
Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 1

PROGRAMMING THE WEB

Subject Code: 10CS73 I.A. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100

PART - A
UNIT – 1 6 Hours
Fundamentals of Web, XHTML – 1: Internet, WWW, Web Browsers and Web Servers,
URLs, MIME, HTTP, Security, The Web Programmers Toolbox.
XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links.

UNIT – 2 7 Hours
XHTML – 2, CSS: XHTML (continued): Lists, Tables, Forms, Frames CSS:
Introduction, Levels of style sheets, Style specification formats, Selector forms, Property
value forms, Font properties, List properties, Color, Alignment of text, The box model,
Background images, The and <div> tags, Conflict resolution.

UNIT – 3 6 Hours
Javascript: Overview of Javascript, Object orientation and Javascript, Syntactic
characteristics, Primitives, operations, and expressions, Screen output and keyboard
input, Control statements, Object creation and modification, Arrays, Functions,
Constructors, Pattern matching using regular expressions, Errors in scripts, Examples.

UNIT – 4 7 Hours
Javascript and HTML Documents, Dynamic Documents with Javascript: The Javascript
execution environment, The Document Object Model, Element access in Javascript,
Events and event handling, Handling events from the Body elements, Button elements,
Text box and Password elements, The DOM 2 event model, The navigator object, DOM
tree traversal and modification. Introduction to dynamic documents, Positioning
elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic
content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow
movement of elements, Dragging and dropping elements.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 2

PART - B

UNIT – 5 6 Hours
XML: Introduction, Syntax, Document structure, Document type definitions,
Namespaces, XML schemas, Displaying raw XML documents, Displaying XML
documents with CSS, XSLT style sheets, XML processors, Web services.

UNIT – 6 7 Hours
Perl, CGI Programming: Origins and uses of Perl, Scalars and their operations,
Assignment statements and simple input and output, Control statements, Fundamentals of
arrays, Hashes, References, Functions, Pattern matching, File input and output;
Examples.
The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A
survey example; Cookies. Database access with Perl and MySQL

UNIT – 7 6 Hours
PHP: Origins and uses of PHP, Overview of PHP, General syntactic characteristics,
Primitives, operations and expressions, Output, Control statements, Arrays, Functions,
Pattern matching, Form handling, Files, Cookies, Session tracking, Database access with
PHP and MySQL.

UNIT – 8 7 Hours
Ruby, Rails: Origins and uses of Ruby, Scalar types and their operations, Simple input
and output, Control statements, Arrays, Hashes, Methods, Classes, Code blocks and
iterators, Pattern matching.
Overview of Rails, Document requests, Processing forms, Rails applications with
Databases, Layouts.

Text Books:
1. Robert W. Sebesta: Programming the World Wide Web, 4 Edition, Pearson
Education, 2008. (Listed topics only from Chapters 1 to 9, 11 to 15)

Reference Books:
1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program,
4th Edition, Pearson Education, 2004.
2. Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley
India, 2007.
3. Xue Bai et al: The web Warrior Guide to Web Programming, Cengage Learning, 2003.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 3

INDEX SHEET

PART A : Page no.

UNIT 1: FUNDAMENTALS OF WEB, XHTML – 1: 4 - 21

UNIT 2: XHTML – 2, CSS: XHTML (CONTINUED): 22 – 43

UNIT 3: JAVASCRIPT: 44 – 62

UNIT 4: JAVASCRIPT AND HTML DOCUMENTS, 63 – 91

PART – B Page no.

UNIT 5: XML: 92 – 110

UNIT 6: PERL, CGI PROGRAMMING: 111 – 156

UNIT 7: PHP:

UNIT 8: RUBY, RAILS:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 4

UNIT - 1
Syllabus: UNIT - 1 Fundamentals of Web, XHTML – 1

Internet, WWW, Web Browsers and Web Servers; URLs;
MIME;
HTTP; Security; The Web Programmers Toolbox.
XHTML: Origins and evolution of HTML and XHTML
Basic syntax
Standard XHTML document structure;
Basic text markup. Images, Hypertext Links.

Unit1 Fundamentals

1.1 A Brief Intro to the Internet
 Internet History
 Internet Protocols

Internet History
1.1.1 Origins
In the 1960s the U.S Department of Defense (DoD) became interested in
developing a new large-scale computer network.

The purposes of this network were communications, program
sharing and remote computer access. One fundamental requirement was
that the network be sufficiently Robust so that even if some network nodes
were lost due to damage or some more reason the network could continue
to function.

The DoD’s Advanced Research Projects Agency (ARPA) funded the
construction of the first such network, and the network the first such
network, and the network was named as ARPAnet in 1969.

The primary use of ARPAnet was simple text-based
communications through e-mail.

A number of other networks were developed during the late 1970’s
and early 1980’s with BITNET and CSNETT among them.

BITNET, which is an acronym for Because It’s Time Network,
developed at City University of NewYork. It was built initially to provide
electronic mail and file transfers CSNET, which is an acronym for
Computer Science Network, connected the university of Delware, Purdue

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 5

University, RAND corporation and many more universities with initial
purpose was to provide Electronic mail.

For the variety of reasons, neither BITNET not CSNET became a
dominant national network.

A new national network, NSFnet was created in 1986. It was funded
by National Science Foundation (NSF). NSFnet initially connected NSF
supercomputer centers.

By 1990, NSFnet had replaced ARPAnet for most nonmilitary uses.
By 1992 NSFnet connected more than 1 million computers around the
world.

In 1995 a small part of NSFnet returned to being a research network.
The rest is known as the Internet.
As a Summary:

• ARPAnet - late 1960s and early 1970s
• Network reliability
• For ARPA-funded research organizations

• BITnet, CSnet - late 1970s & early 1980s
• email and file transfer for other institutions

• NSFnet - 1986
• Originally for non-DOD funded places
• Initially connected five supercomputer centers
• By 1990, it had replaced ARPAnet for non-military uses
• Soon became the network for all (by the early 1990s)

• NSFnet eventually became known as the Internet
1.1.2 What the Internet is:

• Internet is a huge collection of computers connected in a
communications network.

• It is a network of network rather than a network of computers.
• Using Internet many people can share resources and can communicate

with each other.
• To have Internet service your computer must be connected to the

Internet Service Providers (ISP) through cables modem, phone-line
modem or DSL.

• The Internet employs a set of standardized protocols which allow for the
sharing of resources. These standars are known by the Internet Protocol
Suite.

• At the lowest level, since 1982, all connections use TCP/IP
1.1.3 Internet Protocols (IP) Addresses

 Internet Protocol (IP) Addresses

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 6

 Every node has a unique numeric address
 Form: 32-bit binary number

 IP address is divided into 2 main part:
 Network number and
 Host number

 IP addresses usually are written as four 8-bit numbers separated by dots
NETWORK NUMBER HOST NUMBER

 Organizations are assigned groups of IPs for their computers
 The are 5 classes of IP address

Sl.no. IP address Class Format Pupose
1. Class A N.H.H.H Few large

organization use this
class addressing

2. Class B N.N.H.H Medium size
organizations use
this addressing

3. Class C N.N.N.H Relatively small
organizations use
this class

Here N stands for Network number and H stands for Host number. For example, a
small organization may be assigned 256 IP addresses, such as 191.28.121.0 to
191.28.121.255
 Problem: By the mid-1980s, several different protocols had been invented and

were being used on the Internet, all with different user interfaces (Telnet, FTP,
Usenet, mailto
1.1.4 Domain names
 Form: host-name.domain-names
 First domain is the smallest; last is the largest
 Last domain specifies the type of organization
 Fully qualified domain name - the host name and all of the domain names
 DNS servers - convert fully qualified domain names to IPs
 Few domains are:

o Edu –Extension for Educational institutions
o Com – Specifies a Company
o Gov – Specifies government
o Org – Other kind of organization

 Even Domain specifies the country name
o in – India
o pk – Pakistan

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 7

o au – Australia
o us – United states

Domain Name Conversion

IP addresses are the address used internally by the Internet, the fully qualified domain
name of the destination for a message, which is given browser, must be converted to an
IP address before the message can be transmitted on the internet to the destination. These
conversions are done by system software called Name Servers.

Name Servers server a collection of machines on the Internet and are operated by
organizations that are responsible for the part of the Internet to which those machines are
connected.

All documents requested from the browsers are routed to the nearest name server.
If the name server can convert the fully qualified domain name to an IP address. If it
cannot , the name server sends the fully qualified domain name to another name server
for conversion.

The figure 1 shows how fully qualified domain names requested by a browser are
translated into IPs before they are routed to the appropriate web server.

One way to determine the IP address of the website by using telnet.
If we want to know the IP address of www. Google.co.in, go to Dos prompt and

type telnet www.google.co.in
PROTOCOLS

Internet

Name
Server

Internet Web
Server

Domain Name

Domain Name

IP IP

Client System

Fig. Domain Name
Conversion

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 8

By the mid – 198s, a collection of different protocols that run on top of TCP/IP had been
developed to support a variety of Internet users. Among those the most common were
telnet, ftp, usenet, mailto
Uses:
 telnet – which was developed to allow a user on one computer on the Internet to

log on to and use another computer on the Internet.[Remote Login]
 ftp[file transfer protocol] - which was developed to transfer file among computers

on the Internet.
 usenet – Which was developed to serve as an electronic bulletin board.
 mailto – which was developed to allow messages to be sent from the user of one

computer on the Internet to other users on other computer on the Internet.

Client and Server
 Clients and Servers are programs that communicate with each other over the

Internet
 A Server runs continuously, waiting to be contacted by a Client

 Each Server provides certain services
 Services include providing web pages

 A Client will send a message to a Server requesting the service provided by that
server
 The client will usually provide some information, parameters, with the

request
1.2 The World-Wide Web
 A possible solution to the proliferation of different protocols being used on the

Internet
1.2.1 Origins

 Tim Berners-Lee at CERN proposed the Web in 1989
 Purpose: to allow scientists to have access to many databases of

scientific work through their own computers
 Document form: hypertext
 Pages? Documents? Resources?

 We’ll call them documents
 Hypermedia – more than just text – images, sound, etc.

1.2.2 Web or Internet?
 The Web uses one of the protocols, http, that runs on the Internet--there

are several others (telnet, mailto, etc.)
 The Internet is a massive network of networks, a networking infrastructure. It

connects millions of computers together globally, forming a network in which any
computer can communicate with any other computer as long as they are both

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 9

connected to the Internet. Information that travels over the Internet does so via a
variety of languages known as protocols.

 The World Wide Web, or simply Web, is a way of accessing information over the
medium of the Internet. The Web uses the HTTP protocol The Web also utilizes
browsers, such as Internet Explorer or Firefox, to access Web documents called
Web pages that are linked to each other via hyperlinks. Web documents also
contain graphics, sounds, text and video.

 The Internet is the large container, and the Web is a part within the container.
 But to be technically precise, the Net is the restaurant, and the Web is the most

popular dish on the menu.
 Browsers are used to connect to the www part of the internet.

Here is a conceptual diagram of the Internet and how it contains many forms of online
communications

The Internet and the Web work together, but they are not the same thing. The Internet
provides the underlying structure, and the Web utilizes that structure to offer content,
documents, multimedia, etc.
The Internet is at its most basic definition an electronic communications network. It is the
structure on which the World Wide Web is based.
1.3 Web Browsers
 Browsers are clients - always initiate, servers react (although sometimes servers

require responses)
 Mosaic - NCSA (Univ. of Illinois), in early 1993

 First to use a GUI, led to explosion of Web use
 Initially for X-Windows, under UNIX, but was ported to other platforms

by late 1993
 Most requests are for existing documents, using HyperText Transfer Protocol

(HTTP)
 But some requests are for program execution, with the output being

returned as a document

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 10

1.4 Web Servers
 Provide responses to browser requests, either existing documents or dynamically

built documents
 All communications between browsers and servers use Hypertext Transfer

Protocol (HTTP)
 Apache, Microsoft internet information server (IIS)

1.4.1 Web Server Operation
• Web servers run as background processes in the operating system

– Monitor a communications port on the host, accepting HTTP messages
when they appear

• All current Web servers came from either
1. The original from CERN
2. The second one, from NCSA

1.4.2 Web Server Operation Details
• Web servers have two main directories:

1. Document root (servable documents)
2. Server root (server system software)

• Document root is accessed indirectly by clients
– Its actual location is set by the server configuration file
– Requests are mapped to the actual location
– Path /admin/web/topdocs/xyz.html

• Server root – stores server and its support software
• Virtual document trees : many servers allow part of the servable document

collection to be stored outside the directory of document root. The secondary
areas from which document can be served are called virtual document trees.

• Proxy servers : Some servers can serve documents that are in the document root
of other machines on the web and those servers are called proxy servers.

Difference between apache and IIS
Apache Web Server IIS web Server

1. It is an open source
product.

2. Apache web server
is useful on both
UNIX based
systems and on
windows platform.

3. The apache web
server can be

1. It is a vendorspecific product and
can be used on windows only.

2. IIS web server is used on
windows platform.

3. The IIS server can be controlled
by modifying the window based
management programs called IIS
span-in.
We can access 115 span-in by

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 11

controlled by
editing the
configuration file
http.conf

going to control panel
Administrative tools IIS
admin

1.5 URLs (uniform resource locators)
1.5.1 General form:
scheme: object-address

 The scheme is often a communications protocol, such as telnet or ftp
 For the http protocol, the object-address is: fully qualified domain name/doc path
 For the file protocol, only the doc path is needed
 Host name may include a port number
 URLs cannot include spaces or any of a collection of other special characters

(semicolons, colons, ...)
 The doc path may be abbreviated as a partial path

 The rest is furnished by the server configuration
 If the doc path ends with a slash, it means it is a directory

1.6 Multipurpose Internet Mail Extensions (MIME)
 Originally developed for email
 Used to specify the form of a file returned by the server
 Type specifications

 Form:
type/subtype

 Examples: text/plain, text/html, image/gif, image/jpeg, video/mpeg,
video/rm, video/quicktime

Browser gets the type explicitly from the server
1.7 The HyperText Transfer Protocol
 The protocol used by ALL Web communications
 Current version of HTTP is 1.1
 Consists of 2 phases request phase

 response phase
http communication[request or response] between a browser and a web server consists of
2 parts header-consists information about communication and

 body – consists data of communication
1.7.1 Request Phase

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 12

 Form:
1. HTTP method domain part of URL HTTP ver.
2. Header fields
3. blank line semantics
4. Message body
1.7 The HyperText Transfer Protocol: Methods
 GET - Fetch a document
 POST - Execute the document, using the data in body
 HEAD - Fetch just the header of the document
 PUT - Store a new document on the server
 DELETE - Remove a document from the server

 An example of the first line of a request:
GET /degrees.html HTTP/1.1

 Format of second line header field (optional)
 Field name followed by a colon and the value of the field.

HTTP Headers
 Four categories of header fields:

General, request, response, & entity
 Common request fields:

Accept: text/plain
Accept: text/*
If-Modified_since: date
 Common response fields:

Content-length: 488
Content-type: text/html

- Can communicate with HTTP without a browser
 telnet blanca.uccs.edu http

 Creates connection to http port on …….. server
http command eg:
GET /respond.html HTTP/1.1
Host: blanca.uccs.edu
1.7.2 Response phase
 Form:

1. Status line
2. Response header fields
3. blank line
4. Response body
 Status line format:

HTTP version status code explanation
 Example: HTTP/1.1 200 OK

(Current version is 1.1)

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 13

 Status code is a three-digit number; first digit specifies the general status
1 => Informational
2 => Success
3 => Redirection
4 => Client error
5 => Server error
 The header field, Content-type, is required

HTTP Response Example
HTTP/1.1 200 OK
Date: Tues, 18 May 2004 16:45:13 GMT
Server: Apache (Red-Hat/Linux)
Last-modified: Tues, 18 May 2004 16:38:38 GMT
Etag: "841fb-4b-3d1a0179"
Accept-ranges: bytes
Content-length: 364
Connection: close
Content-type: text/html, charset=ISO-8859-1
• Both request headers and response headers must be followed by a blank line
1.8 Note on security?

1.9 The Web Programmer’s Toolbox
 Document languages and programming languages that are the building blocks of

the web and web programming
 XHTML
 Plug-ins
 Filters
 XML
 Javascript
 Java, Perl, Ruby, PHP

1.9.1 XHTML
 To describe the general form and layout of documents
 An XHTML document is a mix of content and controls

 Controls are tags and their attributes
 Tags often delimit content and specify something about how the

content should be arranged in the document
 Attributes provide additional information about the content of a tag

1.9.2 Creating XHTML documents
 XHTML editors - make document creation easier

 Shortcuts to typing tag names, spell-checker,
 WYSIWYG XHTML editors

 Need not know XHTML to create XHTML documents
1.9.3 Plugins and Filters

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 14

 Plug ins
 Integrated into tools like word processors, effectively converting them to

WYSIWYG XHTML editors
 Filters

 Convert documents in other formats to XHTML
Plugins and Filters: Advantages and Disadvantages
 Advantages of both filters and plug-ins:

 Existing documents produced with other tools can be converted to
XHTML documents

 Use a tool you already know to produce XHTML
 Disadvantages of both filters and plug-ins:

 XHTML output of both is not perfect - must be fine tuned
 XHTML may be non-standard
 You have two versions of the document, which are difficult to synchronize

1.9.4 XML
 A meta-markup language
 Used to create a new markup language for a particular purpose or area
 Because the tags are designed for a specific area, they can be meaningful
 No presentation details
 A simple and universal way of representing data of any textual kind

1.9.5 JavaScript
 A client-side HTML-embedded scripting language
 Only related to Java through syntax
 Dynamically typed and not object-oriented
 Provides a way to access elements of HTML documents and dynamically change

them
1.9.6 Java
 General purpose object-oriented programming language
 Based on C++, but simpler and safer
 Our focus is on applets, servlets, and JSP

1.9.7 Perl
 Provides server-side computation for HTML documents, through CGI
 Perl is good for CGI programming because:

 Direct access to operating systems functions
 Powerful character string pattern-matching operations
 Access to database systems

 Perl is highly platform independent, and has been ported to all common platforms
 Perl is not just for CGI

1.9.8 PHP
 A server-side scripting language
 An alternative to CGI

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 15

 Similar to JavaScript
 Great for form processing and database access through the Web

1.10 Origins and Evolution of HTML
 HTML was defined with SGML
 Original intent of HTML: General layout of documents that could be displayed by

a wide variety of computers
 Recent versions:

 HTML 3.2 – 1997
 Introduced many new features and deprecated many older features

 HTML 4.01 - 1999 - A cleanup of 4.0
 XHTML 1.0 - 2000

 Just 4.01 defined using XML, instead of SGML
 XHTML 1.1 – 2001

 Modularized 1.0, and drops frames
 We’ll stick to 1.1, except for frames

 Reasons to use XHTML, rather than HTML:
1. HTML has lax syntax rules, leading to sloppy and sometime ambiguous

documents
– XHTML syntax is much more strict, leading to clean and clear
documents in a standard form

2. HTML processors do not even enforce the few syntax rule that do exist in
HTML

3. The syntactic correctness of XHTML documents can be validated

1.11 Basic Syntax
 Elements are defined by tags (markers)

 Tag format:
 Opening tag: <name>
 Closing tag: </name>

 The opening tag and its closing tag together specify a container for the
content they enclose

 Not all tags have content
 If a tag has no content, its form is <name />

 The container and its content together are called an element
 If a tag has attributes, they appear between its name and the right bracket of the

opening tag
 Comment form: <!- … ->
 Browsers ignore comments, unrecognizable tags, line breaks, multiple spaces, and

tabs
 Tags are suggestions to the browser, even if they are recognized by the browser

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 16

1.12 HTML Document Structure
 <html>, <head>, <title>, and <body> are required in every document
 Every XHTML document must begin with:

<?xml version = ″1.0″?>
<!DOCTYPE html PUBLIC ″-//w3c//DTD XHTML 1.1//EN″

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd>
 The whole document must have <html> as its root
 html must have the xmlns attribute:

<html xmlns = ″http://www.w3.org/1999/xhtml″
 A document consists of a head and a body
 The <title> tag is used to give the document a title, which is normally displayed in

the browser’s window title bar (at the top of the display)
 Prior to XHTML 1.1, a document could have either a body or a frameset

1.13 Basic Text Markup
 Text is normally placed in paragraph elements
 Paragraph Elements

 The <p> tag breaks the current line and inserts a blank line - the new line
gets the beginning of the content of the paragraph

 The browser puts as many words of the paragraph’s content as will fit in
each line

<?xml version = ″1.0″?>
<!DOCTYPE html PUBLIC ″-//w3c//DTD XHTML 1.1//EN″

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd>
<!-- greet.hmtl

A trivial document
-->

<html xmlns = ″http://www.w3.org/1999/xhtml″>
<head> <title> Our first document </title>
</head>
<body>

<p>
Greetings from your Webmaster!

</p>
</body>

</html>
 W3C HTML Validation Service

http://validator.w3.org/file-upload.html
 Line breaks

 The effect of the
 tag is the same as that of <p>, except for the blank
line

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 17

 No closing tag!
 Example of paragraphs and line breaks

On the plains of hesitation <p> bleach the
bones of countless millions </p>

who, at the dawn of victory
 sat down
to wait, and waiting, died.

