1 == =1:
break
# Find the next two '>' after 'productTitle'
i = contents.find('>', i+l)
i = contents.find('>"', i+1)
# Find the first '<' after the two '>'
i = contents.find('<', i+1)
title = contents([i+2:7]

print (title)

When you run this, you will mostly get a list of products. If you really get into this kind of thing,
then search for “Regular Expressions in Python” on the Internet. Regular expressions are almost a
language in their own right; they are used for doing complex searches and validations of text. They
are not easy to learn or use, but they can simplify tasks like this one.

What we have done here is called web scraping, and it is not ideal for a number of reasons. First
of all, organizations often do not like people “scraping” their web pages with automated programs.
Therefore, you may get a warning or even banned from some sites.

Second, this action is very dependent on the structure of the web page. One tiny change on the
website and everything could stop working. A much better approach is to look for an official web
service interface to the site. Rather than returning the data as HTML, these services return much more
easily processed data, often in XML or JSON format.

If you want to learn more about how to do this kind of thing, search the Internet for “web services
in Python.”

Summary

This chapter has given you the basics of how to use files and access web pages from Python. There is
actually a lot more to Python and the Internet, including accessing e-mail and other Internet protocols.
For more information on this, have a look at the Python documentation at
http://docs.python.org/release/3.1.5/library/internet.html.


http://docs.python.org/release/3.1.5/library/internet.html

7

Graphical User Interfaces

Everything we have done so far has been text based. In fact, our Hangman game would not have
looked out of place on a 1980s home computer. This chapter shows you how to create applications
with a proper graphical user interface (GUI).

Tkinter

Tkinter 1s the Python interface to the Tk GUI system. Tk is not specific to Python; there are interfaces
to it from many different languages, and it runs on pretty much any operating system, including Linux.
Tkinter comes with Python, so there is no need to install anything. It is also the most commonly used
tool for creating a GUI for Python.

Hello World

Tradition dictates that the first program you write with a new language or system should do something
trivial, just to show it works! This usually means making the program display a message of “Hello
World.” As you’ll recall, we already did this for Python back in Chapter 3, so I’ll make no apologies

for starting with this program:
#07 01 hello.py

from tkinter import *
rooct = Tk{)
Label (root, text='Hello World') .pack()
root.mainloop ()

Figure 7-1 shows the rather unimpressive application.
. -0 x

Helle world

Figure 7-1 Hello World in Tkinter

You don’t need to worry about how all this works. You do, however, need to know that you must
assign a variable to the object Tk. Here, we call this variable root, which is a common convention.
We then create an instance of the class Labe1, whose first argument is root. This tells Tkinter that the
label belongs to it. The second argument specifies the text to display in the label. Finally, the method
pack 1s called on the label. This tells the label to pack itself into the space available. The method
pack controls the layout of the items in the window. Shortly, we will use an alternative type of layout
for the components in a grid.

Temperature Converter

To get started with Tkinter, you’ll gradually build up a simple application that provides a GUI for
temperature conversion (see Figure 7-2) . This application will use the converter module we
created in Chapter 5 to do the calculation.

- Temp Converter

deg C|23.6
deg F 74.48

Convert

Figure 7-2 A temperature conversion application
Our Hello World application, despite being simple, is not well structured and would not lend itself



well to a more complex example. It is normal when building a GUI with Tkinter to use a class to
represent each application window. Therefore, our first step is to make a framework in which to slot

the application, starting with a window with the title “Temp Converter” and a single label:
#07 02 temp framework.py

from tkinter import *
class App:

def _ init__ (self, master):
frame = Frame (master)
frame.pack()
Label (frame, text='deg C').grid(row=0, column=0)
button = Button(frame, text='Convert', command=self.convert)
button.grid(row=1)

def conwvert (self):
print { 'Not implemented')

root = Tk()
root.wm_title('Temp Converter')
app = App(root)
root .mainlcop ()

We have added a class to the program called app. Ithas an __init  method that is used when a
new instance of App is created in the following line:
app = App(root)

We pass in the Tk root objectto  init  where the user interface is constructed.

As with the Hello World example, we are using a Label, but this time rather than adding the label
to the root Tk object, we add the label to a Frame object that contains the label and other items that
will eventually make up the window for our application. The structure of the user interface is shown

in Figure 7-3. Eventually, it will have all the elements shown.

Tk root
Frame
0 ,523%. Entry
1 ::gf:' Label
2 Button 'Convert'
0 1

Figure 7-3  Structure of the user interface

The frame is “packed” into the root, but this time when we add the label, we use the method grid
instead of pack. This allows us to specify a grid layout for the parts of our user interface. The field
goes at position 0, 0 of the grid, and the button object that is created on the subsequent line is put on
the second row of the grid (row 1). The button definition also specifies a “command” to be run when



the button is clicked. At the moment, this is just a stub that prints the message “Not implemented.”
The function wm_title sets the title of the window. Figure 7-4 shows what the basic user interface
looks like at this point.

iE: Temp Converter = O X

deg C

Convert

Figure 7-4 The basic user interface for the Temp Converter application

The next step is to fill in the rest of the user interface. We need an “entry” into which a value for
degrees C can be entered and two more labels. We need one permanent label that just reads “deg F”
and a label to the right of it where the converted temperature will be displayed.

Tkinter has a special way of linking fields on the user interface with values. Therefore, when we
need to get or set the value entered or displayed on a label or entry, we create an instance of a special
variable object. This comes in various flavors, and the most common is StringVar. However, because
we are entering and displaying numbers, we will use DoubleVar. Double means a double-precision
floating-point number. This is just like a float, but more precise.

After we add in the rest of the user interface controls and the variables to interact with them, the

program will look like this:
#07_03 temp ui.py

from tkinter import *
class App:

def  init (=2elf, masterx):
frame = Frame(master)
frame.pack()
Label (frame, text='deg C') .grid(row=0, column=0]}
self.c_var = DoubleVar()
Entry(frame, textvariable=self.c _wvar) .grid(row=0, column=l)
Label (frame, text='deg F').grid(row=l, column=0)
self.result var = DoubleVar()
Label (frame, textvariable=self.result wvar) .gridirow=1l, column=1)
button = Button(frame, text='Convert', command=self.convert)
button.gridrow=2, columnspan=2)

def convert (self):
print ('Not implemented')

root = Tk()

root.wm_title('Temp Converter')
app = App(root)

root . mainloop()

The first DoubleVar (c_var) is assigned to the entry by specifying a textvariable property for it.
This means that the entry will display what is in that Double Var, and if the value in the DoubleVar 1s
changed, the field display will automatically update to show the new value. Also, when the user types
something in the entry field, the value in the DoubleVar will change. Note that a new label of “deg F”
has also been added.

The second DoubleVar is linked to another label that will eventually display the result of the
calculation. We have added another attribute to the grid command that lays out the button. Because
we specify columnspan=2, the button will stretch across both columns.

If you run the program, it will display the final user interface, but when you click the Convert



button, the message “Not Implemented” will be written to the Python console.
The last step is to replace the stubbed-out “convert” method with a real method that uses the
converters module from Chapter 5. To do this, we need to import the module. In order to reduce

how much we need to type, we will import everything, as follows:
from converters import *

For the sake of efficiency, it is better if we create a single “converter” during init  and just
use the same one every time the button is clicked. Therefore, we create a variable called

self.t conv to reference the convertor. The convert method then just becomes this:
def convert (self):

¢ = self.c var.get ()
self.result var.set (self.t conv.convert (c))

Here is the full listing of the program:
#07_04_temp final.py

from tkinter import *
from converters import *

class App:

def  init (self, master):
self.t_conv = ScaleAndOffsetConvertexr('C', 'F', 1.8, 32)
frame = Frame (master)
frame.pack()
Label (frame, text='deg C').grid(row=0, column=0)
self.c_var = DoubleVar()
Entry(frame, textvariable=self.c var) .grid(row=0, column=l)
Lakbel (frame, text='deg F') .grid(row=l, column=0)
self.result var = DoubleVar()
Label (frame, textvariable=self.result wvar) .gridirow=1l, column=1)
button = Button(frame, text='Convert', command=self.convert)
button.grid(row=2, columnspan=2)

def convert (self):
¢ = self.c_var.get()
self.result_wvar.set (self.t_conv.convert (c))

root = Tk()

root.wm_title('Temp Converter')
app = App(root)

root.mainloop()

Other GUI Widgets

In the temperature converter, we just used text fields (class Entry) and labels (class Label). As you
would expect, you can build lots of other user interface controls into your application. Figure 7-5
shows the main screen of a “kitchen sink™ application that illustrates most of the controls you can use
in Tkinter. This program is available as 07 05 kitchen sink.py.



— Kitchen Sink - 0 X

Label | Button
red D
[~ Checkbutton green ~ portrait © |landscape
blue
1 Multiline
_ 1 Message
1§ Area
a -

Figure 7-5 A “kitchen sink” application
Checkbutton

The Checkbox widget (first column, second row of Figure 7-5) is created like this:
Checkbutton (frame, text='Checkbutton')

This line of code just creates a Checkbutton with a label next to it. If we have gone to the effort of
placing a check box on the window, we’ll also want a way of finding out whether or not it is checked.
The way to do this is to use a special “variable” like we did in the temperature converter example.
In the following example, we use a StringVar, but if the values of onvalue and offvalue were

numbers, we could use an IntVar instead.
check var = StringVar()
check = Checkbutton(frame, text='Checkbutton',
variable=check var, onvalue='Y',6 offvalue='N")
check.grid(row=1, column=0)
Listbox
To display a list of items from which one or multiple items can be selected, a Listbox is used (refer to

the center of Figure 7-5). Here’s an example:
listbox = Listbox(frame, height=3, selectmode=BROWSE)

for item in ['red', 'green', 'blue', 'yellow', 'pink']:
listbox.insert (END, item)
listbox.grid(row=1, column=1)

In this case, it just displays a list of colors. Each string has to be added to the list individually. The
word END indicates that the item should go at the end of the list.

You can control the way selections are made on the Listbox using the selectmode property, which
can be set to one of the following:

* sINGLE Only one selection at a time.

* BROWSE Similar to sTNGLE, but allows selection using the mouse. This appears to be

indistinguishable from s1nGLE in Tkinter on the Pi.

 MULTIPLE SHIFT-click to select more than one row.

» EXTENDED Like MurTIPLE, but also allows the CTRL-SHIFT-click selection of ranges.

Unlike with other widgets that use StringVar or some other type of special variable to get values in
and out, to find out which items of the Listbox are selected, you have to ask it using the method
curselection. This returns a collection of selection indexes. Thus, if the first, second, and fourth
items in the list are selected, you will get a list like this:

[A,. 1, 3]

When selectmode 1S SINGLE, you still get a list back, but with just one value in it.
Spinbox
Spinboxes provide an alternative way of making a single selection from a list:

Spinbox (frame, values=('a',6'b',K6 'c')) .grid(row=3)
The get method returns the currently displayed item in the Spinbox, not its selection index.

[



Layouts
Laying out the different parts of your application so that everything looks good, even when you resize
the window, is one of the most tricky parts of building a GUL

You will often find yourself putting one kind of layout inside another. For example, the overall
shape of the “kitchen sink™ application is a 3%3 grid, but within that grid is another frame for the two

radio buttons:
radio frame = Frame (frame)

radio selection = StringVar()
bl = Radiobutton(radio frame, text='portrait',

variable=radio selection, value='P')
bl.pack (8ide=LEFT)
b2 = Radiobutton(radio frame, text='landscape',
variable=radio selection, value='L"')
b2.pack (2ide=LEFT)
radio frame.grid(row=1, column=2)

This approach is quite common, and it is a good 1dea to sketch out the layout of your controllers on
paper before you start writing the code.

One particular problem you will encounter when creating a GUI is controlling what happens when
the window 1is resized. You will normally want to keep some widgets in the same place and at the
same size, while allowing other widgets to expand.

As an example of this, we can build a simple window like the one shown in Figure 7-6, which has
a Listbox (on the left) that stays the same size and an expandable message area (on the right) that
expands as the window is resized.

red word word word word word word wo
green rd word word word word word word
blue word word word word word word wo
ellow rd word word word word word word
pink word word word word word word wo

rd word word word word word word
word word word word word word wo
rd word word word word word word
word word word word word word wo
rd word word word word word word
word word word vord word word wo
rd word word word word word word
word word word word word word wo
rd word word word word word word
word word word word word word wo
rd word word

Figure 7-6 An example of resizing a window
The code for this is shown here:



#07 06 resizing.py
from tkinter import *
alass App:
def  init_ (self, master):

frame = Frame (master)
frame.pack (fill=B0OTH, expand=1)

#Listhox
listbox = Listbox (frame)
for item in ['red', 'green', 'blue',

listbhox.insert (END, item)

listhox.grid{row=0, column=0, sticky=W+E+IN+5)

#Message
text = Text (frame, relief=SUNKEN)

text.grid(row=0, column=1, sticky=W+E+N+5)

text.insert (END, ‘word ' * 100}
frame.columnconfigure (l, weight=1)
frame.rowconfigqure (0, weight=1)
root = Tk}
app = App(root)
root.geometry ("400x300+0+0")
root.mainloop ()

'vellow',

'pink'] :

The key to understanding such layouts is the use of the sticky attributes of the components to
decide which walls of their grid cell they should stick to. To control which of the columns and rows
expand when the window is resized, you use the columnconfigure and rowconfigure commands.
Figure 7-7 shows the arrangement of GUI components that make up this window. The lines indicate
where the edge of a user interface item is required to “stick” to its containing wall.

