Programming with the

Kinect for
Windows

Software Development Kit

David Catuhe

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2012 by David Catuhe

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012944940
ISBN: 978-0-7356-6681-8

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave

Developmental Editors: Devon Musgrave and Carol Dillingham

Project Editor: Carol Dillingham

Editorial Production: Megan Smith-Creed

Technical Reviewer: Pierce Bizzaca; Technical Review services provided by Content Master, a member of
CM Group, Ltd.

Copyeditor: Julie Hotchkiss

Indexer: Perri Weinberg-Schenker

Cover: Twist Creative « Seattle

This book is dedicated to my beloved wife, Sylvie. Without you,
your patience, and all you do for me, nothing could be possible.

Contents at a Glance

Introduction Xi
PART | KINECT AT A GLANCE
CHAPTER 1 A bit of background 3
CHAPTER 2 Who's there? 11
PART Il INTEGRATE KINECT IN YOUR APPLICATION
CHAPTER 3 Displaying Kinect data 27
CHAPTER 4 Recording and playing a Kinect session 49
PART Il POSTURES AND GESTURES
CHAPTER 5 Capturing the context 75
CHAPTER 6 Algorithmic gestures and postures 89
CHAPTER 7 Templated gestures and postures 103
CHAPTER 8 Using gestures and postures in an application 127
PART IV CREATING A USER INTERFACE FOR KINECT
CHAPTER 9 You are the mouse! 149
CHAPTER10 Controls for Kinect 163
CHAPTER11 Creating augmented reality with Kinect 185

Index 201

Contents

INtroduction Xi
Chapter 1 A bit of background 3
The SENSOr ..o 3
Limits. .o 4
The Kinect for Windows SDK e 5
Using a Kinect for Xbox 360 sensor with a developer computer .. .6
Preparing a new projectwith C++, 6
Preparing a new projectwith C#. 7

Using the Kinect for Windows SDK. it 8
Chapter 2 Who's there? 11
SDK architecture 11
The video stream. 12
Using the video stream............... i, 12
Getting frames 13
Thedepthstream 14
Using the depthstream 14
Getting frames 15
Computingdepthdata............... L. 16
Theaudio stream ... 17
Skeleton tracking 19
Tracking skeletons 22
Getting skeletondata 22
Browsing skeletons 22

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

viii

Contents

PART Il INTEGRATE KINECT IN YOUR APPLICATION
Chapter 3 Displaying Kinect data 27
The color display manager ... 27
The depth display manager i, 32
The skeleton display managerco i, 37
The audio display manager. ... 46
Chapter 4 Recording and playing a Kinect session 49
Kinect Studio 49
Recording Kinectdataooo i 50
Recording the colorstream 51
Recording the depth stream 52
Recording the skeleton frames 53
Putting itall together i 54
Replaying Kinectdatao i 57
Replaying color streams i 59
Replaying depth streams o i 61
Replaying skeleton frames o 62
Putting it all together i i 63
Controlling the record system with yourvoice 69
PART Il POSTURES AND GESTURES
Chapter 5 Capturing the context 75
The skeleton’s stability i i 75
The skeleton’s displacementspeed 79
The skeleton’s global orientation. 82
Complete ContextTracker toolcode, 83
Detecting the position of the skeleton'seyes 86

Chapter 6 Algorithmic gestures and postures

Defining a gesture with an algorithm........................
Creating a base class for gesture detection

Detecting lineargestures

Defining a posture with an algorithm........................
Creating a base class for posture detection

Detecting simple postures

Chapter 7 Templated gestures and postures

Pattern matching gestures oL,
The main concept in pattern matching.
Comparing the comparable
The golden sectionsearch. o it

Creating alearning machine.
The RecordedPath class.........ccoiiiiiiiinn..

Building the learning machine.........................
Detectingagesture
Detecting @ POStUre

Going further with combined gestures.

Chapter 8 Using gestures and postures in an application

The Gestures Viewer application
Creating the userinterface............................
Initializing the application
Displaying Kinectdata
Controlling the angle of the Kinect sensor

Detecting gestures and postures with Gestures Viewer

Recording and replaying asession
Recording new gestures and postures..................
Commanding Gestures Viewer with your voice

Usingthe beamangle.......,

Cleaning resoUrCESo vttt

Contents

ix

X

Contents

Chapter 9 You are the mouse! 149

Controlling the mouse pointer........ o i 150
Using skeleton analysis to move the mouse pointer 152
The basicapproach 152
Adding a smoothing filter.o 154
Handling the left mouse click.......... i ... 157
Chapter 10 Controls for Kinect 163
Adapting the size of theelements. 163
Providing specific feedback control. 164
Replacingthe mouse 168
Magnetization! 173
The magnetized controls 173
Simulatingaclick........... i 176
Adding a behavior to integrate easily with XAML 177
Chapter 11 Creating augmented reality with Kinect 185
Creating the XNA project e 186
Connecting to a Kinectsensor......... .o, 188
Adding the background. 189
Adding the lightsaber 191
Creating the sabershapeo L. 191
Controllingthesaber......... i 195
Creating a “lightsaber” effect. 199
Going further. 199
Index 201

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Introduction

| am always impressed when science fiction and reality meet. With Kinect for Windows,
this is definitely the case, and it is exciting to be able to control the computer with only
our hands, without touching any devices, just like in the movie “Minority Report.”

| fell in love with Kinect for Windows the first time | tried it. Being able to control
my computer with gestures and easily create augmented reality applications was like a
dream come true for me. The ability to create an interface that utilizes the movements
of the user fascinated me, and that is why | decided to create a toolbox for Kinect for
Windows to simplify the detection of gestures and postures.

This book is the story of that toolbox. Each chapter allows you to add new tools to
your Kinect toolbox. And at the end, you will find yourself with a complete working set
of utilities for creating applications with Kinect for Windows.

Who should read this book

Kinect for Windows offers an extraordinary new way of communicating with the com-
puter. And every day, | see plenty of developers who have great new ideas about how
to use it—they want to set up Kinect and get to work.

If you are one of these developers, this book is for you. Through sample code, this
book will show you how the Kinect for Windows Software Development Kit works—and
how you can develop your own experience with a Kinect sensor.

Assumptions

For the sake of simplification, | use C# as the primary language for samples, but you can
use other .NET languages or even C++ with minimal additional effort. The sample code
in this book also uses WPF 4.0 as a hosting environment. This book expects that you
have at least a minimal understanding of C#, WPF development, .NET development,
and object-oriented programming concepts.

Who should not read this book

This book is focused on providing the reader with sample code to show the possibilities
of developing with the Kinect for Windows SDK, and it is clearly written for develop-
ers, by a developer. If you are not a developer or someone with coding skills, you might
consider reading a more introductory book such as Start Here! Learn the Kinect APl by
Rob Miles (Microsoft Press, 2012).

m 2 GBof RAM
m Graphics card that supports DirectX 9.0c
m Kinect for Windows sensor

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010.

Code samples

Most of the chapters in this book include code samples that let you interactively try out
new material learned in the main text. All sample projects can be downloaded from the
following page:

http.//www.microsoftpressstore.comy/title/9780735666818

Follow the instructions to download the KinectToolbox.zip file.

Note In addition to the code samples, your system should have Visual Studio.

Installing the code samples

Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the KinectToolbox.zip file that you downloaded from the book’s website
(name a specific directory along with directions to create it, if necessary).

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn't appear, you can access it from the
same web page from which you downloaded the KinectToolbox.zip file.

Using the code samples

The folder created by the Setup.exe program contains the source code required to com-
pile the Kinect toolbox. To load it, simply double-click the Kinect.Toolbox.sIn project.

Introduction xiii

m 2 GBof RAM
m Graphics card that supports DirectX 9.0c
m Kinect for Windows sensor

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2010.

Code samples

Most of the chapters in this book include code samples that let you interactively try out
new material learned in the main text. All sample projects can be downloaded from the
following page:

http://go.microsoft.com/FWLink/?Linkid=258661

Follow the instructions to download the KinectToolbox.zip file.

Note In addition to the code samples, your system should have Visual Studio.

Installing the code samples

Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the KinectToolbox.zip file that you downloaded from the book’s website
(name a specific directory along with directions to create it, if necessary).

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn't appear, you can access it from the
same web page from which you downloaded the KinectToolbox.zip file.

Using the code samples

The folder created by the Setup.exe program contains the source code required to com-
pile the Kinect toolbox. To load it, simply double-click the Kinect.Toolbox.sIn project.

Introduction xiii

Acknowledgments

I'd like to thank the following people: Devon Musgrave for giving me the opportunity
to write this book. Dan Fernandez for thinking of me as a potential author for a book
about Kinect. Carol Dillingham for her kindness and support. Eric Mittelette for encour-
aging me from the first time | told him about this project. Eric Vernié, my fellow speaker
in numerous sessions during which we presented Kinect.

Errata & book support

We've made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http.//www.microsoftpressstore.com/title/9780735666818

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http.//www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

xiv Introduction

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.microsoftpressstore.com/title/9780735666818

Displaying Kinect data

B ecause there is no physical interaction between the user and the Kinect sensor, you must be sure
that the sensor is set up correctly. The most efficient way to accomplish this is to provide a visual
feedback of what the sensor receives. Do not forget to add an option in your applications that lets
users see this feedback because many will not yet be familiar with the Kinect interface. Even to allow
users to monitor the audio, you must provide a visual control of the audio source and the audio level.