 Typical display of this text:
On the plains of hesitation

bleach the bones of countless millions
who, at the dawn of victory
sat down to wait, and waiting, died.
 Headings

 Six sizes, 1 - 6, specified with <h1> to <h6>
 1, 2, and 3 use font sizes that are larger than the default font size
 4 uses the default size
 5 and 6 use smaller font sizes

<!-- headings.html
An example to illustrate headings
-->

<html xmlns = ″http://www.w3.org/1999/xhtml″>
<head> <title> Headings </title>
</head>
<body>

<h1> Aidan’s Airplanes (h1) </h1>
<h2> The best in used airplanes (h2) </h2>
<h3> "We’ve got them by the hangarful" (h3)
</h3>
<h4> We’re the guys to see for a good used

airplane (h4) </h4>
<h5> We offer great prices on great planes

(h5) </h5>
<h6> No returns, no guarantees, no refunds,

all sales are final (h6) </h6>
</body>

</html>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 18

 Blockquotes
 Content of <blockquote>
 To set a block of text off from the normal flow and appearance of text
 Browsers often indent, and sometimes italicize

 Font Styles and Sizes (can be nested)
 Boldface -
 Italics - <i>
 Larger - <big>
 Smaller - <small>
 Monospace - <tt>

The <big> sleet <big> in <big> <i> Crete
</i>
 lies </big> completely </big>
in </big> the street
The sleet in Crete
lies completely in the street

 These tags are not affected if they appear in the content of a
<blockquote>, unless there is a conflict (e.g., italics)

 Superscripts and subscripts
 Subscripts with <sub>
 Superscripts with <sup>

Example: x₂³
Display: x23
 Inline versus block elements
 All of this font size and font style stuff can be done with style sheets, but these

tags are not yet deprecated
 Character Entities

Char. Entity Meaning
& & Ampersand

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 19

< < Less than
> > Greater than
” " Double quote
’ ' Single quote
¼ ¼ One quarter
½ ½ One half
¾ ¾ Three quarters
 ° Degree
(space) Non-breaking space
 Horizontal rules

 <hr /> draws a line across the display, after a line break
 The meta element (for search engines) Used to provide additional

information about a document, with attributes, not content

Images
 GIF (Graphic Interchange Format)

 8-bit color (256 different colors)
 JPEG (Joint Photographic Experts Group)

 24-bit color (16 million different colors)
 Both use compression, but JPEG compression is better
 Images are inserted into a document with the tag with the src

attribute
 The alt attribute is required by XHTML

 Purposes:
1. Non-graphical browsers
2. Browsers with images turned off

<img src = "comets.jpg"
alt = "Picture of comets" />
 The tag has 30 different attributes, including width and height (in

pixels)
 Portable Network Graphics (PNG)

 Relatively new
 Should eventually replace both gif and jpeg

Eg:
<!-- image.html

An example to illustrate an image
-->

<html xmlns = ″http://www.w3.org/1999/xhtml″>
<head> <title> Images </title>
</head>
<body>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 20

<h1> Aidan's Airplanes </h1>
<h2> The best in used airplanes </h2>
<h3> "We've got them by the hangarful"
</h3>
<h2> Special of the month </h2>
<p>

1960 Cessna 210

577 hours since major engine overhaul

1022 hours since prop overhaul

<img src = "c210new.jpg"

alt = "Picture of a Cessna 210"/>

Buy this fine airplane today at a
remarkably low price

Call 999-555-1111 today!

</p>
</body>

</html>

2.2 Hypertext Links

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 21

• Hypertext is the essence of the Web!
• A link is specified with the href (hypertext reference) attribute of <a> (the

anchor tag)
• The content of <a> is the visual link in the document
• If the target is a whole document (not the one in which the link

appears), the target need not be specified in the target document as
being the target

• Note: Relative addressing of targets is easier to maintain and more portable
than absolute addressing

<!-- link.html
An example to illustrate a link
-->

<html xmlns = ″http://www.w3.org/1999/xhtml″>
<head> <title> Links </title>
</head>
<body>

<h1> Aidan's Airplanes </h1>
<h2> The best in used airplanes </h2>
<h3> "We've got them by the hangarful"
</h3>
<h2> Special of the month </h2>
<p>

1960 Cessna 210

Information on the Cessna 210
</p>

</body>
</html>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 22

• If the target is not at the beginning of the document, the target spot must be
marked

• Target labels can be defined in many different tags with the id attribute, as in
<h1 id = "baskets"> Baskets </h1>
• The link to an id must be preceded by a pound sign (#); If the id is in the

same document, this target could be

What about baskets?
• If the target is in a different document, the document reference must be

included
 Baskets
• Style note: a link should blend in with the surrounding text, so reading it

without taking the link should not be made less pleasant
• Links can have images:

<img src = "smallplane.jpg"

alt = "Small picture of an airplane " />
Info on C210

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 23

UNIT – 2: XHTML – 2: CSS: XHTML (continued..)
Lists; Tables;

Forms; Frames;

CSS: Introduction; Levels of style sheets; Property value forms;

Style specification formats; Selector forms;

Font properties; List properties;

Color; Alignment of text;

The Box model; Background images; The and tags; Conflict resolution.

2.1 Lists
• Unordered lists
• The list is the content of the tag
• List elements are the content of the tag

<h3> Some Common Single-Engine Aircraft </h3>

 Cessna Skyhawk
 Beechcraft Bonanza
 Piper Cherokee

• Ordered lists
• The list is the content of the tag
• Each item in the display is preceded by a sequence value

<h3> Cessna 210 Engine Starting Instructions
</h3>

 Set mixture to rich

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 24

 Set propeller to high RPM
 Set ignition switch to "BOTH"
 Set auxiliary fuel pump switch to

"LOW PRIME"
 When fuel pressure reaches 2 to 2.5

PSI, push starter button

 Definition lists (for glossaries, etc.)
 List is the content of the <dl> tag
 Terms being defined are the content of the <dt> tag
 The definitions themselves are the content of the <dd> tag

<h3> Single-Engine Cessna Airplanes </h3>
<dl >

<dt> 152 </dt>
<dd> Two-place trainer </dd>
<dt> 172 </dt>
<dd> Smaller four-place airplane </dd>
<dt> 182 </dt>
<dd> Larger four-place airplane </dd>
<dt> 210 </dt>
<dd> Six-place airplane - high performance
</dd>

</dl>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 25

2.2 Tables
• A table is a matrix of cells, each possibly having content
• The cells can include almost any element
• Some cells have row or column labels and some have data
• A table is specified as the content of a <table> tag
• A border attribute in the <table> tag specifies a border between the cells
• If border is set to "border", the browser’s default width border is used
• The border attribute can be set to a number, which will be the border width
• Without the border attribute, the table will have no lines!
• Tables are given titles with the <caption> tag, which can immediately follow

<table>
• Each row of a table is specified as the content of a <tr> tag
• The row headings are specified as the content of a <th> tag
• The contents of a data cell is specified as the content of a <td> tag

<table border = "border">
<caption> Fruit Juice Drinks </caption>

<tr>
<th> </th>
<th> Apple </th>
<th> Orange </th>
<th> Screwdriver </th>

</tr>
<tr>

<th> Breakfast </th>
<td> 0 </td>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 26

<td> 1 </td>
<td> 0 </td>

</tr>
<tr>

<th> Lunch </th>
<td> 1 </td>
<td> 0 </td>
<td> 0 </td>

</tr>
</table>

 A table can have two levels of column labels
 If so, the colspan attribute must be set in the <th> tag to specify that the

label must span some number of columns
<tr>

<th colspan = "3"> Fruit Juice Drinks </th>
</tr>
<tr>

<th> Orange </th>
<th> Apple </th>
<th> Screwdriver </th>

</tr>

• If the rows have labels and there is a spanning column label, the upper left corner
must be made larger, using rowspan

<table border = "border">
<tr>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 27

<td rowspan = "2"> </td>
<th colspan = "3"> Fruit Juice Drinks
</th>

</tr>
<tr>

<th> Apple </th>
<th> Orange </th>
<th> Screwdriver </th>

</tr>
…

</table>
 The align attribute controls the horizontal placement of the contents in a table cell

 Values are left, right, and center (default)
 align is an attribute of <tr>, <th>, and <td> elements

 The valign attribute controls the vertical placement of the contents of a table cell
 Values are top, bottom, and center (default)
 valign is an attribute of <th> and <td> elements

 SHOW cell_align.html and display it
• The cellspacing attribute of <table> is used to specify the distance between cells

in a table
 The cellpadding attribute of <table> is used to specify the spacing between the

content of a cell and the inner walls of the cell
<table cellspacing = "50">

<tr>
<td> Colorado is a state of …
</td>
<td> South Dakota is somewhat…
</td>

</tr>
</table>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 28

- Table Sections
- Header, body, and footer, which are the elements: thead, tbody, and tfoot
- If a document has multiple tbody elements, they are separated by thicker

horizontal lines

2.3 Forms
 A form is the usual way information is gotten from a browser to a server
 HTML has tags to create a collection of objects that implement this information

gathering
 The objects are called widgets (e.g., radio buttons and checkboxes)

 When the Submit button of a form is clicked, the form’s values are sent to the
server

 All of the widgets, or components of a form are defined in the content of a
<form> tag
 The only required attribute of <form> is action, which specifies the URL

of the application that is to be called when the Submit button is clicked
action =

"http://www.cs.ucp.edu/cgi-bin/survey.pl"
 If the form has no action, the value of action is the empty string

 The method attribute of <form> specifies one of the two possible techniques of
transferring the form data to the server, get and post
 get and post are discussed in Chapter 10

 Widgets
 Many are created with the <input> tag

 The type attribute of <input> specifies the kind of widget being
created

 Text

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 29

 Creates a horizontal box for text input
 Default size is 20; it can be changed with the size attribute
 If more characters are entered than will fit, the box is

scrolled (shifted) left
 If you don’t want to allow the user to type more characters than will fit, set

maxlength, which causes excess input to be ignored
<input type = "text" name = "Phone"

size = "12" >
2. Checkboxes - to collect multiple choice input

 Every checkbox requires a value attribute, which is the widget’s value in
the form data when the checkbox is ‘checked’
 A checkbox that is not ‘checked’ contributes no value to the form

data
 By default, no checkbox is initially ‘checked’
 To initialize a checkbox to ‘checked’, the checked attribute must be set to

"checked"
 Widgets (continued)

Grocery Checklist
<form action = "">

<p>
<input type = "checkbox" name ="groceries"

value = "milk" checked = "checked">
Milk

<input type = "checkbox" name ="groceries"
value = "bread">

Bread
<input type = "checkbox" name = "groceries"

value= "eggs">
Eggs

</p>
</form>

3. Radio Buttons - collections of checkboxes in which only one button can be ‘checked’
at a time

 Every button in a radio button group MUST have the same name

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 30

 Widgets (continued)
3. Radio Buttons (continued)

 If no button in a radio button group is ‘pressed’, the browser often
‘presses’ the first one

Age Category
<form action = "">

<p>
<input type = "radio" name = "age"
value = "under20" checked = "checked"> 0-19

<input type = "radio" name = "age"
value = "20-35"> 20-35

<input type = "radio" name = "age"
value = "36-50"> 36-50

<input type = "radio" name = "age"
value = "over50"> Over 50

</p>
</form>

4. Menus - created with <select> tags
 There are two kinds of menus, those that behave like checkboxes and those that

behave like radio buttons (the default)
 Menus that behave like checkboxes are specified by including the multiple

attribute, which must be set to "multiple"
 The name attribute of <select> is required
 The size attribute of <select> can be included to specify the number of menu

items to be displayed (the default is 1)
 If size is set to > 1 or if multiple is specified, the menu is displayed as a

pop-up menu
Menus (continued)

 Each item of a menu is specified with an <option> tag, whose pure text
content (no tags) is the value of the item

 An <option> tag can include the selected attribute, which when assigned
"selected” specifies that the item is preselected

Grocery Menu - milk, bread, eggs, cheese
<form action = "">

<p>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 31

With size = 1 (the default)
<select name = "groceries">

<option> milk </option>
<option> bread </option>
<option> eggs </option>
<option> cheese </option>

</select>
</p>

</form>

- Widgets (continued)
5. Text areas - created with <textarea>

 Usually include the rows and cols attributes to specify the size of the text
area

 Default text can be included as the content of <textarea>
 Scrolling is implicit if the area is overfilled

Please provide your employment aspirations
<form action = "">

- Widgets (continued)

 After clicking the menu:

 After changing size to 2:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 32

<p>
<textarea name = "aspirations" rows = "3”

cols = "40">
(Be brief and concise)
</textarea>
</p>

</form>

 Widgets (continued)
6. Reset and Submit buttons

 Both are created with <input>
<input type = "reset" value = "Reset Form">
<input type = "submit” value = "Submit Form">
 Submit has two actions:

1. Encode the data of the form
2. Request that the server execute the server-resident program specified as

the value of the action attribute of <form>
3. A Submit button is required in every form

--> SHOW popcorn.html and display it

2.4 Frames
• Frames are rectangular sections of the display window, each of which can display

a different document
• Because frames are no longer part of XHTML, you cannot validate a document

that includes frames
• The <frameset> tag specifies the number of frames and their layout in the window

• <frameset> takes the place of <body>
• Cannot have both!
• <frameset> must have either a rows attribute or a cols attribute, or both

(usually the case)
• Default is 1
• The possible values for rows and cols are numbers, percentages, and

asterisks
• A number value specifies the row height in pixels - Not terribly

useful!

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 33

• A percentage specifies the percentage of total window height for
the row - Very useful!

 An asterisk after some other specification gives the remainder of the
height of the window

 Examples:

<frameset rows = "150, 200, 300">

<frameset rows = "25%, 50%, 25%">

<frameset rows = "50%, 20%, *" >

<frameset rows = "50%, 25%, 25%"
cols = "40%, *">

 The <frame> tag specifies the content of a frame
 The first <frame> tag in a <frameset> specifies the content of the first frame, etc.

 Row-major order is used
 Frame content is specified with the src attribute
 Without a src attribute, the frame will be empty (such a frame CANNOT

be filled later)
 If <frameset> has fewer <frame> tags than frames, the extra frames are empty
 Scrollbars are implicitly included if needed (they are needed if the specified

document will not fit)
 If a name attribute is included, the content of the frame can be changed later (by

selection of a link in some other frame)
SHOW frames.html
 Note: the Frameset standard must be specified in the DOCTYPE declaration

Eg:
<!-- contents.html

The contents of the first frame of
frames.html, which is the table of
contents for the second frame
-->

<html xmlns = ″http://www.w3.org/1999/xhtml″>
<head> <title> Table of Contents Frame

</title>
</head>
<body>

<h4> Fruits </h4>

 <a href = "apples.html"

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 34

target = "descriptions">
apples

 <a href = "bananas.html"
target = "descriptions">
bananas

 <a href = "oranges.html"
target = "descriptions">
oranges

</body>

</html>
 Nested frames - to divide the screen in more interesting ways

 SHOW nested_frames.html

2.5 Introduction
 The CSS1 specification was developed in 1996
 CSS2 was released in 1998
 CSS3 is on its way
 CSSs provide the means to control and change presentation of HTML documents
 CSS is not technically HTML, but can be embedded in HTML documents
 Style sheets allow you to impose a standard style on a whole document, or even a

whole collection of documents
 Style is specified for a tag by the values of its properties

2.6 Levels of Style Sheets
 There are three levels of style sheets

• Inline - specified for a specific occurrence of a tag and apply only to that
tag
– This is fine-grain style, which defeats the purpose of style sheets -
uniform style

• Document-level style sheets - apply to the whole document in which they
appear

• External style sheets - can be applied to any number of documents
 When more than one style sheet applies to a specific tag in a document, the lowest

level style sheet has precedence
• In a sense, the browser searches for a style property spec, starting with

inline, until it finds one (or there isn’t one)

 Inline style sheets appear in the tag itself

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 35

 Document-level style sheets appear in the head of the document
 External style sheets are in separate files, potentially on any server on the Internet

 Written as text files with the MIME type text/css
2.7 Linking an External Stylesheet
 A <link> tag is used to specify that the browser is to fetch and use an external

style sheet file
<link rel = "stylesheet" type = "text/css"
href = "http://www.wherever.org/termpaper.css">

</link>
- External style sheets can be validated

http://jigsaw.w3.org/css-validator/
validator-upload.html

2.8 Style Specification Formats
 Format depends on the level of the style sheet
 Inline:

 Style sheet appears as the value of the style attribute
 General form:

style = "property_1: value_1;
property_2: value_2;
…
property_n: value_n"

2.9 Format for Document-level
 Style sheet appears as a list of rules that are the content of a <style> tag
 The <style> tag must include the type attribute, set to "text/css"
 The list of rules must be placed in an HTML comment, because it is not HTML
 Comments in the rule list must have a different form - use C comments (/*…*/)

2.10 General Form, Document Level
 General form:

<style type = "text/css">
<!--

rule list
-->

</style>
 Form of the rules:

selector {list of property/values}
 Each property/value pair has the form:

property: value
 Pairs are separated by semicolons, just as in the value of a <style> tag

General Form, External style sheets

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 36

 Form is a list of style rules, as in the content of a <style> tag for document-level
style sheets

Selector Forms: Simple
• The selector is a tag name or a list of tag names, separated by commas

• h1, h3
• p

• Contextual selectors
• ol ol li

Class Selectors
• Used to allow different occurrences of the same tag to use different style

specifications
• A style class has a name, which is attached to a tag name

 p.narrow {property/value list}
 p.wide {property/value list}

• The class you want on a particular occurrence of a tag is specified with the class
attribute of the tag

• For example,
<p class = "narrow">
...
</p>
...
<p class = "wide">
...
</p>
Generic Selectors
• A generic class can be defined if you want a style to apply to more than one kind

of tag
• A generic class must be named, and the name must begin with a period
 Example,

.really-big { … }
 Use it as if it were a normal style class

<h1 class = "really-big"> … </h1>
...
<p class = "really-big"> … </p>
id Selectors
 An id selector allow the application of a style to one specific element
 General form:

#specific-id {property-value list}
 Example:

#section14 {font-size: 20}

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 37

Pseudo Classes
 Pseudo classes are styles that apply when something happens, rather than because

the target element simply exists
 Names begin with colons
 hover classes apply when the mouse cursor is over the element
 focus classes apply when an element has focus

Pseudo Class Example

<!-- pseudo.html -->
<html xmlns = "http://www.w3.org/1999/xhtml">

<head> <title> Checkboxes </title>
<style type = "text/css">

input:hover {color: red;}
input:focus {color: green;}

</style>
</head>
<body>

<form action = "">
<p>

Your name:
<input type = "text" />

</p>
</form>

</body>
</html>
Properties
 There are 60 different properties in 7 categories:

 Fonts
 Lists
 Alignment of text
 Margins
 Colors
 Backgrounds
 Borders

Property Values
 Keywords - left, small, …

 Not case sensitive
 Length - numbers, maybe with decimal points

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 38

 Units:
 px - pixels
 in - inches
 cm - centimeters
 mm - millimeters
 pt - points
 pc - picas (12 points)
 em - height of the letter ‘m’
 ex-height - height of the letter ‘x’
 No space is allowed between the number and the unit specification e.g.,

1.5 in is illegal!
 Percentage - just a number followed immediately by a percent sign
 URL values

 url(protocol://server/pathname)
 Colors

 Color name
 rgb(n1, n2, n3)

 Numbers can be decimal or percentages
 Hex form: #XXXXXX

 Property values are inherited by all nested tags, unless overridden
Font Properties
 font-family

 Value is a list of font names - browser uses the first in the list it has
 font-family: Arial, Helvetica, Courier
 Generic fonts: serif, sans-serif, cursive, fantasy, and monospace (defined

in CSS)
 Browser has a specific font for each

 If a font name has more than one word, it should be single-quoted
 font-size

 Possible values: a length number or a name, such as smaller, xx-large, etc.
 font-style

 italic, oblique (useless), normal
 font-weight - degrees of boldness

 bolder, lighter, bold, normal
 Could specify as a multiple of 100 (100 – 900)

 font
 For specifying a list of font properties

font: bolder 14pt Arial Helvetica
 Order must be: style, weight, size, name(s)

 > SHOW fonts.html and display

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 39

 > SHOW fonts2.html and display
 The text-decoration property

 line-through, overline, underline, none
 letter-spacing – value is any length property value

List properties
 list-style-type
 Unordered lists

 Bullet can be a disc (default), a square, or a circle
 Set it on either the or tag

 On , it applies to list items
<h3> Some Common Single-Engine Aircraft </h3>

<ul style = "list-style-type: square">
 Cessna Skyhawk
 Beechcraft Bonanza
 Piper Cherokee

 On , list-style-type applies to just that item
<h3> Some Common Single-Engine Aircraft </h3>

<li style = "list-style-type: disc">
Cessna Skyhawk

<li style = "list-style-type: square">
Beechcraft Bonanza

<li style = "list-style-type: circle">
Piper Cherokee

 Could use an image for the bullets in an unordered list

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 40

 Example:
<li style = "list-style-image:

url(bird.jpg)">
 On ordered lists - list-style-type can be used to change the sequence

values
Property valueSequence type First four
Decimal Arabic numerals 1, 2, 3, 4
upper-alpha Uc letters A, B, C, D
lower-alpha Lc letters a, b, c, d
upper-roman Uc Roman I, II, III, IV
lower-roman Lc Roman i, ii, iii, iv
 SHOW sequence_types.html and display
 CSS2 has more, like lower-greek and hebrew

Colors
 Color is a problem for the Web for two reasons:

1. Monitors vary widely
2. Browsers vary widely

- There are three color collections
1. There is a set of 16 colors that are guaranteed to be displayable by all

graphical browsers on all color monitors
black 000000 green 008000
silver C0C0C0 lime 00FF00
gray 808080 olive 808000
white FFFFFF yellow FFFF00
maroon 800000 navy 000080
red FF0000 blue 0000FF
purple 800080 teal 008080
fuchia FF00FF aqua 00FFFF
2. There is a much larger set, the Web Palette

 216 colors
 Use hex color values of 00, 33, 66, 99, CC, and FF
 Inside back cover of this book has them!

3. Any one of 16 million different colors

 The color property specifies the foreground color of elements

<style type = “text/css”>
th.red {color: red}
th.orange {color: orange}

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 41

</style>
…
<table border = "5">

<tr>
<th class = "red"> Apple </th>
<th class = "orange"> Orange </th>
<th class = "orange"> Screwdriver </th>

</tr>
</table>
 The background-color property specifies the background color of elements
 SHOW back_color.html and display

Alignment of Text
 The text-indent property allows indentation

 Takes either a length or a % value
 The text-align property has the possible values, left (the default), center, right, or

justify
 Sometimes we want text to flow around another element - the float property

 The float property has the possible values, left, right, and none (the
default)

 If we have an element we want on the right, with text flowing on its left,
we use the default text-align value (left) for the text and the right value for
float on the element we want on the right

<img src = "c210.jpg"
style = "float: right" />

 Some text with the default alignment - left

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 42

The Box Model
 Borders – every element has a border-style property

 Controls whether the element has a border and if so, the style of the border
 border-style values: none, dotted, dashed, and double
 border-width – thin, medium (default), thick, or a length value in pixels
 Border width can be specified for any of the four borders (e.g., border-top-

width)
 border-color – any color
 Border color can be specified for any of the four borders (e.g., border-top-

color)
 SHOW borders.html and display
 Margin – the space between the border of an element and its neighbor element
 The margins around an element can be set with margin-left, etc. - just assign them

a length value
<img src = "c210.jpg " style = "float: right;

margin-left: 0.35in;
margin-bottom: 0.35in" />

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 43

 Padding – the distance between the content of an element and its border
 Controlled by padding, padding-left, etc.