Tk root

Frame

0 listbox [*™ N

text

Figure 7-7 Layout for the resizing window example

Let’s go through the code for this example so that things start to make sense. First, the line



frame.pack (£111=BOTH, expand=1)
ensures that the frame will fill the enclosing root window so that if the root window changes in size,
so will the frame.

Having created the Listbox, we add it to the frame’s grid layout using the following line:
listbox.grid(row=0, column=0, sticky=W+E+N+S)

This specifies that the Listbox should go in position row 0, column 0, but then the sticky attribute
says that the west, east, north, and south sides of the Listbox should stay connected to the enclosing
grid. The constants w, E, N, and s are numeric constants that can be added together in any order. The
Text widget is added to the frame’s grid in just the same way, and its content is initialized to the word
word repeated 100 times.

The final part to the puzzle is getting the resizing behavior we want for a text area that expands to
the right and a list area that doesn’t. To do this, we use the columnconfigure and rowconfigure

methods:
frame.columnconfigure (l, weight=1)

frame.rowconfigure (0, weight=1)
By default, rows and columns do not expand at all when their enclosing user interface element

expands. We do not want column 0 to expand, so we can leave that alone. However, we do want
column 1 to expand to the right, and we want row 0 (the only row) to be able to expand downward.
We do this by giving them a “weight” using the columnconfigure and rowconfigure methods. If,
for example, we had multiple columns that we want to expand evenly, we would give them the same
weight (typically 1). If, however, we want one of the columns to expand at twice the rate of the other,
we would give it twice the weight. In this case, we only have one column and one row that we need
expanding, so they can both be given a weight of 1.
Scrollbar
If you shrink down the window for the program 07 06 resizing.py, you will notice that there’s no
scrollbar to access text that’s hidden. You can still get to the text, but clearly a scrollbar would help.
Scrollbars are widgets in their own right, and the trick for making them work with something like a
Text, Message, or Listbox widget is to lay them out next to each other and then link them together.
Figure 7-8 shows a Text widget with a scrollbar.

Scrolling

=0 X

word
word
word
wo rd
word
word
word
wo rd
word
word
word
word
wo rd
wo rd
word
wo rd
word
wo rd
wio rd
word

wo rd
wao rd
word
wo rd
word
word
word
word
word
wo rd
wo rd
wo rd
word
word
word
wo rd
wo rd
wo rd

word
word
wo rd
word
word
word
word
word
word
word
word
word
word
word
word
word
wo rd
word
ward
word

wo rd
word
word
wo rd
word
word
word
wo rd
word
word
word
word
wo rd
word
word
wo rd
word
wo rd
wo rd
word

word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word

word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word

word
word
word
wo rd
word
ward
word
word
word
word
word
word
word
word
word
wo rd
ward
word
word
word

word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
ward
word

wvord
word
vord
word
vord
vord

word
word
word
word
word
word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word

word word
word word
word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
word word word
wiord word word
word word word
word word word
word word word
word word word

wio rd
word
word

word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word
word word

word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word word
word word

word word
word word
word word
word word

word word
word word
word word
word word

word
word
word
word

word word
word word
word word
word word

word word
word word
word word
word word

word word
word word
word word
word word

word
word
word
word

wo rd
word
word
word

word
word
word
word

word
word
word
word

word
word
word
'II'U"T.I A




Figure 7-8 Scrolling a Text widget

The code for this is as follows:
#07 07 scrolling.py

from tkinter import *
aolass App:

def init (self, master):
scrollbar = Scrollbar (master)
gcrollbar.pack (2ide=RIGHT, f£ill=Y)
text = Text (master, yscrollecommand=scrollbar.set)
text .pack (2ide=LEFT, f£i11=EOTH)
text.insert (END, 'word ' * 1000)

gcrollbar.config (command=text.yview)
root = Tk()

roct.wm title('Scrolling')
app = App (root)
root.mainloop ()
In this example, we use the pack layout, positioning the scrollbar on the right and the text area on

the left. The £i11 attribute specifies that the Text widget is allowed to use all free space on both the
X and Y dimensions.

To link the scrollbar to the Text widget, we set the yscrollcommand property of the Text widget to
the set method of the scrollbar. Similarly, the command attribute of the scrollbar is set to
text.yview.

Dialogs
It is sometimes useful to pop up a little window with a message and make the user click OK before
they can do anything else (see Figure 7-9). These windows are called modal dialogs, and Tkinter has
a whole range of them in the package tkinter.messagebox.

Ot -ox Information

M Please don't press that

button again!

Figure 7-9 An alert dialog
The following example shows how to display such an alert. As well as showinfo,
tkinter.messagebox also has the functions showwarning and showerror that work just the same,

but display a different symbol in the window.
#07_0& gen dlalogs.py

from tkinter import *
lmport tkinter.messagebox as mb

clasgs App:

def  init (self, master):
b=Button(master, text='"Press Me',K command-=self.info).pack()



def info(self):
k. showinfo('Information', "Please don't press that kbutton again!®)

root = Tk{)
app = App(root)
root.mainlosp ()

Other kinds of dialogs can be found in the packages tkinter.colorchooser and
tkinter.filedialog.
Color Chooser
The Color Chooser returns a color as separate RGB components as well as a standard hex color
string (see Figure 7-10).

- Colar -f
d|21? Selection:
ad:
5 I 4 |#d9d9ds
green: 217 [
-— ‘
Blue: [217 |
F Y
DK Cancel

Figure 7-10 The Color Chooser

#07_09_color_chooser.py

from tkinter import *
import tkinter.colorchooser as cc

class App:

def init (self, master):
b=Button (master, text='Color..', command=self.ask color).pack()

def ask_color(self):
(rgb, hx) = cec.askecelor()
print ("rgb=" + str(rgb} + " hx=" + hx)

root = Tk()
app = Appl{root)
root.mainloop()

This code returns something like this:
rgb=(255.99609375, 92.359375, 116.453125) hx=#f£f5c74

File Chooser
File Choosers can be found in the package tkinter.filedialog. These follow exactly the same
pattern as the other dialogs we have looked at.

Menus
You can give your applications menus. As an example, we can create a very simple application with
an entry field and a couple of menu options (see Figure 7-11).

Fila Edit
abc Fill

Figure 7-11 Menus



#07_10 menus.py
from tkinter import *
class App:
def init (self, master):

gself.entry text = StringVar ()
Entry(master, textvariable=szself.entry text).pack()

menubar = Menu (root)

filemenu = Menui{menukar, tearoff=0)

filemenu.add command(label="Quit', command=exit)
menubar.add cascade(label='File', menu=filemenu)
editmenu = Menu(menubar, tearoff=0)

editmenu.add command(label='Fill', command=self.fill)
menubar.add cascade (label="Edit', menu=editmenu)

master.config(menu=menubar)

def £ill (self) :
self.entry text.set('abc')

rooct = Tk
app = App (root)

root.mainloop ()
The first step is to create a root Menu. This is the single object that will contain all the menus (File

and Edit, in this case, along with all the menu options).
menubar = Menu(root)
To create the File menu, with its single option, Quit, we first create another instance of Menu and

then add a command for Quit and finally add the File menu to the root Menu:
filemenu = Menu (menubar, tearoff=0)
filemenu.add command(label='Quit', command=exit)
menubar.add cascade(label='File', menu=filemenu)

The Edit menu is created in just the same way. To make the menus appear on the window, we have
to use the following command:
master.config(menu=menubar)
The Canvas
In the next chapter, you’ll get a brief introduction to game programming using PyGame. This allows
all sorts of nice graphical effects to be achieved. However, if you just need to create simple graphics,
such as drawing shapes or plotting line graphs on the screen, you can use Tkinter’s Canvas interface
instead (see Figure 7-12).



Figure 7-12 The Canvas widget
The Canvas is just like any other widget you can add to a window. The following example shows

how to draw rectangles, ovals, and lines:
$07_11_canvas.py

from tkinter import *
class App:

def _ init_ (self, master):
canvas = Canvae (master, width=400, height=200)
canvas.pack ()
canvas.create rectangle (20, 20, 300, 100, fill='blue')
canvas.create oval (30, 50, 290, 190, fill="H#f£2277')
canvas.create line(0, 0, 400, 200, fill='black', width=5%)

root = Tk()
app = BApp(root})
root.mainleoop ()

You can draw arcs, images, polygons, and text in a similar way. Refer to an online Tkinter
reference such as http://infohost.nmt.edu/tcc/help/pubs/tkinter/ for more information.

NOTE The origin of the coordinates is the top-left corner of the window, and the coordinates
are in pixels.

Summary
In a book this size, it is sometimes only possible to introduce a topic and get you started on the right
path. Once you’ve followed the examples in this chapter, run them, altered them, and analyzed what’s
going on, you will soon find yourself hungry for more information. You will get past the need for
hand-holding and have specific ideas of what you want to write. No book is going to tell you exactly
how to build the project you have in your head. This is where the Internet really comes into its own.

Good online references to take what you’ve learned further can be found here:

« www.pythonware.conV/library/tkinter/introduction/

* http://infohost.nmt.edu/tcc/help/pubs/tkinter/


http://infohost.nmt.edu/tcc/help/pubs/tkinter/
http://www.pythonware.com/library/tkinter/introduction/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

3

Games Programming
Clearly a single chapter is not going to make you an expert in game programming. A number of good
books are devoted specifically to game programming in Python, such as Beginning Game
Development with Python and Pygame, by Will McGugan. This chapter introduces you to a very
handy library called pygame and gets you started using it to build a simple game.

What Is Pygame?

Pygame is a library that makes it easier to write games for the Raspberry Pi—or more generally for
any computer running Python. The reason why a library is useful is that most games have certain
elements in common, and you’ll encounter some of the same difficulties when writing them. A library
such as pygame takes away some of this pain because someone really good at Python and game
programming has created a nice little package to make it easier for us to write games. In particular,
pygame helps us in the following ways:

» We can draw graphics that don’t flicker.

* We can control the animation so that it runs at the same speed regardless of whether we run it on

a Raspberry P1i or a top-of-the-range gaming PC.

* We can catch keyboard and mouse events to control the game play.

The Raspbian Wheezy distribution comes with two versions of Python: Python 2 and Python 3. That
is why two shortcuts to IDLE appear on the desktop. So far in this book, we have been using IDLE 3
and thus Python 3. In Raspbian Wheezy, the Python 3 installation does not include pygame, whereas
the Python 2 installation has it preinstalled.

Rather than install pygame into Python 3 (which is a bit involved), we will use Python 2 in this
chapter. Don’t worry, all the code that we write should still work on Python 3 should you prefer (or
find that in a later distribution pygame is there waiting for you). You just have to remember to start
IDLE instead of IDLE 3.

Hello Pygame
You may also have a shortcut on your desktop called Python Games. This shortcut runs a launcher
program that allows you to run some Python games. However, if you use the File Explorer, you will
also find a directory in your root directory called python games. If you look in here, you will see the
.py files for the games, and you can open these files in IDLE to have a look at how others have written
their games.

Figure 8-1 shows what a Hello World—type application looks like in pygame, and here is the code
listing for it:



- Hello Pygame =y

W

Figure 8-1 Hello Pygame
#08 01 hello pygame.py

import pygame

pygame.init ()
screen = pygame.display.set_mode( (200, 200))

screen.fill ({255, 255, 255))
pygame.display.set caption('Hello Pygame')

ball = pygame.image.load('raspberry.jpg') .convert ()
screen.blit (ball, (100, 100))

pygame .display.update ()
This 1s a very crude example, and it doesn’t have any way of exiting gracefully. Closing the Python

console from which this program was launched should kill it after a few seconds.
Looking at the code for this example, you can see that the first thing we do is import pygame. The
method init (short for initialize) is then run to get pygame set up and ready to use. We then assign a

variable called screen using the line
screen = pygame.display.set mode ({200, 200))

which creates a new window that’s 200 by 200 pixels. We then fill it with white (the color 255, 255,
255) on the next line before setting a caption for the window of “Hello Pygame.”
Games use graphics, which usually means using images. In this example, we read an image file into

pygame:
raspberry = pygame.image.load('raspberry.jpg') .convert ()

In this case, the image is a file called raspberry.jpg, which is included along with all the other
programs in this book in the programs download section on the book’s website. The call to convert (
) at the end of the line is important because it converts the image into an efficient internal
representation that enables it to be drawn very quickly, which 1s vital when we start to make the
image move around the window.