In this chapter you will learn how to display the different Kinect streams. You will also write a tool
to display skeletons and to locate audio sources.

All the code you produce will target Windows Presentation Foundation (WPF) 4.0 as the default
developing environment. The tools will then use all the drawing features of the framework to concen-
trate only on Kinect-related code.

The color display manager

As you saw in Chapter 2, “Who's there?,” Kinect is able to produce a 32-bit RGB color stream. You will
now develop a small class (ColorStreamManager) that will be in charge of returning a WriteableBitmap
filled with each frame data.

This WriteableBitmap will be displayed by a standard WPF image control called kinectDisplay:
<Image x:Name="kinectDisplay" Source="{Binding Bitmap}'"></Image>

This control is bound to a property called Bitmap that will be exposed by your class.

Note Before you begin to add code, you must start the Kinect sensor. The rest of the code
in this book assumes that you have initialized the sensor as explained in Chapter 1, “A bit of
background.”

Before writing this class, you must introduce the Notifier class that helps handle the INotifyProperty-
Changed interface (used to signal updates to the user interface [UI]):

27

using System;
using System.ComponentModel;
using System.Ling.Expressions;

namespace Kinect.Toolbox

{
public abstract class Notifier : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;
protected void RaisePropertyChanged<T>(Expression<Func<T>> propertyExpression)
{
var memberExpression = propertyExpression.Body as MemberExpression;
if (memberExpression == null)
return;
string propertyName = memberExpression.Member.Name;
if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
}
}
}

As you can see, this class uses an expression to detect the name of the property to signal. This is
quite useful, because with this technique you don't have to pass a string (which is hard to keep in sync
with your code when, for example, you rename your properties) to define your property.

You are now ready to write the ColorStreamManager class:

using System.Windows.Media.Imaging;

using System.Windows.Media;

using Microsoft.Kinect;

using System.Windows;

public class ColorStreamManager : Notifier

{
public WriteableBitmap Bitmap { get; private set; }
public void Update(ColorImageFrame frame)
{
var pixelData = new byte[frame.PixelDatalLength];
frame.CopyPixelDataTo(pixelData);
if (Bitmap == null)
{
Bitmap = new WriteableBitmap(frame.Width, frame.Height,
96, 96, PixelFormats.Bgr32, null);
}
int stride = Bitmap.PixelWidth * Bitmap.Format.BitsPerPixel / 8;
Int32Rect dirtyRect = new Int32Rect(0, 0, Bitmap.PixelWidth, Bitmap.PixelHeight);
Bitmap.WritePixels(dirtyRect, pixelData, stride, 0);
RaisePropertyChanged(() => Bitmap);
}
}

Integrate Kinect in your application

Using the frame object, you can get the size of the frame with Pixe/DatalLength and use it to create
a byte array to receive the content of the frame. The frame can then be used to copy its content to
the buffer using CopyPixelDataTo.

The class creates a WriteableBitmap on first call of Update. This bitmap is returned by the Bitmap
property (used as binding source for the image control). Notice that the bitmap must be a BGR32
(Windows works with Blue/Green/Red picture) with 96 dots per inch (DPI) on the x and y axes.

The Update method simply copies the buffer to the WriteableBitmap on each frame using the Write-
Pixels method of WriteableBitmap.

Finally, Update calls RaisePropertyChanged (from the Notifier class) on the Bitmap property to
signal that the bitmap has been updated.

So after initializing the sensor, you can add this code in your application to use the ColorStream-
Manager class:

var colorManager = new ColorStreamManager();
void kinectSensor_ColorFrameReady(object sender, ColorImageFrameReadyEventArgs e)
{

using (var frame = e.OpenColorImageFrame())

{
if (frame == null)
return;
colorManager.Update(frame);
}

The final step is to bind the DataContext of the picture to the colorManager object (for instance,
inside the load event of your MainWindow page):

kinectDisplay.DataContext = colorManager;

Now every time a frame is available, the ColorStreamManager bound to the image will raise the
PropertyChanged event for its Bitmap property, and in response the image will be updated, as shown
in Figure 3-1.

Displaying Kinect data 29

30

View Depth

FIGURE 3-1 Displaying the Kinect color stream with WPF.

If you are planning to use the YUV format, there are two possibilities available: You can use the
ColorlmageFormat.YuvResolution640x480Fps15 format, which is already converted to RGB32, or you
can decide to use the raw YUV format (ColorimageFormat.RawYuvResolution640x480Fps15), which is
composed of 16 bits per pixel—and it is more effective.

To display this format, you must update your ColorStreamManager:

public class ColorStreamManager : Notifier

{
public WriteableBitmap Bitmap { get; private set; }
int[] yuvTemp;

static double Clamp(double value)

{
return Math.Max(0, Math.Min(value, 255));
}
static int ConvertFromYUV(byte y, byte u, byte v)
{
byte b = (byte)Clamp(1.164 * (y - 16) + 2.018 * (u - 128));
byte g = (byte)Clamp(1.164 * (y - 16) - 0.813 * (v - 128) - 0.391 * (u - 128));
byte r = (byte)Clamp(1.164 * (y - 16) + 1.596 * (v - 128));
return (r << 16) + (g << 8) + b;
}

public void Update(ColorImageFrame frame)

PART Il Integrate Kinect in your application

var pixelData = new byte[frame.PixelDatalLength];
frame.CopyPixelDataTo(pixelData);
if (Bitmap == null)

{
Bitmap = new WriteableBitmap(frame.Width, frame.Height,

96, 96, PixelFormats.Bgr32, null);

int stride = Bitmap.PixelWidth * Bitmap.Format.BitsPerPixel / 8;
Int32Rect dirtyRect = new Int32Rect(0, 0, Bitmap.PixelWidth, Bitmap.PixelHeight);

if (frame.Format == ColorImageFormat.RawYuvResolution640x480Fps15)

{
if (yuvTemp == null)
yuvTemp = new int[frame.Width * frame.Height];
int current = 0;
for (int uyvyIndex = 0; uyvyIndex < pixelData.Length; uyvyIndex += 4)
{
byte u = pixelData[uyvyIndex];
byte yl = pixelData[uyvyIndex + 1];
byte v = pixelData[uyvyIndex + 2];
byte y2 = pixelData[uyvyIndex + 3];
yuvTemp[current++] = ConvertFromYUV(yl, u, v);
yuvTemp[current++] = ConvertFromYUV(y2, u, Vv);
}
Bitmap.WritePixels(dirtyRect, yuvTemp, stride, 0);
}
else

Bitmap.WritePixels(dirtyRect, pixelData, stride, 0);

RaisePropertyChanged(() => Bitmap);

The ConvertFromYUV method is used to convert a (y, u, v) vector to an RGB integer. Because this
operation can produce out-of-bounds results, you must use the Clamp method to obtain correct
values.

The important point to understand about this is how YUV values are stored in the stream. A YUV
stream stores pixels with 32 bits for each two pixels, using the following structure: 8 bits for Y1, 8 bits
for U, 8 bits for Y2, and 8 bits for V. The first pixel is composed from Y1UV and the second pixel is
built with Y2UV.

Therefore, you need to run through all incoming YUV data to extract pixels:

Displaying Kinect data 31

for (int uyvyIndex = 0; uyvyIndex < pixelData.Length; uyvyIndex += 4)
{

byte u = pixelData[uyvyIndex];

byte yl = pixelDataluyvyIndex + 1];

byte v = pixelData[uyvyIndex + 2];

byte y2 = pixelDatal[uyvyIndex + 3];

yuvTemp [current++] ConvertFromYUV(yl, u, Vv);
yuvTemp[current++] = ConvertFromYUV(y2, u, Vv);

Now the ColorStreamManager is able to process all kinds of stream format.

The depth display manager

The second stream you need to display is the depth stream. This stream is composed of 16 bits per
pixel, and each pixel in the depth stream uses 13 bits (high order) for depth data and 3 bits (lower
order) to identify a player.

A depth data value of 0 indicates that no depth data is available at that position because all the
objects are either too close to the camera or too far away from it.

W Important When skeleton tracking is disabled, the three bits that identify a player are set
to 0.

Note You must configure the depth stream as explained in Chapter 2 before continuing.