 SHOW marpads.html and display

Background Images
 The background-image property

 SHOW back_image.html and display
 Repetition can be controlled

 background-repeat property
 Possible values: repeat (default), no-repeat, repeat-x, or repeat-y
 background-position property

 Possible values: top, center, bottom, left, or right
The and <div> tags
 One problem with the font properties is that they apply to whole elements, which

are often too large
 Solution: a new tag to define an element in the content of a larger element

-
 The default meaning of is to leave the content as it is

<p>
Now is the best time ever!
</p>

 Use to apply a document style sheet to its content
<style type = "text/css">?

bigred {font-size: 24pt;
font-family: Ariel; color: red}

</style>
<p>

Now is the

best time ever!
</p>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 44

 The tag is similar to other HTML tags, they can be nested and
 they have id and class attributes
 Another tag that is useful for style specifications: <div>

 Used to create document sections (or divisions) for which style can be
specified
 e.g., A section of five paragraphs for which you want some

particular style
Conflict Resolution
 When two or more rules apply to the same tag there are rules for deciding which

rule applies
 Document level

 In-line style sheets have precedence over document style sheets
 Document style sheets have precedence over external style sheets

 Within the same level there can be conflicts
 A tag may be used twice as a selector
 A tag may inherit a property and also be used as a selector

 Style sheets can have different sources
 The author of a document may specify styles
 The user, through browser settings, may specify styles

 Individual properties can be specified as important
Precedence Rules
 From highest to lowest
1. Important declarations with user origin
2. Important declarations with author origin
3. Normal declarations with author origin
4. Normal declarations with user origin
5. Any declarations with browser (or other user agent) origin

Tie-Breakers
 Specificity

1. id selectors
2. Class and pseudo-class selectors
3. Contextual selectors
4. General selectors

 Position
1. Essentially, later has precedence over earlier

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 45

UNIT 3: JAVASCRIPT:

Syllabus:
Overview of Javascript; Object orientation and Javascript

General syntactic characteristics; Primitives,
operations, and expressions; Screen output and keyboard input;
Control statements; Object creation and modification; Arrays;
Functions; Constructor;
Pattern matching using regular expressions; Errors in scripts;
Examples.

Basics of JavaScript
4.1 Overview of JavaScript: Origins

 Livescript
 Originally developed by Netscape
 Joint Development with Sun Microsystems in 1995
 Supported by Netscape, Mozilla, Internet Exploer

4.1 JavaScript Components
 Core

 The heart of the language
 Client-side

 Library of objects supporting browser control and user interaction EG:
mouse clicks

 Server-side
 Library of objects that support use in web servers
 Eg: commun. With database management system

4.1 Java and JavaScript
 Differences

 JavaScript has a different object model from Java
 JavaScript is not strongly typed

 Java 1.6 has support for scripting
 http://java.sun.com/javase/6/docs/technotes/guides/scripting/index.html

 Mozilla Rhino is an implementation of JavaScript in Java
 http://www.mozilla.org/rhino/

4.1 Uses of JavaScript
 Provide alternative to server-side programming

 Servers are often overloaded
 Client processing has quicker reaction time

 JavaScript can work with forms

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 46

 JavaScript can interact with the internal model of the web page (Document Object
Model)

 JavaScript is used to provide more complex user interface than plain forms with
HTML/CSS can provide
 http://www.protopage.com/ is an interesting example
 A number of toolkits are available. Dojo, found at http://dojotoolkit.org/,

is one example
4.1 Event-Driven Computation

 Users actions, such as mouse clicks and key presses, are referred to as events
 The main task of most JavaScript programs is to respond to events
 For example, a JavaScript program could validate data in a form before it is

submitted to a server
 Caution: It is important that crucial validation be done by the server. It is

relatively easy to bypass client-side controls
 For example, a user might create a copy of a web page but remove all the

validation code.
4.1 XHTML/JavaScript Documents

 When JavaScript is embedded in an XHTML document, the browser must
interpret it

 Two locations for JavaScript server different purposes
 JavaScript in the head element will react to user input and be called from

other locations
 JavaScript in the body element will be executed once as the page is loaded

 Various strategies must be used to ‘protect’ the JavaScript from the browser
 For example, comparisons present a problem since < and > are used to

mark tags in XHTML
 JavaScript code can be enclosed in XHTML comments
 JavaScript code can be enclosed in a CDATA section

4.2 Object Orientation and JavaScript
 JavaScript is object-based

 JavaScript defines objects that encapsulate both data and processing
 However, JavaScript does not have true inheritance nor subtyping

 JavaScript provides prototype-based inheritance
 See, for example this Wikipedia article for a discussion:

http://en.wikipedia.org/wiki/Prototype-based_languages
4.2 JavaScript Objects

 Objects are collections of properties
 Properties are either data properties or method properties
 Data properties are either primitive values or references to other objects
 Primitive values are often implemented directly in hardware
 The Object object is the ancestor of all objects in a JavaScript program

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 47

 Object has no data properties, but several method properties
4.3 JavaScript in XHTML

 Directly embedded
<script type=“text/javascript”>

<!--
…Javascript here…

-->
</script>
 However, note that a-- will not be allowed here!

 Indirect reference
<script type=“text/javascript” src=“tst_number.js”/>
 This is the preferred approach

4.3 JavaScript in XHTML: CDATA
 The <![CDATA[…]]> block is intended to hold data that should not be

interpreted as XHTML
 Using this should allow any data (including special symbols and --) to be included

in the script
 This, however does not work, at least in Firefox:

<script type=“text/javascript”>
<![CDATA[

…JavaScript here…
]]>

</script>
 The problem seems to be that the CDATA tag causes an internal JavaScript error
 This does work in Firefox

<script type=“text/javascript”>
/*<![CDATA[*/

…JavaScript here…
/*]]> */

</script>
 The comment symbols do not bother the XML parser (only /* and */ are ‘visible’

to it)
 The comment symbols protect the CDATA markers from the JavaScript parser

4.3 General Syntactic Characteristics
 Identifiers

 Start with $, _, letter
 Continue with $, _, letter or digit
 Case sensitive

 Reserved words
 Comments

 //

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 48

 /* … */
4.3 Statement Syntax

 Statements can be terminated with a semicolon
 However, the interpreter will insert the semicolon if missing at the end of a line

and the statement seems to be complete
 Can be a problem:

return
x;

 If a statement must be continued to a new line, make sure that the first line does
not make a complete statement by itself

 Example hello.html
4.4 Primitive Types

 Five primitive types
 Number
 String
 Boolean
 Undefined
 Null

 There are five classes corresponding to the five primitive types
 Wrapper objects for primitive values
 Place for methods and properties relevant to the primitive types
 Primitive values are coerced to the wrapper class as necessary, and vice-

versa
4.4 Primitive and Object Storage

4.4 Numeric
and String Literals

 Number values are represented internally as double-precision floating-point
values
 Number literals can be either integer or float
 Float values may have a decimal and/or and exponent

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 49

 A String literal is delimited by either single or double quotes
 There is no difference between single and double quotes
 Certain characters may be escaped in strings

 \’ or \” to use a quote in a string delimited by the same quotes
 \\ to use a literal backspace

 The empty string ‘’ or “” has no characters
4.4 Other Primitive Types

 Null
 A single value, null
 null is a reserved word
 A variable that is used but has not been declared nor been assigned a value

has a null value
 Using a null value usually causes an error

 Undefined
 A single value, undefined
 However, undefined is not, itself, a reserved word
 The value of a variable that is declared but not assigned a value

 Boolean
 Two values: true and false

4.4 Declaring Variables
 JavaScript is dynamically typed, that is, variables do not have declared types

 A variable can hold different types of values at different times during
program execution

 A variable is declared using the keyword var
var counter,
index,
pi = 3.14159265,
quarterback = "Elway",
stop_flag = true;
4.4 Numeric Operators

 Standard arithmetic
 + * - / %

 Increment and decrement
 -- ++
 Increment and decrement differ in effect when used before and after a

variable
 Assume that a has the value 3, initially
 (++a) * 3 has the value 24
 (a++) * 3 has the value 27

a has the final value 8 in either case
4.4 Precedence of Operators

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 50

4.4 Example of Precedence
var a = 2,
b = 4,
c,
d;
c = 3 + a * b;
// * is first, so c is now 11 (not
24)
d = b / a / 2;
// / associates left, so d is now
1 (not 4)
4.4 The Math Object
 Provides a collection

of properties and
methods useful for Number values

 This includes the trigonometric functions such as sin and cos
 When used, the methods must be qualified, as in Math.sin(x)

4.4 The Number Object
 Properties

 MAX_VALUE
 MIN_VALUE
 NaN
 POSITIVE_INFINITY
 NEGATIVE_INFINITY
 PI

 Operations resulting in errors return NaN
 Use isNaN(a) to test if a is NaN

 toString method converts a number to string
4.4 String Catenation
 The operation + is the string catenation operation

Operators Associativity

++, --, unary - Right

*, /, % Left

+, - Left

>, <, >= ,<= Left

==, != Left

===,!== Left

&& Left

|| Left

=, +=, -=, *=,
/=, &&=, ||=,
%=

Right

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 51

 In many cases, other types are automatically converted to string
4.4 Implicit Type Conversion
 JavaScript attempts to convert values in order to be able to perform operations
 “August “ + 1977 causes the number to be converted to string and a concatenation

to be performed
 7 * “3” causes the string to be converted to a number and a multiplication to be

performed
 null is converted to 0 in a numeric context, undefined to NaN
 0 is interpreted as a Boolean false, all other numbers are interpreted a true
 The empty string is interpreted as a Boolean false, all other strings (including

“0”!) as Boolean true
 undefined, Nan and null are all interpreted as Boolean false

4.4 Explicit Type Conversion
 Explicit conversion of string to number

 Number(aString)
 aString – 0
 Number must begin the string and be followed by space or end of string

 parseInt and parseFloat convert the beginning of a string but do not cause an error
if a non-space follows the numeric part

4.4 String Properties and Methods
 One property: length

 Note to Java programmers, this is not a method!
 Character positions in strings begin at index 0

4.4.11 String Methods

Method Parameters Result

charAt A number Returns the character in the String object that is at the
specified position

indexOf One-
character
string

Returns the position in the String object of the
parameter

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 52

substring Two
numbers

Returns the substring of the String object from the first
parameter position to the second

toLowerCase None Converts any uppercase letters in the string to lowercase

toUpperCase None Converts any lowercase letters in the string to uppercase

4.4 The typeof Operator
 Returns “number” or “string” or “boolean” for primitive types
 Returns “object” for an object or null
 Two syntactic forms

 typeof x
 typeof(x)

4.4 Assignment Statements
 Plain assignment indicated by =
 Compound assignment with

 += -= /= *= %= …
 a += 7 means the same as
 a = a + 7

4.4 The Date Object
 A Date object represents a time stamp, that is, a point in time
 A Date object is created with the new operator

 var now= new Date();
 This creates a Date object for the time at which it was created

4.4 The Date Object: Methods

toLocaleString A string of the Date information

getDate The day of the month

getMonth The month of the year, as a number in the range of 0 to 11

getDay The day of the week, as a number in the range of 0 to 6

getFullYear The year

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 53

4.5 Window and Document
 The Window object represents the window in which the document containing the

script is being displayed
 The Document object represents the document being displayed using DOM
 Window has two properties

 window refers to the Window object itself
 document refers to the Document object

 The Window object is the default object for JavaScript, so properties and methods
of the Window object may be used without qualifying with the class name

4.5 Screen Output and Keyboard Input
 Standard output for JavaScript embedded in a browser is the window displaying

the page in which the JavaScript is embedded
 The write method of the Document object write its parameters to the browser

window
 The output is interpreted as HTML by the browser
 If a line break is needed in the output, interpolate
 into the output

4.5 The alert Method
 The alert method opens a dialog box with a message
 The output of the alert is not XHTML, so use new lines rather than

 alert("The sum is:" + sum + "\n");

4.5 The confirm Method

getTime The number of milliseconds since January 1, 1970

getHours The number of the hour, as a number in the range of 0 to 23

getMinutes The number of the minute, as a number in the range of 0 to 59

getSeconds The number of the second, as a number in the range of 0 to 59

getMilliseconds The number of the millisecond, as a number in the range of 0
to 999

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 54

 The confirm methods displays a message provided as a parameter
 The confirm dialog has two buttons: OK and Cancel

 If the user presses OK, true is returned by the method
 If the user presses Cancel, false is returned

var question =
confirm("Do you want to continue this download?");

4.5 The prompt Method
 This method displays its string argument in a dialog box

 A second argument provides a default content for the user entry area
 The dialog box has an area for the user to enter text
 The method returns a String with the text entered by the user
 name = prompt("What is your name?", "");

4.5 Example of Input and Output
 roots.html

4.6 Control Statements
 A compound statement in JavaScript is a sequence of 0 or more statements

enclosed in curly braces
 Compound statements can be used as components of control statements

allowing multiple statements to be used where, syntactically, a single
statement is specified

 A control construct is a control statement including the statements or compound
statements that it contains

4.6 Control Expressions

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 55

 A control expression has a Boolean value
 An expression with a non-Boolean value used in a control statement will

have its value converted to Boolean automatically
 Comparison operators

 == != < <= > >=
 === compares identity of values or objects
 3 == ‘3’ is true due to automatic conversion
 3 === ‘3’ is false

 Boolean operators
 && || !

 Warning! A Boolean object evaluates as true
 Unless the object is null or undefined

4.6 Selection Statements
 The if-then and if-then-else are similar to that in other programming languages,

especially C/C++/Java
4.6 switch Statement Syntax
switch (expression) {
case value_1:

// statement(s)
case value_2:

// statement(s)
...
[default:

// statement(s)]
}
4.6 switch Statement Semantics
 The expression is evaluated
 The value of the expressions is compared to the value in each case in turn
 If no case matches, execution begins at the default case
 Otherwise, execution continues with the statement following the case
 Execution continues until either the end of the switch is encountered or a break

statement is executed
4.6 Example borders2.js
User Input Prompt

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 56

Results

4.6 Loop Statements
 Loop statements in JavaScript are similar to those in C/C++/Java
 While

while (control expression)
statement or compound statement

 For
for (initial expression; control expression; increment expression)

statement or compound statement
 do/while

do statement or compound statement
while (control expression)
4.6 date.js Example
 Uses Date objects to time a calculation
 Displays the components of a Date object
 Illustrates a for loop

4.6 while Statement Semantics
 The control expression is evaluated
 If the control expression is true, then the statement is executed

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 57

 These two steps are repeated until the control expression becomes false
 At that point the while statement is finished

4.6 for Statement Semantics
 The initial expression is evaluated
 The control expression is evaluated
 If the control expression is true, the statement is executed
 Then the increment expression is evaluated
 The previous three steps are repeated as long as the control expression remains

true
 When the control expression becomes false, the statement is finished executing

4.6 do/while Statement Semantics
 The statement is executed
 The control expression is evaluated
 If the control expression is true, the previous steps are repeated
 This continues until the control expression becomes false
 At that point, the statement execution is finished

4.7 Object Creation and Modification
 The new expression is used to create an object

 This includes a call to a constructor
 The new operator creates a blank object, the constructor creates and

initializes all properties of the object
 Properties of an object are accessed using a dot notation: object.property
 Properties are not variables, so they are not declared

 An object may be thought of as a Map/Dictionary/Associative-Storage
 The number of properties of an object may vary dynamically in JavaScript

4.7 Dynamic Properties
 Create my_car and add some properties

// Create an Object object
var my_car = new Object();
// Create and initialize the make property
my_car.make = "Ford";
// Create and initialize model
my_car.model = "Contour SVT";
 The delete operator can be used to delete a property from an object

delete my_car.model
4.7 The for-in Loop
 Syntax

for (identifier in object)
statement or compound statement
 The loop lets the identifier take on each property in turn in the object
 Printing the properties in my_car:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 58

for (var prop in my_car)
document.write("Name: ", prop, "; Value: ",

my_car[prop], "
");
 Result:

Name: make; Value: Ford
Name: model; Value: Contour SVT
4.8 Arrays
 Arrays are lists of elements indexed by a numerical value
 Array indexes in JavaScript begin at 0
 Arrays can be modified in size even after they have been created

4.8 Array Object Creation
 Arrays can be created using the new Array method

 new Array with one parameter creates an empty array of the specified
number of elements
 new Array(10)

 new Array with two or more parameters creates an array with the specified
parameters as elements
 new Array(10, 20)

 Literal arrays can be specified using square brackets to include a list of elements
 var alist = [1, “ii”, “gamma”, “4”];

 Elements of an array do not have to be of the same type
4.8 Characteristics of Array Objects
 The length of an array is one more than the highest index to which a value has

been assigned or the initial size (using Array with one argument), whichever is
larger

 Assignment to an index greater than or equal to the current length simply
increases the length of the array

 Only assigned elements of an array occupy space
 Suppose an array were created using new Array(200)
 Suppose only elements 150 through 174 were assigned values
 Only the 25 assigned elements would be allocated storage, the other 175

would not be allocated storage
4.8 Example insert_names.js
 This example shows the dynamic nature of arrays in JavaScript

4.8 Array Methods
 join
 reverse
 sort
 concat
 slice

4.8 Dynamic List Operations

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 59

 push
 Add to the end

 pop
 Remove from the end

 shift
 Remove from the front

 unshift
 Add to the front

4.8 Two-dimensional Arrays
 A two-dimensional array in JavaScript is an array of arrays

 This need not even be rectangular shaped: different rows could have
different length

 Example nested_arrays.js illustrates two-dimensional arrays
4.9 Function Fundamentals
 Function definition syntax

 A function definition consist of a header followed by a compound
statement

 A function header:
 function function-name(optional-formal-parameters)

 return statements
 A return statement causes a function to cease execution and control to pass

to the caller
 A return statement may include a value which is sent back to the caller

 This value may be used in an expression by the caller
 A return statement without a value implicitly returns undefined

 Function call syntax
 Function name followed by parentheses and any actual parameters
 Function call may be used as an expression or part of an expression

 Functions must defined before use in the page header
4.9 Functions are Objects
 Functions are objects in JavaScript
 Functions may, therefore, be assigned to variables and to object properties

 Object properties that have function values are methods of the object
 Example

function fun() {
document.write("This surely is fun!
");

}
ref_fun = fun; // Now, ref_fun refers to the fun object
fun(); // A call to fun
ref_fun(); // Also a call to fun

4.9 Local Variables

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 60

 “The scope of a variable is the range of statements over which it is visible”
 A variable not declared using var has global scope, visible throughout the page,

even if used inside a function definition
 A variable declared with var outside a function definition has global scope
 A variable declared with var inside a function definition has local scope, visible

only inside the function definition
 If a global variable has the same name, it is hidden inside the function

definition
4.9 Parameters
 Parameters named in a function header are called formal parameters
 Parameters used in a function call are called actual parameters
 Parameters are passed by value

 For an object parameter, the reference is passed, so the function body can
actually change the object

 However, an assignment to the formal parameter will not change the
actual parameter

4.9 Parameter Passing Example
function fun1(my_list) {

var list2 = new Array(1, 3, 5);
my_list[3] = 14;
...
my_list = list2;
...

}
...
var list = new Array(2, 4, 6, 8)
fun1(list);
 The first assignment changes list in the caller
 The second assignment has no effect on the list object in the caller
 Pass by reference can be simulated by passing an array containing the value

4.9 Parameter Checking
 JavaScript checks neither the type nor number of parameters in a function call

 Formal parameters have no type specified
 Extra actual parameters are ignored (however, see below)
 If there are fewer actual parameters than formal parameters, the extra

formal parameters remain undefined
 This is typical of scripting languages
 A property array named arguments holds all of the actual parameters, whether or

not there are more of them than there are formal parameters
 Example params.js illustrates this

4.9 The sort Method, Revisited

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 61

 A parameter can be passed to the sort method to specify how to sort elements in
an array
 The parameter is a function that takes two parameters
 The function returns a negative value to indicate the first parameter should

come before the second
 The function returns a positive value to indicate the first parameter should

come after the second
 The function returns 0 to indicate the first parameter and the second

parameter are equivalent as far as the ordering is concerned
Example median.js illustrates the sort method
4.11 Constructors
 Constructors are functions that create an initialize properties for new objects
 A constructor uses the keyword this in the body to reference the object being

initialized
 Object methods are properties that refer to functions

 A function to be used as a method may use the keyword this to refer to the
object for which it is acting

 Example car_constructor.html
4.12 Using Regular Expressions
 Regular expressions are used to specify patterns in strings
 JavaScript provides two methods to use regular expressions in pattern matching

 String methods
 RegExp objects (not covered in the text)

 A literal regular expression pattern is indicated by enclosing the pattern in slashes
 The search method returns the position of a match, if found, or -1 if no match was

found
4.12 Example Using search
var str = "Rabbits are furry";
var position = str.search(/bits/);
if (position > 0)

document.write("'bits' appears in position",
position, "
");

else
document.write(

"'bits' does not appear in str
");
 This uses a pattern that matches the string ‘bits’
 The output of this code is as follows:

'bits' appears in position 3
4.12 Characters and Character-Classes
 Metacharacters have special meaning in regular expressions

 \ | () [] { } ^ $ * + ? .

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 62

 These characters may be used literally by escaping them with \
 Other characters represent themselves
 A period matches any single character

 /f.r/ matches for and far and fir but not fr
 A character class matches one of a specified set of characters

 [character set]
 List characters individually: [abcdef]
 Give a range of characters: [a-z]
 Beware of [A-z]
 ^ at the beginning negates the class

4.12 Predefined character classes

Name Equivalent Pattern Matches

\d [0-9] A digit

\D [^0-9] Not a digit

\w [A-Za-z_0-9] A word character (alphanumeric)

\W [^A-Za-z_0-9] Not a word character

\s [\r\t\n\f] A whitespace character

\S [^ \r\t\n\f] Not a whitespace character

4.12 Repeated Matches
 A pattern can be repeated a fixed number of times by following it with a pair of

curly braces enclosing a count
 A pattern can be repeated by following it with one of the following special

characters
 * indicates zero or more repetitions of the previous pattern
 + indicates one or more of the previous pattern
 ? indicates zero or one of the previous pattern

 Examples
 /\(\d{3}\)\d{3}-\d{4}/ might represent a telephone number

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 63

 /[$_a-zA-Z][$_a-zA-Z0-9]*/ matches identifiers
4.12 Anchors
 Anchors in regular expressions match positions rather than characters

 Anchors are 0 width and may not take multiplicity modifiers
 Anchoring to the end of a string

 ^ at the beginning of a pattern matches the beginning of a string
 $ at the end of a pattern matches the end of a string

 The $ in /a$b/ matches a $ character
 Anchoring at a word boundary

 \b matches the position between a word character and a non-word
character or the beginning or the end of a string

 /\bthe\b/ will match ‘the’ but not ‘theatre’ and will also match ‘the’ in the
string ‘one of the best’

4.12 Pattern Modifiers
 Pattern modifiers are specified by characters that follow the closing / of a pattern
 Modifiers modify the way a pattern is interpreted or used
 The x modifier causes whitespace in the pattern to be ignored

 This allows better formatting of the pattern
 \s still retains its meaning

 The g modifier is explained in the following
4.12 Other Pattern Matching Methods
 The replace method takes a pattern parameter and a string parameter

 The method replaces a match of the pattern in the target string with the
second parameter

 A g modifier on the pattern causes multiple replacements
 Parentheses can be used in patterns to mark sub-patterns

 The pattern matching machinery will remember the parts of a matched
string that correspond to sub-patterns

 The match method takes one pattern parameter
 Without a g modifier, the return is an array of the match and

parameterized sub-matches
 With a g modifier, the return is an array of all matches

 The split method splits the object string using the pattern to specify the split
points

4.13 An Example
 forms_check.js
 Using javascript to check the validity of input data
 Note, a server program may need to check the data sent to it since the validation

can be bypassed in a number of ways
4.14 Errors in Scripts
 JavaScript errors are detected by the browser

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 64

 Different browsers report this differently
 Firefox uses a special console

 Support for debugging is provided
 In IE 7, the debugger is part of the browser
 For Firefox 2, plug-ins are available

 These include Venkman and Firebug

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 65

UNIT 4: JAVASCRIPT AND HTML DOCUMENTS
SYLLABUS
The Javascript execution environment; The Document Object Model; Element access
in Javascript;

Events and event handling; Handling events from the Body elements,
Button elements, Text box and Password elements; The DOM 2 event model
The navigator object; DOM tree traversal and modification.
Introduction to dynamic documents, Positioning elements, Moving elements, Element
visibility, Changing colors and fonts,
Dynamic content, Stacking elements, Locating the mouse cursor,
Reacting to a mouse click, Slow movement of elements, Dragging and dropping
elements.