Next, we draw the raspberry image on the screen at coordinates 100, 100 using the b1it command.
As with the Tkinter canvas you met in the previous chapter, the coordinates start with 0, 0 in the top-
left corner of the screen.



Finally, the last command tells pygame to update the display so that we get to see the image.
A Raspberry Game
To show how pygame can be used to make a simple game, we are going to gradually build up a game
where we catch falling raspberries with a spoon. The raspberries fall at different speeds and must be
caught on the eating end of the spoon before they hit the ground. Figure 8-2 shows the finished game in
action. It’s crude but functional. Hopefully, you will take this game and improve upon it.

Raspberry Catching

Score: 2

e

Figure 8-2 The raspberry game
Following the Mouse
Let’s start developing the game by creating the main screen with a spoon on it that tracks the

movements of the mouse left to right. Load the following program into IDLE:
#08 02 rasp game mouse

import pygame
from pygame.locals import *
from sys import exit



spoon_ X 300
spoon_ y = 300

pygame.init ()

screen = pygame.display.set mode( (600, 400))
pygame.display.set caption('Raspberry Catching')

spoon = pygame.image.load('spoon.jpg') .convert ()
while True:

for event in pygame.event.get () :
if event.type == QUIT:
exit ()

screen.fill ({255, 255, 255))
spoon X, lgnore = pygame.mouse.get pos ()
screen.blit (spoon, (spoon x, spoon y))

pygame.display.update ()
The basic structure of our Hello World program is still there, but you have some new things to

examine. First of all, there are some more imports. The import for pygame.locals provides us
access to useful constants such as gurT, which we will use to detect when the game is about to exit.
The import of exit from sys allows us to quit the program gracefully.

We have added two variables (spoon x and spoon_y) to hold the position of the spoon. Because
the spoon is only going to move left to right, spoon vy will never change.

At the end of the program is a while loop. Each time around the loop, we first check for a gu1T
event coming from the pygame system. Events occur every time the player moves the mouse or
presses or releases a key. In this case, we are only interested in a ouiT event, which is caused by
someone clicking the window close icon in the top-right corner of the game window. We could chose
not to exit immediately here, but rather prompt the player to see whether they indeed want to exit. The
next line clears the screen by filling it with the color white.

Next comes an assignment in which we set spoon_ x to the value of the x position of the mouse.
Note that although this is a double assignment, we do not care about the y position of the mouse, so
we ignore the second return value by assigning it to a variable called ignore that we then ignore. We
then draw the spoon on the screen and update the display.

Run the program. You should see the spoon following the mouse.

One Raspberry

The next step in building the game is to add a raspberry. Later on we will expand this so that there are
three raspberries falling at a time, but starting with one is easier. The code listing for this can be
found in the file 08 03 rasp game one.py.

Here are the changes from the previous version:

* Add global variables for the position of the raspberry (raspberry x and raspberry y).

* Load and convert the image raspberry.jpg.

 Separate updating the spoon into its own function.



e Add a new function called update raspberry.
» Update the main loop to use the new functions.
You should already be familiar with the first two items in this list, so let’s start with the new
functions:
def update spoon () :
global spoon_x
global spoon vy
spoon X, ignore = pygame.mouse.get pos ()
screen.blit (spoon, (spoon x, spoon Vy))
The  functionupdate spoon just takes the code we had in the main loop in
08 02 rasp game mouse and puts it in a function of its own. This helps to keep the size of the main

loop down so that it is easier to tell what’s going on.
def update_ raspberry () :
global raspberry x
global raspberry vy
raspberry v += 5
if raspberry y > spoon_y:
raspberry y = 0
raspberry X = random.randint (10, screen width)
raspberry x += random.randint (-5, 5)
if raspberry x < 10:
raspberry x = 10

if raspberry x > screen width - 20:
raspberry x = screen_width - 20
screen.blit (raspberry, (raspberry x, raspberry vy))

The function update raspberry changes the values of raspberry x and raspberry vy. It adds 5
to the y position to move the raspberry down the screen and moves the x position by a random amount
between -5 and +5. This makes the raspberries wobble unpredictably during their descent. However,
the raspberries will eventually fall off the bottom of the screen, so once the y position is greater than
the position of the spoon, the function moves them back up to the top and to a new random x position.

There is also a danger that the raspberries may disappear off the left or right side of the screen.
Therefore, two further tests check that the raspberries aren’t too near the edge of the screen, and if
they are then they aren’t allowed to go any further left or right.

Here’s the new main loop that calls these new functions:
while True:

for event in pygame.event.get () :
if event.type == QUIT:
exit ()

screen.fill ( (255, 255, 255))
update raspberry ()
update spoon ()
pygame .display.update ()
Try out 08 03 rasp game one. You will see a basically functional program that looks like the
game is being played. However, nothing happens when you catch a raspberry.
Catch Detection and Scoring
We are now going to add a message area to display the score (that is, the number of raspberries



caught). To do this, we must be able to detect that we have caught a raspberry. The extended program
that does this is in the file 08 04 rasp py game scoringpy.

The main changes for this version are two new functions, check for catch and display:
def check for catch(}:

global score .
if raspberry v == spoon ¥y and raspberry X >= spoon X and

raspberry x < spoon x + 50:
gcore += 1
display("Score: + str(score))

Note that because the condition for the i £ is so long, we use the line-continuation command (\) to
break it into two lines.

The function check for catch adds 1 to the score if the raspberry has fallen as far as the spoon
(raspberry y >=spoon_y) and the x position of the raspberry is between the x (left) position of the
spoon and the x position of the spoon plus 50 (roughly the width of the business end of the spoon).

Regardless of whether the raspberry is caught, the score is displayed using the display function.
The check for catch function is also added into the main loop as one more thing we must do each
time around the loop.

The ‘display’ function is responsible for displaying a message on the screen.
def display (message) :
font = pygame.font.Font (None, 36)
text = font.render (message, 1, (10, 10, 10))
screen.blit (text, (0, 0))
You write text on the screen in pygame by creating a font, in this case, of no specific font family but

of a 36-point size and then create a text object by rendering the contents of the string message onto
the font. The value (10, 10, 10) is the text color. The end result contained in the variable text can
then be blitted onto the screen in the usual way.
Timing
You may have noticed that nothing in this program controls how fast the raspberries fall from the sky.
We are lucky in that they fall at the right sort of speed on a Raspberry Pi. However, if we were to run
this game on a faster computer, they would probably fly past far too fast to catch.

To manage the speed, pygame has a built-in clock that allows us to slow down our main loop by
just the right amount to perform a certain number of refreshes per second. Unfortunately, it can’t do
anything to speed up our main loop. This clock is very easy to use; you simply put the following line

somewhere before the main loop:
clock = pygame.time.Clock()

This creates an instance of the clock. To achieve the necessary slowing of the main loop, put the

following line somewhere in it (usually at the end):
clock.tick(30)
In this case, we use a value of 30, meaning a frame rate of 30 frames per second. You can put a

different value in here, but the human eye (and brain) do not register any improvement in quality
above about 30 frames per second.

Lots of Raspberries

Our program is starting to look a little complex. If we were to add the facility for more than one
raspberry at this stage, it would become even more difficult to see what is going on. We are therefore
going to perform refactoring, which means changing a perfectly good program and altering its
structure without changing what it actually does or without adding any features. We are going to do
this by creating a class called Raspberry to do all the things we need a raspberry to do. This still
works with just one raspberry, but will make working with more raspberries easier later. The code



listing for this stage can be found in the file 08 05 rasp game refactored.py. Here’s the class

definition:
clase Raspberryv:
x =10

y = 0

def init (s=lf):
self.x = random.randint (10, screen width)
self.yv = 0

def update(a=lf):
gelf.yv += &5
if self.y = spoon y:
gelf.v = 0
self.x = random.randint (10, screen width)
gelf.x += random.randint (-5, &)
if self.x <« 10:
gelf.x = 10
if self.x > screen width - 20:
self.x = screen width - 20
screen.blit (raspberry image, (self.x, self.y))

def is caught (self):
return self.y == spoon y and self.x >= spoon x and
self.x < spcon x + 50

The raspberry x and raspberry y variables just become variables of the new Raspberry class.
Also, when an instance of a raspberry is created, its x position will be set randomly. The old
update raspberry function has now become a method on Raspberry called just update. Similarly,
the check for catch function now asks the raspberry if it has been caught.

Having defined a raspberry class, we create an instance of it like this:
r = Raspberry ()

Thus, when we want to check for a catch, the check for catch just asks the raspberry like this:
def check for catch()}:

global score
if r.is caught () :
score += 1 _ )
The call to display the score has also been moved out of the check for catch function and into

the main loop. With everything now working just as it did before, it is time to add more raspberries.

The final version of the game can be found in the file 08 06 rasp game final.py. It is listed here in
full:



#08 06 rasp game final
import pygams

from pygame.locals import *
from sys import exit

import random

gcore = 0

screen width = &00

screen height = 400
spoon x = 300
gpoon_y = screen _height - 100

class Raspberry:
x =0
y =0
dy = 0



def init (self):
self.x = random.randint (10, screen_width)
gelf.y = 0
gelf.dy = random.randint (2, 10)

def update (self):
gelf.y += self . dy
if self.y > spoon_y:
self.y = 0
self.x = random.randint (10, screen width)
gelf.x += random.randint (-5, 5}
if self.x < 10:
gelf.x = 10
if self.x > screen width - 20:
self.x = screen_width - 20
gcreen.blit (raspberry image, (gelf.x, self.y))

def is caught (self) :
return self.y >= spoon_ ¥y and self.x >= spoon_ X

and self.x < spoon_x + 50

clock = pygame.time.Clock ()
rasps = [Raspberry(), Raspberry(), Raspberry()]

pygame. inic ()

screen = pygame.display.set_mode | (screen_width, screen_height))
pyYgame.display.set caption('Raspberry Catching')

spoon = pygame.image.load('spoon.jpg') .convert ()
raspberry image = pygame.image.load('raspberry.ijpg') .convert ()

def update spoon() :
global spoon X
global spoon_y
spoon_ ¥, ignore = pygame.mouse.get pos()
screen.blit (spoon, (spoon X, spoon_¥))

def check_for_ catch():
global score
for r in rasps:
if r.is caught():
score += 1

def display(message):
fent = pygame.font.Font (Hone, 38)
text = font.render (message, 1, (10, 10, 10})

screen.blit(text, (0, 0})
while True:

for event in pygame.event.get():
if event.type == QUIT:
exit ()

screen.£i11( (255, 255, 2558))
for r in rasps:

r.update ()
update spoon()
check for catch()
display("Score: " + str({score))
pygame . display.update ()
clock.tcick (20)



To create multiple raspberries, the single variable r has been replaced by a collection called
rasps.
raeppe = [Raspberry (), Raspberry(), Raspberry()]

This creates three raspberries; we could change it dynamically while the program is running by
adding new raspberries to the list (or for that matter removing some).

We now need to make just a couple other changes to deal with more than one raspberry. First of
all, inthe check for catch function, we now need to loop over all the raspberries and ask each one
whether it has been caught (rather than just the single raspberry). Second, in the main loop, we need
to display all the raspberries by looping through them and asking each to update.

Summary
You can learn plenty more about pygame. The official website at www.pygame.org has many
resources and sample games that you can play with or modify.


http://www.pygame.org

9

Interfacing Hardware

The Raspberry Pi has a double row of pins on one side of it. These pins are called the GPIO
connector (General Purpose Input/Output) and allow you to connect electronic hardware to the Pi as
an alternative to using the USB port.

The maker and education communities have already started producing expansion and prototyping
boards you can attach to your Pi so you can add your own electronics. This includes everything from
simple temperature sensors to relays. You can even convert your Raspberry Pi into a controller for a
robot.

In this chapter, we explore the various ways of connecting the Pi to electronic devices using the
GPIO. We’ll use some of the first products that have become available for this purpose. Because this
1s a fast-moving field, it is fairly certain that new products will have come on the market since this
chapter was written; therefore, check the Internet to see what is current. I have tried to choose a
representative set of different approaches to interfacing hardware. Therefore, even if the exact same
versions are not available, you will at least get a flavor of what is out there and how to use it.

Products to help you attach electronics to your Pi can be categorized as either expansion boards or
prototyping tools. Before we look at each of these items, we will look at exactly what the GPIO
connector provides us.

GPIO Pin Connections

Figure 9-1 shows the connections available on the Raspberry Pi’s GPIO connector. The pins labeled
GPIO can all be used as general-purpose input/output pins. In other words, any one of them can first
be set to either an input or an output. If the pin is set to be an input, you can then test to see whether
the pin is set to a “1” (above about 1.7V) or a “0” (below 1.7V). Note that all the GPIO pins are 3.3V
pins and connecting them to higher voltages than that could damage your Raspberry Pi.