Comparable to the ColorStreamManager class, following is the code for the DepthStreamManager
class:

using System.Windows.Media.Imaging
using Microsoft.Kinect;

using System.Windows.Media;

using System.Windows;

public class DepthStreamManager : Notifier

{
byte[] depthFrame32;

public WriteableBitmap Bitmap { get; private set; }
public void Update(DepthImageFrame frame)
{

var pixelData = new short[frame.PixelDatalength];

frame.CopyPixelDataTo(pixelData);

if (depthFrame32 == null)
{

32 Integrate Kinect in your application

depthFrame32 = new byte[frame.Width * frame.Height * 4];

}
if (Bitmap == null)
{
Bitmap = new WriteableBitmap(frame.Width, frame.Height,
96, 96, PixelFormats.Bgra32, null);
}

ConvertDepthFrame(pixelData);

int stride = Bitmap.PixelWidth * Bitmap.Format.BitsPerPixel / 8;
Int32Rect dirtyRect = new Int32Rect(0, 0, Bitmap.PixelWidth, Bitmap.PixelHeight);

Bitmap.WritePixels(dirtyRect, depthFrame32, stride, 0);

RaisePropertyChanged(() => Bitmap);

void ConvertDepthFrame(short[] depthFramel6)
{
for (int i16 = 0, i32 = 0; 116 < depthFramel6.Length
&& 132 < depthFrame32.Length; i16 ++, i32 += 4)
{
int user = depthFramel6[i16] & 0x07;
int realDepth = (depthFramel6[il6] >> 3);

byte intensity = (byte) (255 - (255 * realDepth / 0x1fff));

depthFrame32[i32] = 0;
depthFrame32[i32 + 1] 0;
depthFrame32[i32 + 2] 0;
depthFrame32[i32 + 3] = 255;

switch (user)
{

case 0: // no one
depthFrame32[i32] = (byte)(intensity / 2);
depthFrame32[i32 + 1] = (byte)(intensity / 2);
depthFrame32[i32 + 2] = (byte)(intensity / 2);
break;

case 1:
depthFrame32[i32] = intensity;
break;

case 2:
depthFrame32[i32 + 1] = intensity;
break;

case 3:
depthFrame32[i32 + 2] = intensity;
break;

case 4:
depthFrame32[i32] = intensity;
depthFrame32[i32 + 1] = intensity;
break;

case 5:
depthFrame32[i32] = intensity;
depthFrame32[i32 + 2] = intensity;

Displaying Kinect data

33

34

break;

case 6:
depthFrame32[i32 + 1] = intensity;
depthFrame32[i32 + 2] = intensity;
break;

case 7:
depthFrame32[i32] = intensity;
depthFrame32[i32 + 1] = intensity;
depthFrame32[i32 + 2] = intensity;
break;

The main method here is ConvertDepthFrame, where the potential user ID and the depth value (ex-
pressed in millimeters) are extracted:

int user = depthFramel6[il6] & 0x07;
int realDepth = (depthFramel6[il6] >> 3);
byte intensity = (byte) (255 - (255 * realDepth / O0x1fff));

As mentioned in Chapter 2, you simply have to use some bitwise operations to get the informa-
tion you need out of the pixel. The user index is on the three low-order bits, so a simple mask with
00000111 in binary form or 0x07 in hexadecimal form can extract the value. To get the depth value,
you can remove the first three bits by offsetting the pixel to the right with the >> operator.

The intensity is computed by computing a ratio between the maximum depth value and the cur-
rent depth value. The ratio is then used to get a value between 0 and 255 because color components
are expressed using bytes.

The following part of the method generates a grayscale pixel (with the intensity related to the
depth), as shown in Figure 3-2. It uses a specific color if a user is detected, as shown in Figure 3-3. (The
blue color shown in Figure 3-3 appears as gray to readers of the print book.)

Integrate Kinect in your application

FIGURE 3-2 The depth stream display without a user detected.

FIGURE 3-3 The depth stream display with a user detected. (A specific color is used where
the user is detected, but this appears as light gray to readers of the print book.)

Displaying Kinect data 35

36

Of course, the near and standard modes are supported the same way by the DepthStreamMan-
ager. The only difference is that in near mode, the depth values are available from 40cm, whereas in
standard mode, the depth values are only available from 80cm, as shown in Figure 3-4.

FIGURE 3-4 Hand depth values out of range in standard mode are shown at left, and hand depth values
in range in near mode are shown at right.

To connect your DepthStreamManager class with the kinectDisplay image control, use the follow-
ing code inside your kinectSensor_DepthFrameReady event:

var depthManager = new DepthStreamManager();
void kinectSensor_DepthFrameReady(object sender, DepthImageFrameReadyEventArgs e)
{

using (var frame = e.OpenDepthImageFrame())

{
if (frame == null)
return;
depthManager.Update(frame);
}

Then add this code in your initialization event:
kinectDisplay.DataContext = depthManager;

The DepthStreamManager provides an excellent way to give users visual feedback, because they
can detect when and where the Kinect sensor sees them by referring to the colors in the visual
display.

PART Il Integrate Kinect in your application

The skeleton display manager

The skeleton data is produced by the natural user interface (NUI) APl and behaves the same way as
the color and depth streams. You have to collect the tracked skeletons to display each of their joints.

You can simply add a WPF canvas to display the final result in your application, as shown in
Figure 3-5:

<Canvas x:Name="skeletonCanvas"></Canvas>

You have to write a class named SkeletonDisplayManager that will provide a Draw method to
create the required shapes inside the skeletonCanvas canvas:

using System;

using System.Collections.Generic;
using System.Windows;

using System.Windows.Controls;
using System.Ling;

using System.Windows.Shapes;
using System.Windows.Media;

using Microsoft.Kinect;

namespace Kinect.Toolbox

{

public class SkeletonDisplayManager

{
readonly Canvas rootCanvas;
readonly KinectSensor sensor;

public SkeletonDisplayManager(KinectSensor kinectSensor, Canvas root)

{
rootCanvas = root;
sensor = kinectSensor;

}

public void Draw(Skeleton[] skeletons)
{

// Implementation will be shown afterwards

}

As you can see, the Draw method takes a Skeletons array in parameter. To get this array, you can
add a new method to your Tools class:

public static void GetSkeletons(SkeletonFrame frame, ref Skeleton[] skeletons)

¢ if (frame == null)
return;
if (skeletons == null || skeletons.Length != frame.SkeletonArraylLength)
{ skeletons = new Skeleton[frame.SkeletonArraylLength];
irame.CopySke1etonDataTo(ske1etons);
3

Displaying Kinect data 37

38

This method is similar to the previous one but does not recreate a new array every time, which is
important for the sake of performance. When this method is ready, you can add the following code to
your load event:

Skeleton[] skeletons;
SkeletonDisplayManager skeletonManager = new SkeletonDisplayManager(kinectSensor,
skeletonCanvas);
void kinectSensor_SkeletonFrameReady(object sender, SkeletonFrameReadyEventArgs e)
{

using (SkeletonFrame frame = e.OpenSkeletonFrame())

{

if (frame == null)
return;

frame.GetSkeletons(ref skeletons);
if (skeletons.A11(s => s.TrackingState == SkeletonTrackingState.NotTracked))

return;

skeletonManager.Draw(skeletons);

The event argument e gives you a method called OpenSkeletonfFrame that returns a SkeletonFrame
object. This object is used to get an array of Skeleton objects.

Then you simply have to find out if one of the returned skeletons is tracked. If not, you can return
and wait for a new frame, or you can use the skeletonManager object to display the detected skeletons.

FIGURE 3-5 Displaying the skeleton data.

So, going back to your SkeletonDisplayManager, you now need to draw the skeletons inside the
WPF canvas. To do so, you can add a list of circles that indicate where the joints are and then draw
lines between the joints.

Integrate Kinect in your application

You can get access to a skeleton’s joints collection easily using the skeleton.Joints property. To draw
all the detected and tracked skeletons in a frame, you simply cycle through the Skeletons array with
the following code:

public void Draw(Skeleton[] skeletons)

{

rootCanvas.Children.Clear();

foreach (Skeleton skeleton in skeletons)

{

if (skeleton.TrackingState != SkeletonTrackingState.Tracked)
continue;

Plot(JointType.HandLeft, skeleton.Joints);
Trace(JointType.HandLeft, JointType.WristLeft, skeleton.Joints);
Plot(JointType.WristLeft, skeleton.Joints);
Trace(JointType.WristLeft, JointType.ElbowLeft, skeleton.Joints);
Plot(JointType.ElbowLeft, skeleton.Joints);
Trace(JointType.ElbowLeft, JointType.ShoulderLeft, skeleton.Jloints);
Plot(JointType.ShoulderLeft, skeleton.Joints);
Trace(JointType.ShoulderLeft, JointType.ShoulderCenter, skeleton.Joints);
Plot(JointType.ShoulderCenter, skeleton.Joints);
Trace(JointType.ShoulderCenter, JointType.Head, skeleton.Joints);
Plot(JointType.Head, JointType.ShoulderCenter, skeleton.Joints);
Trace(JointType.ShoulderCenter, JointType.ShoulderRight, skeleton.Joints);
Plot(JointType.ShoulderRight, skeleton.Joints);
Trace(JointType.ShoulderRight, JointType.ETbowRight, skeleton.Joints);
Plot(JointType.ETbowRight, skeleton.Joints);
Trace(JointType.ElbowRight, JointType.WristRight, skeleton.Joints);
Plot(JointType.WristRight, skeleton.Joints);
Trace(JointType.WristRight, JointType.HandRight, skeleton.Joints);
Plot(JointType.HandRight, skeleton.Joints);
Trace(JointType.ShoulderCenter, JointType.Spine, skeleton.Joints);
Plot(JointType.Spine, skeleton.Joints);
Trace(JointType.Spine, JointType.HipCenter, skeleton.Joints);
Plot(JointType.HipCenter, skeleton.Joints);
Trace(JointType.HipCenter, JointType.HipLeft, skeleton.Joints);
Plot(JointType.HipLeft, skeleton.Joints);
Trace(JointType.HipLeft, JointType.KneeLeft, skeleton.Joints);
Plot(JointType.KneeLeft, skeleton.Joints);
Trace(JointType.KneeLeft, JointType.AnkleLeft, skeleton.Joints);
Plot(JointType.AnkleLeft, skeleton.Joints);
Trace(JointType.AnkleLeft, JointType.FootLeft, skeleton.Joints);
Plot(JointType.FootLeft, skeleton.Joints);
Trace(JointType.HipCenter, JointType.HipRight, skeleton.Joints);
Plot(JointType.HipRight, skeleton.Joints);
Trace(JointType.HipRight, JointType.KneeRight, skeleton.Joints);
Plot(JointType.KneeRight, skeleton.Joints);
Trace(JointType.KneeRight, JointType.AnkleRight, skeleton.Joints);
Plot(JointType.AnkleRight, skeleton.Joints);
Trace(JointType.AnkTeRight, JointType.FootRight, skeleton.Joints);
Plot(JointType.FootRight, skeleton.Joints);