Why is JavaScript Important?
It is simple and lots of scripts available in public domain and easy to use. It is used

for client-side scripting. It is important for web because it can promptly validate user
input. It can update the web page without post back to server. It allows page to react to
user actions other than pushing a “submit” button more interactively.

It increases Server efficiency. Since the client processes the script, which saves
internet time and server time. Web pages can contain JavaScript programs executed
inside the browser.

It is supported by all major browsers. User may disable JavaScript due to security
reasons.

What is JavaScript?
An interpreted scripting language for web. It was introduced by Netscape with Netscape
2.0 in 1995. Microsoft version is called Jscript . Language is casesensitive.

It can be embedded within HTML tags or separately. Tightly integrated with browser.
It can handle many types of events generated by the normal interaction between user
and browser.

When not to use JavaScript?
When you need to access other resources such as:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 66

- Files
- Programs
- Databases.

When you are using sensitive or copyrighted data or algorithms.

Java versus JavaScript

Java supports OOP. JavaScript does not support OO software development paradigm
Java is strongly-typed. JavaScript is dynamically-typed.
JavaScript syntax is same as java. Constructs like expressions, assign statements and

control statements are same as in Java.

Where to place JavaScript code?

1. Inline JavaScript
It can be placed on the event handler attributes of input controls of a form.

2. Internal / Embedded JavaScript
It can be enclosed in script tags either in the header or the document body.
3. External JavaScript

It can be placed in a separate file. Enclosed in script tags in the header with ‘src’
attribute. This method is good for maintenance due to modularization.

How is JavaScript executed?
It is almost always executed at client-side. Script tags in the header
are executed in
the order in which they appear, before any of the body is processed.

Script tags in the body are executed as the body is rendered.

Script in the event handlers are executed whenever the appropriate event occurs.
Script in functions executed triggered by browser events.

- built-in java script
- user-defined functions (declared in the header)

All properties are visible to all scripts (no information hiding). Global variables are
properties of the Window object. There can be more than one Window object. Global
variables depend on which Window is the context. The Document object represents the
document displayed.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 67

Why DOM?

Portability is the major issue while using the JavaScript. The standard DOM has to
provide a specification that would make Java programs and JavaScript scripts that deal
with XHTML documents portable among various browsers.

DOM Levels
• DOM 0: informal, early browsers
• DOM 1: XHTML/XML structure
• DOM 2: event model, style interface, traversal
• DOM 3: content model, validation

DOM specifications describe an abstract model of a document.
• Interfaces describe methods and properties
• The interfaces describe a tree structure
• Different languages will bind the interfaces to specific implementations. The internal
representation may not be tree-like. In JavaScript, data are represented as properties and
operations as methods. Nodes of the tree will be JavaScript objects.

Attributes of elements become named properties of element node objects.
• <input type=“text” name=“address”>

The object representing this node will have two properties. Type property will have
value “text” and name property will have value “address”.

The following XHTML document and its corresponding DOM tree illustrate the
relationship between them.

<html xmlns = http://www.w3.org/1999/xhtml>
<head> <title> A simple document</title>
</head>
<body>
<table>
<tr>

<th> Breakfast</th>
<td>0 </td>
<td>1 </td>
</tr>
<tr>
<th> Lunch</th>
<td>1 </td >

<td> 0 </td>
</tr>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 68

</table>
</body>
</html>

Elements in XHTML document correspond to objects in JavaScript. Objects can be
addressed in several ways:
1. forms and elements array defined in DOM 0.
• Individual elements are specified by index.
• The index may change when the form changes.
2. Using the name attributes for form and form elements
• A name on the form element causes validation problems.
• Names are required on form elements providing data to the server.
3. Using getElementById with id attributes.
• id attribute value must be unique for an element.
Consider this simple form:
<form action = "">
<input type ="button“ name = “pushMe">
</form>

The input element can be referenced as document.forms[0].element[0].

• All elements from the reference element up to, but not including, the body must
have a name attribute.
• This violates XHTML standards in some cases.
Example:
<form name = "myForm" action = "">
<input type ="button“ name="pushMe">
</form>

• Referencing the input
document.myForm.pushMe

• Set the id attribute of the input element
<form action = "">

<input type="button" id=“turnItOn">
</form>
• Then use getElementById
document.getElementById(“turnItOn")

Event-driven Programming involves execution based on user’s action
. (ex: User’s selection in a web page.)

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 69

Event-driven Programming: Instead of user synchronizing with the program, the
program synchronizes with, or reacts to, the user. All communication from user occurs
via events. An event is an action that happens in the system. For example,

- A mouse button pressed or released
- A keyboard key is hit
- A window is moved, resized, closed, etc.

Event-driven Programming: Typically two different classes of events.
1. User-initiated events

Events that result directly from a user action.
e.g., mouse click, button press, move mouse.

2. System-initiated events
Events created by the system, as it responds to a user action

e.g., scrolling text, re-drawing a window.

There is no top-down flow of control, i.e., Main program defining the sequential.
Flow. Code fragments are associated with events and invoked when events occur.

The order of execution is decoupled with the code. Don’t have to deal with order of
events. This is especially helpful when the order is unknown!
Event-driven programming is a style of programming in which pieces of code, event
handlers, are written to be activated when certain events occur.

Events represent activity in the environment including, especially, user actions such as
moving the mouse or typing on the keyboard.

An event handler is a program segment designed to execute when a certain event occurs.
Events are represented by JavaScript objects. Registration is the activity of connecting a
script to a type of event. Assign an event attribute an event handler.
Assign a DOM node an event handler.

Event Tag Attribute
blur onblur
change onchange
click onclick
focus onfocus
load onload
mousedown onmousedown
mousemove onmousemove
mouseout onmouseout
mouseover onmouseover

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 70

mouseup onmouseup
select onselect
submit onsubmit
unload onunload

Particular events are associated to certain attributes. The attribute for one kind of event
may appear on different tags allowing the program to react to events affecting different
components. A text element gets focus in three ways:
• When the user puts the mouse cursor over it and presses the left button
• When the user tabs to the element
• By executing the focus method
Losing the focus is blurring.

Using an attribute, a JavaScript command can be specified:
<input type=“button” name=“myButton”
onclick= “alert(‘You clicked the button!’)”/>

A function call can be used if the handler is longer than a single statement.
<input type=“button” name=“myButton”
onclick=“myHandler()”/>

An event can be registered for this tag in two ways:
<input type=“button” name=“freeOffer”

id=“freeButton”/>
• Using an event attribute

<input type=“button” name=“freeOffer”
id=“freeButton”
onclick=“freeButtonHandler()”/>

• Assigning to a property of the element node
document.getElementById(“freeButton”).onclick = freeButtonHandler

– Note that the function name, a reference to the function, is assigned.
– Writing freeButtonHandler() would assign the return value of the function
call as the handler (possible, but unlikely).

Note that the no parameters are passed to the function when called by the JavaScript
System. The handler code must identify the element that caused the call.

The handler call can be enclosed in an anonymous function
– dom.elements[0].onclick = function() {planeChoice(152)};

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 71

Assigning to an attribute is more flexible, allowing passing parameters without having to
create an anonymous function. Assigning to a node property helps separate HTML and
code. Assigning to a node property allows reassignment later if the handler needs to be
changed.

By manipulating the focus event the user can be prevented from changing the amount in a
text input field.
This is possible to work around:
– Copy the page but leave out the validation code.
– Simulate an HTTP request directly with socket-level programming.
– If the validity of data is important, the server needs to check it.

Validating data using JavaScript provides quicker interaction for the user. Validity
checking on the server requires a round-trip for the server to check the data and then to
respond with an appropriate error page. Handling a data validity error:
– Put the focus in the field in question
– Highlight the text for easier editing
If an event handler returns false, default actions are not taken by the browser. This can be
used in a Submit button event handler to check validity and not submit if there are
problems.
The name is First, Last, Middle-Initial, each part capitalized.
– /^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-Z]\.?$/
The phone is ddd-ddd-dddd where d is a digit.
– /^\d{3}-\d{3}-\d{4}$/
Each pattern uses the ^ and $ anchors to make sure the entire string matches.

DOM 2 is defined in modules.
The Events module defines several sub modules.
– HTML Events and Mouse Events are common.
An event object is passed as a parameter to an event handler.
– Properties of this object provide information about the event.
– Some event types will extend the interface to include information relevant to the
subtype. For example, a mouse event will include the location of the mouse at the time
of the event.

DOM 2 defines a process for determining which handlers to execute for a particular
event.
The process has three phases:
The event object representing the event is created at a particular node called the target
node.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 72

In the capturing phase each node from the document root to the target node, in order, is
examined.

– If the node is not the target node and there is a handler for that event at the node and the
handler is enabled for capture for the node, the handler is executed.
Then all handlers registered for the target node, if any, are executed.
In the bubbling phase each node from the parent of the target node to the root node, in
order, is examined.
– If there is a handler for that event at the node and the handler is not enabled for capture
for the node, the handler is executed.
– Some event types are not allowed to bubble: load, unload, blur and focus among the
HTML event types.

As each handler is executed, properties of the event provide context.
– The currentTarget property is the node to which the handler is registered.
– The target property is the node to which the event was originally directed.
One major advantage of this scheme over DOM 0 is that event handling can be
centralized in an ancestor node.
For example, a calculator keyboard will have a number of digit buttons.
– In some GUI frameworks, a handler must be added to each button separately.
– In DOM 2, the buttons could be organized under a single node and the handler placed
on the node.

As each handler is executed, properties of the event provide context.
– The currentTarget property is the node to which the handler is registered
– The target property is the node to which the event was originally directed Handlers are
called listeners in DOM 2. addEventListener is used to register a handler, it takes three
parameters.
– A string naming the event type,
– The handler,
– A Boolean specifying whether the handler is enabled for the capture phase or not.

The navigator object indicates which browser is being used to view the XHTML
document. The appName property of the navigator object gives the name of the browser.
The appVersion property of the navigator object gives the browser version.
Each element in an XHTML document has a corresponding ELEMENT object in the
DOM representation. The ELEMENT object has methods to support.
– Traversing the document, that is, visiting each of the document nodes.
– Modifying the document.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 73

For example, removing and inserting child nodes. Various properties of Element
objects are related nodes. parentNode references the parent node of the Element.
previousSibling and nextSibling connect the children of a node into a list. firstChild and
lastChild reference children of an Element. These would be text nodes or element nodes
contained in the Element.

The insertBefore(newChild, refChild) method places the newChild node before the
refChild node.
The replaceChild(newChild, oldChild)method places the oldChild node with the
newChild node.

The removeChild(oldChild) method removes oldChild node from the DOM structure.
The appendChild(newChild) method adds the given node to the end of the list of the
siblings of the node through which it is called.

The highest levels of the execution environment of client-side JavaScript are represented
with the Window and Document objects.

The Document object includes a forms array property, which includes references to all
forms in the document. Each element of the forms array has an elements array, which
includes references to all elements in the form.

The DOM is an abstract interface whose purpose is to provide language independent way
to access the elements of an XHTML document.

XHTML tags are represented in JavaScript as objects, tag attributes are represented as
properties.

Introdcution

Dynamic Documents wih JavaScript

Dynamic XHTML is not a technology in and of itself, but rather is a combination of three
echnologies: XHTML, Cascading Style Sheets (CSS) and Scripting. It usually involves
using scripting like JavaScript to change tag attribute, tag contents or CSS property of an
XHTML element . In modern browsers, most CSS properties can be modified
dynamically ie changes can be made after the document has been and is still being
displayed . This can be done by changing an individual style of element (using the style
property of the element) or by changing the class name assigned to the element (using the
className property).

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 74

Advantages of Dynamic XHTML
(1) Dynamic XHTML makes documents dynamic. Dynamic documents :
o Allow the designer to control how the HTML displays Web pages’ content.
o React and change with the actions of the visitor.
o Can exactly position any element in the window, and change that position after the
document has loaded.
o Can hide and show content as needed.
(2) Dynamic XHTML allows any HTML element (any object on the screen that can be
controlled independently using JavaScript) to be manipulated at any time, turning plain
HTML into dynamic HTML
(3) With DHTML, changes occur entirely on the client-side
(4) Using DHTML gives the author more control over how the page is formatted and
how content is positioned on the page..

Positioning Elements
Cascading Style Sheets (CSS) Positioning defines the placement of elements on a

page and is an extension of cascading style sheets as specified in the W3C on Positioning
HTML with CSS. By default, elements flow one after another in the same order as they
appear in the HTML source, with each element having a size and position that depends
on the type of element, the contents of the element, and the display context for the
element as it will render on the page. This default flow model for HTML layout doesn't
allow a high level of control over the placement of elements on the page. By applying a
small set of CSS attributes to the elements that are defined for the page, CSS can control
the precise position of elements by giving exact coordinates. It is also possible to specify
placement relative to the position of other objects on the page.

Just like any other HTML or CSS attribute, the CSS attributes used to control an
element's position are available for scripting. The position of these elements on the page
can thus be dynamically changed with script. As a result, the position of these elements
can be recalculated and redrawn after the document is loaded without reloading the page
from the server. It usually involves using JavaScript to change a positioning style
properties of an HTML elements. position, top, left are the three properties that dictate
the position of the elements. position specifies the reference point for the placement of
the elements. top and left specify the distance from top and left of reference point
where element is to appear. absolute, relative and static are the three possible values for
the position property.

Absolute Positioning
A element can be placed at specific position in the document using absolute value

for the position styling property. Absolute positioning defines the x and y coordinates of

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 75

an element with reference to the top left corner of the browser page or the containing
block and the position attribute is set to absolute. With absolute positioning elements are
placed without regard to the positions of other elements. For example, if you want place
an image 100 pixels from the top and 100 pixels from the left of the document display
window, it can be placed as following statements:

Use of Absolute positioning
• Places elements at specific position in the document display.
• Can be used superimpose text over the ordinary text to create effect similar that
watermark on page.

The following example illustrates the usage of absolute positioning to position five
elements at specific different positions in the document display.

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<! - - abpos.html - - >
<html xmlns = "http://www.w3.org/1999/xhtml">

<head>
<title> Absolute positioning </title>
<style type = "text/css">
.s1 {position: absolute; top: 45px; left: 50px; }
.s2 {position: absolute; top: 45px; left: 300px; }
.s3 {position: absolute; top: 175px; left: 50px; }
.s4 {position: absolute; top: 175px; left: 300px; }
.s5 {position: absolute; top: 100px; left: 175px; }

</style>
</head>
<body>
<p>Positioning 5 instances same image at 5 different positions

</p>
</body> </html>

Output

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 76

When an element is absolutely positioned inside another positioned element, the
top and left property values are measured from the upper-left corner of the enclosing
element.

The following example illustrate the nested element placement. When an element
is absolutely positioned inside another positioned element, the top and left property
values are measured from the upper-left corner of the enclosing element.
The following example illustrate the nested element placement
Output

Hello. And now it's time to say goodbye
Hello, again

!!!!!.

In the above example we insert a span element inside the div element. Positioning
attributes for the span element place it 10 pixels in from the left and 30 pixels
down from the top of its positioning context—the div element in this case.
Relative Positioning

Relative positioning means an element is placed relative to its natural position in the
document's flow. When you use relative positioning, an element is positioned relative to
where it would regularly be. If the top and left properties are given, then relative
positioning displace the element by the specified amount from the natural position.

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml">
< -- nestedap.html -->
<head>
<body>
<div id="someDiv" style="position:absolute; left:100px; top:50px">
Hello.

Hello, again!!!!!.

And now it's time to say goodbye.
</div>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 77

</body>
</html>

The top property defines how far from the
top of its usual position we want the top of
element to appear. If we use a positive value,
then our element is moved down from the usual
position, whereas a negative value would move
our element up from the usual position.

The left property defines how far
from its usual position we want the left of
our element to appear. Positive values
will move the element right, and negative
values will move it left the usual
position.

If the top and left properties are not specified then element is positioned as if like
the it is statically positioned. However, such an element can be moved later.

Relative positioning is used for creating different effects in the document. It can be
used to highlight the special words in the text. The following example highlight the word
“red” in line of text.

Output

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<!—relative.html -- >
<html xmlns = "http://www.w3.org/1999/xhtml">

<body style = "font-family: Times; font-size: 24pt;">
<p>

Roses are <span style =
"position: relative; top: 10px;
font-family: Times; font-size: 48pt;
font-style: italic; color: red;">

red in color.
</p>

</body>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 78

</html>

Roses are red in color.

Relative positioning can be used to create superscripts. For example the following can be
used to place “xyz” 10 pixels above the natural baseline of the text.

<p> The superscript in this name<span style=”position: relative;
top:-3px” > xyz is “xyz”.</p>

Static Positioning
'Static' positioning is identical to normally rendered HTML. These elements

cannot be positioned or repositioned, nor do they define a coordinate system for child
elements. This is the default value for 'position', except for the <BODY> element, which,
while it cannot be positioned, does define a coordinate system for child elements.
Moving Elements
Dynamic movement of 'relative'ly /’absolute’ly positioned elements can provide

animation effects in scripting environments. Element position is going to be changed by
modifying the left and top properties of the element's style property. If position is set to
absolute, the element moves to the new values of top and left, if its position is set to
relative, it moves from its original position by distances given by the new values of top
and left. The following example demonstrates this
<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml">
<! – move.html -- >
<title>Position</title>
<style type="text/css">
#divBlock {
position:relative;
height:100px;
width:100px;
top:100px;
left:100px;
background-color:red;

}</style>
<script type="text/javascript">
function init(){

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 79

document.getElementById("divBlock").style.top = "100px";
document.getElementById("divBlock").style.left = "100px";

}
function moveH(elem, distance){
var objElem = document.getElementById(elem);
var curLeft = parseInt(objElem.style.left);
objElem.style.left = (curLeft + distance) + "px";

}
function moveV(elem, distance){
var objElem = document.getElementById(elem);
var curTop = parseInt(objElem.style.top);
objElem.style.top = (curTop + distance) + "px";

}
</script>
</head>
<body onload="init();">
<form>
<input type="button" value="Left" onclick="moveH('divBlock',-10);">
<input type="button" value="Right" onclick="moveH('divBlock',10);">
<input type="button" value="Up" onclick="moveV('divBlock',-10);">
<input type="button" value="Down" onclick="moveV('divBlock',10);">
</form>
<div id="divBlock"></div>
</body>
</html>
26

Output

In the output user can move the square in the 4 different directions by clicking the
appropriate button.

The init() function set the top and left properties of the divBlock div, thus making
the properties accessible to JavaScript.

The moveH() function uses parseInt() to cut off the units (e.g, px) from the value of
the left property of the div and assign the resulting integer to the curLeft variable. It then
modifies the left property of the element by adding the value passed in for distance.

The moveV() function does the same thing, but it modifies the top property rather
than the left property.The functions are triggered with onclick event handlers.
Element Visibility

Document elements can be specified to be visible or hidden with the values if their

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 80

visibility property. The two possible values for the visibility are – visible and hidden.

The following example displays the 4 table elements and allows the user to toggle
each table element causing the element to appear and disappear in the document display.

Output

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml">
<head>
<title>Showing and Hiding Elements with JavaScript</title>
</head>
<!—vis.html -->
<script type="text/javascript">

function changeVisibility(TR){
if (document.getElementById(TR).style.visibility=="hidden") {
document.getElementById(TR).style.visibility = "visible";

} else {
document.getElementById(TR).style.visibility = "hidden";

}
}
</script>
<body>
<h1>Hiding and Showing Elements</h1>
<table >
<tr id="tr1"><td>tableElem Row 1</td></tr>
<tr id="tr2"><td>tableElem Row 2</td></tr>
<tr id="tr3"><td>tableElem Row 3</td></tr>
<tr id="tr4"><td>tableElem Row 4</td></tr>

</table>
<form>
<h2>visibility</h2>
<input type="button" onclick="changeVisibility('tr1')" value="TR1">
<input type="button" onclick="changeVisibility('tr2')" value="TR2">
<input type="button" onclick="changeVisibility('tr3')" value="TR3">
<input type="button" onclick="changeVisibility('tr4')" value="TR4">

</form>
</body>
</html>

Changing Colors and Fonts
The background and foreground colors of the document display and font properties

of the text can be changed dynamically.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 81

Changing the Color
Document colors can be set dynamically, although it is questionable whether this is

a good idea. Your colors were chosen because they best presented your page contents. If,
though, you wish to provide color alternatives, you can make these colors user
selectable. In the following example, a range of background and foreground colors can
be chosen by clicking radio buttons.