5\ GND : f{F’IG GPIO GPIO GPIO GPIO GPIO GPIO GPIO

\WE{RY{PWM} 2/ ¢ ¥
////ijyj;f;x N
33V~ GPIOO_ GPIO1 GPIO GPIO GPI0O GPI0O GPI0O  GPIO ~ GPIO

(SDA) (SCL) 4 17 21 (PWM) 22  10(MOSI) 9(MISO) 11 (SCKL)

RJ45
Figure 9-1 GPIO pin connections

When set to be an output, the pin can be either OV or 3.3V (logical 0 or 1). Pins can only supply or
sink a small amount of current (assume 5mA to be safe), so they can just light an LED if you use a
high value resistor (say, 1kQ). You will notice that some of the GPIO pins have other letters in
parentheses after their names. Those pins have some special purpose. For example, GPIO 0 and 1

have the extra names of SDA and SCL. These are the clock and data lines, respectively, for a serial



bus type called I2C that is popular for communicating with peripherals such as temperature sensors,
LCD displays, and the like. This I12C bus is used by the Pi Face and Slice of PI/O discussed in the
following sections.

GPIO pins 14 and 15 also double as the Rx and Tx (Receive and Transmit) pins for the Raspberry
Pi’s serial port. Yet another type of serial communication is possible through GPIO 9 to 11 (MISO,
MOSI, and SCLK). This type of serial interface is called SPIL

Finally, GPIO 18 and GPIO 21 are labeled PWM, meaning that they are capable of pulse width
modulation. This technique allows you to control the power to motors, LEDs etc. by varying the width
of pulses generated at a constant rate.

Direct Connection to GPIO Pins

With care, it is possible to attach simple electronics such as LEDs directly to the GPIO pins;
however, only do this if you know what you are doing because you could easily damage your
Raspberry Pi. In fact, this is more or less what we will be doing in the later section “Prototyping
Boards.”

Expansion Boards

Expansion boards usually have screw terminals and a certain amount of electronics already built in.
This makes them very suitable for educational use as well as for those who do not want to get deeply
involved in the electronics side of things. In general, no soldering needs to be done with these kind of
boards. They will usually “buffer” all the connections to the Raspberry Pi, which means the
Raspberry Pi is protected from anything untoward occurring on the expansion board. For example, a
short circuit across an output might damage the expansion board, but no harm will befall your
precious Pi.

The sections that follow detail some of the more popular boards, explain their features, and detail
how you might go about using them. One such board (the RaspiRobotBoard) will be used to create a
simple robot in Chapter 11.

P1 Face

The Pi1 Face, shown in Figure 9-2, is a board intended primarily for educational use. It was been
developed by Manchester University in the UK. As well as providing a useful hardware platform, it
also provides an easy-to-use Python library and integration with the Scratch programming
environment.

Figure 9-2 The Pi Face expansion board
The Pi Face sits on top of the Raspberry Pi and provides convenient screw terminals for
connecting devices to it. It does not use the GPIO pins directly, but rather uses as an MCP23S17 port



expander chip that it communicates with using the 12C serial interface. This provides eight inputs and
eight outputs on the expansion board, but only the two 12C pins on the Raspberry Pi GPIO connector
are used. The outputs are provided with further current amplification using a Darlington driver IC that
can supply up to S00mA for each output—more than enough power to directly drive a relay or a 1W
high-power LED.

Output devices on the board include two relays that can be used to switch high-load currents. Each
relay also has an LED that lights when the relay is activated. There are also two LEDs that can be
controlled independently. Four of the inputs have push switches next to them.

The P1 Face has its own Python module that simplifies the use of the board. The following example
entered into the Python console shows you how to read digital input 2:
>>> 1mport piface.pfio as pfio
sue pEic.dinilk {}
>>> pfio.digital read(2)

0
To turn on digital output 2, you would do the following:

»>> pfio.digital write(2, 1)
The LEDs and relays have their own control functions. The following example turns LED 1 on then

off again and then turns Relay 1 on:
=»> ledl = pfic.LED{l)

>>> ledl.turn on{)

>>> ledl.turn off ()

>>> relay = pfio.Relay (1)
>>> relay.turn on()

The library must be downloaded and installed. For downloads, documentation, and some sample
projects, visit the projects code page at https://github.com/thomasmacpherson/piface. You can also
find more information about the project at http://pi.cs.man.ac.uk/interface.htm.

Slice of PI/O

The Slice of PI/O, shown in Figure 9-3, 1s a small, low-cost board that provides eight buffered inputs
and eight buffered outputs using the same MCP23S17 port expander as the Pi Face. It does not,
however, have the Darlington driver of the Pi Face and, therefore, cannot drive high-power loads.
The maximum load directly from the MCP23S17 is 25mA, which is enough to drive an LED with
suitable series resistor, but not enough to drive a relay directly.


http://github.com/thomasmacpherson/piface
http://pi.cs.man.ac.uk/interface.htm

e Ok @) uuuuuﬂu
A |‘ "“ e

12

bl/ ! :I..B
SF'I
uﬁﬁn SPI_ au

¢ SCLK

ST e TR e R R R R W

Figure 9-3 The Slice of PI/O

The board takes all the I/O pins to edge connectors, and each of the 16 I/O pins can be configured
as either an input or output.

Here’s a list of the key features:

« Sixteen bidirectional buffered I/O connections

* Jumper-selected 3.3V or 5V operation

« Raspberry P1 12C and SPI serial connections broken out (caution: unbuffered)

» Raspberry Pi GPIO pins 0 to 7 broken out (caution: unbuffered)

At the time of writing, the board is not supplied with any supporting Python module; however, this
is likely to change, either through efforts of the supplier or the Raspberry Pi community.
RaspiRobotBoard
I have to declare my personal interest in the RaspiRobotBoard, shown in Figure 9-4, because it is a
board I have designed. The focus of this board 1s firmly on allowing the Raspberry Pi to be used as a
robot controller. For this reason, it has a motor controller that allows you to control the direction of
two motors (usually attached to wheels).



Figure 9-4 The RaspiRobotBoard

Another feature that makes it suitable for use as a robot platform is the voltage regulator that
powers the Raspberry Pi using any source of power between 6V and 9V, such as four AA batteries.
The RaspiRobotBoard also has connectors for two different types of serial port, one of which is
intended to take an adapter board for an ultrasonic range finder module. The board also has a pair of
switch inputs, two LEDs, and another pair of buffered outputs that can be used to drive other LEDs or
low-current loads. This board is used in Chapter 11 to build a small roving robot.
Gertboard
The Gertboard is designed by Gert van Loo of Broadcom and therefore is the most official Raspberry
P1 expansion board (see Figure 9-5).



3

PPTPTETE 0T
S EIERN
Figure 9-5 A4 Gertboard expansion board for the Pi
The Gertboard is really the kitchen sink of expansion boards. Its key features are as follows:
« Strapping area where GPIO pins can be connected to different modules
* ATmega (like the Arduino) microcontroller
» SPI analog-to-digital and digital-to-analog converters
* Motor controller (like the RaspiRobotBoard)

* 500mA open collector outputs (like the Pi Face)
» Twelve LEDs and three push buttons

Prototyping Boards

Unlike expansion boards, prototyping boards mostly require the use of a soldering iron and a certain
amount of electronics expertise. They also connect directly to the Raspberry Pi’s main chip, which
means that if you get it wrong, you could easily damage your Raspberry Pi. These boards are for the
experienced electronics enthusiast—or the very careful or the very reckless (who doesn’t mind the
possibility of killing their Raspberry P1).

One of these prototyping boards, the “Cobbler,” is not actually a board but rather a connector that
allows you to link the GPIO connections to a solderless breadboard where you can add your own
electronics. As a contrast to the expansion board approach, we will explore this method further in the
next chapter using the Cobbler.

Pi Cobbler

The Pi Cobbler from Adafruit (www.adafruit.com/products/914) comes as a kit that must be soldered
together. The soldering is pretty straightforward, and once everything is assembled, you will have a
board with 26 pins coming out of the bottom that can be attached to a solderless breadboard (see



http://www.adafruit.com/products/914

Figure 9-6). On top of the board is a 26-pin socket to which a 26-way ribbon cable lead (also
supplied) can be used to link the Raspberry P1 GPIO connector to the Cobbler.

Figure 9-6 The Adafruit Pi Cobbler

Pi Plate

The Pi  Plate, shown  inFigure 9-7, 1s another product from Adafruit
(https://www.adafruit.com/products/801) . This is a prototyping board that has a large area in the
middle to which you can solder the components for your project. Screw terminals are located all
around the edge of the board so you can attach leads to external components that won’t fit on the
board, such as motors and such. In one corner of the board is an area to which a surface mount IC can
be soldered. The pins next to it “break out” the difficult-to-use pins of the IC.

Figure 9-7 The Adafruit Pi Plate

Humble Pi

The Humble Pi, shown in Figure 9-8, is quite similar to the Pi Plate, but it lacks the surface mount
prototyping area. However, it makes up for this by providing an area where you can add your own
voltage regulator and power socket, making it suitable for powering the P1 at 5V from batteries or an
external power supply. No voltage regulator or associated capacitors are provided, although Ciseco
sells a kit of components for this.


http://www.adafruit.com/products/801

LV RS L D O D
Ly LB | LR RN T
-

LRI SEN] i

olo|
¢

tol

Figure 9-8 The Humble Pi

Arduino and the Pi
Although the Raspberry Pi can be used like a microcontroller to drive motors and such, this is not
really what it was designed for. As such, the GPIO pins cannot supply much in the way of drive
current and are somewhat delicate and intolerant of electrical abuse. This 1s, after all, the motivation
for the expansion boards described in the previous section.

Arduino boards, on the other hand, are much more rugged and designed to be used to control
electronic devices (see Figure 9-9). What is more, they have analog inputs that can measure a voltage
from, say, a temperature sensor.

Figure 9-9 An Arduino board connected to a Raspberry Pi

Arduino boards are designed to allow communication with a host computer using USB, and there is
no reason why this host shouldn’t be a Raspberry Pi. This means that the Arduino takes care of all the
electronics and the Raspberry Pi sends it commands or listens for incoming requests from the
Arduino.

If you have an Arduino, you can try out the following simple example, which allows you to send



messages to the Arduino to blink its build-in LED on and off while at the same time receiving
incoming messages from the Arduino. Once you can do that, it is easy to adapt either the Arduino
sketch or the Python program on the Raspberry Pi to carry out more complex tasks.

This example assumes you are familiar with the Arduino. If you are not, you may want to read some
of my other books on the Arduino, including Programming Arduino: Getting Started with Sketches
and 30 Arduino Projects for the Evil Genius.

Arduino and P1 Talk

To get the Arduino and Pi to talk, we are going to connect them using a USB port on the Raspberry Pi.
Because the Arduino only draws about 50mA and in this case has no external electronics attached to
it, it can be powered by the Pi.

The Arduino Software

All you need to do is load the following Arduino sketch onto the Arduino. You will probably want to
do this with your regular computer, because at the time of writing, only a very old version of the
Arduino software is available for the Raspberry Pi. The following sketch is available in the

downloads package and is called PiTest.ino:
// Pi and Arduino

const int ledPin = 13;

vold setupl)

{

pinMode (ledPin, OUTPUT) ;
Serial .begin (9600) ;

}

void loop ()

{

Serial .println("Hello Pi");
if (Serial.availabkle() )

{
J

delay (1000) ;

J

vold flash(int n)

{

flash(Serial .read() - '0'):

for (int 1 = 0; 1 < nn; 1i++)

{

digitalWrite (ledPin, HIGH) ;
delay (100) ;
digitalWrite(ledPin, LOW) ;
delay (100) ;
}
}

This very simple sketch contains just three functions. The setup function initializes serial



communications and sets pin 13 on the LED to be an output. This pin is attached to the LED built into
the Arduino. The 100p function is invoked repeatedly until the Arduino is powered down. It first
sends the message “Hello Pi” to the Raspberry Pi and then checks to see whether there is any
incoming communication from the Pi. If there 1s (it expects a single digit), it flashes the LED on and
off that many times using the £1ash function.

The Raspberry Pi Software

The Python code to talk to the Arduino is even more simple and can just be typed into the Python
console. But first, you need to install the PySerial package to allow the communication to take place.
This is done in the same way as the other packages we have installed—just fetch the zipped tar file
from http://sourceforge.net/projects/pyserial/files/latest/download?source=files.

Next, extract the directory from the archive by entering the following command:
tar -xzf pyserial-2.5.tar.gz

Now that you have a new folder for the module, just cd into it and then run the instal11 command
(first, though, it is worth checking the instructions to see if anything else needs doing beforehand).

You are now ready to run the module installer itself, as follows:
cd pyserial-2.5
sudo python setup.py install
Once it’s installed, you will be able to import the module from the Python shell. Now switch from

the Linux terminal to a Python console and type the following:
import serial

ser = serial.Serial ('/dev/ttyACMO', 9600)
This opens the USB serial connection with the Arduino at the same baud rate of 9600. Now you

need to start a loop listening for messages from the Arduino:
while 1

ser.readline ()
You will need two hit ENTER twice after you type the second line. Messages should now start to

appear! You can see in the blue writing where the Arduino is talking to the Pi and then some error
trace as you press CTRL-C to interrupt the messages coming from the Arduino.