}

}

Displaying Kinect data 39

40

The Trace and Plot methods search for a given joint through the Joints collection. The Trace meth-
od traces a line between two joints and then the Plot method draws a point where the joint belongs.

Before looking at these methods, you must add some more code to your project. First add a
Vector2 class that represents a two-dimensional (2D) coordinate (x, y) with associated simple opera-
tors (+, -, *, etc.):

using System;

namespace Kinect.Toolbox
{
[Serializable]
public struct Vector2
{
public float X;
public float Y;

public static Vector2 Zero

{

get

{

return new Vector2(0, 0);

}
}
public Vector2(float x, float y)
{

X = X;

Y =vy;
}
public float Length
{

get

{

return (float)Math.Sqrt(X * X + Y * Y);

}
}
public static Vector2 operator -(Vector2 left, Vector2 right)
{

return new Vector2(left.X - right.X, left.Y - right.Y);
}
public static Vector2 operator +(Vector2 left, Vector2 right)
{

return new Vector2(left.X + right.X, left.Y + right.Y);
}
public static Vector2 operator *(Vector2 left, float value)
{

return new Vector2(left.X * value, left.Y * value);
}

public static Vector2 operator *(float value, Vector2 left)

{

Integrate Kinect in your application

return Teft * value;

}
public static Vector2 operator /(Vector2 left, float value)
{
return new Vector2(left.X / value, left.Y / value);
}

There is nothing special to note in the previous code; it is simple 2D math.

The second step involves converting the joint coordinates from skeleton space (x, y, z in meter
units) to screen space (in pixel units). To do so, you can add a Convert method to your Tools class:

public static Vector2 Convert(KinectSensor sensor, SkeletonPoint position)
{
float width = 0;
float height = 0;
float x 0;
float y 0;

if (sensor.ColorStream.IsEnabled)
{
var colorPoint = sensor.MapSkeletonPointToColor(position,
sensor.ColorStream.Format) ;
x = colorPoint.X;
y = colorPoint.Y;

switch (sensor.ColorStream.Format)
{
case ColorImageFormat.RawYuvResolution640x480Fpsl5:
case ColorImageFormat.RgbResolution640x480Fps30:
case ColorImageFormat.YuvResolution640x480Fps15:
width = 640;
height = 480;
break;
case ColorImageFormat.RgbResolution1280x960Fps12:
width = 1280;
height = 960;
break;

}
else if (sensor.DepthStream.IsEnabled)
{
var depthPoint = sensor.MapSkeletonPointToDepth(position,
sensor.DepthStream.Format);
x = depthPoint.X;
y = depthPoint.Y;

switch (sensor.DepthStream.Format)

{
case DepthImageFormat.Resolution80x60Fps30:

width = 80;

Displaying Kinect data

height = 60;

break;
case DepthImageFormat.Resolution320x240Fps30:
width = 320;
height = 240;
break;
case DepthImageFormat.Resolution640x480Fps30:
width = 640;
height = 480;
break;
}
}
else
{
width = 1;
height = 1;
}

return new Vector2(x / width, y / height);
}

The Convert method uses the Kinect for Windows SDK mapping API to convert from skeleton
space to color or depth space. If the color stream is enabled, it will be used to map the coordinates
using the kinectSensor.MapSkeletonPointToColor method, and using the color stream format, you can
get the width and the height of the color space. If the color stream is disabled, the method uses the
depth stream in the same way.

The method gets a coordinate (x, y) and a space size (width, height). Using this information, it
returns a new Vector2 class with an absolute coordinate (a coordinate relative to a unary space).

Then you have to add a private method used to determine the coordinates of a joint inside the
canvas to your SkeletonDisplayManager class:
void GetCoordinates(JointType jointType, IEnumerable<Joint> joints, out float x, out float y)
{

var joint = joints.First(j => j.JointType == jointType);

Vector2 vector2 = Convert(kinectSensor, joint.Position);

x
1]

(float) (vector2.X * rootCanvas.ActualWidth);
(float) (vector2.Y * rootCanvas.ActualHeight);

<
1]

With an absolute coordinate, it is easy to deduce the canvas space coordinate of the joint:

= (float) (vector2.X * rootCanvas.ActualWidth);
= (float) (vector2.Y * rootCanvas.ActualHeight);

< X
|

Finally, with the help of the previous methods, the Plot and Trace methods are defined as follows:

void Plot(JointType centerID, IEnumerable<Joint> joints)
{

float centerX;

float centerY;

42 Integrate Kinect in your application

GetCoordinates(centerID, joints, out centerX, out centerY);
const double diameter = 8;

Ellipse ellipse = new Ellipse

{
Width = diameter,
Height = diameter,
HorizontalAlignment = HorizontalAlignment.Left,
VerticalAlignment = VerticalAlignment.Top,
StrokeThickness = 4.0,
Stroke = new SolidColorBrush(Colors.Green),
StrokeLineJoin = PenLineJoin.Round

};

Canvas.SetLeft(ellipse, centerX - ellipse.Width / 2);
Canvas.SetTop(ellipse, centerY - ellipse.Height / 2);

rootCanvas.Children.Add(ellipse);

void Trace(JointType sourceID, JointType destinationID, JointCollection joints)

{
float sourceX;
float sourceY;

GetCoordinates(sourceID, joints, out sourceX, out sourceY);

float destinationX;
float destinationY;

GetCoordinates(destinationID, joints, out destinationX, out destinationY);

Line 1ine = new Line
{
X1 = sourceX,
Y1l = sourceY,
X2 = destinationX,
Y2 = destinationy,
HorizontalAlignment = HorizontalAlignment.Left,
VerticalAlignment = VerticalAlignment.Top,
StrokeThickness = 4.0,
Stroke = new SolidColorBrush(Colors.Green),
StrokeLineJoin = PenLineJoin.Round

1

rootCanvas.Children.Add(Tine);

The main point to remember here is that WPF shapes (Line or Ellipse) are created to represent parts
of the skeleton. After the shape is created, it is added to the canvas.

Displaying Kinect data 43

44

Note The WPF shapes are recreated at every render. To optimize the display, it is better
to keep the shapes and move them to the skeleton as needed, but that is a more complex
process that is not required for the scope of this book.

The only specific joint in the skeleton is the head because it makes sense to draw it bigger than the

other joints to represent the head of the skeleton. To do so, a new Plot method is defined:

void Plot(JointType centerID, JointType baseID, JointCollection joints)

{
float centerX;
float centerY;
GetCoordinates(centerID, joints, out centerX, out centerY);
float baseX;
float baseY;
GetCoordinates(baseID, joints, out baseX, out baseY);
double diameter = Math.Abs(baseY - centerY);
ET1lipse ellipse = new Ellipse
{
Width = diameter,
Height = diameter,
HorizontalAlignment = HorizontalAlignment.Left,
VerticalAlignment = VerticalAlignment.Top,
StrokeThickness = 4.0,
Stroke = new SolidColorBrush(Colors.Green),
StrokeLineJoin = PenLineJoin.Round
1
Canvas.SetlLeft(ellipse, centerX - ellipse.Width / 2);
Canvas.SetTop(ellipse, centerY - ellipse.Height / 2);
rootCanvas.Children.Add(ellipse);
}
In this case, the ellipse’s diameter is defined using the distance between the head and the center of
shoulder.