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml">
<!—color.html -- >
<head>
<script type="text/javascript">

function ChangeBackground(Color) {
document.body.style.backgroundColor = Color
}
function ChangeForeground(Color) {
document.body.style.color = Color

}
</script>
</head>
<body>
<P class=head2>Scripting Document Colors</P>
<P>Some of these document properties have style sheet equivalents. For instance,the
bgColor and fgColor properties are equivalent to the background-color and color style
properties, respectively. Still, it is always preferable to use CSS style properties when
scripting style changes for compatibility with standards.</P><P>Document colors can be
set dynamically, although it is questionable whether this is a good idea. Supposedly, your
colors were chosen because they best presented your page contents. If, though, you wish
to provide color alternatives, you can make these colors user selectable. In the following
example, a range of background and foreground colors can be chosen by clicking radio
(continued on next page) buttons.</P>

In the above example functions ChangeBackground() and ChangeForeground() are
called whenever user clicks the radio buttons of different colors to change the
background and foreground color of the document respectively.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 82

Background Color:

<input type="radio" name="BG" onclick="ChangeBackground('red')"/>Red
<input type="radio" name="BG" onclick="ChangeBackground('green')"/>Green
<input type="radio" name="BG" onclick="ChangeBackground('blue')"/>Blue
<input type="radio" name="BG" onclick="ChangeBackground('black')"/>Black
<input type="radio" name="BG" onclick="ChangeBackground('white')"/>White

Foreground Color:

<input type="radio" name="FG" onclick="ChangeForeground('red')"/>Red
<input type="radio" name="FG" onclick="ChangeForeground('green')"/>Green
<input type="radio" name="FG" onclick="ChangeForeground('blue')"/>Blue
<input type="radio" name="FG" onclick="ChangeForeground('black')"/>Black
<input type="radio" name="FG" onclick="ChangeForeground('white')"/>White

</body>
</html>
Changing font

Web users are accustomed to having links in documents change color when the cursor
is placed over them. Any property of a link can be changed by using the mouse event, ‘
mouseover ‘ to trigger JavaScript event handlers. Thus the font style and font size, as
well as the color, can be changed when the cursor is placed over a link. The link can be
changed back to its original form when an event handler is triggered with the ‘ mouseout
‘event. In the following example, the only element is a sentence with an embedded link.
The foreground color for the document is the default black. The link is presented in blue.
When the mouse cursor is placed over the link, its color changes to red and its font style
changes to italic.

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- link.html -->
<html xmlns = "http://www.w3.org/1999/xhtml">

<head>
<title> Dynamic fonts for links </title>
<style type = "text/css"> .regText {font: Times; font-size: 16pt;} </style>

</head>
<body>

<p class = "regText">The subject <a style = "color: blue;"
onmouseover = "this.style.color = 'red'; this.style.font = 'italic 16pt Times';"
onmouseout = "this.style.color = 'blue'; this.style.font = 'normal 16pt

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 83

Times';"> Web Programming is very interesting
</p>

</body>
</html>

Output
Display of link,html with the cursor not over the link

The subject Web Programming Is very interesting

Display of link,html with the cursor over the link

The subject Web Programming Is very interesting

Dynamic Content

Using JavaScript we can change the content of the different document elements
like contents of text box, document title , table contents dynamically. In the following
example HTML tables can be created and manipulated dynamically with JavaScript.
Each table element contains a rows array and methods for inserting and deleting rows:
insertRow() and deleteRow(). Each tr element contains a cells array and methods for
inserting and deleting cells: insertCell() and deleteCell(). The following example shows
how these objects can be used to dynamically create HTML tables.

The body of the page contains a table with an id of formName. The table contains a
single row of headers.

Below the table is a form that allows the user to enter a first and last name. When
the "Add Name" button is clicked, the addRow() function is called and passed in the id of
the table (tblPeople) and a new array containing the user-entered values.

The addRow() function uses the insertRow() method of the table to add a new row
at the end of the table and then loops through the passed-in array, creating and populating
one cell for each item. The function also returns the new row. Although the returned
value isn't used in this example, it can be useful if you then want to manipulate the new
row further.

The above example display the document with empty table. Whenever user press the
Add Name button a new row is added to the table.

<?xml version = "1.0" encoding = "utf-8"?>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 84

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

< ! -- dynamic.html -- >
<html xmlns = "http://www.w3.org/1999/xhtml">
<head>
<title>Manipulating Tables</title>

<script type="text/javascript">
function addRow(tableId, cells){
var tableElem = document.getElementById(tableId);
var newRow = tableElem.insertRow(tableElem.rows.length);
var newCell;
for (var i = 0; i < cells.length; i++) {
newCell = newRow.insertCell(newRow.cells.length);
newCell.innerHTML = cells[i];

}
return newRow;

}
</script>
</head>

<body>
<table id="tblPeople" border="1">
<tr>
<th>First Name</th>
<th>Middle Name</th>
<th>Last Name</th>

</tr>
</table>
<hr>
<form name="formName">
First Name: <input type="text" name="FirstName">
Middle Name: <input type="text" name="MiddleName">
Last Name: <input type="text" name="LastName">

<center><input type="button" value="Add Name"
onclick="addRow('tblPeople',
[this.form.FirstName.value,this.form.MiddleName.value, this.form.LastName.value]

);"> </center>
<hr>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 85

</form>
</body>
</html>

Stacking Elements
The multiple elements can occupy the same space in the document, one is

considered to be on top and is displayed. The top element hides the parts of the lower
elements on which it is imposed. When multiple elements occupy the same space on the
document, then comes the question of which element is to be placed on the top of other
elements. So for this we have to consider the third dimension of the document. Although
the display is restricted to two dimensions, the effect of the third dimension is possible
through the concept of stacked element. The placement of element in this third dimension
is controlled by the z-index attribute of element. An element whose z-index is greater
than that of element in the same space will be displayed over the other element,
effectively hiding the element with smaller z-index value. The JavaScript property
associated with the z-index attribute is zIndex.

In the following example, three images are placed on the display so that they
verlap. In XHTML description of this, each image tag includes an onclick attribute,
which is used to trigger the execution of JavaScript handler function. First the function
defines DOM addresses the last top element and the new top element. Then the function
sets the zIndex value of the two elements so that the old top element has the value of 0
and the new top element has the value 10, effectively putting it at the top. The script
keeps track of which image is currently on top with the global variable top, which is
changed every time a new element is moved to the top with the toTop function.

This example displays all 3 overlapping images. Whenever user clicks on the
particular image,that image will be displayed on top of other two images.

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml">

<! – satck.html -->

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 86

<head>
<title> Dynamic stacking of images </title>
<script type = "text/javascript">

var top = "i1";
function toTop(newTop) {

domTop = document.getElementById(top).style;
domNew = document.getElementById(newTop).style;
domTop.zIndex = "0";
domNew.zIndex = "10";
top = newTop;

}
</script>

<style type = "text/css">
.img1 {position: absolute; top: 0; left: 0; z-index: 0;}
.img2 {position: absolute; top: 50px; left: 110px; z-index: 0;}
.img3 {position: absolute; top: 100px; left: 220px; z-index: 0;} </style>

</head>
<body>
<p> <img class = "img1" id = "i1" src = "image1.jpg" onclick =

"toTop('i1')" />
<img class = "img2" id = "i2" src = "image2.jpg" onclick =

"toTop('i2')" />
<img class = "img3" id = "i3" src = "image3.jpg" onclick =

"toTop('i3')" />
</p>

</body>
</html>
Locating the Mouse Cursor

An event is a notification about something specific that has occurred because of
browser user action, such as mouse click on a form button, radio button etc. Strictly
speaking event is an object that is implicitly created by the browser and the JavaScript
system in response to something happened. Event object includes information about the
event. For example mouse-click is one such event. Whenever user mouse-click on the
document, event object is created which includes information like where and on which
element event has occurred. A mouse-click event defines two pairs of properties that give
geometric coordinates of the position of the element in the display that created the event.
One pair of the coordinates, clientX and clientY gives the coordinates of the document

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 87

display relative to the upper-left corner of the browser display window, in pixels. The
other pair, screen and screenY gives coordinates of the element but relative client
computer’s screen.

In the following example, every time user clicks the mouse button an alter box
displays the clientX, clientY, screenX and screen coordinates. The handler show_coords
with event as parameter is triggred by the onclick attribute of the body element.

Reacting to a Mouse Click
In the following example mousedown and mouseup events are used to show and

hide the image on the display under the mouse cursor whenever the mouse button is
clicked. Whenever user clicks the mouse button ie. onmousedown event handler
displayIt() is called with event as parameter and whenever user leaves the mouse button
ie. onmouseup event handler hideIt() is called.

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!—mouse.html -- >
<html xmlns = "http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
function show_coords(event)
{
x=event.clientX;
y=event.clientY;
x1=event.screenX;
y1=event.screenY;

alert("ClientX coords: " + x + ", ClientY coords: " + y + ",ScreenX coords:
" + x1 + ", ScreenY coords: " + y1);
}
</script>
</head>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 88

<body onclick="show_coords(event)">
<p>Click in the document. An alert box will alert the x and y coordinates of
the cursor.</p>
</body>
</html>

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<!—reacting.html

Display a image when the mouse button is pressed,
-->
<html xmlns = "http://www.w3.org/1999/xhtml">

<head>
<title> Sense events anywhere </title>

<script type = "text/javascript">
function displayIt(evt) {

var dom = document.getElementById("image");
dom.style.left = (evt.clientX - 30) + "px";
dom.style.top = (evt.clientY - 25) + "px";
dom.style.visibility = "visible";

}

function hideIt() {
document.getElementById("image").style.visibility =

"hidden";
}
</script>

</head>
<body onmousedown="displayIt(event);"

onmouseup = "hideIt();">
<div id= "image"

style = " visibility: hidden; position: relative">

</div>
</body>

</html>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 89

Slow Movements of Elements
With JavaScript we can not only move the elements instantly, we can also move

element slowly from one place to another. The one way to move an element slowly is to
move it by small amount many times, with moves separated by small amounts of time.
Such slow movement of elements is accomplished by using two window methods
available in JavaScript: setTimeout and setInterval.

The setTimeout method has two parameters -- first one is string of JavaScript code to
be executed and second parameter is number of mseconds of delay before executing the
given script.

The setInterval method has two forms. One takes two parameter with first specifying
the script code to be executed and second specifying the interval in mseconds between
executions. The second form takes variable number of parameters. First one is the name
of the function to be called, the second is the interval in mseconds between the calls to
the function and remaining parameter are used as actual parameters to the function being
called.

In the following example, image is moved slowly from position(50,100) to a new
position (700,100). The move is accomplished by using the setTimeout method to call a
move function every msecond until the final position is reached. Example includes
separate html file and JavaScript file.

Initial position of the element is set with initImage() function. The onload attribute of
the body element is used to call this function.

The moveImage() function is used to move the image. It moves the image 1 pixel
towards the final position and then calls itself with the new coordinates using the
setTimeout.

/* moveImage.js JavaScript to move image*/

var dom, x, y, finalx = 700;

function initImage() {
dom = document.getElementById('image').style;

/* Get the current position of the image */
var x = parseInt(dom.left);
var y = parseInt(dom.top);

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 90

/* Call the function that moves it */
moveImage(x, y);

}
// A function to move the text from its original
// position to (x, finaly)

function moveImage(x, y) {

/* If the x coordinates are not equal, move
x toward finalx */

if (x != finalx)
x++;

if ((x != finalx)) {

dom.left = x + "px";
dom.top = y + "px";

/* Recursive call, after a 1-millisecond delay */

setTimeout("moveImage(" + x + "," + y + ")", 1);
}

}

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- Illustrates a moving image from one position to another
Uses the JavaScript from file moveimage.js
-->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title> Moving Image </title>
<script type = "text/javascript" src = "moveimage.js">
</script>

</head>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 91

<body onload = "initImage()">
<p>

</p>

</body>
</html>

Dragging and Dropping Elements

One of more powerful effects of event handling is allowing the user to drag and drop
elements around the display screen. The mouseup, mousedown and mousemove events
can be used implement this. By changing the left and top properties, element can be move
from one place to another. To illustrate drag and drop, we develop an example that allows
the user to drag and drop a rectangle box. In this first we create a box that is to be moved
around in document display. There three different handlers for mouseup, mousedown
and mousemove events. The mousedown event handler mouseD, takes the event as its
parameter. It gets the element to be moved and puts it in global variable so that it is
vailable to the other handlers. Then it determines the coordinates of the current position
of the element to be moved and computes the difference between them and the
coordinates of the position of the mouse cursor. These two differences , which are used
by the handler for mousemove to actually move the element.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Drag and drop</title>
<style type="text/css">
body {
background-color: #fff;
margin: 0;
}

p {
margin: 80px 0 0 100px;

}
#dObject {
border: 2px solid;

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 92

border-color: #6c0 #170 #170 #6c0;
background-color: red;
width: 40px;
height: 40px;
padding: 0.5em 0.8em;
position: absolute;
text-align: center;
display: none;
cursor: default;
}

</style>

<script type="text/javascript">

var dragObject, offsetX, offsetY, isDragging=false;
window.onload = init;
document.onmousemove = mouseM;
document.onmouseup = mouseU;

function init() {
var ob = document.getElementById("dObject");

ob.style.left="100px";
ob.style.top="100px";
41
ob.style.display="block";

}

function mouseD(ob,e) {
dragObject = ob;
if (window.event) e=window.event;

var dragX = parseInt(dragObject.style.left);
var dragY = parseInt(dragObject.style.top);
var mouseX = e.clientX;
var mouseY = e.clientY;

offsetX = mouseX - dragX;
offsetY = mouseY - dragY;
isDragging = true;

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 93

return false;
}

function mouseU() {
if (!isDragging) return;
isDragging = false;
return false;

}

function mouseM(e) {
if (!isDragging) return;

if (window.event) e=window.event;

var newX = e.clientX - offsetX;
var newY = e.clientY - offsetY;

dragObject.style.left = newX + "px";
dragObject.style.top = newY + "px";

return false;
}

</script>
</head>
<body>
<p style="position:absolute;left:300px"> Drag and Drop the Box </p>
<div id="dObject" onmousedown="mouseD(this,event)"></div>
</body>
</html>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 94

UNIT - 5: XML
SYLLABUS:

Introduction; Syntax; Document structure;

Document Type definitions; Namespaces;
Displaying raw XML documents
Displaying XML documents with CSS;
XSLT style sheets; XML processors;
XML schemas;; Web services.

o There is a general low level syntax that is appreciable on all XML documents
o The other syntactic level is specified by DTD (Document Type Definition) or XML
schemas.

particular document or collection of documents.

document.

instructions to the XML parser

the document is a XML document and also specifies version number of XML standard.

<?xml version = “1.0” encoding = “utf-8”?>

-sensitive.

e opening tag appears on first
line of the code

Example:
1. <?xml version = “1.0” encoding = “utf-8”?>
<student>

<name>Santhosh B S</name>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 95

<usn>1RN10CS090</usn>
</student>
2. Tags with attributes
The above code can be also written as
<student name = “Santhosh B S” usn = “1RN10CS090”>
</student>
XML DOCUMENT STRUCTURE

o One of the document – that specifies its tag set
o The other specifies the structural syntactic role and one that contains a style sheet to
describe how content of the document is to be printed

l roles are given as either a DTD or an XML schema

entities
document entity is the physical file that represent the document itself

into multiple entities.

document becomes simple

of references to a single copy of the data
Many documents include information that cannot be represented as text. Ex: images Such
information units are stored as binary data These binary data must be a separate unit to be
able to include in XML document These entities are called as Binary entities When an
XML processor encounters the name of a non-binary entity in a document, it replaces
name with value it references Binary entities can be handled only by browsers XML
processor or parsers can only deal with text Entity names can be of any length. They must
begin with a letter, dash or a colon A reference to an entity is its name with a prepended
ampersand and an appended semicolon
Example: if stud_name is the name of entity, &stud_name; is a reference to it One of
the use of entities is to allow characters used as markup delimiters to appears as
themselvesThe entity references are normally placed in CDATA section Syntax: <!
[CDATA[content]] >
For example, instead of The last word of the line is >>> here <<<. the
following could be used:
<![CDATA[The last word of the line is >>> here <<<]]>
UMENT TYPE DEFINITIONS
A DTD is a set of structural rules called declarations which specify a set of elements that
can appethe document. It also specifies how and where these elements appear DTD also
specify entity definitions DTD is more useful when the same tag set definition is used by
collection of documents A DTD can be embedded in XML document whose syntax rules
it describes In this case, a DTD is called as internal DTD or a separate file can be created

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 96

which can be linked to file. In this case the DTD is called as External DTD An external
DTD can be used with more than one XML file Syntactically, a DTD is a sequence of
declarations. Each declaration has the form of markup declaratiExample: <!keyword...>
Four possible keywords can be used in a declaration:
o ELEMENT, used to define tags;
o ATTLIST, used to define tag attributes;
o ENTITY, used to define entities; and
o NOTATION, used to define data type notations.
ARING ELEMENTS
DTD follows rules of context-free grammar for element declaration A DTD describes the
syntactic structure of a particular set of documents Each element declaration in a DTD
specifies the structure of one category of elements An element is a node in such a tree
either a leaf node or an internal node If element is leaf node, its syntactic description is its
character pattern If the element is internal node, its syntactic description is a list of its
child element The form of an element declaration for elements that contain elements is
as follows:

<!ELEMENT element_name (list of names of child elements)>

For example, consider the following declaration:
<!ELEMENT memo (from, to, date, re, body)>
This element declaration would describe the document tree structure shown in Figure 7.1.

In many cases, it is necessary to specify the number of times that a child element may
appear. This can be done in a DTD declaration by adding a modifier to the child element
specification. These modifiersdescribed in Table 7.1, are borrowed from regular
expressions. Any child element specification can be followed by one of the modifiers.

Modifier Meaning
Modifier

Meani

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 97

Consider the following DTD declaration:
<!ELEMENT person (parent+, age, spouse?, sibling*)>

one or more parent elements, one age element, possibly a spouse element, and zero or
more sibling elements.

ent of their parent nodes,
which are elements.

Parsable character data is a string of any printable characters except “less than” (<),
“greater than” (>), and the ampersand (&).

similar to the XHTML img element.
content.

<!ELEMENT element_name (#PCDATA)>
DECLARING ATTRIBUTES
The attributes of an element are declared separately from the element declaration in a
DTD. An attribute declaration must include the name of the element to which the
attribute belongs, the attribute’s name, its type, and a default option. The general form of
an attribute declaration is as follows:

<!ATTLIST element_name attribute_name attribute type default_option>

If more than one attribute is declared for a given element, the declarations can be
combined, as in the following
element:

The default option in an attribute declaration can specify either an actual value or a
requirement for the value of the attribute in the XML document.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 98

For example, suppose the DTD included the following attribute specifications:

Then the following XML element would be valid for this DTD:
<airplane places = “10” engine_type = “jet”> </airplane>
DECLARING ENTITIES

that they can be referenced anywhere in the content of an
XML document, in which case they are called general entities. The predefined entities are
all general entities.

h case
they are called parameter entities.

<!ENTITY [%] entity_name “entity_value”>

the entity is a parameter entity rather than a general entity.

cases, the entity is called an external text entity. The form of the declaration of an
external text entity is
<!ENTITY entity_name SYSTEM “file_location”>
A Sample DTD

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 99

Some XML parsers check documents that have DTDs in order to ensure that the
documents conform to the structure specified in the DTDs. These parsers are called
validating parsers.
If an XML document specifies a DTD and is parsed by a validating XML parser, and the

parser determines that the document conforms to the DTD, the document is called valid.
Handwritten XML documents often are not well formed, which means that they do not

follow XML’ssyntactic rules.
Any errors they contain are detected by all XML parsers, which must report them.
XML parsers are not allowed to either repair or ignore errors.
Validating XML parsers detect and report all inconsistencies in documents relative to

their DTDs.
INTERNAL AND EXTERNAL DTDs
Internal DTD Example:

External DTD Example: [assuming that the DTD is stored in the file named planes.dtd]
<!DOCTYPE planes_for_sale SYSTEM “planes.dtd”>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 100

//sampleDTD.xml
<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE vtu_stud_info SYSTEM "vtu.dtd">
<VTU>
<students>

<USN> 1RN10CS090 </USN>
<name> Santhosh B S</name>
<college> RNSIT </college>
<branch> CSE </branch>
<year> 2010 </year>
<email> santhosh.b.suresh@gmail.com </email>

</students>
<students>

<USN> 1RN0IS016 </USN>
<name> Divya K </name>

<college> RNSIT </college>
<branch> ISE </branch>
<year> 2009 </year>
<email> divya@gmail.com </email>

</students>
</VTU>
NAMESPACES
 One problem with using different markup vocabularies in the same document is that
collisions between names that are defined in two or more of those tag sets could result.
 An example of this situation is having a <table> tag for a category of furniture and a
<table> tag from XHTML for information tables.
 Clearly, software systems that process XML documents must be capable of
unambiguously recognizing the element names in those documents.
 To deal with this problem, the W3C has developed a standard for XML namespaces (at
http://www.w3.org/TR/REC-xml-names).
 An XML namespace is a collection of element and attribute names used in XML
documents. The name of a namespace usually has the form of a uniform resource
identifier (URI).
 A namespace for the elements and attributes of the hierarchy rooted at a particular
element is declared as the value of the attribute xmlns.
The form of a namespace declaration for an element is
<element_name xmlns[:prefix] = URI>
 The square brackets indicate that what is within them is optional. The prefix, if
included, is the name that must be attached to the names in the declared namespace.
 If the prefix is not included, the namespace is the default for the document.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 101

 A prefix is used for two reasons. First, most URIs are too long to be typed on every
occurrence of every name from the namespace. Second, a URI includes characters that
are invalid in XML.
 Note that the element for which a namespace is declared is usually the root of a
document.
 For ex: all XHTML documents in this notes declare the xmlns namespace on the root
element, html:
<html xmlns = “http://www.w3.org/1999/xhtml”>
 This declaration defines the default namespace for XHTML documents, which is
http://www.w3.org/1999/xhtml.
 The next example declares two namespaces. The first is declared to be the default
namespace; the
second defines the prefix, cap:

XML SCHEMAS
XML schemas is similar to DTD i.e. schemas are used to define the structure of the
document
DTDs had several disadvantages:

-related to XML, therefore they cannot be analysed with
an XML processor

ontent of the tag. All of them are specified as
text
Hence, schemas were introduced
SCHEMA FUNDAMENTALS

a is
similar to an object

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 102

o They are used to specify the structure of its instance of XML document, including
which elements and attributes may appear in instance document. It also specifies where
and how often the elements may appear
o The schema specifies the datatype of every element and attributes of XML

namespace-centric
DEFINING A SCHEMA
Schemas themselves are written with the use of a collection of tags, or a vocabulary, from
a namespace that is, in effect, a schema of schemas. The name of this namespace is
http://www.w3.org/2001/XMLSchema.

follows:
xmlns:xsd = “http://www.w3.org/2001/XMLSchema”

targetNamespace attribute of the schema element.
targetNamespace = “http://cs.uccs.edu/planeSchema”

ment are to
be included in the target namespace, schema’s elementFormDefault must be set to
qualified, as follows: elementFormDefault = “qualified”

given withanother xmlns specification, but this time without the prefix: xmlns =
http://cs.uccs.edu/planeSchema Example in 2 alternate methods of defining a schema

The above is an alternative to the preceding opening tag would be to make the
XMLSchema names the default so that they do not need to be prefixed in the schema.
Then the names in the target namespace would need to be prefixed.
DEFINING A SCHEMA INSTANCE

The above is an alternative to the preceding opening tag would be to make the
XMLSchema names the default so that they do not need to be prefixed in the schema.
Then the names in the target namespace would need to be prefixed.

its schema.
For example, if the root element is planes, we could have

<planes
xmlns = “http://cs.uccs.edu/planeSchema”
... >

he root element of an instance document is for
the schemaLocation attribute. This attribute is used to name the standard namespace for
instances, which includes the name XMLSchema-instance.
xmlns:xsi = “http://www.w3.org/2001/XMLSchema-instance”

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 103

the instance document must specify the filename of the schema in which the
default namespace is defined. This is accomplished with the schemaLocation attribute,
which takes two values: the namespace of the schema and the filename of the schema.

ng everything, we get,

AN OVERVIEW OF DATA TYPES
There are two categories of user-defined schema data types: simple and complex.

cannot have attributes or include nested elements.