Now type the following into the Python console:
ser.write('5!')

This should cause the LED to flash five times.
Summary
In this chapter we looked at just some of the wide range of ways of adding electronics to our
Raspberry P1 projects. In the next two chapters, we create projects using two different approaches—
first using the Adafruit Cobbler and breadboard and then using the RaspiRobotBoard as the basis for
a small roving robot.


http://sourceforge.net/projects/pyserial/files/latest/download?source%3Dfiles

10

Prototyping Project (Clock)
In this chapter, we will build what can only be seen as a grossly over-engineered LED digital clock.

We will be using a Raspberry Pi, Adafruit’s Cobbler lead, a breadboard, and a four-digit LED
display (see Figure 10-1).

Figure 10-1 LED clock using the Raspberry Pi

In the first phase of the design, the project will just display the time. However, a second phase
extends the project by adding a push button that, when pressed, switches the display mode between
displaying hours/minutes, seconds, and the date.
What You Need

To build this project, you will need the following parts. Suggested part suppliers are listed, but you
can also find these parts elsewhere on the Internet.




Guide Price

Part Suppliers (in U.S, Dollars)
Raspberry Pi Farnell, RS Components $35
Pi Cobbler Adafruit (Product 914) $8
Adafruit four-digit seven- Adafruit (Product 880) 10
segment [2C display
Solderless breadboard Adafruit (Product 64), Spark- 55

Fun (SKU PRT-00112), Maplin
(AGOYK)

Fun (SKU COM-00097), Maplin
(KR92A)

Assorted jumper wires (male | Adafruit (Product 758), SparkFun $8
to male) or a solid core wire | (SKU PRT-08431), Maplin (F566W)
PCB mount push switch® Adafruit (Product 367), Spark- $2

* Optional. Only required for Phase Tewo.

Hardware Assembly

Both the Pi Cobbler and the display modules from Adafruit come as kits that must be soldered
together before they can be used. Both are fairly easy to solder, and detailed step-by-step instructions
for building them can be found on the Adafruit website. Each module has pins that just push into the

holes on the breadboard.

The display has just four pins (VCC, GND, SDA, and SCL) when it is plugged into the breadboard;

align it so that the VCC pin is onrow 1 of the breadboard.

The Cobbler has 26 pins, but we will only be using a few of them. It should be inserted at the other
end of the breadboard, or at least far enough away so that none of the pins overlap with the same
rows as the display. The Cobbler socket has a cutout on one side to ensure that the ribbon cable can
only be inserted one way. This cutout should be toward the top of the breadboard, as shown in Figure

10-2.

Figure 10-2 Breadboard layout
Underneath the holes of the solderless breadboard are strips of connectors, linking the five holes of

B
o
-
 x
B
=

ﬂl“’ |:= 524  DMC
- e - I

3] n.r 423 Wi@ ;.;'




a particular row together. Note that because the board is on its side, the rows actually run vertically
in Figure 10-2.

Figure 10-2 shows the solderless breadboard with the four pins of the display at one end of the
breadboard and the Cobbler at the other. When you’re following the instructions in this chapter, it
will help if you insert your modules the same way as Figure 10-2 shows.

NOTE It is much easier to attach the jumper wires to the breadboard without the ribbon cable

attached to the Cobbler.
The connections that need to be made are listed here:

Suggested Lead Color From To
Black Cobbler GND Display GND (second pin from left)
Red Cobbler 5V0 Display VCC (leftmost pin)
Orange Cobbler SDAO Display SDA (third pin from left)
Yellow Cobbler SCLO Display SCL (rightmost pin)

The color scheme shown in this table is only a suggestion; however, it is common to use red for a
positive supply and black or blue for the ground connection.

CAUTION In this project, we are connecting a 5V display module to the Raspberry Pi, which
generally uses 3.3V. We can only safely do this because the display module used here only acts
as a “slave” device and hence only listens on the SDA and SCL lines. Other I12C devices may
act as a master device, and if they are 5V, there is a good chance this could damage your Pi.
Therefore, before you connect any I12C device to your Raspberry Pi, make sure you understand
what you are doing.

We can now link the Cobbler to the Raspberry Pi using the ribbon cable supplied with the Cobbler.
This should be done with the Raspberry Pi powered down. The cable will only fit one way into the
Cobbler, but no such protection is provided on the Raspberry Pi. Therefore, make sure the red line on
the cable is to the outside of the Raspberry Pi, as shown in Figure 10-1.

Turn on the Raspberry Pi. If the usual LEDs do not light, turn it off immediately and check all the
wiring.

Software

Everything is connected, and the Raspberry Pi has booted up. However, the display is still blank

because we have not yet written any software to use it. We are going to start with a simple clock that

just displays the Raspberry Pi’s system time. The Raspberry Pi does not have a real-time clock to tell
it the time. However, it will automatically pick up the time from a network time server if it is
connected to the Internet.

The Raspberry Pi displays the time in the bottom-right corner of the screen. If the Pi is not

connected to the Internet, you can set the time manually using the following command:
sudo date -s "Aug 24 12:15"

However, you will have to do this every time you reboot. Therefore, it is far better to have your
Raspberry Pi connected to the Internet.

If you are using the network time, you may find that the minutes are correct but that the hour is
wrong. This probably means that your Raspberry Pi does now know which time zone it is in. This can
be fixed by using the following command, which opens up a window where you can select your

continent and then the city for the time zone you require:
sudo dpkg-reconfigure tzdata

At the time of writing, in order to use the 12C bus that the display uses, the Raspbian Wheezy
distribution requires that you issue a few commands to make the 12C bus accessible to the Python



program we are going to write. It is likely that later releases of Raspbian (and other distributions)
will have the port already configured so that the following commands are not necessary. However,

for the moment, here is what you need to do:
sudo apt-get install python-smbus

sudo modprobe i2c-dev

sudo modprobe i1i2c-bcm2708

NOTE You may find that you have to issue the last two of these commands each time you reboot
the Raspberry Pi.

So now that the Raspberry Pi knows the correct time and the 12C bus is available, we can write a
Python program that sends the time to the display. To help simplify this process, I have produced a
Python library module specifically for this kind of display. It can be downloaded from
http://code.google.com/p/i2¢c7segment/downloads/list.

As with other modules you have installed, you need to fetch the file, extract it into some convenient

location (using tar -xzf), and then issue the following command to install it under Python 2:
sudo python setup.py install

The actual clock program itself is contained in the file bundle that accompanies this book (see

www.raspberrypibook.com); it is called 10 01 clock.py and is listed here:
import i2c7segment as display

import time
disp = display.Adafruit7Segment ()

while True:
h = time.localtime() .tm_hour
m = time.localtime () .tm min
disp.print _int(h * 100 + m)
disp.draw colon(True)
disp.write display ()
time.sleep(0.5)
disp.draw colon(False)
disp.write display ()
time.sleep(0.5)

The program is nice and simple. The loop continues forever, getting the hour and minute and
showing them in the correct places on the display by multiplying the hour by 100 to shift it into the
leftmost digits and then adding the minutes that will appear on the right.

The 12c7segment library does most of the work for us. This library is used by first setting what is
to be displayed using print int or draw colon and then usingwrite display to update what is
displayed.

The colon is made to flash by turning it on, waiting half a second, and then turning it off again.
Access to the I2C port is only available to super-users, so you need to run the command as a super-

user by entering the following:
sudo python 10 01 clock.py

If everything is working okay, your display should show the time.

Phase Two
Having got the basic display working, let’s expand both the hardware and software by adding a button
that changes the mode of the display, cycling between the time in hours and minutes, the seconds, and


http://code.google.com/p/i2c7segment/downloads/list
http://www.raspberrypibook.com

the date. Figure 10-3 shows the breadboard with the switch added as well as two new patch wires.
Note that we are just adding to the layout of the first phase by adding the button; nothing else is
changed.

Figure 10-3 Adding a button to the design

NOTE Shut down and power off your Pi before you start making changes on the breadboard.

The button has four leads and must be placed in the right position; otherwise, the switch will
appear to be closed all the time. The leads should emerge from the sides facing the top and bottom of
Figure 10-3. Don’t worry if you have the switch positioned in the wrong way—it will not damage
anything, but the display will continuously change mode without the button being pressed.

Two new wires are needed to connect the switch. One goes from one lead of the switch (refer to
Figure 10-3) to the GND connection of the display. The other lead goes to the connection labeled #17
on the Cobbler. The effect is that whenever the button on the switch is pressed, the Raspberry Pi’s
GPIO 17 pin will be connected to ground.

You can find the updated software in the file 10 02 fancy clock.py and listed here:



import i2c7segment as display
import time
import RPi.GPIO as io

switch pin = 17

io.setmode (io.BCM)

io.setup(switch pin, io.IN, pull up down=io.PUD _UP)
disp = display.Adafruit7Segment ()

time mode, seconds mode, date mode = range(3)
disp mode = time_mode

def display time():
h = time.localtime() .tm_hour
m = time.localtime() .tm_min
disp.print_int(h * 100 + m)
disp.draw colon(True)
disp.write display()
time.sleep(0.5)
disp.draw _colon(False)
disp.write display()
time.sleep(0.5)



def disply date():
d = time.localtime() .tm mday
m = time.localtime () .tm mon
#disp.print_int(d * 100 + m) # World format
disp.print int{m * 100 + d) # US format
disp.draw_colon (True)
disp.write display ()
time.sleep(0.5)

def display seconds() :
s = time.localtime () .tm_ sec
disp.print gEr{'===="}
disp.print int (s)
disp.draw colon (True)
disp.write display ()
time.sleep(0.5)

while True:

key pressed = not io.input (switch pin)

if key pressed:
disp mode = disp mode + 1
if disp mode > date mode:

disp mode = time mode

if disp mode == time mode:
display time ()

elif disp mode == seconds mode:
display seconds ()

elif disp mode == date mode:
disply date()

The first thing to notice is that because we need access to GPIO pin 17 to see whether the button is
pressed, we need to use the rri.cp10 library. We used this as an example of installing a module
back in Chapter 5. Therefore, if you have not installed rpi .cp10, refer back to Chapter 5 and do so
now.

We set the switch pin to be an input using the following command:
io.setup(switch pin, io.IN, pull up down=io.PUD UP)

This command also turns on an internal pull-up resistor that ensures the input is always at 3.3V
(high) unless the switch is pressed to override it and pull it low.

Most of what was in the loop has been separated into a function called display time. Also, two
new functions have been added: display seconds anddisplay date. These are fairly self-
explanatory.

One point of interest is that display date displays the date in U.S. format. If you want to change
this to the international format, where the day of the month comes before the month, change the line
that starts with disp.print int appropriately (refer to the comments in the code).

To keep track of which mode we are in, we have added some new variables in the following lines:
time mode, seconds mode, date mode = range(3)

disp mode = time mode



The first of these lines gives each of the three variables a different number. The second line sets the
disp mode variable to the value of time mode, which we use later in the main loop.

The main loop has been changed to determine whether the button is pressed. If it is, then 1 is added
to disp _mode to cycle the display mode. If the display mode has reached the end, it is set back to
time mode.

Finally, the i blocks that follow select the appropriate display function, depending on the mode,
and then call it.

Summary
This project’s hardware can quite easily be adapted to other uses. You could, for example, present all
sorts of things on the display by modifying the program. Here are some ideas:

* Your current Internet bandwidth (speed)

* The number of e-mails in your inbox

* A countdown of the days remaining in the year

* The number of visitors to a website

In the next chapter, we build another hardware project—this time a roving robot—using the
Raspberry Pi as its brain.



11

The RaspiRobot
In this chapter, you will learn how to use the Raspberry Pi as the brain for a simple robot rover,
shown in Figure 11-1. The Pi will take commands from a wireless USB keyboard and control the
power to motors attached to a robot chassis kit. The robot will also (optionally) have an ultrasonic
range finder that tells it how far away obstacles are as well as an LCD screen that displays
information from the range finder.

Figure 11-1 The RaspiRobot

Like the project in the previous chapter, this project is split into two phases. In the first phase, we
create a basic rover that you can drive with a wireless keyboard; in the second phase, we add the
screen and range finder.

WARNING If batteries are attached to the RaspiRobotBoard, they will supply power to the
Raspberry Pi. Do not, under any circumstances, power your Raspberry Pi from its power
adaptor and the RaspiRobotBoard at the same time. You can leave the RaspiRobotBoard
attached to your Raspberry Pi, but do not attach the motors or batteries to it.

What You Need
To build this project, you need the following parts. Suggested part suppliers are listed, but you can
find other suppliers on the Internet.