Finally, you can also add a new parameter to the Draw method to support the seated mode. In this

case, you must not draw the lower body joints:

public void Draw(Skeleton[] skeletons, bool seated)

{

rootCanvas.Children.Clear();
foreach (Skeleton skeleton in skeletons)
{
if (skeleton.TrackingState != SkeletonTrackingState.Tracked)
continue;

Integrate Kinect in your application

Plot(JointType.HandLeft, skeleton.Joints);

Trace(JointType.HandLeft, JointType.WristLeft, skeleton.Joints);
Plot(JointType.WristLeft, skeleton.Joints);

Trace(JointType.WristLeft, JointType.ElbowLeft, skeleton.Joints);
Plot(JointType.ElbowLeft, skeleton.Joints);

Trace(JointType.ElbowLeft, JointType.ShoulderLeft, skeleton.Joints);
Plot(JointType.ShoulderLeft, skeleton.Joints);
Trace(JointType.ShoulderLeft, JointType.ShoulderCenter, skeleton.Joints);
Plot(JointType.ShoulderCenter, skeleton.Joints);

Trace(JointType.ShoulderCenter, JointType.Head, skeleton.Joints);
Plot(JointType.Head, JointType.ShoulderCenter, skeleton.Joints);

Trace(JointType.ShoulderCenter, JointType.ShoulderRight, skeleton.Joints);
Plot(JointType.ShoulderRight, skeleton.Joints);
Trace(JointType.ShoulderRight, JointType.ETbowRight, skeleton.Joints);
Plot(JointType.ElbowRight, skeleton.Joints);

Trace(JointType.ElbowRight, JointType.WristRight, skeleton.Joints);
Plot(JointType.WristRight, skeleton.Joints);

Trace(JointType.WristRight, JointType.HandRight, skeleton.Joints);
Plot(JointType.HandRight, skeleton.Joints);

if (!seated)

{
Trace(JointType.ShoulderCenter, JointType.Spine, skeleton.Joints);
PTot(JointType.Spine, skeleton.Joints);
Trace(JointType.Spine, JointType.HipCenter, skeleton.Joints);
PTot(JointType.HipCenter, skeleton.Joints);
Trace(JointType.HipCenter, JointType.HipLeft, skeleton.Joints);
PTot(JointType.HipLeft, skeleton.Joints);
Trace(JointType.HipLeft, JointType.KneeLeft, skeleton.Joints);
Plot(JointType.KneeLeft, skeleton.Joints);
Trace(JointType.KneeLeft, JointType.AnklelLeft, skeleton.Joints);
Plot(JointType.AnklelLeft, skeleton.Joints);
Trace(JointType.AnkleLeft, JointType.FootLeft, skeleton.Joints);
PTot(JointType.FootLeft, skeleton.Joints);
Trace(JointType.HipCenter, JointType.HipRight, skeleton.Joints);
Plot(JointType.HipRight, skeleton.Joints);
Trace(JointType.HipRight, JointType.KneeRight, skeleton.Joints);
Plot(JointType.KneeRight, skeleton.Joints);
Trace(JointType.KneeRight, JointType.AnkleRight, skeleton.Joints);
PlTot(JointType.AnkleRight, skeleton.Joints);
Trace(JointType.AnkleRight, JointType.FootRight, skeleton.Joints);
PTlot(JointType.FootRight, skeleton.Joints);

}

Displaying Kinect data

45

The audio display manager

46

The audio stream provides two important pieces of information that the user of your Kinect appli-
cations may want to know. The first is the sound source angle, which is the angle (in radians) to the
current position of the audio source in camera coordinates.

The second is the beam angle produced by the microphone array. By using the fact that the sound
from a particular audio source arrives at each microphone in the array at a slightly different time,
beamforming allows applications to determine the direction of the audio source and use the micro-
phone array as a steerable directional microphone.

The beam angle can be important as a visual feedback to indicate which audio source is being
used (for speech recognition, for instance), as shown in Figure 3-6.

FIGURE 3-6 Visual feedback of beam angle.

This visual feedback is a virtual representation of the sensor, and in Figure 3-6, the orange area to
the right of center (which appears as gray in the print book) indicates the direction of the beam. (For
readers of the print book, Figure 3-6 is orange near the center and fades to black on either side of the
beam.)

To recreate the same control, you can add an XAML page with the following XAML declaration:

<Rectangle x:Name="audioBeamAngle" Height="20" Width="300" Margin="5">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="1, 0">
<GradientStopCollection>
<GradientStop Offset="0" Color="Black"/>
<GradientStop Offset="{Binding BeamAngle}" Color="Orange"/>
<GradientStop Offset="1" Color="Black"/>
</GradientStopCollection>
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

You can see that the rectangle is filled with a LinearGradientBrush starting from black to orange to
black. The position of the orange GradientStop can be bound to a BeamAngle property exposed by a
class.

The binding code itself is quite obvious:
var kinectSensor = KinectSensor.KinectSensors[0];
var audioManager = new AudioStreamManager(kinectSensor.AudioSource);

audioBeamAngle.DataContext = audioManager;

So you have to create an AudioStreamManager class that exposes a BeamAngle property. The class
inherits from the Notifier class you created earlier in this chapter and implements /Disposable:

Integrate Kinect in your application

using Microsoft.Kinect;
public class AudioStreamManager : Notifier, IDisposable

{

readonly KinectAudioSource audioSource;

public AudioStreamManager (KinectAudioSource source)

{
audioSource = source;
audioSource.BeamAngleChanged += audioSource_BeamAngleChanged;

void audioSource_BeamAngleChanged(object sender, BeamAngleChangedEventArgs e)

{
RaisePropertyChanged(()=>BeamAngle) ;

}
public double BeamAngle
{

get

{

return (audioSource.BeamAngle - KinectAudioSource.MinBeamAngle) /
(KinectAudioSource.MaxBeamAngle - KinectAudioSource.MinBeamAngle);

}
}
public void Dispose()
{
audioSource.BeamAngleChanged -= audioSource_BeamAngleChanged;
}

There is nothing special to note about this code, except to mention that the computation of the
BeamAngle returns a value in the range [0, 1], which in turn will be used to set the offset of the or-
ange GradientStop.

Now you can display all kinds of streams produced by the Kinect sensor to provide reliable visual
feedback to the users of your applications.

Displaying Kinect data 47

Algorithmic gestures and postures

inect is a wonderful tool for communicating with a computer. And one of the most obvious ways
to accomplish this communication is by using gestures. A gesture is the movement of a part of
your body through time, such as when you move your hand from right to left to simulate a swipe.

Posture is similar to gesture, but it includes the entire body—a posture is the relative positions of
all part of your body at a given time.

Postures and gestures are used by the Kinect sensor to send orders to the computer (a specific
posture can start an action, and gestures can manipulate the user interface or Ul, for instance).

In this chapter, you will learn how to detect postures and gestures using an algorithmic approach.
Chapter 7, "Templated gestures and postures,” will demonstrate how to use a different technique to
detect more complex gestures and postures. Chapter 8, “Using gestures and postures in an applica-
tion,” will then show you how to use gestures and postures in a real application.

Defining a gesture with an algorithm

With gestures, it is all about movement. Trying to detect a gesture can then be defined as the process
of detecting a given movement.

This solution can be applied to detected linear movement, such as hand swipe from left to right, as
shown in Figure 6-1.

@m)

FIGURE 6-1 A gesture can be as simple as a hand swipe from left to right.

89

90

The global principle behind capturing a gesture for use as input is simple: you have to capture the
nth last positions of a joint and apply an algorithm to them to detect a potential gesture.

Creating a base class for gesture detection

First you must create an abstract base class for gesture detection classes. This class provides common
services such as:

m Capturing tracked joint position
= Drawing the captured positions for debugging purposes, as shown in Figure 6-2
m Providing an event for signaling detected gestures

m Providing a mechanism to prevent detecting “overlapping” gestures (with a minimal delay
between two gestures)

FIGURE 6-2 Drawing captured joint positions, shown in red (for readers of the print book, the captured joint posi-
tions are indicated by the semicircle of dots to the right of the skeleton).

To store joint positions, you must create the following class:

using System;
using System.Windows.Shapes;

namespace Kinect.Toolbox

{
public class Entry
{
public DateTime Time { get; set; }
public Vector3 Position { get; set; }
public Ellipse DisplayEllipse { get; set; }
}
}

This class contains the position of the joint as well as the time of capture and an ellipse to draw it.

Postures and gestures

The base class for gesture detection starts with the following declarations:

using System;

using System.Collections.Generic;
using System.Windows;

using System.Windows.Media;

using System.Windows.Shapes;
using System.Windows.Controls;
using Microsoft.Kinect;

namespace Kinect.Toolbox

{

public abstract class GestureDetector

{

public int MinimalPeriodBetweenGestures { get; set; }
readonly List<Entry> entries = new List<Entry>(Q);

public event Action<string> OnGestureDetected;

DateTime TastGestureDate = DateTime.Now;

readonly int windowSize; // Number of recorded positions

// For drawing
public Canvas DisplayCanvas

{
get;
set;

public Color DisplayColor

{
get;
set;

protected GestureDetector(int windowSize = 20)

{
this.windowSize = windowSize;
MinimalPeriodBetweenGestures = 0;
DisplayColor = Colors.Red;

This class contains a list of captured entries (Entries), a property for defining the minimal delay
between two gestures (MinimalPeriodBetweenGestures), and an event for signaling detected gestures
(OnGestureDetected).

If you want to debug your gestures, you can use the DisplayCanvas and DisplayColor properties to
draw the current captured positions on a XAML canvas (as shown in Figure 6-2).