Data declarations in an XML schema can be either local or global.
ild of the

schema element.

Global elements
are visible in the whole schema in which they are declared.
SIMPLE TYPES

lement tag.
<xsd:element name = “engine” type = “xsd:string” />

following element:
<engine> inline six cylinder fuel injected </engine>

value with the default attribute:

-defined data type is described in a simpleType element with the use of
facets.

ontent of a restriction element, which gives the base
type name.

specifies the value of the facet.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 104

COMPLEX TYPES
Complex types are defined with the complexType tag. The elements that are the content
of an element-only element must be contained in an ordered group, an unordered group, a
choice, or a named group. The sequence element is used to contain an ordered group of
elements. Example:

A complex type whose elements are an unordered group is defined in an all element.
Elements in all and
sequence groups can include the minOccurs and maxOccurs attributes to specify the
numbers of occurrences. Example:
<?xml version = “1.0” encoding = “utf-8”?>

An XML instance that conforms to the planes.xsd schema is as follows:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 105

VALIDATING INSTANCES OF SCHEMAS

XSV is an abbreviation for XML Schema Validator. If the schema and the instance
document are available on the Web, xsv can be used online, like the XHTML validation
tool at the W3C Web site. This tool can also be downloaded and run on any computer.
The Web site for xsv is http://www.w3.org/XML/Schema#XSV.
The output of xsv is an XML document. When the tool is run from the command line, the
output document appears on the screen with no formatting, so it is a bit difficult to read.
The following is the output of xsv run on planes.xml:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 106

DISPLAYING RAW XML DOCUMENTS
If an XML document is displayed without a style sheet that defines presentation styles for
the document’s tags, the displayed document will not have formatted content.
DISPLAYING XML DOCUMENTS WITH CSS
//6a.xml
<?xml version = "1.0" encoding = "utf-8"?>

<?xml-stylesheet type = "text/css" href = "6a.css"?>
<VTU>
<students>

<USN> 1RN10CS090 </USN>
<name> Santhosh B S</name>
<college> RNSIT </college>
<branch> CSE </branch>
<YOJ> 2010 </YOJ>
<email> santhosh.b.suresh@gmail.com </email>

</students>
<students>

<USN> 1RN10CS003 </USN>
<name> Akash Bangera </name>

<college> RNSIT </college>
<branch> CSE </branch>
<YOJ> 2010 </YOJ>
<email> akash.bangera@gmail.com </email>

</students>
<students>

<USN> 1RN10CS050 </USN>
<name> Manoj Kumar</name>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 107

<college> RNSIT </college>
<branch>CSE </branch>
<YOJ> 2010</YOJ>
<email> manoj.kumar@gmail.com </email>

</students>
</VTU>
//6a.css
students
{ clear: both; float : left;}
USN
{color: green; }
name
{background: yellow;}
college
{ display: none;}
branch
{color : #cd00dc; text-align: right;}
YOJ
{background : red; color : white;}
email
{ color: blue;}
XSLT STYLE SHEETS

defining the presentation and transformations of XML documents.

o XSL Transformations (XSLT),
o XML Path Language (XPath), and
o XSL Formatting Objects (XSL-FO).

formats, perhaps using different DTDs.

primarily for display. In the transformation of an XML document, the content of elements
can be moved, modified, sorted, and converted to attribute values, among other things.

formed with the use of other XSLT style sheets.

documents, such as specific elements that are in specific positions in the document or
elements that have particular attribute values.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 108

new XML document structures with XPointer. The XPath standard is given at
http://www.w3.org/TR/xpath.
OVERVIEW OF XSLT

-style programming language.

selection constructs, and conditional expressions for multiple selection.

The XSLT document is the program to be executed; the XML document is the input
data to the program.

possibly modified, and merged with parts of
the XSLT
document to form a new document, which is sometimes called an XSL document.

An XSLT document consists primarily of one or more templates.
Each template describes a function that is executed whenever the XSLT processor finds a
match to thetemplate’s pattern.
One XSLT model of processing XML data is called the template-driven model, which
works well when the data consists of multiple instances of highly regular data collections,
as with files containingrecords.
XSLT can also deal with irregular and recursive data, using template fragments in what is
called thedata-driven model.
A single XSLT style sheet can include the mechanisms for both the template- and data-
driven models.
XSL TRANSFORMATIONS FOR PRESENTATION
Consider a sample program:
//6b.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="6b.xsl"?>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 109

<vtu>
<student>

<name>Santhosh B S</name>
<usn>1RN10CS090</usn>

<collegeName>RNSIT</collegeName>
<branch>CSE</branch>
<year>2010</year>
<email> santhosh.b.suresh@gmail.com </email>

</student>
<student>

<name>Akash Bangera</name>
<usn>1RN10CS003</usn>

<collegeName>RNSIT</collegeName>
<branch>CSE</branch>
<year>2010</year>
<email>akash.bangera@gmail.com</email>

</student>
<student>

<name>Manoj Kumar</name>
<usn>1RN10CS050</usn>

<collegeName>RNSIT</collegeName>
<branch>CSE</branch>
<year>2010</year>
<email>manoj.kumar@gmail.com</email>

</student>
</vtu>

An XML document that is to be used as data to an XSLT style sheet must include a
processing instruction to inform the XSLT processor that the style sheet is to be used.
The form of this instruction is as follows:

//6b.xsl
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>
<body>
<h2>VTU Student Information</h2>

<table border="1">

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 110

<tr bgcolor="#99cd32">
<th>name</th>
<th>usn</th>
<th>collegeName</th>
<th>branch</th>
<th>year</th>
<th>email</th>
</tr>

<xsl:for-each select="vtu/student">
<xsl:choose>

<xsl:when test="name = 'Santhosh B S'">
<tr bgcolor="yellow">
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="usn"/></td>
<td><xsl:value-of select="collegeName"/></td>
<td><xsl:value-of select="branch"/></td>

<td><xsl:value-of select="year"/></td>
<td><xsl:value-of select="email"/></td>
</tr>
</xsl:when>
<xsl:otherwise>
<tr >

<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="usn"/></td>
<td><xsl:value-of select="collegeName"/></td>
<td><xsl:value-of select="branch"/></td>
<td><xsl:value-of select="year"/></td>
<td><xsl:value-of select="email"/></td>

</tr>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>

</table>
<h2>selected student is highlighted</h2>

</body>
</html>

</xsl:template>
</xsl:stylesheet>
An XSLT style sheet is an XML document whose root element is the special-purpose
element stylesheet. The stylesheet tag defines namespaces as its attributes and encloses

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 111

the collection of elements that defines its transformations. It also identifies the document
as an XSLT document.
<xsl:stylesheet version="1.0"
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

In many XSLT documents, a template is included to match the root node of the XML
document.
<xsl:template match="/">

In many cases, the content of an element of the XML document is to be copied to the
output document. This is done with the value-of element, which uses a select attribute to
specify the element of the XML
document whose contents are to be copied.
<xsl:value-of select="name"/>
The select attribute can specify any node of the XML document. This is an advantage of
XSLT formatting over CSS, in which the order of data as stored is the only possible
order of display.
XML PROCESSORS
The XML processor takes the XML document and DTD and processes the information so
that it may then be used by applications requesting the information. The processor is a
software module that reads the XML document to find out the structure and content of
the XML document. The structure and content can be derived by the processor because
XML documents contain self-explanatory data.
THE PURPOSES OF XML PROCESSORS

-formedness.

their definitions.
specify that their values

in an XML document have default values, which must be copied into the XML document
during processing.

validating parser, the structure of the XML document must be checked to ensure that it is
legitimate.
THE SAX APPROACH

of the document is recognized, the processor signals
an event to the application by calling an event handler for the particular structure that was
found.

closing tags.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 112

THE DOM APPROACH

for HTML and XML documents.
the way a document is accessed and

manipulated

o Programmers can build documents, navigate their structure, and add, modify, or delete
elements and content.
o Provides a standard programming interface that can be used in a wide variety of
environments and applications.
o structural isomorphism.

sequential listing provided by SAX parsers.
be accessed more

than once by the application.

document, that can most easily be done if the whole document is accessible at the same
time.

ts of the document are possible.

this approach avoids any processing of a document that is later found to be invalid.
WEB SERVICES
A Web service is a method that resides and is executed on a Web server, but that can be
called from any computer on the Web. The standard technologies to support Web
services are WSDL, UDDI, SOAP, and XML.
WSDL - It is used to describe the specific operations provided by the Web service, as
well as the protocols for the messages the Web service can send and receive.
UDDI - also provides ways to query a Web services registry to determine what specific
services are available.
SOAP - was originally an acronym for Standard Object Access Protocol, designed to
describe data objects.
XML - provides a standard way for a group of users to define the structure of their data
documents, using a subject-specific mark-up language.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 113

UNIT - 6: PERL, CGI PROGRAMMING

Origins and uses of Perl; Scalars and their operations

Assignment statements and simple input and output; Control statements;
Fundamentals of arrays; Hashes; References;
Pattern matching; File input and output;
Functions; Examples. The Common Gateway Interface;
CGI linkage; Query string format; CGI.pm module;
A survey example; Cookies. Database access with Perl and MySQL

Origins and uses of Perl
Began in the late 1980s as a more powerful replacement for the capabilities of awk (text
file processing) and sh (UNIX system administration)
- Now includes sockets for communications and modules for OOP, among other things
- Now the most commonly used language for CGI, in part because of its pattern matching
capabilities
- Perl programs are usually processed the same way as many Java programs, compilation
to an intermediate form, followed by interpretation

Scalars and their operations
- Scalars are variables that can store either numbers, strings, or references (discussed
later)
- Numbers are stored in double format; integers are rarely used
- Numeric literals have the same form as in other common languages
Perl has two kinds of string literals, those delimited by double quotes and those delimited
by single quotes
- Single-quoted literals cannot include escape sequences
- Double-quoted literals can include them
- In both cases, the delimiting quote can be embedded by preceding it with a backslash
- If you want a string literal with single-quote characteristics, but don’t want delimit it
with single quotes, use qx, where x is a new delimiter
- For double quotes, use qq
- If the new delimiter is a parenthesis, a brace, a bracket, or a pointed bracket, the right
delimiter must be the other member of the pair

- A null string can be '' or ""

Scalar type is specified by preceding the name with a $

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 114

- Name must begin with a letter; any number of letters, digits, or underscore characters
can follow
- Names are case sensitive
- By convention, names of variables use only lowercase letters
- Names embedded in double-quoted string literals are interpolated
e.g., If the value of $salary is 47500, the value of
"Jack makes $salary dollars per year" is "Jack makes 47500 dollars per year"
- Variables are implicitly declared
- A scalar variable that has not been assigned a value has the value undef (numeric value
is 0; string value is the null string)
- Perl has many implicit variables, the most common

- of which is $_ (Look at perldoc perlvar)
- Numeric Operators
- Like those of C, Java, etc.

Operator Associativity
++, -- nonassociative
unary - right
** right
*, /, % left
binary +, - left

- String Operators
- Catenation - denoted by a period e.g., If the value of $dessert is "apple", the value of
$dessert . " pie" is "apple pie"
- Repetition - denoted by x e.g., If the value of $greeting is "hello ", the value of

- $greeting x 3 is "hello hello hello "
- String Functions
- Functions and operators are closely related in Perl
- e.g., if cube is a predefined function, it can be called with either cube(x) or cube x Name
Parameters Result chomp a string the string w/terminating newline characters removed
length a string the number of characters in the string lc a string the string with uppercase
letters converted to lower uc a string the string with lowercase letters converted to upper
hex a string the decimal value of the hexadecimal number in the
string join a character and the strings catenated a list of strings together with the character
inserted between them

Control statements

In the last chapter you learned how to decode form data, and mail it to yourself.
However, one problem with the guestbook program is that it didn't do any error-checking
or specialized processing. You might not want to get blank forms, or you may want to

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 115

require certain fields to be filled out. You might also want to write a quiz or
questionnaire, and have your program take different actions depending on the answers.
All of these things require some more advanced processing of the form data, and that will
usually involve using control structures in your Perl code.

Control structures include conditional statements, such as if/elsif/else blocks, as well as
loops like foreach, for and while.

If Conditions

You've already seen if/elsif in action. The structure is always started by the word if,
followed by a condition to be evaluated, then a pair of braces indicating the beginning
and end of the code to be executed if the condition is true. The condition is enclosed in
parentheses:

if (condition) {
code to be executed

}

The condition statement can be anything that evaluates to true or false. In Perl, any string
is true except the empty string and 0. Any number is true except 0. An undefined value
(or undef) is false.You can also test whether a certain value equals something, or doesn't
equal something, or is greater than or less than something. There are different conditional
test operators, depending on whether the variable you want to test is a string or a number:

Relational and Equality Operators
Test Numbers Strings
$x is equal to $y $x == $y $x eq $y
$x is not equal to $y $x != $y $x ne $y
$x is greater than $y $x > $y $x gt $y
$x is greater than or equal to $y $x >= $y $x ge $y
$x is less than $y $x < $y $x lt $y
$x is less than or equal to $y $x <= $y $x le $y

If it's a string test, you use the letter operators (eq, ne, lt, etc.), and if it's a numeric test,
you use the symbols (==, !=, etc.). Also, if you are doing numeric tests, keep in mind that
$x >= $y is not the same as $x => $y. Be sure to use the correct operator!

Here is an example of a numeric test. If $varname is greater than 23, the code inside the
curly braces is executed:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 116

if ($varname > 23) {
do stuff here if the condition is true

}

If you need to have more than one condition, you can add elsif and else blocks:

if ($varname eq "somestring") {
do stuff here if the condition is true

}
elsif ($varname eq "someotherstring") {

do other stuff
}
else {

do this if none of the other conditions are met
}

The line breaks are not required; this example is just as valid:

if ($varname > 23) {
print "$varname is greater than 23";

} elsif ($varname == 23) {
print "$varname is 23";

} else { print "$varname is less than 23"; }

You can join conditions together by using logical operators:

Logical Operators
Operator Example Explanation
&& condition1 &&

condition2
True if condition1 and condition2 are
both true

|| condition1 || condition2 True if either condition1 or condition2 is
true

and condition1 and condition2 Same as && but lower precedence
or condition1 or condition2 Same as || but lower precedence

Logical operators are evaluated from left to right. Precedence indicates which operator is
evaluated first, in the event that more than one operator appears on one line. In a case like
this:

condition1 || condition2 && condition3

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 117

condition2 && condition3 is evaluated first, then the result of that evaluation is used in the ||
evaluation.

and and or work the same way as && and ||, although they have lower precedence than
their symbolic counterparts.

Unless

unless is similar to if. Let's say you wanted to execute code only if a certain condition were
false. You could do something like this:

if ($varname != 23) {
code to execute if $varname is not 23

}

The same test can be done using unless:

unless ($varname == 23) {
code to execute if $varname is not 23

}

There is no "elseunless", but you can use an else clause:

unless ($varname == 23) {
code to execute if $varname is not 23

} else {
code to execute if $varname IS 23

}

Validating Form Data

You should always validate data submitted on a form; that is, check to see that the form
fields aren't blank, and that the data submitted is in the format you expected. This is
typically done with if/elsif blocks.

Here are some examples. This condition checks to see if the "name" field isn't blank:

if (param('name') eq "") {
&dienice("Please fill out the field for your name.");

}

You can also test multiple fields at the same time:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 118

if (param('name') eq "" or param('email') eq "") {
&dienice("Please fill out the fields for your name

and email address.");
}

The above code will return an error if either the name or email fields are left blank.

param('fieldname') always returns one of the following:

undef — or
undefined

fieldname is not defined in the form itself, or it's a
checkbox/radio button field that wasn't checked.

the empty string
fieldname exists in the form but the user didn't type anything
into that field (for text fields)

one or more
values

whatever the user typed into the field(s)

If your form has more than one field containing the same fieldname, then the values are
stored sequentially in an array, accessed by param('fieldname').

You should always validate all form data — even fields that are submitted as hidden
fields in your form. Don't assume that your form is always the one calling your program.
Any external site can send data to your CGI. Never trust form input data.

Looping

Loops allow you to repeat code for as long as a condition is met. Perl has several loop
control structures: foreach, for, while and until.

Foreach Loops

foreach iterates through a list of values:

foreach my $i (@arrayname) {
code here

}

This loops through each element of @arrayname, setting $i to the current array element
for each pass through the loop. You may omit the loop variable $i:

foreach (@arrayname) {
$_ is the current array element

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 119

}

This sets the special Perl variable $_ to each array element. $_ does not need to be
declared (it's part of the Perl language) and its scope localized to the loop itself.

For Loops

Perl also supports C-style for loops:

for ($i = 1; $i < 23; $i++) {
code here

}

The for statement uses a 3-part conditional: the loop initializer; the loop condition (how
long to run the loop); and the loop re-initializer (what to do at the end of each iteration of
the loop). In the above example, the loop initializes with $i being set to 1. The loop will
run for as long as $i is less than 23, and at the end of each iteration $i is incremented by 1
using the auto-increment operator (++).

The conditional expressions are optional. You can do infinite loops by omitting all three
conditions:

for (;;) {
code here

}

You can also write infinite loops with while.

While Loops

A while loop executes as long as particular condition is true:

while (condition) {
code to run as long as condition is true

}

Until Loops

until is the reverse of while. It executes as long as a particular condition is NOT true:

until (condition) {
code to run as long as condition is not true

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 120

}

Infinite Loops

An infinite loop is usually written like so:

while (1) {
code here

}

Obviously unless you want your program to run forever, you'll need some way to break
out of these infinite loops. We'll look at breaking next.

Breaking from Loops

There are several ways to break from a loop. To stop the current loop iteration (and move
on to the next one), use the next command:

foreach my $i (1..20) {
if ($i == 13) {

next;
}
print "$i\n";

}

This example prints the numbers from 1 to 20, except for the number 13. When it reaches
13, it skips to the next iteration of the loop.

To break out of a loop entirely, use the last command:

foreach my $i (1..20) {
if ($i == 13) {

last;
}
print "$i\n";

}

This example prints the numbers from 1 to 12, then terminates the loop when it reaches
13.

next and last only effect the innermost loop structure, so if you have something like this:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 121

foreach my $i (@list1) {
foreach my $j (@list2) {

if ($i == 5 && $j == 23) {
last;

}
}
this is where that last sends you

}

The last command only terminates the innermost loop. If you want to break out of the
outer loop, you need to use loop labels:

OUTER: foreach my $i (@list1) {
INNER: foreach my $j (@list2) {

if ($i == 5 && $j == 23) {
last OUTER;

}
}

}
this is where that last sends you

The loop label is a string that appears before the loop command (foreach, for, or while).
In this example we used OUTER as the label for the outer foreach loop and INNER for
the inner loop label.

Now that you've seen the various types of Perl control structures, let's look at how to
apply them to handling advanced form data.

Fundamentals of arrays

An array stores an ordered list of values. While a scalar variable can only store one value,
an array can store many. Perl array names are prefixed with an @-sign. Here is an
example:

my @colors = ("red","green","blue");

Each individual item (or element) of an array may be referred to by its index number.
Array indices start with 0, so to access the first element of the array @colors, you use
$colors[0]. Notice that when you're referring to a single element of an array, you prefix
the name with $ instead of @. The $-sign again indicates that it's a single (scalar) value;
the @-sign means you're talking about the entire array.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 122

If you want to loop through an array, printing out all of the values, you could print each
element one at a time:

my @colors = ("red","green","blue");

print "$colors[0]\n"; # prints "red"
print "$colors[1]\n"; # prints "green"
print "$colors[2]\n"; # prints "blue"

A much easier way to do this is to use a foreach loop:

my @colors = ("red","green","blue");
foreach my $i (@colors) {

print "$i\n";
}

For each iteration of the foreach loop, $i is set to an element of the @colors array. In this
example, $i is "red" the first time through the loop. The braces {} define where the loop
begins and ends, so for any code appearing between the braces, $i is set to the current
loop iterator.

Notice we've used my again here to declare the variables. In the foreach loop, my $i
declares the loop iterator ($i) and also limits its scope to the foreach loop itself. After the
loop completes, $i no longer exists.

We'll cover loops more in Chapter 5.

Getting Data Into And Out Of Arrays

An array is an ordered list of elements. You can think of it like a group of people
standing in line waiting to buy tickets. Before the line forms, the array is empty:

my @people = ();

Then Howard walks up. He's the first person in line. To add him to the @people array,
use the push function:

push(@people, "Howard");

Now Sara, Ken, and Josh get in line. Again they are added to the array using the push
function. You can push a list of values onto the array:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 123

push(@people, ("Sara", "Ken", "Josh"));

This pushes the list containing "Sara", "Ken" and "Josh" onto the end of the @people
array, so that @people now looks like this: ("Howard", "Sara", "Ken", "Josh")

Now the ticket office opens, and Howard buys his ticket and leaves the line. To remove
the first item from the array, use the shift function:

my $who = shift(@people);

This sets $who to "Howard", and also removes "Howard" from the @people array, so
@people now looks like this: ("Sara", "Ken", "Josh")

Suppose Josh gets paged, and has to leave. To remove the last item from the array, use
the pop function:

my $who = pop(@people);

This sets $who to "Josh", and @people is now ("Sara", "Ken")

Both shift and pop change the array itself, by removing an element from the array.

Finding the Length of Arrays

If you want to find out how many elements are in a given array, you can use the scalar
function:

my @people = ("Howard", "Sara", "Ken", "Josh");
my $linelen = scalar(@people);
print "There are $linelen people in line.\n";

This prints "There are 4 people in line." Of course, there's always more than one way to
do things in Perl, and that's true here — the scalar function is not actually needed. All you
have to do is evaluate the array in a scalar context. You can do this by assigning it to a
scalar variable:

my $linelen = @people;

This sets $linelen to 4.