Guide Price (in
Part Suppliers U.S. Dollars)
Raspberry Pi Farnell, RS Components, CPC, £35
Newark
RaspiRobotBoard www.raspirobot.com $TBA
Range finder serial adapter* | www.raspirobot.com $5
Maxbotix LV-EZ1 serial range | SparkFun (SEN-00639), Adafruit $25
finder * (Product 172)
3.5-inch LCD screen * Adafruit (Product 913) 545
Male-to-male RCA adaptor Adafruit (Product 951) $2
for screen *
Magician Chassis SparkFun (ROB-10825) $15
2.lmm power-to-screw Adafruit (Product 369), SparkFun $2
terminal adaptor (male) + (PRT-10288)
Six AA battery holder Adafruit (Product 248), + &5
Newark (63]6606), Maplins (HQO1B)
PP3-style battery clip + RadioShack (270-324), Maplins $2
(NE19V)
Six AA batteries (rechargeable
or alkaline)
Wireless USB keyboard Computer store or supermarket $10
* Phase 2 only.
+ This is a different battery box design than the one | used. It terminates in a 2.1 mm power plug, so
the PP3 battery clip is not required if you use this battery box. If you only intend to build the first
phase, and you are using the Adafruit battery box, you do not need either the 2.1 mm potwer-to-screw
terminal adaptor (male) or the PP3-style battery clip.

Phase 1: A Basic Rover

Figure 11-2 shows the basic rover. The basis for this rover is the Magician Chassis kit. This useful
kit is composed of a plastic chassis, gear motors, wheels, and all the nuts and bolts to assemble the
chassis. It also includes a battery box for four AA batteries, but in this project, that box will be
replaced by one that takes six AA batteries.



Figure 11-2  The basic rover
Hardware Assembly

This project is assembled from a number of different kits of parts. If you search around, you may find
already-assembled options when buying the RaspiRobotBoard and the range finder serial adapter,
which means the entire project can be built without any soldering (or, in fact, any tools more difficult
to use than a screwdriver).

Step 1: Assemble the Chassis

The Magician Chassis comes as a kit of parts that must be assembled. Included in the kit are detailed
assembly instructions. When assembling the chassis, you need to replace the supplied battery box
(four AA cells) with your six-AA-cell version (see Figure 11-3). If your battery box is the kind that
holds two rows of three cells, you will find that the top plate of the Magician Chassis can hold it in
place. In fact, it will be quite a tight fit and spring out a little; therefore, you will not need to fit the
middle strut.

Figure 11-3 Replacing the battery box



If your battery box has the cells all in a single row, you will probably need to use the screws that
came with the Magician Chassis for its battery box to fix your battery holder securely onto the
chassis.

Attach the battery clip to the battery box and the trailing leads from the battery clip to the screw
terminal in order to power plug adapter. Be very careful to get the polarity correct (red to plus)!

Before you attach the top surface of the Magician Chassis, slip a rubber band over the top surface.
This will be used to hold the Raspberry Pi in place (refer to Figure 11-2).

Step 2: Assemble the RaspiRobotBoard

At the time of writing, it was not clear whether the RaspiRobotBoard will be available already
assembled or in kit form only. If it is available in kit form, you need to follow the instructions that
accompany it to build the board. Once assembled, the board should look like the one shown in Figure
11-4.

Figure 11-4 The RaspiRobotBoard

Note that these instructions are for Version 1 of the board. The position of the connectors may
change in later versions. See the book's website (www.raspberrypibook.com) for more information.
All the connections we are interested in are on the right side of Figure 11-4. At the top is the power
socket, and beneath that are the screw terminals for the left and right motors.

Step 3: Install the Software on the Raspberry Pi

To control the robot, we are going to write a program in Python that detects key presses and use them
to control the power to the robot’s motors on the robot. To do this, we will use pygame, which
provides a useful way of finding out whether or not keys are pressed.

It will be much easier to set the program up before we attach the Raspberry Pi to the chassis.
Therefore, attach the RaspiRobotBoard to the Raspberry Pi, but leave the motors and battery
disconnected and power up the Pi1 from your normal USB power supply.

The RaspiRobotBoard has its own Python library, but also relies on some other libraries that must
be installed. First of all, it requires the rpi.cp10 library that you first met in Chapter 5 and then
again in Chapter 10. If you have not already done so, install the rRpi.cP10 library. You will also need

to install the pyserial library. See the instructions for this in the Arduino section toward the end of
Chapter 9.


http://www.raspberrypibook.com

The RaspiRobotBoard library can be installed from the following website:
http://code.google.com/p/raspirobotboard/downloads/list
Installation is the same as for any other Python package. Because we are using Python 2 in this

project, the library should be installed using the command on the following page.
tar -xzf raspirobotboard-1.0.tar.gz

cd raspircbotboard-1.0
sudo python setup.py install

The actual Python program for this version of the robot is contained in the file
11 01 rover basic.py, which must be run as super user. Therefore, just to try things out (still with the
motors disconnected), run the program by changing to the “code” directory and entering the following

in the terminal:
sudo python 11 01 rover basic.py

A blank pygame window should appear and the two LEDs go out. We can test the program without
the motors because the program sets the LEDs as well as controls the motors. Thus, if you press the
UP ARROW key, both LEDs should light once more. Press the SPACEBAR to turn them off again. Then try
the LEFT and RIGHT ARROW keys; an LED should light that corresponds to the key you pressed.

We are not going to have leads trailing from our robot to a monitor and mouse, so we need to
arrange for this program to automatically start when our Raspberry Pi has finished booting up. To do
this, we need to place the file raspirobot basic.desktop (included in the “code” directory) into a
directory named /home/pi/.config/autostart. You can do all this with the File Manager. Just type
/home/pi/.config in the address bar at the top of the screen. Note that directories that start with a dot
are hidden, so you cannot navigate to it in the File Manager simply by clicking.

If there is no directory inside.config called autostart, so create one and copy the file
raspirobot basic.desktop into it. We can make sure our autostart works by rebooting the Pi. If all
goes well, the pygame window will appear automatically.

We will return later to look at the code for this project, but for now, let’s just get everything
working.

Step 4: Connect the Motors

Shut down and disconnect the Raspberry Pi from its power supply. Be sure to put it away so that you
do not accidentally apply both it and the battery connection. Put the batteries into the battery holder
and fix the top plate of the chassis into place. Cover the metal screws with little patches of insulating
tape or Scotch tape to prevent accidental shorts with the Raspberry Pi and then slip the Pi under the
elastic band. Next, attach the motors to the te-rminal block, as shown in Figure 11-5.

Ty !
g = .-;“%‘ i
- I J-.. ’-1-"

e % T—i-wl : e



http://code.google.com/p/raspirobotboard/downloads/list

Figure 11-5 Attaching the motors

Each motor has a red and a black lead. Therefore, find the leads going to the left motor and attach
the black lead to the leftmost terminal in Figure 11-5. Attach the red lead from the same motor to the
second-from-left terminal block. For the other motor, put the red lead in the third-from-left terminal
and the black lead in the remaining screw terminal.

Step 5: Try It Out

That’s it. We are ready to go! Attach the USB dongle from the wireless keyboard to the Pi and then
attach the plug from the battery lead into the power socket on the RaspiRobotBoard. The LEDs on the
Raspberry Pi should flicker as it starts to boot. If this does not happen, immediately disconnect the
battery and check your work.

Initially the LEDs on the RaspiRobotBoard should both be lit, but when the Python program starts
to run, they should both turn off. Wait another second or two to allow the program to start up properly
and then try pressing the ARROW and SPACEBAR keys on your keyboard. Your RaspiRobot should start
to move!

About the Software

The software for the first phase is listed here:
from raspirobotboard import *

import pygame
import sys
from pygame.locals import *



rr = RaspiRobot ()

pygame.init ()

screen = pygame.display.set mode( (640, 480))
pygame.display.set caption('RaspiRcbot')
pygame.mouse.set visible (0)

while True:
for event in pygame.event.get () :

if event.type == QUIT:
sys.exit ()

if event.type == KEYDOWN:
if event.key == K UP:

rr.forward ()
rr.set_ledl (True)
rr.set_led2(True)

elif event.key == DOWN :
rr.set ledl (True)
rr.set led2 (True)
rr.reverse ()

elif event.key == K RIGHT:
rr.set ledl (False)
rr.set led2 (True)
rr.righti)

elif event.key == K LEFT:
rr.set ledl (True)
rr.set_led2(False)
rr.left [’}

elif event.key == K SPACE:
rr.sbop ()
rr.set ledl (False)
rr.set led2(False)

NOTE Ifyou skipped Chapter 8 on pygame, now might be a good time to read through it.

The program starts by importing the library modules it needs. It then creates an instance of the class
RaspiRobot and assigns it to the variable rr. The main loop first checks for a ourT event, and if it
find one it exists the program. The rest of the loop is concerned with checking all of the keys and
issuing the appropriate commands if a key is pressed. For example, if the up ARROW key (k UP) is
pressed, the RaspiRobot is sent the command forward, which sets the motors to both go forward as
well as sets both LEDs on.

Phase 2: Adding a Range Finder and Screen

When you complete Phase 2, your RaspiRobot will look like the one shown earlier in Figure 11-1.
Disconnect the battery from the RaspiRobotBoard so that we can start making the necessary changes
to complete this phase.

Step 1: Assemble the Range Finder Serial Adapter

The serial range finder module, shown in Figure 11-6, outputs an inverted signal; therefore, a tiny



board with a single transistor and resistor on it must be used to invert the signal back to normal. Full
instructions for assembling this little adaptor board can be found on the book’s website
(www.raspberrypibook.com).

Figure 11-6 The range finder serial adapter and range finder module

The range finder module plugs into the top of the adapter, and the bottom of the adapter fits into the
serial socket, as shown in Figure 11-7.

Figure 11-7 Assembling the range finder and adapter

Step 2: Attach the Screen

The LCD screen comes in two parts: the screen itself and the driver board. These are connected
together with a rather delicate ribbon cable. I attached the two together with a cushioned self-
adhesive pad. Be careful where you attach the screen, and treat the display delicately.

The screen comes with power leads (red and black) as well as two RCA plugs. To neaten things
up, I cut off one of the RCA plugs (the one connected to the middle cables in the white connector
plug). Refer to Figure 11-8. If this seems too drastic, an alternative is to fasten it somewhere with a
cable tie so that it’s out of the way.


http://www.raspberrypibook.com

Figure 11-8 Wiring the display

To the remaining RCA plug I attached the male-to-male RCA adapter. The power leads are then
twisted onto the power leads of the same color from the battery clip and inserted into the screw
terminals of the plug adapter. If your battery box is terminated in a plug, you can snip off the plug and
strip the insulation of the wires. These wires can then be used as if they were the leads from the

battery clip. Either way, the project wiring is summarized in Figure 11-9.
Black
Term

F Red
Batlery Box . :
6 x AA Pi RaspiRobotBoard :] Adapter
Motor 1

Screw

Video

Motor 2

LCD
Display

Red
Figure 11-9 Wiring diagram

One consequence of this wiring arrangement is that the display will still be connected to the
battery, even if you unplug the power on the RaspiRobot- Board. For this reason, use the battery clip
on the battery box to turn the robot on and off.
NOTE More adventurous readers might like to add the luxury of an on/off switch.

The screen is attached to the chassis by means of adhesive putty. This is not a good permanent

solution; some kind of plastic bracket might be better.
Step 3: Update the Software



The updated hardware needs an update to the software to accompany it. The program can be found in
the file 11 02 rover plus.py. You also need to arrange for this program to start rather than the
simpler old program. To do this, copy the file raspirobot plus.desktop into the directory
/home/p1/.config/autostart and remove the raspirobot basic.desktop file from that folder; otherwise,
both programs would start.

Note that because in this phase of the project, the Raspberry Pi has a screen and a keyboard (albeit
a very small one), it is possible to make the changes described here, but you’ll be using a tiny screen.
If this proves too difficult, then as before, disconnect the battery, detach the motors, and power the
Raspberry Pi from its USB power supply with its regular monitor, keyboard, and mouse.
Step 4: Run It
That’s it! The project is ready to run. As always, if the LEDs on the Raspberry Pi don’t come on
straight away, disconnect the batteries and look for the problem. The Raspberry Pi is pretty power
hungry for a battery-powered device. The screen also uses quite a lot of power. Therefore, to avoid
too much recharging of batteries, you should disconnect them when not in use.
Revised Software
The new program is bigger than the old one, so it is not listed here in full. You can open it up in IDLE
to take a look. The main differences are, as you would expect, the distance sensing and the display.

The function get range is shown here:
def get range() :

CEY .

dist = rr.get_ range inch{)
except:

dist = 0

return dist . . _
This function is a very thin wrapper around a call to get range inch in the RaspiRobot module.

The exception handling is added because if the range finder does not work for any reason (say, it isn’t
plugged in), exceptions will be raised. This function just intercepts any such exceptions and returns a
distance of 0 if that happens.

The update display function first gets the distance and then displays it along with a graphical
indication of the closeness of any obstacles, as shown in Figure 11-10.