The complete class also provides a method to add entries:

Algorithmic gestures and postures 91

92

public virtual void Add(SkeletonPoint position, KinectSensor sensor)

{
const int WindowSize = 20;
Entry newEntry = new Entry {Position = position.ToVector3(), Time = DateTime.Now};
Entries.Add(newEntry); // The Entries 1list will be defined later as List<Entry>
// Drawing
if (DisplayCanvas != null)
{
newEntry.DisplayETlipse = new Ellipse
{
wWidth = 4,
Height = 4,
HorizontalAlignment = HorizontalAlignment.Left,
VerticalAlignment = VerticalAlignment.Top,
StrokeThickness = 2.0,
Stroke = new SolidColorBrush(DisplayColor),
StrokeLineJoin = PenLineJoin.Round
1
Vector2 vector2 = Tools.Convert(sensor, position);
float x = (float) (vector2.X * DisplayCanvas.ActualWidth);
float y = (float) (vector2.Y * DisplayCanvas.ActualHeight);
Canvas.SetLeft(newEntry.DisplayETlipse, x - newEntry.DisplayEllipse.Width / 2);
Canvas.SetTop(newEntry.DisplayET1lipse, y - newEntry.DisplayElTlipse.Height / 2);
DisplayCanvas.Children.Add(newEntry.DisplayE1Tipse);
}
// Remove too old positions
if (Entries.Count > WindowSize)
{
Entry entryToRemove = Entries[0];
if (DisplayCanvas != null)
{
DisplayCanvas.Children.Remove(entryToRemove.DisplayETlipse);
}
Entries.Remove(entryToRemove) ;
}
// Look for gestures
LookForGesture();
}

protected abstract void LookForGesture();

This method adds the new entry, possibly displays the associated ellipse, checks to make sure the
number of recorded entries is not too big, and finally calls an abstract method (that must be provided
by the children classes) to look for gestures.

Postures and gestures

A last method is required:

protected void RaiseGestureDetected(string gesture)

{
// Gesture too close to the previous one?
if (DateTime.Now.Subtract(lastGestureDate).TotalMilliseconds > MinimalPeriodBetweenGestures)

{
if (OnGestureDetected != null)
OnGestureDetected(gesture) ;

TlastGestureDate = DateTime.Now;

Entries.ForEach(e=>
{
if (DisplayCanvas != null)
DisplayCanvas.Children.Remove(e.DisplayE11lipse);

s
Entries.Clear();

This method raises the event if the previous detected gesture is not too close to the current one.

The complete class is defined as follows:

using System;

using System.Collections.Generic;
using System.Windows;

using System.Windows.Media;

using System.Windows.Shapes;
using System.Windows.Controls;
using Microsoft.Kinect;

namespace Kinect.Toolbox

{

public abstract class GestureDetector

{
public int MinimalPeriodBetweenGestures { get; set; }
readonly List<Entry> entries = new List<Entry>(Q);
public event Action<string> OnGestureDetected;
DateTime lastGestureDate = DateTime.Now;
readonly int windowSize; // Number of recorded positions
// For drawing

public Canvas DisplayCanvas

{
get;
set;

Algorithmic gestures and postures 93

94

public Color DisplayColor

{
get;
set;
}
protected GestureDetector(int windowSize = 20)
{
this.windowSize = windowSize;
MinimalPeriodBetweenGestures = 0;
DisplayColor = Colors.Red;
}
protected List<Entry> Entries
{
get { return entries; }
}
public int WindowSize
{
get { return windowSize; }
}

public virtual void Add(SkeletonPoint position, KinectSensor sensor)

{
Entry newEntry = new Entry {Position = position.ToVector3(), Time = DateTime.Now};
Entries.Add(newEntry);

// Drawing
if (DisplayCanvas != null)
{
newEntry.DisplayET1lipse = new Ellipse
{
Width = 4,
Height = 4,
HorizontalAlignment = HorizontalAlignment.Left,
VerticalAlignment = VerticalAlignment.Top,
StrokeThickness = 2.0,
Stroke = new SolidColorBrush(DisplayColor),
StrokeLineJoin = PenLineJoin.Round
};

Vector2 vector2 = Tools.Convert(sensor, position);

float x (float) (vector2.X * DisplayCanvas.ActualWidth);
float y = (float) (vector2.Y * DisplayCanvas.ActualHeight);

Canvas.SetLeft(newEntry.DisplayEllipse, x - newEntry.DisplayEllipse.Width / 2);
Canvas.SetTop(newEntry.DisplayEl1Tipse, y - newEntry.DisplayEllipse.Height / 2);

DisplayCanvas.Children.Add(newEntry.DisplayETlipse);

Postures and gestures

// Remove too old positions
if (Entries.Count > WindowSize)

! Entry entryToRemove = Entries[0];
if (DisplayCanvas != null)
{ DispTlayCanvas.Children.Remove(entryToRemove.DisplayETlipse);
}
Entries.Remove(entryToRemove) ;
}

// Look for gestures
LookForGesture(Q);

}
protected abstract void LookForGesture();

protected void RaiseGestureDetected(string gesture)
{
// Too close?
if (DateTime.Now.Subtract(lastGestureDate).TotalMilliseconds >
MinimalPeriodBetweenGestures)

{
if (OnGestureDetected != null)
OnGestureDetected(gesture);
TastGestureDate = DateTime.Now;
}
Entries.ForEach(e=>
{
if (DisplayCanvas != null)
DisplayCanvas.Children.Remove(e.DisplayEl1lipse);
b

Entries.Clear();

Detecting linear gestures

Inheriting from the GestureDetector class, you are able to create a class that will scan the recorded
positions to determine if all the points follow a given path. For example, to detect a swipe to the right,
you must do the following:

m Check that all points are in progression to the right (x axis).
m Check that all points are not too far from the first one on the y and z axes.
m Check that the first and the last points are at a good distance from each other.

m Check that the first and last points were created within a given period of time.

Algorithmic gestures and postures 95

96

To check these constraints, you can write the following method:

protected bool ScanPositions(Func<Vector3, Vector3, bool> heightFunction, Func<Vector3, Vector3,
bool1> directionFunction,
Func<Vector3, Vector3, bool> TengthFunction, int minTime, int maxTime)

int start = 0;

for (int index = 1; index < Entries.Count - 1; index++)

{
if (lheightFunction(Entries[0].Position, Entries[index].Position) ||
IdirectionFunction(Entries[index].Position, Entries[index + 1].Position))

{

start = index;

if (lengthFunction(Entries[index].Position, Entries[start].Position))

{
double totalMilliseconds =
(Entries[index].Time - Entries[start].Time).TotalMilliseconds;
if (totalMilliseconds >= minTime && totalMilliseconds <= maxTime)

{

return true;

return false;

This method is a generic way to check all of your constraints. Using Func parameters, it browses all en-
tries and checks to make sure they all respect the heightFunction and directionFunction. Then it checks
the length with lengthFunction, and finally it checks the global duration against the range defined by
minTime and maxTime.
To use this function for a hand swipe, you can call it this way:

if (ScanPositions((pl, p2) => Math.Abs(p2.Y - pl.Y) < SwipeMaximalHeight, // Height

(pl, p2) => p2.X - pl.X > -0.01f, // Progression to right

(pl, p2) => Math.Abs(p2.X - pl.X) > SwipeMinimalLength, // Length

SwipeMininalDuration, SwipeMaximalDuration)) // Duration

RaiseGestureDetected("SwipeToRight");

return;

So the final SwipeGestureDetector looks like this:

using System;
using Microsoft.Kinect;

namespace Kinect.Toolbox

{

public class SwipeGestureDetector : GestureDetector

Postures and gestures

public float SwipeMinimalLength {get;set;}
public float SwipeMaximalHeight {get;set;}
public int SwipeMininalDuration {get;set;}
public int SwipeMaximalDuration {get;set;}

public SwipeGestureDetector(int windowSize = 20)
: base(windowSize)

{
SwipeMinimalLength = 0.4f;
SwipeMaximalHeight = 0.2f;
SwipeMininalDuration = 250;
SwipeMaximalDuration = 1500;
}

protected bool ScanPositions(Func<Vector3, Vector3, bool> heightFunction,

Func<Vector3, Vector3, bool> directionFunction,

Func<Vector3, Vector3, bool> lengthFunction, int minTime, int maxTime)

int start = 0;

for (int index = 1; index < Entries.Count - 1; index++)

{

if (lheightFunction(Entries[0].Position, Entries[index].Position) ||
IdirectionFunction(Entries[index].Position, Entries[index + 1].Position))

{

start = index;

if (lengthFunction(Entries[index].Position, Entries[start].Position))

{

double totalMilliseconds =

(Entries[index].Time - Entries[start].Time).TotalMilliseconds;
if (totalMilliseconds >= minTime && totalMilliseconds <= maxTime)

{

return true;

return false;

protected override void LookForGesture()
{
// Swipe to right

if (ScanPositions((pl, p2) => Math.Abs(p2.Y - pl.Y) < SwipeMaximalHeight, // Height
(pl, p2) => p2.X - pl.X > -0.01f, // Progression to right
(pl, p2) => Math.Abs(p2.X - pl.X) > SwipeMinimalLength, // Length
SwipeMininalDuration, SwipeMaximalDuration)) // Duration

RaiseGestureDetected("SwipeToRight");
return;

Algorithmic gestures and postures

97

// Swipe to Teft

if (ScanPositions((pl, p2) => Math.Abs(p2.Y - pl.Y) < SwipeMaximalHeight, // Height
(pl, p2) => p2.X - pl.X < 0.01f, // Progression to right
(pl, p2) => Math.Abs(p2.X - pl.X) > SwipeMinimalLength, // Length
SwipeMininalDuration, SwipeMaximalDuration))// Duration

RaiseGestureDetected("SwipeToLeft");
return;

Defining a posture with an algorithm

98

To detect simple postures, it is possible to track distances, relative positions, or angles between given
joints. For example, to detect a “hello” posture, you have to check to determine if one hand is higher
than the head and at the same time check to make sure the x and z coordinates are not too far from
each other. For the "hands joined” posture, you must check to find out if the positions of the two
hands are almost the same.