What if you want to print the name of the last person in line? Remember that Perl array
indices start with 0, so the index of the last element in the array is actually length-1:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 124

print "The last person in line is $people[$linelen-1].\n";

Perl also has a handy shortcut for finding the index of the last element of an array, the $#
shortcut:

print "The last person in line is $people[$#people].\n";

$#arrayname is equivalent to scalar(@arrayname)-1. This is often used in foreach loops where
you loop through an array by its index number:

my @colors = ("cyan", "magenta", "yellow", "black");
foreach my $i (0..$#colors) {

print "color $i is $colors[$i]\n";
}

This will print out "color 0 is cyan, color 1 is magenta", etc.

The $#arrayname syntax is one example where an #-sign does not indicate a comment.

Array Slices

You can retrieve part of an array by specifying the range of indices to retrieve:

my @colors = ("cyan", "magenta", "yellow", "black");
my @slice = @colors[1..2];

This example sets @slice to ("magenta", "yellow").

Finding An Item In An Array

If you want to find out if a particular element exists in an array, you can use the grep
function:

my @results = grep(/pattern/,@listname);

/pattern/ is a regular expression for the pattern you're looking for. It can be a plain string,
such as /Box kite/, or a complex regular expression pattern.

/pattern/ will match partial strings inside each array element. To match the entire array
element, use /^pattern$/, which anchors the pattern match to the beginning (^) and end ($)
of the string.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 125

grep returns a list of the elements that matched the pattern.

Sorting Arrays

You can do an alphabetical (ASCII) sort on an array of strings using the sort function:

my @colors = ("cyan", "magenta", "yellow", "black");
my @colors2 = sort(@colors);

@colors2 becomes the @colors array in alphabetically sorted order ("black", "cyan",
"magenta", "yellow"). Note that the sort function, unlike push and pop, does not change
the original array. If you want to save the sorted array, you have to assign it to a variable.
If you want to save it back to the original array variable, you'd do:

@colors = sort @colors;

You can invert the order of the array with the reverse function:

my @colors = ("cyan", "magenta", "yellow", "black");
@colors = reverse(@colors);

@colors is now ("black", "yellow", "magenta", "cyan").

To do a reverse sort, use both functions:

my @colors = ("cyan", "magenta", "yellow", "black");
@colors = reverse(sort(@colors));

@colors is now ("yellow", "magenta", "cyan", "black").

The sort function, by default, compares the ASCII values of the array elements (see
http://www.cgi101.com/book/ch2/ascii.html for the chart of ASCII values). This means if
you try to sort a list of numbers, you get "12" before "2". You can do a true numeric sort
like so:

my @numberlist = (8, 4, 3, 12, 7, 15, 5);
my @sortednumberlist = sort({$a <=> $b;} @numberlist);

{ $a <=> $b; } is actually a small subroutine, embedded right in your code, that gets called
for each pair of items in the array. It compares the first number ($a) to the second number
($b) and returns a number indicating whether $a is greater than, equal to, or less than $b.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 126

This is done repeatedly with all the numbers in the array until the array is completely
sorted.

Joining Array Elements Into A String

You can merge an array into a single string using the join function:

my @colors = ("cyan", "magenta", "yellow", "black");
my $colorstring = join(", ",@colors);

This joins @colors into a single string variable ($colorstring), with each element of the
@colors array combined and separated by a comma and a space. In this example
$colorstring becomes "cyan, magenta, yellow, black".

You can use any string (including the empty string) as the separator. The separator is the
first argument to the join function:

join(separator, list);

The opposite of join is split, which splits a string into a list of values. See Chapter 7 for
more on split.

Array or List?

In general, any function or syntax that works for arrays will also work for a list of values:

my $color = ("red", "green", "blue")[1];
$color is "green"

my $colorstring = join(", ", ("red", "green", "blue"));
$colorstring is now "red, green, blue"

my ($first, $second, $third) = sort("red", "green", "blue");
$first is "blue", $second is "green", $third is "red"

Hashes

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 127

A hash is a special kind of array — an associative array, or paired list of elements. Each
pair consists of a string key and a data value.

Perl hash names are prefixed with a percent sign (%). Here's how they're defined:

Hash Name key value

my %colors = ("red", "#ff0000",
"green", "#00ff00",
"blue", "#0000ff",
"black", "#000000",
"white", "#ffffff");

This particular example creates a hash named %colors which stores the RGB HEX values
for the named colors. The color names are the hash keys; the hex codes are the hash
values.

Remember that there's more than one way to do things in Perl, and here's the other way to
define the same hash:

Hash Name key value
my %colors = (red => "#ff0000",

green => "#00ff00",
blue => "#0000ff",
black => "#000000",
white => "#ffffff");

The => operator automatically quotes the left side of the argument, so enclosing quotes
around the key names are not needed.

To refer to the individual elements of the hash, you'll do:

$colors{'red'}

Here, "red" is the key, and $colors{'red'} is the value associated with that key. In this
case, the value is "#ff0000".

You don't usually need the enclosing quotes around the value, either; $colors{red} also
works if the key name doesn't contain characters that are also Perl operators (things like
+, -, =, * and /).

To print out all the values in a hash, you can use a foreach loop:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 128

foreach my $color (keys %colors) {
print "$colors{$color}=$color\n";

}

This example uses the keys function, which returns a list of the keys of the named hash.
One drawback is that keys %hashname will return the keys in unpredictable order — in this
example, keys %colors could return ("red", "blue", "green", "black", "white") or ("red",
"white", "green", "black", "blue") or any combination thereof. If you want to print out the
hash in exact order, you have to specify the keys in the foreach loop:

foreach my $color ("red","green","blue","black","white") {
print "$colors{$color}=$color\n";

}

Let's write a CGI program using the colors hash. Start a new file called colors.cgi:

Program 2-2: colors.cgi - Print Hash Variables Program
#!/usr/bin/perl -wT
use CGI qw(:standard);
use CGI::Carp qw(warningsToBrowser fatalsToBrowser);
use strict;

declare the colors hash:
my %colors = (red => "#ff0000", green=> "#00ff00",

blue => "#0000ff", black => "#000000",
white => "#ffffff");

print the html headers
print header;
print start_html("Colors");

foreach my $color (keys %colors) {
print "$color\n";

}
print end_html;

Save it and chmod 755 colors.cgi, then test it in your web browser.

Notice we've had to add backslashes to escape the quotes in this double-quoted string:

print "$color\n";

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 129

A better way to do this is to use Perl's qq operator:

print qq($color\n);

qq creates a double-quoted string for you. And it's much easier to read without all those
backslashes in there.

Adding Items to a Hash

To add a new value to a hash, you simply do:

$hashname{newkey} = newvalue;

Using our colors example again, here's how to add a new value with the key "purple":

$colors{purple} = "#ff00ff";

If the named key already exists in the hash, then an assignment like this overwrites the
previous value associated with that key.

Determining Whether an Item Exists in a Hash

You can use the exists function to see if a particular key/value pair exists in the hash:

exists $hashname{key}

This returns a true or false value. Here's an example of it in use:

if (exists $colors{purple}) {
print "Sorry, the color purple is already in the hash.
\n";

} else {
$colors{purple} = "#ff00ff";

}

This checks to see if the key "purple" is already in the hash; if not, it adds it.

Deleting Items From a Hash

You can delete an individual key/value pair from a hash with the delete function:

delete $hashname{key};

If you want to empty out the entire hash, do:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 130

%hashname = ();

Values

We've already seen that the keys function returns a list of the keys of a given hash.
Similarly, the values function returns a list of the hash values:

my %colors = (red => "#ff0000", green=> "#00ff00",
blue => "#0000ff", black => "#000000",
white => "#ffffff");

my @keyslice = keys %colors;
@keyslice now equals a randomly ordered list of
the hash keys:
("red", "green", "blue", "black", "white")

my @valueslice = values %colors;
@valueslice now equals a randomly ordered list of
the hash values:
("ff0000", "#00ff00", "#0000ff", "#000000", "#ffffff")

As with keys, values returns the values in unpredictable order.

Determining Whether a Hash is Empty

You can use the scalar function on hashes as well:

scalar($hashname);

This returns true or false value — true if the hash contains any key/value pairs. The value
returned does not indicate how many pairs are in the hash, however. If you want to find
that number, use:

scalar keys(%hashname);

Here's an example:

my %colors = (red => "#ff0000", green=> "#00ff00",
blue => "#0000ff", black => "#000000",
white => "#ffffff");

my $numcolors = scalar(keys(%colors));

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 131

print "There are $numcolors in this hash.\n";

This will print out "There are 5 colors in this hash."

Functions
The real power of PHP comes from its functions.In PHP, there are more than 700 built-in
functions.To keep the script from being executed when the page loads, you can put it into
a function. A function will be executed by a call to the function. You may call a function
from anywhere within a page.

Create a PHP Function

A function will be executed by a call to the function.

Syntax
function functionName()
{
code to be executed;
}

PHP function guidelines:

 Give the function a name that reflects what the function does
 The function name can start with a letter or underscore (not a number)

Example

A simple function that writes my name when it is called:

<html>
<body>

<?php

function writeName()

{

echo "Kai Jim Refsnes";

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 132

}

echo "My name is ";

writeName();
?>
</body>
</html>

Output:

My name is Kai Jim Refsnes

PHP Functions - Adding parameters

To add more functionality to a function, we can add parameters. A parameter is just like a
variable.Parameters are specified after the function name, inside the parentheses.

Example 1

The following example will write different first names, but equal last name:

<html>
<body>
<?php function writeName($fname)

{

echo $fname .

" Refsnes.
";

}

echo "My name is ";writeName("Kai Jim");

echo "My sister's name is ";

writeName("Hege");

echo "My brother's name is";

writeName("Stale");?></body></html>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 133

Output:

My name is Kai Jim Refsnes.

My sister's name is Hege Refsnes.

My brother's name is Stale Refsnes.

Example 2

The following function has two parameters:

<html>

<body>

<?php function writeName($fname,$punctuation)

{

echo $fname . " Refsnes" . $punctuation . "
";

}

echo "My name is ";

writeName("Kai Jim",".");

echo "My sister's name is ";

writeName("Hege","!");echo "My brother's name is ";

writeName("Ståle","?");
?>
</body>
</html>

Output:

My name is Kai Jim Refsnes.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 134

My sister's name is Hege Refsnes!

My brother's name is Ståle Refsnes?

PHP Functions - Return values

To let a function return a value, use the return statement.

Example
<html>
<body>

<?php
function add($x,$y)
{
$total=$x+$y;
return $total;
}

echo "1 + 16 = " . add(1,16);
?>

</body>
</html>

Output:

1 + 16 = 17

Pattern matching
Pattern-Matching Operators

Zoologically speaking, Perl's pattern-matching operators function as a kind of cage for
regular expressions, to keep them from getting out. This is by design; if we were to let the
regex beasties wander throughout the language, Perl would be a total jungle. The world
needs its jungles, of course--they're the engines of biological diversity, after all--but
jungles should stay where they belong. Similarly, despite being the engines of

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 135

combinatorial diversity, regular expressions should stay inside pattern match operators
where they belong. It's a jungle in there.

As if regular expressions weren't powerful enough, the m// and s/// operators also provide
the (likewise confined) power of double-quote interpolation. Since patterns are parsed
like double-quoted strings, all the normal double-quote conventions will work, including
variable interpolation (unless you use single quotes as the delimiter) and special
characters indicated with backslash escapes. (See "Specific Characters" later in this
chapter.) These are applied before the string is interpreted as a regular expression. (This
is one of the few places in the Perl language where a string undergoes more than one pass
of processing.) The first pass is not quite normal double-quote interpolation, in that it
knows what it should interpolate and what it should pass on to the regular expression
parser. So, for instance, any $ immediately followed by a vertical bar, closing parenthesis,
or the end of the string will be treated not as a variable interpolation, but as the traditional
regex assertion meaning end-of-line. So if you say:

$foo = "bar";
/foo/;
the double-quote interpolation pass knows that those two $ signs are functioning
differently. It does the interpolation of $foo, then hands this to the regular expression
parser:
/bar$/;
Another consequence of this two-pass parsing is that the ordinary Perl tokener finds the
end of the regular expression first, just as if it were looking for the terminating delimiter
of an ordinary string. Only after it has found the end of the string (and done any variable
interpolation) is the pattern treated as a regular expression. Among other things, this
means you can't "hide" the terminating delimiter of a pattern inside a regex construct
(such as a character class or a regex comment, which we haven't covered yet). Perl will
see the delimiter wherever it is and terminate the pattern at that point.

You should also know that interpolating variables into a pattern slows down the pattern
matcher, because it feels it needs to check whether the variable has changed, in case it has
to recompile the pattern (which will slow it down even further). See "Variable
Interpolation" later in this chapter.

The tr/// transliteration operator does not interpolate variables; it doesn't even use regular
expressions! (In fact, it probably doesn't belong in this chapter at all, but we couldn't
think of a better place to put it.) It does share one feature with m// and s///, however: it
binds to variables using the =~ and !~ operators.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 136

The =~ and !~ operators, described in Chapter 3, "Unary and Binary Operators", bind the
scalar expression on their lefthand side to one of three quote-like operators on their right:
m// for matching a pattern, s/// for substituting some string for a substring matched by a
pattern, and tr/// (or its synonym, y///) for transliterating one set of characters to another
set. (You may write m// as //, without the m, if slashes are used for the delimiter.) If the
righthand side of =~ or !~ is none of these three, it still counts as a m// matching operation,
but there'll be no place to put any trailing modifiers (see "Pattern Modifiers" later), and
you'll have to handle your own quoting:

print "matches" if $somestring =~ $somepattern;
Really, there's little reason not to spell it out explicitly:
print "matches" if $somestring =~ m/$somepattern/;
When used for a matching operation, =~ and !~ are sometimes pronounced "matches" and
"doesn't match" respectively (although "contains" and "doesn't contain" might cause less
confusion).

Apart from the m// and s/// operators, regular expressions show up in two other places in
Perl. The first argument to the split function is a special match operator specifying what
not to return when breaking a string into multiple substrings. See the description and
examples for split in Chapter 29, "Functions". The qr// ("quote regex") operator also
specifies a pattern via a regex, but it doesn't try to match anything (unlike m//, which
does). Instead, the compiled form of the regex is returned for future use. See "Variable
Interpolation" for more information.

You apply one of the m//, s///, or tr/// operators to a particular string with the =~ binding
operator (which isn't a real operator, just a kind of topicalizer, linguistically speaking).
Here are some examples:

$haystack =~ m/needle/ # match a simple pattern
$haystack =~ /needle/ # same thing

$italiano =~ s/butter/olive oil/ # a healthy substitution

$rotate13 =~ tr/a-zA-Z/n-za-mN-ZA-M/ # easy encryption (to break)
Without a binding operator, $_ is implicitly used as the "topic":
/new life/ and # search in $_ and (if found)

/new civilizations/ # boldly search $_ again

s/sugar/aspartame/ # substitute a substitute into $_

tr/ATCG/TAGC/ # complement the DNA stranded in $_

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 137

Because s/// and tr/// change the scalar to which they're applied, you may only use them on
valid lvalues:
"onshore" =~ s/on/off/; # WRONG: compile-time error
However, m// works on the result of any scalar expression:
if ((lc $magic_hat->fetch_contents->as_string) =~ /rabbit/) {

print "Nyaa, what's up doc?\n";
}
else {

print "That trick never works!\n";
}
But you have to be a wee bit careful, since =~ and !~ have rather high precedence--in our
previous example the parentheses are necessary around the left term.[3] The !~ binding
operator works like =~, but negates the logical result of the operation:
if ($song !~ /words/) {

print qq/"$song" appears to be a song without words.\n/;
}
Since m//, s///, and tr/// are quote operators, you may pick your own delimiters. These work
in the same way as the quoting operators q//, qq//, qr//, and qw// (see the section Section
5.6.3, "Pick Your Own Quotes" in Chapter 2, "Bits and Pieces").
$path =~ s#/tmp#/var/tmp/scratch#;

if ($dir =~ m[/bin]) {
print "No binary directories please.\n";

}
When using paired delimiters with s/// or tr///, if the first part is one of the four customary
bracketing pairs (angle, round, square, or curly), you may choose different delimiters for
the second part than you chose for the first:
s(egg)<larva>;
s{larva}{pupa};
s[pupa]/imago/;
Whitespace is allowed in front of the opening delimiters:
s (egg) <larva>;
s {larva} {pupa};
s [pupa] /imago/;
Each time a pattern successfully matches (including the pattern in a substitution), it sets
the $`, $&, and $' variables to the text left of the match, the whole match, and the text right
of the match. This is useful for pulling apart strings into their components:
"hot cross buns" =~ /cross/;
print "Matched: <$`> $& <$'>\n"; # Matched: <hot > cross < buns>
print "Left: <$`>\n"; # Left: <hot >
print "Match: <$&>\n"; # Match: <cross>

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 138

print "Right: <$'>\n"; # Right: < buns>
For better granularity and efficiency, use parentheses to capture the particular portions
that you want to keep around. Each pair of parentheses captures the substring
corresponding to the subpattern in the parentheses. The pairs of parentheses are
numbered from left to right by the positions of the left parentheses; the substrings
corresponding to those subpatterns are available after the match in the numbered
variables, $1, $2, $3, and so on:[4]
$_ = "Bilbo Baggins's birthday is September 22";
/(.*)'s birthday is (.*)/;
print "Person: $1\n";
print "Date: $2\n";
$`, $&, $', and the numbered variables are global variables implicitly localized to the
enclosing dynamic scope. They last until the next successful pattern match or the end of
the current scope, whichever comes first. More on this later, in a different scope.

[3] Without the parentheses, the lower-precedence lc would have applied to the whole
pattern match instead of just the method call on the magic hat object.

[4] Not $0, though, which holds the name of your program.

Once Perl sees that you need one of $`, $&, or $' anywhere in the program, it provides
them for every pattern match. This will slow down your program a bit. Perl uses a similar
mechanism to produce $1, $2, and so on, so you also pay a price for each pattern that
contains capturing parentheses. (See "Clustering" to avoid the cost of capturing while still
retaining the grouping behavior.) But if you never use $`$&, or $', then patterns without
capturing parentheses will not be penalized. So it's usually best to avoid $`, $&, and $' if
you can, especially in library modules. But if you must use them once (and some
algorithms really appreciate their convenience), then use them at will, because you've
already paid the price. $& is not so costly as the other two in recent versions of Perl.

File input and output

As you start to program more advanced CGI applications, you'll want to store data so you
can use it later. Maybe you have a guestbook program and want to keep a log of the
names and email addresses of visitors, or a page counter that must update a counter file,
or a program that scans a flat-file database and draws info from it to generate a page. You
can do this by reading and writing data files (often called file I/O).

File Permissions

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 139

Most web servers run with very limited permissions; this protects the server (and the
system it's running on) from malicious attacks by users or web visitors. On Unix systems,
the web process runs under its own userid, typically the "web" or "nobody" user.
Unfortunately this means the server doesn't have permission to create files in your
directory. In order to write to a data file, you must usually make the file (or the directory
where the file will be created) world-writable — or at least writable by the web process
userid. In Unix a file can be made world-writable using the chmod command:

chmod 666 myfile.dat

To set a directory world-writable, you'd do:

chmod 777 directoryname

See Appendix A for a chart of the various chmod permissions.

Unfortunately, if the file is world-writable, it can be written to (or even deleted) by other
users on the system. You should be very cautious about creating world-writable files in
your web space, and you should never create a world-writable directory there. (An
attacker could use this to install their own CGI programs there.) If you must have a
world-writable directory, either use /tmp (on Unix), or a directory outside of your web
space. For example if your web pages are in /home/you/public_html, set up your writable
files and directories in /home/you.

A much better solution is to configure the server to run your programs with your userid.
Some examples of this are CGIwrap (platform independent) and suEXEC (for
Apache/Unix). Both of these force CGI programs on the web server to run under the
program owner's userid and permissions. Obviously if your CGI program is running with
your userid, it will be able to create, read and write files in your directory without
needing the files to be world-writable.

The Apache web server also allows the webmaster to define what user and group the
server runs under. If you have your own domain, ask your webmaster to set up your
domain to run under your own userid and group permissions.

Permissions are less of a problem if you only want to read a file. If you set the file
permissions so that it is group- and world-readable, your CGI programs can then safely
read from that file. Use caution, though; if your program can read the file, so can the
webserver, and if the file is in your webspace, someone can type the direct URL and view
the contents of the file. Be sure not to put sensitive data in a publicly readable file.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 140

Opening Files

Reading and writing files is done by opening a file and associating it with a filehandle.
This is done with the statement:

open(filehandle,filename);

The filename may be prefixed with a >, which means to overwrite anything that's in the
file now, or with a >>, which means to append to the bottom of the existing file. If both >
and >> are omitted, the file is opened for reading only. Here are some examples:

open(INF,"out.txt"); # opens mydata.txt for reading
open(OUTF,">out.txt"); # opens out.txt for overwriting
open(OUTF,">>out.txt"); # opens out.txt for appending
open(FH, "+<out.txt"); # opens existing file out.txt for reading AND writing

The filehandles in these cases are INF, OUTF and FH. You can use just about any name
for the filehandle.

Also, a warning: your web server might do strange things with the path your programs
run under, so it's possible you'll have to use the full path to the file (such as
/home/you/public_html/somedata.txt), rather than just the filename. This is generally not
the case with the Apache web server, but some other servers behave differently. Try
opening files with just the filename first (provided the file is in the same directory as your
CGI program), and if it doesn't work, then use the full path.

One problem with the above code is that it doesn't check the return value of open to
ensure the file was really opened. open returns nonzero upon success, or undef (which is
a false value) otherwise. The safe way to open a file is as follows:

open(OUTF,">outdata.txt") or &dienice("Can't open outdata.txt for writing: $!");

This uses the "dienice" subroutine we wrote in Chapter 4 to display an error message and
exit if the file can't be opened. You should do this for all file opens, because if you don't,
your CGI program will continue running even if the file isn't open, and you could end up
losing data. It can be quite frustrating to realize you've had a survey running for several
weeks while no data was being saved to the output file.

The $! in the above example is a special Perl variable that stores the error code returned
by the failed open statement. Printing it may help you figure out why the open failed.

Guestbook Form with File Write

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 141

Let's try this by modifying the guestbook program you wrote in Chapter 4. The program
already sends you e-mail with the information; we're going to have it write its data to a
file as well.

First you'll need to create the output file and make it writable, because your CGI program
probably can't create new files in your directory. If you're using Unix, log into the Unix
shell, cd to the directory where your guestbook program is located, and type the
following:

touch guestbook.txt
chmod 622 guestbook.txt

The Unix touch command, in this case, creates a new, empty file called "guestbook.txt".
(If the file already exists, touch simply updates the last-modified timestamp of the file.)
The chmod 622 command makes the file read/write for you (the owner), and write-only
for everyone else.

If you don't have Unix shell access (or you aren't using a Unix system), you should create
or upload an empty file called guestbook.txt in the directory where your guestbook.cgi
program is located, then adjust the file permissions on it using your FTP program.