1
Distance: 15 In

Figure 11-10 The RaspiRobot display

The code for this is shown here:
def update distancs():

dist = get_range()
if dist == 0:
return
message = 'Distance: ' + gtri{dist) + ' 1in°’
text surface = font.render (message, True, (127, 127, 127)])
gcreen.fill ( (255, 255, 255))
screen.blit (text _surface, (100, 100))

W = screen.get width() - 20
proximity = ( (100 - dist) / 100.0) * w
if proximity < 0:
proximity = ©
pygame.draw.rect (screen, (0, 255, 0), Rect ({10, 10),(w, 50)))
pygame.draw.rect (screen, (2585, 0, 0), Rect({ (10, 10}, (proximity, S0)))
pPygams.diaplay.update ()
The distance is measured and a message is constructed into a surface that is then blitted onto the

display. The graphical representation is created by drawing a fixed-size green rectangle and then
drawing a red rectangle on top of it whose width depends on the distance sensed by the range finder.

Summary

This project can be treated as the basis for your own robot projects. The RaspiRobotBoard has two

extra outputs that could be used to drive a buzzer or control other electronics. Another interesting way

of extending the project would be to write software that allows the robot to spin on the spot, and use

the range finder to create a sonar-style chart of the room containing the robot. With a Raspberry Pi

camera module and a Wi-Fi dongle, all sorts of other possibilities for tele-presence devices arise!
The final chapter of this book looks at where to go next with your Raspberry Pi and provides some



useful pointers to other Raspberry Pi resources.



12

What Next

The Raspberry Pi is a phenomenally flexible device that you can use in all sorts of situations—as a
desktop computer replacement, a media center, or an embedded computer to be used as a control
system.

This chapter provides some pointers for different ways of using your Raspberry Pi and details
some resources available to you for programming the Raspberry Pi and making use of it in interesting
ways around the home.

Linux Resources

The Raspberry Pi is, of course, one of many computers that runs Linux. You will find useful
information in most books on Linux; in particular, look for books that relate to the distribution you are
using, which for Raspbian will be Debian.

Aside from the File Manager and applications that require further explanation, you’ll want to know
more about using the Terminal and configuring Linux. A useful book in this area is The Linux
Command Line: A Complete Introduction, by William E. Shotts, Jr. Many good resources for
learning more about Linux can be found on the Internet, so let your search engine be your friend.

Python Resources
Python 1s not specific to the Raspberry Pi, and you can find many books and Internet resources
devoted to it. For a gentle introduction to Python, you might want to pick up Python: Visual
QuickStart Guide, by Toby Donaldson. It’s similar to this book in style, but provides a different
perspective. Also, it’s written in a friendly, reassuring manner. If you want something a bit more
meaty, but still essentially a beginner’s text, consider Python Programming: An Introduction to
Computer Science, by John Zelle.
When it comes to learning more about Pygame, you’ll find Beginning Game Development with
Python and Pygame, by Will McGugan, to be quite helpful.
Finally, here are some good web resources for Python you’ll probably want to add to your
browser’s favorites list:
* http://docs.python.org/py3k/ The official Python site, complete with useful tutorials and
reference material.
* www.pythonware.com/library/tkinter/introduction/ A useful reference for Tkinter.
* http://zetcode.com/gui/tkinter/layout/ This tutorial sheds some much needed light on laying
out widgets in Tkinter.
« www.pygame.org The official Pygame site. It contains news, tutorials, reference material, and
sample code.

Raspberry Pi Resources

The official website of the Raspberry Pi Foundation is www.raspberrypi.org. This website contains
a wealth of useful information, and it’s the place to find announcements relating to happenings in the
world of Raspberry Pi.

The forums are particularly useful when you are looking for the answer to some knotty problem.
You can search the forum for information from others who have already tried to do what you are
trying to do, you can post questions, or you can just show off what you’ve done to the community.
When you’re looking to update your Raspberry Pi distribution image, this is probably the best place
to turn. The downloads page lists the distributions currently in vogue.


http://docs.python.org/py3k/
http://www.pythonware.com/library/tkinter/introduction/
http://zetcode.com/gui/tkinter/layout/
http://www.pygame.org
http://www.raspberrypi.org

The Raspberry Pi even has its own online magazine, wittily named The MagPi. This is a free PDF
download (www.themagpi.com) and contains a good mixture of features and “how-to” articles that
will inspire you to do great things with your Pi.

For more information about the hardware side of using the Raspberry Pi, the following links are
useful:

* http://elinux.org/RPi_VerifiedPeripherals A list of peripherals verified as working with the

Raspberry Pi.
* http://elinux.org/RPi_Low-level peripherals A list of peripherals for interfacing with the
GPIO connector.

* www.element14.com/community/docs/DOC-43016/ A datasheet for the Broadcom chip at the

heart of the Raspberry Pi. (This is not for the faint of heart!)

If you are interested in buying hardware add-ons and components for your Raspberry Pi, Adafruit
has a whole section devoted to the Raspberry Pi. SparkFun also sells Raspberry Pi add-on boards
and modules.

Other Programming Languages
In this book, we have looked exclusively at programming the Raspberry Pi in Python, and with some
justification: Python is a popular language that provides a good compromise between ease of use and
power. However, Python is by no means the only choice when it comes to programming the
Raspberry Pi. The Raspbian Wheezy distribution includes several other languages.
Scratch
Scratch 1s a visual programming language developed by MIT. It has become popular in education
circles as a way of encouraging youngsters to learn programming. Scratch includes its own
development environment, like IDLE for Python, but programming is carried out by dragging and
dropping programming structures rather than simply typing text.

Figure 12-1 shows a section of one of the sample programs provided with Scratch for the game
Pong, where a ball is bounced on a paddle.

seitcil o« @D File Edit Share Help

—T Y

v ) steps
T e —

H = positien
-’ ¥ posilan
I deection



http://www.themagpi.com
http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_Low-level_peripherals
http://www.element14.com/community/docs/DOC-43016/

Figure 12-1 Editing a program in Scratch

C

The C programming language is the language used to implement Linux, and the GNU C compiler is
included as part of the Raspbian Wheezy distribution. To try out a little “Hello World™ type of

program in C, use IDLE to create a file with the following contents:
#include<stdio.h>

main()

{
J

Save the file, giving it the name hello.c. Then, from the same directory as that file, type the

following command in the terminal:
gcc hello.c -o hello

This will run the C compiler (gcc), converting hello.c into an executable program called just

hello. You can run it from the command line by typing the following;
./hello

The IDLE editor window and command line are shown in Figure 12-2, where you can also see the
output produced. Notice that the \n characters create blank lines around the message.

printf ("\n\nHello World\n\n");

helle.c - fhomefpifc/hello.c

Eile Edit Fgrmat Bun QOptions Windows Help

bincludec=mtdie. h2
mainm ()

printd ("wn\nHelle Werldyn\inhn®™) ;

. 4
lLn: 5|Col: 16

- pi@raspberrypi: —/c -0 x
Fle Edt Tabs Help

-/c % -
~iC %

~/C $

- $

~/c % gee helle £ -0 hella
/e g 1=

hello. ¢
~/c % . /hells

Hella World

/e 3 ] =
Figure 12-2 Compiling a C program

Applications and Projects

Any new piece of technology such as the Raspberry Pi is bound to attract a community of innovative
enthusiasts determined to find interesting uses for the Raspberry Pi. At the time of writing, a few
interesting projects were in progress, as detailed next.

Media Center (Raspbmc)

Raspbmc 1s a distribution for the Raspberry Pi that turns it into a media center you can use to play
movies and audio stored on USB media attached to the Pi, or you can stream audio and video from
other devices such as iPads that are connected to your home network. Raspbmc is based on the
successful XBMC project, which started life as a project to use Microsoft Xboxes as media centers.



However, it’s available on a wide range of platforms.

With the low price of the Raspberry P1i, it seems likely that a lot of them will find their way into
little boxes next to the TV—especially now that many TVs have a USB port that can supply the Pi
with power.

You can find out more about Raspbmc at www.raspbmc.com/about/, you can learn about the
XBMC project at www.xbmc.org. All the software is, of course, open source.

Home Automation

Many small-scale projects are in progress that use the Raspberry Pi for home automation, or
domotics as it 1s also known. The ease with which sensors and actuators can be attached to it, either
directly or via an Arduino, make the Pi eminently suitable as a control center.

Most approaches have the Raspberry Pi hosting a web server on the local network so that a
browser anywhere on the network can be used to control various functions in the home, such as
turning lights on and off or controlling the thermostat.

Summary
The Raspberry Pi is a very flexible and low-cost device that will assuredly find many ways of being
useful to us. Even as just a simple home computer for web browsing on the TV, it is perfectly
adequate (and much cheaper than most other methods). You’ll probably find yourself buying more
Raspberry Pi units as you start to embed them in projects around your home.

Finally, don’t forget to make use of this book’s website (www.raspberrypibook.com), where you
can find software downloads, ways of contacting the author, as well as errata for the book.


http://www.raspbmc.com/about/
http://www.xbmc.org
http://www.raspberrypibook.com

Index
Symbols
""" (quotes), defining strings in Python
""" (double quotes), defining strings in Python
/ (divide), working with numbers in Python Shell
/ (slash), in directory syntax
\ (backslash), as escape character
\ (line-continuation command), breaking line into two lines
+ (addition) operator, using with lists
= (assignment). See assignment (=)
== (comparison operator), in Python
* (multiply), working with numbers in Python Shell
[] (square brackets), in Python syntax for lists
Numbers
12C bus, making accessible to Python
30 Arduino Projects for the Evil Genius (Monk)
A
a (append) file mode
Abiword word processor
actuators, attaching to Raspberry Pi
Adafruit
parts used in LED digital clock project
Pi Cobbler from
Pi Plate from
addition (+) operator, using with lists
alert dialog
animation, benefits of Pygame in creating
append (a) file mode
applications, installing/uninstalling with apt-get command. See also software
apt-get command, installing/ uninstalling applications
Arduino boards
connecting to Raspberry P1 via USB
overview of
Raspberry Pi software and
software for
arithmetic, typing commands in Python shell
arrays, variable
assignment (=)
of string value
using with lists
of value to variable
audio socket, in tour of Raspberry P1
B
batteries
adding battery box to Magician chassis



caution regarding attaching to Raspberry Pi
Beginning Game Development with Python and Pygame (McGugan)
blit command, for drawing images at coordinates
boot up, Raspberry Pi for first time
breadboard

from Adafruit

attaching jumper wires to
break command, for breaking out of loops
Broadcom chip

datasheet for

System on a Chip from
bumpy case, variable convention
button, adding to LED digital clock
C
C language, included with Raspbian Wheezy distribution
cable connectors, in tour of Raspberry Pi
camel case, variable convention
camera, cable connector for
Canvas interface, Tkinter
case, gathering components for Raspberry Pi setup
cd (change directory) command, for changing current directory
chassis, assembling for robot rover project
Checkbutton widget
classes

creating a Raspberry class

defining

inheritance and

of objects
clock

GPIO pin for

managing speed element of game

software for LED digital clock project
Color Chooser, in GUI
columnconfigure command, in layouts
command line

cd (change directory) command

1s (list) command

overview of

pwd (print working directory) command

sudo (super-user do)
comments, use in Python
comparison operator (==), in Python
connections, GPIO pins
convert method
converters module



coordinates, drawing images at
copytree function, for moving or changing names of files or directories
D
data lines, GPIO pin for
datetime module
def keyword, starting function with
description method, class methods
desktop
booting to
LXDE windowing environment
overview of
dialogs, in GUI
dice simulation, generating random numbers in
dictionaries
functions
overview of
directories
globbing
moving or changing name of
navigating
display
attaching LCD screen to robot rover
gathering components for Raspberry Pi setup
Raspberry Pi video adapters
distros (Linux distributions)
domotics, uses of Raspberry P1 for home automation
Don't Repeat Yourself (DRY) principle, in programming
double quotes ("."""), defining strings in Python
DoubleVar
drawing shapes, with Canvas interface
DRY (Don't Repeat Yourself) principle, in programming
DVI connectors
gathering components for Raspberry Pi setup
Raspberry Pi video adapters
E
educational use, Pi Face expansion board intended for
elif command
else logic, in Python
encapsulation, classes and
equals (=), assigning values to variables
errors, flagging
escape characters, including special characters in strings
Ethernet cable, getting Raspberry Pi online
exceptions
expansion boards



Gertboard expansion board
overview of
Pi Face expansion board
RaspiRobotBoard expansion board
Slice of PI/O expansion board
F
false, logical values in Python
File Browser, creating new files and folders
File Chooser, in GUI
File Explorer, locating files with
File Manager
on Raspberry P1 desktop
viewing available free space
File menu
files
creating
file-system operations on
Internet and
moving or changing name of
overview of
pickling
reading
writing
file-system
floating point numbers
double-precision
working with numbers in Python Shell
folders
creating
moving or changing name of
for in command
for loops, in Python
functions
dictionaries
grouping. See modules lists
numbers
overview of
strings
stubs as stand-in for
type conversion
G
games programming
Hangman game. See Hangman game
Hello World in Pygame
overview of