Creating a base class for posture detection

Using the same concepts that you used to define gestures, you can write an abstract base class for
detecting postures. This class provides a set of services for children classes:

® An event to signal detected postures
m A solution to handle the stability of the posture

Unlike gestures, however, postures cannot be detected immediately, because to guarantee that the
posture is a wanted posture, the system must check that the posture is held for a defined number of
times.

The PostureDetector class is then defined as follows:

using System;
using Microsoft.Kinect;

namespace Kinect.Toolbox

{
public abstract class PostureDetector
{

public event Action<string> PostureDetected;

readonly int accumulatorTarget;
string previousPosture = "";
int accumulator;

string accumulatedPosture = "";

public string CurrentPosture

{

Postures and gestures

get { return previousPosture; }
protected set { previousPosture = value; }

}
protected PostureDetector(int accumulators)
{
accumulatorTarget = accumulators;
}

public abstract void TrackPostures(Skeleton skeleton);

protected void RaisePostureDetected(string posture)

{
if (accumulator < accumulatorTarget)
{
if (accumulatedPosture != posture)
{
accumulator = 0;
accumulatedPosture = posture;
}
accumulator++;
return;
}
if (previousPosture == posture)
return;
previousPosture = posture;
if (PostureDetected != null)
PostureDetected(posture) ;
accumulator = 0;
}
protected void Reset()
{
previousPosture = "";
accumulator = 0;
}

The accumulatorTarget property is used to define how many times a posture must be detected
before it can be signaled to user.

To use the class, the user simply has to call TrackPostures with a skeleton. Children classes provide
implementation for this method and will call RaisePostureDetected when a posture is found. RaisePos-
tureDetected counts the number of times a given posture (previousPosture) is detected and raises the
PostureDetected event only when accumulatorTarget is met.

Detecting simple postures

Inheriting from PostureDetector, you can now create a simple class responsible for detecting common
simple postures. This class has to track given joints positions and accordingly can raise PostureDetected.

Algorithmic gestures and postures 929

100

The code is as follows:

using System;
using Microsoft.Kinect;

namespace Kinect.Toolbox

{

public class AlgorithmicPostureDetector : PostureDetector

{

public float Epsilon {get;set;}
public float MaxRange { get; set; }

public AlgorithmicPostureDetector() : base(10)

{

Epsilon = 0.1f;
MaxRange = 0.25f;

public override void TrackPostures(Skeleton skeleton)

{

if (skeleton.TrackingState != SkeletonTrackingState.Tracked)
return;

Vector3? headPosition = null;
Vector3? leftHandPosition = null;
Vector3? rightHandPosition = null;

foreach (Joint joint in skeleton.Joints)
{
if (joint.TrackingState != JointTrackingState.Tracked)
continue;

switch (joint.JointType)
{
case JointType.Head:
headPosition = joint.Position.ToVector3();
break;
case JointType.HandLeft:
TeftHandPosition = joint.Position.ToVector3();
break;
case JointType.HandRight:
rightHandPosition = joint.Position.ToVector3();
break;

// HandsJoined
if (CheckHandsJoined(rightHandPosition, TeftHandPosition))
{

RaisePostureDetected("HandsJoined");
return;

// LeftHandOverHead
if (CheckHandOverHead(headPosition, TeftHandPosition))
{

RaisePostureDetected("LeftHandOverHead");

Postures and gestures

return;

// RightHandOverHead
if (CheckHandOverHead(headPosition, rightHandPosition))
{

RaisePostureDetected("RightHandOverHead");

return;

// LeftHello
if (CheckHello(headPosition, leftHandPosition))
{

RaisePostureDetected("LeftHello");

return;

// RightHello
if (CheckHello(headPosition, rightHandPosition))

{
RaisePostureDetected("RightHello0");
return;

}

Reset();

bool CheckHandOverHead(Vector3? headPosition, Vector3? handPosition)

{

if (!handPosition.HasValue || !headPosition.HasValue)
return false;

if (handPosition.Value.Y < headPosition.Value.Y)
return false;

if (Math.Abs(handPosition.Value.X - headPosition.Value.X) > MaxRange)
return false;

if (Math.Abs(handPosition.Value.Z - headPosition.Value.Z) > MaxRange)
return false;

return true;

bool CheckHello(Vector3? headPosition, Vector3? handPosition)

{

if (!handPosition.HasValue || !headPosition.HasValue)
return false;

if (Math.Abs(handPosition.Value.X - headPosition.Value.X) < MaxRange)
return false;

if (Math.Abs(handPosition.Value.Y - headPosition.Value.Y) > MaxRange)
return false;

if (Math.Abs(handPosition.Value.Z - headPosition.Value.Z) > MaxRange)

Algorithmic gestures and postures

101

return false;

return true;

}
bool CheckHandsJoined(Vector3? leftHandPosition, Vector3? rightHandPosition)
{
if (!TeftHandPosition.HasValue || !rightHandPosition.HasValue)
return false;
float distance = (leftHandPosition.Value - rightHandPosition.Value).Length;
if (distance > Epsilon)
return false;
return true;
}

As you can see, the class only tracks hands and head positions. (To be sure, only tracked joints are
taken into account.) With these positions, a group of methods (CheckHandOverHead, CheckHello,
CheckHandsJoined) are called to detect specific postures.

Consider CheckHandOverHead:

bool CheckHandOverHead(Vector3? headPosition, Vector3? handPosition)
{
if (!handPosition.HasValue || !headPosition.HasValue)
return false;

if (handPosition.Value.Y < headPosition.Value.Y)
return false;

if (Math.Abs(handPosition.Value.X - headPosition.Value.X) > MaxRange)
return false;

if (Math.Abs(handPosition.Value.Z - headPosition.Value.Z) > MaxRange)
return false;

return true;

You will notice that this method checks to recognize a "hello” gesture by determining several dif-
ferent positions:

m [f the head and the hand positions are known
= [f the hand is higher than the head
m [f the hand is close to the head on the x and z axes

With the code introduced in this chapter, it is a simple process to add new methods that allow you
to detect new gestures algorithmically.

102 Postures and gestures

Index

Symbols and Numbers

2D pictures, and pattern matching gestures, 103-104
3D

camera, sensor as, 3, 12

space, XNA, converting from Kinect to, 197

A

AcousticEchoSuppression properties, 18
Add method
for calculating displacement speed, 80
to check stability, 78-79
algorithm
to compare gestures, 110-115
defining gesture with, 89-98
detecting posture with, 98-102
limitations to technique, 103
for smoothing data, 154
angles
beam, 46, 143
controlling sensor, 138
application
connecting to sensor, 188-189
creating for augmented reality, 185-199
creating Kinect-oriented, 163
Gestures Viewer, 127-145
mouse-oriented, 149-161
Windows Game, beginning, 186-187
application programming interface. See NUI API
architecture, 4, 11-12
Audio command, 128
audio display manager, 46-47
audio source object, for voice command, 70
audio stream, 17-19
AudiostreamManager class, 46-47, 143
augmented reality

defined, 185
lightsaber experience, 185-198
and video stream, 12-13

axes, skeleton space, 21

background
adding, 189-190
creating lightsaber on top, 191-195
bandwidth, 12
base class
abstract, for gesture detection, 90-95
for posture detection, 98-102
beam angle, 46, 143
BeamAngle properties, 18
BeamAngleMode properties, 18
Beam detection bar, 129
behavior, adding to integrate with XAML, 177-184
BinaryReader, 64
BinaryWriter, 54
bitmap, player segmentation map as, 17

C

C#, preparing new project with, 7
C++, preparing new project with, 6
camera, color, 3-4
Capture Gesture command, 128
Capture T command, 129
center of gravity
skeleton'’s, 75-76, 79
speed in motion, 81-82
class, base
for gesture detection, 90-95
for posture detection, 98-102

201

classes

classes ContextTracker tool, complete code, 83-86
AudioStreamManager, 46-47 ControlMouse method, 151-152
ColorlmageFrame, 59 controls
ColorStreamManager, 27-32 larger, 164
CombinedGestureDetector, 123-124 magnetized, 173-176
ContextPoint, 79-80 register as magnetizers, 177-184
Cube.cs, 192-194 ConvertDepthFrame, 34
Depth/ColorStreamManager, 136-137 Convert method, 41-42
DepthStreamManager, 32-36 CopyPixelDataTo method, 52, 60
EyeTracker, 87-88 corners, tracking positions and relative distance, 176
Gamel, 196 CreateFromReader method, 57
Gamel.cs, 187-188 cube, stretched. See lightsaber
GestureDetector, 95 Cube.cs class, 192-194
KinectAudioSource, 18-19 cursor, attracting with magnetization, 173-176
KinectRecorder, 50-51, 54-57, 140 See also click, mouse, sensor