Now you'll need to modify guestbook.cgi to write to the file:

Program 6-1: guestbook.cgi - Guestbook Program With File Write

#!/usr/bin/perl -wT
use CGI qw(:standard);
use CGI::Carp qw(warningsToBrowser fatalsToBrowser);
use strict;

print header;
print start_html("Results");

first print the mail message...

$ENV{PATH} = "/usr/sbin";
open (MAIL, "|/usr/sbin/sendmail -oi -t -odq") or

&dienice("Can't fork for sendmail: $!\n");
print MAIL "To: recipient\@cgi101.com\n";

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 142

print MAIL "From: nobody\@cgi101.com\n";
print MAIL "Subject: Form Data\n\n";
foreach my $p (param()) {

print MAIL "$p = ", param($p), "\n";
}
close(MAIL);

now write (append) to the file

open(OUT, ">>guestbook.txt") or &dienice("Couldn't open output file: $!");
foreach my $p (param()) {

print OUT param($p), "|";
}
print OUT "\n";
close(OUT);

print <<EndHTML;
<h2>Thank You</h2>
<p>Thank you for writing!</p>
<p>Return to our home page.</p>
EndHTML

print end_html;

sub dienice {
my($errmsg) = @_;
print "<h2>Error</h2>\n";
print "<p>$errmsg</p>\n";
print end_html;
exit;

}

Now go back to your browser and fill out the guestbook form again. If your CGI program
runs without any errors, you should see data added to the guestbook.txt file. The resulting
file will show the submitted form data in pipe-separated form:

Someone|someone@wherever.com|comments here

Ideally you'll have one line of data (or record) for each form that is filled out. This is
what's called a flat-file database.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 143

Unfortunately if the visitor enters multiple lines in the comments field, you'll end up with
multiple lines in the data file. To remove the newlines, you should substitute newline
characters (\n) as well as hard returns (\r). Perl has powerful pattern matching and
replacement capabilities; it can match the most complex patterns in a string using regular
expressions (see Chapter 13). The basic syntax for substitution is:

$mystring =~ s/pattern/replacement/;

This command substitutes "pattern" for "replacement" in the scalar variable $mystring.
Notice the operator is a =~ (an equals sign followed by a tilde); this is Perl's binding
operator and indicates a regular expression pattern match/substitution/replacement is
about to follow.

Here is how to replace the end-of-line characters in your guestbook program:

foreach my $p (param()) {
my $value = param($p);
$value =~ s/\n/ /g; # replace newlines with spaces
$value =~ s/\r//g; # remove hard returns
print OUT "$p = $value,";

}

Go ahead and change your program, then test it again in your browser. View the
guestbook.txt file in your browser or in a text editor and observe the results.

File Locking

CGI processes on a Unix web server can run simultaneously, and if two programs try to
open and write the same file at the same time, the file may be erased, and you'll lose all of
your data. To prevent this, you need to lock the files you are writing to. There are two
types of file locks:

 A shared lock allows more than one program (or other process) to access the file
at the same time. A program should use a shared lock when reading from a file.

 An exclusive lock allows only one program or process to access the file while the
lock is held. A program should use an exclusive lock when writing to a file.

File locking is accomplished in Perl using the Fcntl module (which is part of the standard
library), and the flock function. The use statement is like CGI.pm's:

use Fcntl qw(:flock);

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 144

The Fcntl module provides symbolic values (like abbreviations) representing the correct
lock numbers for the flock function, but you must specify: flock in the use statement in
order for Fctnl to export those values. The values are as follows:

LOCK_SH shared lock
LOCK_EX exclusive lock
LOCK_NB non-blocking lock
LOCK_UN unlock

These abbreviations can then be passed to flock. The flock function takes two arguments:
the filehandle and the lock type, which is typically a number. The number may vary
depending on what operating system you are using, so it's best to use the symbolic values
provided by Fcntl. A file is locked after you open it (because the filehandle doesn't exist
before you open the file):

open(FH, "filename") or &dienice("Can"t open file: $!");
flock(FH, LOCK_SH);

The lock will be released automatically when you close the file or when the program
finishes.

Keep in mind that file locking is only effective if all of the programs that read and write
to that file also use flock. Programs that don't will ignore the locks held by other
processes.

Since flock may force your CGI program to wait for another process to finish writing to a
file, you should also reset the file pointer, using the seek function:

seek(filehandle, offset, whence);

offset is the number of bytes to move the pointer, relative to whence, which is one of the
following:

0 beginning of file
1 current file position
2 end of file

So seek(OUTF,0,2) repositions the pointer to the end of the file. If you were reading the file
instead of writing to it, you'd want to do seek(OUTF,0,0) to reset the pointer to the
beginning of the file.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 145

The Fcntl module also provides symbolic values for the seek pointers:

SEEK_SET beginning of file
SEEK_CUR current file position
SEEK_END end of file

To use these, add :seek to the use Fcntl statement:

use Fcntl qw(:flock :seek);

Now you can use seek(OUTF,0,SEEK_END) to reset the file pointer to the end of the file, or
seek(OUTF,0,SEEK_SET) to reset it to the beginning of the file.

Closing Files

When you're finished writing to a file, it's best to close the file, like so:

close(filehandle);

Files are automatically closed when your program ends. File locks are released when the
file is closed, so it is not necessary to actually unlock the file before closing it. (In fact,
releasing the lock before the file is closed can be dangerous and cause you to lose data.)

Reading Files

There are two ways you can handle reading data from a file: you can either read one line
at a time, or read the entire file into an array. Here's an example:

open(FH,"guestbook.txt") or &dienice("Can't open guestbook.txt: $!");

my $a = <FH>; # reads one line from the file into
the scalar $a

my @b = <FH>; # reads the ENTIRE FILE into array @b

close(FH); # closes the file

If you were to use this code in your program, you'd end up with the first line of
guestbook.txt being stored in $a, and the remainder of the file in array @b (with each

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 146

element of @b containing one line of data from the file). The actual read occurs with
<filehandle>; the amount of data read depends on the type of variable you save it into.

The following section of code shows how to read the entire file into an array, then loop
through each element of the array to print out each line:

open(FH,"guestbook.txt") or &dienice("Can"t open guestbook.txt: $!");
my @ary = <FH>;
close(FH);

foreach my $line (@ary) {
print $line;

}

This code minimizes the amount of time the file is actually open. The drawback is it
causes your CGI program to consume as much memory as the size of the file. Obviously
for very large files that's not a good idea; if your program consumes more memory than
the machine has available, it could crash the whole machine (or at the very least make
things extremely slow). To process data from a very large file, it's better to use a while
loop to read one line at a time:

open(FH,"guestbook.txt") or &dienice("Can"t open guestbook.txt: $!");
while (my $line = <FH>) {

print $line;
}
close(FH);

Poll Program

Let's try another example: a web poll. You've probably seen them on various news sites.
A basic poll consists of one question and several potential answers (as radio buttons); you
pick one of the answers, vote, then see the poll results on the next page.

Start by creating the poll HTML form. Use whatever question and answer set you wish.

Program 6-2: poll.html - Poll HTML Form

<form action="poll.cgi" method="POST">
Which was your favorite <i>Lord of the Rings</i> film?

<input type="radio" name="pick" value="fotr">The Fellowship of the Ring

<input type="radio" name="pick" value="ttt">The Two Towers

<input type="radio" name="pick" value="rotk">Return of the King

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 147

<input type="radio" name="pick" value="none">I didn't watch them

<input type="submit" value="Vote">
</form>
View Results

In this example we're using abbreviations for the radio button values. Our CGI program
will translate the abbreviations appropriately.

Now the voting CGI program will write the result to a file. Rather than having this
program analyze the results, we'll simply use a redirect to bounce the viewer to a third
program (results.cgi). That way you won't need to write the results code twice.

Here is how the voting program (poll.cgi) should look:

Program 6-3: poll.cgi - Poll Program

#!/usr/bin/perl -wT
use CGI qw(:standard);
use CGI::Carp qw(warningsToBrowser fatalsToBrowser);
use strict;
use Fcntl qw(:flock :seek);

my $outfile = "poll.out";

only record the vote if they actually picked something
if (param('pick')) {

open(OUT, ">>$outfile") or &dienice("Couldn't open $outfile: $!");
flock(OUT, LOCK_EX); # set an exclusive lock
seek(OUT, 0, SEEK_END); # then seek the end of file
print OUT param('pick'),"\n";
close(OUT);

} else {
this is optional, but if they didn't vote, you might
want to tell them about it...

&dienice("You didn't pick anything!");
}

redirect to the results.cgi.
(Change to your own URL...)
print redirect("http://cgi101.com/book/ch6/results.cgi");

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 148

sub dienice {
my($msg) = @_;
print header;
print start_html("Error");
print h2("Error");
print $msg;
print end_html;
exit;

}

Finally results.cgi reads the file where the votes are stored, totals the overall votes as well
as the votes for each choice, and displays them in table format.

Program 6-4: results.cgi - Poll Results Program

#!/usr/bin/perl -wT
use CGI qw(:standard);
use CGI::Carp qw(warningsToBrowser fatalsToBrowser);
use strict;
use Fcntl qw(:flock :seek);

my $outfile = "poll.out";

print header;
print start_html("Results");

open the file for reading
open(IN, "$outfile") or &dienice("Couldn't open $outfile: $!");
set a shared lock
flock(IN, LOCK_SH);
then seek the beginning of the file
seek(IN, 0, SEEK_SET);

declare the totals variables
my($total_votes, %results);
initialize all of the counts to zero:
foreach my $i ("fotr", "ttt", "rotk", "none") {

$results{$i} = 0;
}

now read the file one line at a time:

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 149

while (my $rec = <IN>) {
chomp($rec);
$total_votes = $total_votes + 1;
$results{$rec} = $results{$rec} + 1;

}
close(IN);

now display a summary:
print <<End;
Which was your favorite <i>Lord of the Rings</i> film?

<table border=0 width=50%>
<tr>

<td>The Fellowship of the Ring</td>
<td>$results{fotr} votes</td>

</tr>
<tr>

<td>The Two Towers</td>
<td>$results{ttt} votes</td>

</tr>
<tr>

<td>Return of the King</td>
<td>$results{rotk} votes</td>

</tr>
<tr>

<td>didn't watch them</td>
<td>$results{none} votes</td>

</tr>
</table>
<p>
$total_votes votes total
</p>
End

print end_html;

sub dienice {
my($msg) = @_;
print h2("Error");
print $msg;
print end_html;

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 150

exit;
}

The Common Gateway Interface

The Common Gateway Interface (CGI) is a standard (see RFC3875: CGI Version 1.1)
that defines how webserver software can delegate the generation of webpages to a
console application. Such applications are known as CGI scripts; they can be written in
any programming language, although scripting languages are often used. In simple words
the CGI provides an interface between the webservers and the clients.

Purpose

The task of a webserver is to respond to requests for webpages issued by clients (usually
web browsers) by analyzing the content of the request (which is mostly in its URL),
determining an appropriate document to send in response, and returning it to the client.

If the request identifies a file on disk, the server can just return the file's contents.
Alternatively, the document's content can be composed on the fly. One way of doing this
is to let a console application compute the document's contents, and tell the web server to
use that console application. CGI specifies which information is communicated between
the webserver and such a console application, and how.

The webserver software will invoke the console application as a command. CGI defines
how information about the request (such as the URL) is passed to the command in the
form of arguments and environment variables. The application is supposed to write the
output document to standard output; CGI defines how it can pass back extra information
about the output (such as the MIME type, which defines the type of document being
returned) by prepending it with headers.

CGI linkage
CGI programs often are stored in a directory named cgi-bin
- Some CGI programs are in machine code, but Perl programs are usually kept in source
form, so perl must be run on them
- A source file can be made to be “executable” by adding a line at their beginning that
specifies that a language processing program be run on them first
For Perl programs, if the perl system is stored in
/usr/local/bin/perl, as is often is in UNIX
systems, this is
#!/usr/local/bin/perl -w

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 151

- An HTML document specifies a CGI program with the hypertext reference attribute,
href, of an anchor tag, <a>, as in
<a href =
"http://www.cs.uccs.edu/cgi-bin/reply.pl>"
Click here to run the CGI program, reply.pl

<!-- reply.html - calls a trivial cgi program
-->
<html>
<head>
<title>
HTML to call the CGI-Perl program reply.pl
</title>
</head>
<body>
This is our first CGI-Perl example
<a href =
"http://www.cs.ucp.edu/cgi-bin/reply.pl">
Click here to run the CGI program, reply.pl

</body>
</html>
- The connection from a CGI program back to the requesting browser is through standard
output, usually through the server
- The HTTP header needs only the content type, followed by a blank line, as is created
with:
print "Content-type: text/html \n\n";
#!/usr/local/bin/perl
reply.pl – a CGI program that returns a
greeting to the user
print "Content-type: text/html \n\n",
"<html> <head> \n",
"<title> reply.pl example </title>",
" </head> \n", "<body> \n",
"<h1> Greetings from your Web server!",
" </h1> \n </body> </html> \n";

Query string format

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 152

In World Wide Web, a query string is the part of a Uniform Resource Locator (URL)
that contains data to be passed to web applications such as CGI programs.

The Mozilla URL location bar showing an URL with the query string
title=Main_page&action=raw

When a web page is requested via the Hypertext Transfer Protocol, the server locates a
file in its file system based on the requested URL. This file may be a regular file or a
program. In the second case, the server may (depending on its configuration) run the
program, sending its output as the required page. The query string is a part of the URL
which is passed to the program. Its use permits data to be passed from the HTTP client
(often a web browser) to the program which generates the web page.

Structure

A typical URL containing a query string is as follows:

http://server/path/program?query_string

When a server receives a request for such a page, it runs a program (if configured to do
so), passing the query_string unchanged to the program. The question mark is used as a
separator and is not part of the query string.

A link in a web page may have a URL that contains a query string. However, the main
use of query strings is to contain the content of an HTML form, also known as web form.
In particular, when a form containing the fields field1, field2, field3 is submitted, the content
of the fields is encoded as a query string as follows:

field1=value1&field2=value2&field3=value3...

 The query string is composed of a series of field-value pairs.
 The field-value pairs are each separated by an equal sign.
 The series of pairs is separated by the ampersand, '&' or semicolon, ';'.

For each field of the form, the query string contains a pair field=value. Web forms may
include fields that are not visible to the user; these fields are included in the query string
when the form is submitted

This convention is a W3C recommendation. W3C recommends that all web servers
support semicolon separators in the place of ampersand separators.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 153

Technically, the form content is only encoded as a query string when the form
submission method is GET. The same encoding is used by default when the submission
method is POST, but the result is not sent as a query string, that is, is not added to the
action URL of the form. Rather, the string is sent as the body of the request.

URL encoding

Main article: URL encoding

Some characters cannot be part of a URL (for example, the space) and some other
characters have a special meaning in a URL: for example, the character # can be used to
further specify a subsection (or fragment) of a document; the character = is used to
separate a name from a value. A query string may need to be converted to satisfy these
constraints. This can be done using a schema known as URL encoding.

In particular, encoding the query string uses the following rules:

 Letters (A-Z and a-z), numbers (0-9) and the characters '.', '-', '~' and '_' are left as-
is

 SPACE is encoded as '+'
 All other characters are encoded as %FF hex representation with any non-ASCII

characters first encoded as UTF-8 (or other specified encoding)

The encoding of SPACE as '+' and the selection of "as-is" characters distinguishes this
encoding from RFC 1738.

Example

If a form is embedded in an HTML page as follows:

<form action="cgi-bin/test.cgi" method="get">
<input type="text" name="first">
<input type="text" name="second">
<input type="submit">

</form>

and the user inserts the strings “this is a field” and “was it clear (already)?” in the two
text fields and presses the submit button, the program test.cgi will receive the following
query string:

first=this+is+a+field&second=was+it+clear+%28already%29%3F

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 154

If the form is processed on the server by a CGI script, the script may typically receive the
query string as an environment variable named QUERY_STRING.

CGI.pm module

CGI.pm is a large and widely used Perl module for programming Common Gateway
Interface (CGI) web applications, providing a consistent API for receiving user input and
producing HTML or XHTML output. The module is written and maintained by Lincoln
D. Stein.

A Sample CGI Page

Here is a simple CGI page, written in Perl using CGI.pm (in object oriented style):

#!/usr/bin/perl -w
#
use strict;
use warnings;
use CGI;

my $cgi = CGI->new();

print $cgi->header('text/html');
print $cgi->start_html('A Simple CGI Page'),
$cgi->h1('A Simple CGI Page'),
$cgi->start_form,
'Name: ',
$cgi->textfield('name'), $cgi->br,
'Age: ',
$cgi->textfield('age'), $cgi->p,
$cgi->submit('Submit!'),
$cgi->end_form, $cgi->p,
$cgi->hr;

if ($cgi->param('name')) {
print 'Your name is ', $cgi->param('name'), $cgi->br;

}

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 155

if ($cgi->param('age')) {
print 'You are ', $cgi->param('age'), ' years old.';

}

print $cgi->end_html;

This would print a very simple webform, asking for your name and age, and after having
been submitted, redisplaying the form with the name and age displayed below it. This
sample makes use of CGI.pm's object-oriented abilities; it can also be done by calling
functions directly, without the $cgi->.

Note: in many examples $q, short for query, is used to store a CGI object. As the above
example illustrates, this might be very misleading.

Here is another script that produces the same output using CGI.pm's procedural interface:

#!/usr/bin/perl
use strict;
use warnings;
use CGI ':standard';

print header,
start_html('A Simple CGI Page'),
h1('A Simple CGI Page'),
start_form,
'Name: ',
textfield('name'), br,
'Age: ',
textfield('age'), p,
submit('Submit!'),
end_form, p,
hr;

print 'Your name is ', param('name'), br if param 'name';
print 'You are ', param('age'), ' years old.' if param 'age';

print end_html;

Cookies

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 156

Cookie, also known as a web cookie, browser cookie, and HTTP cookie, is a text string
stored by a user's web browser. A cookie consists of one or more name-value pairs
containing bits of information, which may be encrypted for information privacy and data
security purposes.

The cookie is sent as an HTTP header by a web server to a web browser and then sent
back unchanged by the browser each time it accesses that server. A cookie can be used
for authentication, session tracking (state maintenance), storing site preferences, shopping
cart contents, the identifier for a server-based session, or anything else that can be
accomplished through storing textual data.

As text, cookies are not executable. Because they are not executed, they cannot replicate
themselves and are not viruses. However, due to the browser mechanism to set and read
cookies, they can be used as spyware. Anti-spyware products may warn users about some
cookies because cookies can be used to track people—a privacy concern.

Most modern browsers allow users to decide whether to accept cookies, and the time
frame to keep them, but rejecting cookies makes some websites unusable.

Uses

Session management

Cookies may be used to maintain data related to the user during navigation, possibly
across multiple visits. Cookies were introduced to provide a way to implement a
"shopping cart" (or "shopping basket"),[2][3] a virtual device into which users can store
items they want to purchase as they navigate throughout the site.

Shopping basket applications today usually store the list of basket contents in a database
on the server side, rather than storing basket items in the cookie itself. A web server
typically sends a cookie containing a unique session identifier. The web browser will
send back that session identifier with each subsequent request and shopping basket items
are stored associated with a unique session identifier.

Allowing users to log in to a website is a frequent use of cookies. Typically the web
server will first send a cookie containing a unique session identifier. Users then submit
their credentials and the web application authenticates the session and allows the user
access to services.

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 157

Personalization

Cookies may be used to remember the information about the user who has visited a
website in order to show relevant content in the future. For example a web server may
send a cookie containing the username last used to log in to a web site so that it may be
filled in for future visits.

Many websites use cookies for personalization based on users' preferences. Users select
their preferences by entering them in a web form and submitting the form to the server.
The server encodes the preferences in a cookie and sends the cookie back to the browser.
This way, every time the user accesses a page, the server is also sent the cookie where the
preferences are stored, and can personalize the page according to the user preferences.
For example, the Wikipedia website allows authenticated users to choose the webpage
skin they like best; the Google search engine allows users (even non-registered ones) to
decide how many search results per page they want to see.

Tracking

Tracking cookies may be used to track internet users' web browsing habits. This can also
be done in part by using the IP address of the computer requesting the page or the referrer
field of the HTTP header, but cookies allow for a greater precision. This can be done for
example as follows:

1. If the user requests a page of the site, but the request contains no cookie, the
server presumes that this is the first page visited by the user; the server creates a
random string and sends it as a cookie back to the browser together with the
requested page;

2. From this point on, the cookie will be automatically sent by the browser to the
server every time a new page from the site is requested; the server sends the page
as usual, but also stores the URL of the requested page, the date/time of the
request, and the cookie in a log file.

By looking at the log file, it is then possible to find out which pages the user has visited
and in what sequence. For example, if the log contains some requests done using the
cookie id=abc, it can be determined that these requests all come from the same user. The
URL and date/time stored with the cookie allows for finding out which pages the user has
visited, and at what time.

Third-party cookies and Web bugs, explained below, also allow for tracking across
multiple sites. Tracking within a site is typically used to produce usage statistics, while
tracking across sites is typically used by advertising companies to produce anonymous

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 158

user profiles (which are then used to determine what advertisements should be shown to
the user).

A tracking cookie may potentially infringe upon the user's privacy but they can be easily
removed. Current versions of popular web browsers include options to delete 'persistent'
cookies when the application is closed.

Third-party cookies

When viewing a Web page, images or other objects contained within this page may
reside on servers besides just the URL shown in your browser. While rendering the page,
the browser downloads all these objects. Most modern websites that you view contain
information from lots of different sources. For example, if you type www.domain.com
into your browser, widgets and advertisements within this page are often served from a
different domain source. While this information is being retrieved, some of these sources
may set cookies in your browser. First-party cookies are cookies that are set by the same
domain that is in your browser's address bar. Third-party cookies are cookies being set by
one of these widgets or other inserts coming from a different domain.

Modern browsers, such as Mozilla Firefox, Internet Explorer and Opera, by default, allow
third-party cookies, although users can change the settings to block them. There is no
inherent security risk of third-party cookies (they do not harm the user's computer) and
they make lots of functionality of the web possible, however some internet users disable
them because they can be used to track a user browsing from one website to another. This
tracking is most often done by on-line advertising companies to assist in targeting
advertisements. For example: Suppose a user visits www.domain1.com and an advertiser
sets a cookie in the user's browser, and then the user later visits www.domain2.com. If
the same company advertises on both sites, the advertiser knows that this particular user
who is now viewing www.domain2.com also viewed www.domain1.com in the past and
may avoid repeating advertisements. The advertiser does not know anything more about
the user than that—they do not know the user's name or address or any other personal
information (unless they obtain it from another source such as from the user or by reading
another cookie).

Programming the WEB 10CS73

DEPT. OF CSE, SJBIT Page 159