Pygame library

Raspberry game example. See Raspberry game example
General Purpose Input/Output pins. See GPIO (General Purpose Input/Output) pins
Gertboard expansion board
global variables

use in Hangman game

use in Raspberry game
globbing, for finding out what is in a directory
GNU C compiler, in Raspbian Wheezy distribution
Gnumeric spreadsheet
GPIO (General Purpose Input/ Output) pins

adding button to LED digital clock

connections

expansion boards

Gertboard expansion board

Humble P1 prototyping board

overview of

peripherals that interface with

Pi Cobbler prototyping board

Pi Face expansion board

Pi Plate prototyping board

prototyping boards

RaspiRobotBoard expansion board

Slice of PI/O expansion board

in tour of Raspberry Pi
graphical user interface. See GUI (graphical user interface)
graphics

adding images to games

benefits of Pygame in creating
GUI (graphical user interface)

Checkbutton widget

Color Chooser

dialogs

File Chooser

Hello World in Tkinter

layouts

Listbox widget

menus

overview of

scrollbars

Spinbox widget

temperature converter example

Tkinter

Tkinter Canvas interface

widgets



H
Hangman game
converting to work with files
overview of
hardware
adding range finder to robot rover
Arduino boards
Arduino software and
assembling for LED digital clock project
assembling RaspiRobotBoard kit
assembling robot chassis
attaching LCD screen to robot rover
connecting Arduino boards to Pi via USB
connecting motors to robot rover
expanding LED digital clock project
expansion boards
Gertboard expansion board
GPIO connections
Humble Pi prototyping board
overview of
Pi Cobbler prototyping board
Pi Face expansion board
P1 Plate prototyping board
P1 software and
prototyping boards
RaspiRobotBoard expansion board
Slice of PI/O expansion board
updating software to accommodate hardware added to robot
HDMI (High-Definition Multimedia Interface)
gathering components for Raspberry Pi setup
Raspberry Pi video adapters
in tour of Raspberry Pi
Hello World
inC
in Tkinter
High-Definition Multimedia Interface. See HDMI (High-Definition Multimedia Interface)
home automation, uses of Raspberry Pi
HTML (Hypertext Markup Language)
HTTP (Hypertext Transfer Protocol)
Humble P1 prototyping board
I
IDLE program
accessing
creating new file
editing in Python



running hangman game in
running new programs
i f command
images
adding to games
converting and using in Raspberry game
immutability, of tuples, strings, and numbers
importing, creating pygame and
inheritance
init method
input function
input/output (I/0O). See GPIO (General Purpose Input/Output) pins
insert command
instances, class
integers, working with numbers in Python Shell
Internet
connecting Raspberry Pi to
resources for Raspberry Pi
web services in Python
I/O (input/output). See GPIO (General Purpose Input/Output) pins
J
jumper wires, attaching to breadboard
K
keyboards
controlling game play with
gathering components for Raspberry Pi setup
keys, to dictionary values
L
layouts, in GUI
LCD screen
attaching to robot rover
cable connector for
LED digital clock. See prototyping project (LED digital clock)
LEDs
on Gertboard expansion board
on Pi Face expansion board
on RaspiRobotBoard expansion board
on Slice of Pi expansion board
len
using with lists
using with strings
libraries
installing for RaspiRobot expansion board
Pygame
standard library of modules



line-continuation command (\), breaking line into two lines
The Linux Command Line: A Complete Introduction (Shotts)
Linux OS

distributions (distros)

Raspberry Pi running

resources for
Listbox widget
lists

functions

overview of
logical values, in Python
looping

for loops

while loops
1s (list) command
LXDE windowing environment
LXTerminal
M
Magician Chassis kit, as basis for robot rover
The MagPi magazine
math module
media center, turning Raspberry Pi into
menus, in GUI
methods, class
micro USB socket, in tour of Raspberry P1
microcontrollers

Arduino boards as

on Gertboard expansion board
Midori web browser, connecting to Internet via
Mobel B, comparing Raspberry Pi models
modal dialogs
Model A, comparing Raspberry P1 models
modules

converting file into

installing new

object orientation compared with

overview of

standard library of

using
monitors. See display
motor controller

Arduino boards as

in Gertboard expansion board

in RaspiRobotBoard
motors



caution regarding attaching to Raspberry Pi
connecting to robot rover
mouse
controlling game play with
gathering components for Raspberry Pi setup
tracking movement in Raspberry game
multiple assignment
N
networking, connecting Raspberry Pi to Internet
numbers
functions
in Python
Q)
object orientation
open source, Linux OS as
output. See GPIO (General Purpose Input/Output) pins
P
packages, installing/uninstalling. See also software
parameters, parentheses in syntax of
passwords, sudo (super-user do) and
peripherals
GPIO pin for
verified for use with Raspberry Pi
Pi Cobbler prototyping board
assembling hardware for LED digital clock
overview of
use in LED digital clock project
Pi Face expansion board
Pi Plate prototyping board
pickle module
pickling files
pop command, removing items from lists
power supplies
gathering components for Raspberry Pi setup
in tour of Raspberry Pi
print command
Programming Arduino: Getting Started with Sketches (Monk)
programming languages, included with Raspbian Wheezy distribution
programs. See software
prototyping boards
Humble Pi1 prototyping board
overview of
Pi Cobbler prototyping board
Pi Plate prototyping board
prototyping project (LED digital clock)



assembling hardware for
creating software for
expanding hardware and software capabilities
overview of
parts needed for
pulse with modulation, GPIO pin for
pwd (print working directory) command, for showing current directory
Pygame
Hello World application in
installing pygame module
library
Raspberry game example. See Raspberry game example
resources for
PySerial package, Python code talking to Arduino and
Python basics
comparison operators
editor for
elselo gic and
generating random numbers in dice simulation
logical values
for loops
overview of
Python Shell
regular expressions in
resources for

variables

versions of Python

while loops

working with numbers
Python Programming: An Introduction to Computer Science (Zelle)
Python Shell

typing commands in

working with numbers
Python: Visual QuickStart Guide (Donaldson)
Q
quotes (.""), defining strings in Python
R

r (read) file mode
r+ (read and write) file mode
radio buttons, in layouts
randint function
generating random numbers in
in random module
random module
random numbers, generating in dice simulation



range command
range finder, adding to robot rover
Rasbme, for media center
Raspberry game example
adding raspberries to
catching raspberries and displaying game score
creating a Raspberry class and refactoring
managing speed element of
overview of
tracking movement of mouse in
Raspberry Pi foundation
overview of
website
Raspberry P1i, introduction
booting up for first time
components needed for setting up
resources for
setting up
tour of
what it is
what you can do with it
Raspbian Wheezy
browsing packages available for
Linux distributions with
making 12C bus accessible to Python
programming languages included with
Python versions in
recommended Linux distribution for Raspberry Pi
sparseness of
RaspiRobotBoard expansion board
assembling kit for robot rover project
installing library for
overview of
raw_input function, in Python
RCA video connector
on LCD screen
in tour of Raspberry Pi
read (r) file mode
read and write (r+) file mode
receive (Rx), GPIO pin for
refactoring, Raspberry game example
regular expressions, in Python
resources
for Linux OS
for Python



for Raspberry Pi
return values

functions and

multiple
RGB color
ribbon cable, attaching Pi Cobbler to Raspberry Pi
RJ-45 connectors, connecting Raspberry Pi to Internet
rmtree function, for removing directories
robot rover project

adding range finder

assembling chassis for

assembling RaspiRobotBoard kit

attaching LCD screen to

connecting motors to

installing software for

overview of

parts needed for

testing

updating software to accommodate added hardware
robots, using RaspiRobotBoard as controller

root directories, navigating
root Menu
rowconfigure command, in layouts

Run Module command, running new programs
S
scoring functionality, adding to games
Scratch programming language
languages included with Raspbian Wheezy distribution
Pi Face expansion board integrated with
scrollbars
in GUI
Text widget with
SD card slot, in tour of Raspberry Pi
SD cards
configuring on boot up
gathering components for Raspberry Pi setup
replacing hard drive in Raspberry Pi
selectmode property, Listbox widget
Sensors
Arduino boards and
communicating with
ease of attaching to Raspberry Pi
expansion boards and prototyping boards and
serial adapter, for range finder
serial communication, GPIO pin for



serial interface (MCP23S17)
Pi Face expansion board connected via
Slice of Pi expansion board connected via
shutil (shell utility) package, file system functions in
slash (/), in directory syntax
Slice of PI/O expansion board
software
adding for LED digital clock project
Arduino software
expanding LED digital clock project
installing for robot rover project
Raspberry Pi software
updating robot software to accommodate added hardware
soldering
Adafruit modules
prototyping boards requiring
sort, using with lists
speed (or timing), managing speed element of game
Spinbox widget
spreadsheet, Gnumeric
square brackets ([]), in Python syntax for lists
standard library, of modules
sticky attributes, use in layouts
string module
strings
functions
overview of
StringVar
stubs, stand-ins for functions
sudo (super-user do)
super-user do (sudo)
System on a Chip, from Broadcom
T
temperature converter example
Text widget, with scrollbars
timing (speed), managing speed element of game
Tk GUI system
Tkinter
Canvas interface
Checkbutton widget
Color Chooser
creating GUI with
dialogs
File Chooser
Hello World in



layouts in
Listbox widget
menus
resources for
scrollbars in
Spinbox widget
temperature converter example
tkinter module
transmit (Tx), GPIO pin for
true, logical values in Python
try command, file-reading code in
tuples
TV, using as monitor
type conversion functions

U

urllib.request module

USB
connecting Arduino boards to Pi via
for keyboard and mouse
in tour of Raspberry Pi
for Wi-Fi

USB hub

\%

values
assigning to strings
assigning to variables
keys to dictionary values
logical values in Python

van Loo, Gert

variables
assignment of value to
global
lists or arrays
in Python

Raspberry class
saving contents to a file (pickling)
viewing variable content
voltage, GPIO pins rated at 3.3V
voltage regulators
on Humble Pi prototyping board
on RaspiRobotBoard expansion board
W
w (write) file mode
web resources, for Python
web scraping



web services, in Python
while loops
in Python
use in Raspberry game
widgets
Checkbutton widget
Listbox widget
overview of
Spinbox widget
Wi-Fi, USB wireless adapter for
windows, resizing
word processors
write (w) file mode
X
XBMC project



	Cover
	Programming the Raspberry Pi™

	About the Author
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	1: Introduction
	What Is the Raspberry Pi?
	What Can You Do with a Raspberry Pi?
	A Tour of the Raspberry Pi
	Setting Up Your Raspberry Pi
	Buying What You Need
	Connecting Everything Together
	Booting Up
	Summary
	2: Getting Started
	Linux
	The Desktop
	The Internet
	The Command Line
	Navigating with the Terminal
	sudo
	Applications
	Internet Resources
	Summary
	3: Python Basics
	IDLE
	Python Versions
	Python Shell
	Editor
	Numbers
	Variables
	For Loops
	Simulating Dice
	If
	Comparisons
	Being Logical
	Else
	While
	Summary
	4: Strings, Lists, and Dictionaries
	String Theory
	Lists
	Functions
	Hangman
	Dictionaries
	Tuples
	Multiple Assignment
	Multiple Return Values
	Exceptions
	Summary of Functions
	Numbers
	Strings
	Lists
	Dictionaries
	Type Conversions
	Summary
	5: Modules, Classes, and Methods
	Modules
	Using Modules
	Useful Python Libraries
	Installing New Modules
	Object Orientation
	Defining Classes
	Inheritance
	Summary
	6: Files and the Internet
	Files
	Reading Files
	Reading Big Files
	Writing Files
	The File System
	Pickling
	Internet
	Summary
	7: Graphical User Interfaces
	Tkinter
	Hello World
	Temperature Converter
	Other GUI Widgets
	Checkbutton
	Listbox
	Spinbox
	Layouts
	Scrollbar
	Dialogs
	Color Chooser
	File Chooser
	Menus
	The Canvas
	Summary
	8: Games Programming
	What Is Pygame?
	Hello Pygame
	A Raspberry Game
	Following the Mouse
	One Raspberry
	Catch Detection and Scoring
	Timing
	Lots of Raspberries
	Summary
	9: Interfacing Hardware
	GPIO Pin Connections
	Direct Connection to GPIO Pins
	Expansion Boards
	Pi Face
	Slice of PI/O
	RaspiRobotBoard
	Gertboard
	Prototyping Boards
	Pi Cobbler
	Pi Plate
	Humble Pi
	Arduino and the Pi
	Arduino and Pi Talk
	Summary
	10: Prototyping Project (Clock)
	What You Need
	Hardware Assembly
	Software
	Phase Two
	Summary
	11: The RaspiRobot
	What You Need
	Phase 1: A Basic Rover
	Hardware Assembly
	About the Software
	Phase 2: Adding a Range Finder and Screen
	Step 1: Assemble the Range Finder Serial Adapter
	Step 2: Attach the Screen
	Step 3: Update the Software
	Step 4: Run It
	Revised Software
	Summary
	12 What Next
	Linux Resources
	Python Resources
	Raspberry Pi Resources
	Other Programming Languages
	Scratch
	C
	Applications and Projects
	Media Center (Rasbmc)
	Home Automation
	Summary
	Index