KinectReplay, 57, 63, 140-141

MouseController, 154-156, 168-173, 178-184
Notifier, 27-28 D
ParallelCombinedGestureDetector, 124-125

data
PostureDetector, 98-99 . .
! displ , 136-137
RecordedPath, 116-118 p;i':fg':g
ReplayColorlmageFrame, 59 serialized, 53

SerialCombinedGestureDetector, 125-126
SkeletonDisplayManager, 37
SpeechRecognitionEngine, 69-70
TemplatedGestureDetector, 119-121
Tools, 22, 53
VertexPositionColor, 191-192
VoiceCommander, 69-72, 143
cleanup code, 144-145
clicksl
handling, 157-161
simulating, 176-177
with time interval, 168-169
code, integrating recorded with existing, 68-69
color display manager, 27-32
ColorlmageFrame class, constraint, 59
ColorRecorder, 50
color stream
and Convert method, 42
recording, 51-52
replaying, 59-60
ColorStreamManager class, 27-32
CombinedGestureDetector class, 123-124
commands, Gesture Viewer, 128-129
compression, 12
confidence level, 70-71
content project, XNA, 187
ContextPoint class, 79-80

skeleton, 22, 37

standardizing, 104-105
debugging

drawing captured positions for, 90

gestures, 91
default, skeleton tracking, 24
depth, computing values, 16-17, 36
Depth/Color button, 129
Depth/ColorStreamManager classes, 136-137
depth display manager, 32-36
DepthFrameReady event, 165-166
DepthlmageFrame, constraint, 59
DepthRecorder, 50
depth stream, 14-17

and Convert method, 42

recording, 52

reusable control based on, 164-167

replaying, 61-62

for tracking skeletons, 19
DepthStreamManager class, 32-36
Detected gestures command, 129
direct request. See polling
“discussion context”

and ContextTracker tool, 83-86

defined, 75
displacement speed, computing, 79-82
distance, tracking with magnetization, 176

202

Draw method
to create shapes, 37
updating, 197-198
and XNA, 188
drawings, of gestures, standardizing, 104-106
DrawSaber method, 194-195
driver, 4
dynamic link library (DLL), 87

E

EchoCancellationMode properties, 18
EchoCancellationSpeakerindex properties, 19
effect, lightsaber, 198-199
Elevation angle slider, 129
event
for accessing stream, 13-14
approach for skeleton data, 22
extension methods, and golden section search,
111-115
eyes, detecting position, 86-88
EyeTracker class, 87-88

F

face tracker. See EyeTracker class
feedback control, specific, for sensor tracking,
164-168
filter, smoothing, 154-157
floor clip plane, 53
format
and video stream, 12
YUV, 30-32
frame number, 53
FrameNumber, 57
frame object, size of, 29
frames
and depth stream, 15
getting, 13-14
and video stream, 12

G

Gamel class, 196

Gamel.cs class, 187-188

Gamel.Draw method, 194-195

game project, XNA, 187

Gerald, Curtis F,, 110

Gesture Viewer, commanding with voice, 143

initialization

gesture(s)
as click trigger, 158
combined, 123-126
debugging, 91
defined, 89
desired and undesired, 75
detected at correct time, 82-83
detecting with algorithm, 89-98
detecting through TemplatedGestureDetector
class, 119-121
detecting with Gestures Viewer, 139
detecting linear, 95-98
overlapping, 90
pattern matching, 103-104
recording new, 141-142
rotated by given angle, 108-109
saving. See learning machine, saving in
standardizing drawings, 104-106
templated, 103-119
GestureDetector class, 95
Gestures Viewer, 127-145
creating user interface, 129-131
detecting gestures and postures with, 139
GetVideoFrame method, 189-190
glow effect, 199
golden section search algorithm, 110-115
grammar, 70
graphical user interfaces, 149
graphic feedback, for sensor tracking, 164-168
grayscale pixel, for depth stream display, 34-35

H

hand movements
during left click, 157-161
function for, 96-98
moving mouse, 152-154
swipe, 89
tracking position, 163-164
headers, for preparing project with C++, 6
HiDef profile, 188
Holt Double Exponential Smoothing filter, 154-157,
163-164

ImposterCanvas, 171, 176
infrared emitter and receiver, 3-4
initialization, Gesture Viewer, 131-136

203

Initialize method

204

Initialize method, 8-9
interfaces
application, Gestures Viewer, 128
evolution of, 149
See also NUI API, user interface
IsStable method, 80

J

jitters, and smoothing filter, 154-157
joints
access, 39-40
browsing, 23
capturing tracked position, 90
display, 37
filter position to smooth, 156-157
head, 44
and skeleton tracking, 19-21
See also skeletons

K

keyboard, as user interface, 149
KinectAudioSource class, properties, 18-19
KinectRecorder class, 50-51,

to aggregate recording classes, 54-57

with Gestures Viewer, 140
KinectReplay class

to aggregate replay classes, 57, 63

with Gestures Viewer, 140-141
KinectSensor.ColorStream.Enable(), for format and

frame rate, 13

Kinect space, converting to XNA 3D space, 197
Kinects_StatusChanged method, 8-9
Kinect Studio, 49-50
Kinect for Windows SDK

architecture, 11-12

initializing and cleaning functionality, 8-9

recording session, 49-57

release, 3

replaying session, 49, 57-69

requirements, 5-6

sensor. See sensor

system for debugging. See record system, replay

system
Toolkit, 6, 49, 86-87

L

learning machine

creating, 116-119

saving gesture templates in, 110

saving posture templates in, 121-123
lightsaber

adding, 191-195

controlling, 195-198

on top of image, 185

video background with, 189-190
linear gestures, detecting, 95-98
LoDef profile, 188

M

magnetization, 173-184
ManualBeamAngle properties, 18
MapSkeletonPointToDepth method, 167-168
MaxBeamAngle properties, 18
MaxSoundSourceAngle properties, 19
methods

for adding entries in gesture detection, 91-95

for detecting linear gestures, 96-98

for detecting specific postures, 102

See also individual names
microphone

array, 3-4

beam angle, 46

See also audio stream
Microsoft Windows. See Windows
MinSoundSourceAngle properties, 19
mouse

left click, 157-161

replacing, 168-173

user as, 149

using skeleton analysis to move pointer, 152-157

See also sensor, skeleton(s)
MouseController class

adding magnetized controls, 173-176

to apply smoothing filter, 154-156

final version, 178-184

replacing, 168-173
Mouselmposter control, 168-169
MOUSEINPUT structure, 151
movement

detecting as gesture, 89

determining, 76-79

See also gesture(s), positions, posture
multistream source, sensor as, 11

N

natural user interface. See NUI API
near mode, 16
NoiseSuppression properties, 19
Notifier class, 27-28
NotTracked, 23
NUI API, 11
and skeleton tracking, 19
skeleton data produced by, 37

(0

objects, for Gesture Viewer, 131-132
OnProgressionCompleted, 176-177
OpenNextFrame method, 15
OpenSkeletonFrame method, 38

P

ParallelCombinedGestureDetector class, 124-125

path, center of, 107
pattern matching, 103-104
main concept, 104
See also templates
pixels
and depth, 14, 16-17
getting data from, 34
manipulating, 199
Plot method, 40, 42-43
polling, 13, 15
PositionOnly, 23
positions
adding and recording, 76-78
defined, 89
detecting, 121-123
tracking with magnetization, 176
using algorithm to define, 98-102
PostureDetector class, 98-99
postures
detecting with Gestures Viewer, 139
recording new, 141-142
PresenceControl, 164-165
ProcessFrame method, 139, 141
Progression property, 170
Project Natal, 3

properties, KinectAudioSource class, 18-19

PropertyChanged event, 29

R

Record command, 128
RecordedPath class, 116-118
record system

controlling with voice, 69-72
Gestures Viewer session, 139-141
recording session, 49-57

See also pattern matching, templates

reference time, 51
ReplayColorimageFrame class, 59
Replay command, 128
ReplayFrame, 58, 59
ReplaySkeletonFrame, 62-63
replay system

aggregated, 63-69

color streams, 59-60

depth streams, 61-62

Gestures Viewer session, 139-141
skeleton streams, 62-63

RGB, converting to, 30-32
rotational angle, for gestures, 108-109

S

shader effect

screen space, converting skeleton space to, 41-42
seated mode, 21

segment, defining length, 106-107
SendlInput, importing Win32 function, 150
sensor, 3—-4

SerialCombinedGestureDetector class, 125-126

connecting application to, 188-189
controlling angle, 138

controlling mouse pointer with, 149-152
creating application for, 163-184
detecting presence, 133

inner architecture, 4

jitter. See smoothing filter

limits, 4-5

as multistream source, 11

setting up correctly, 27

tracking skeletons, 22

and user's focused attention, 83

session, recording

and playing, 49-69
and replaying, 139-141

SetHandPosition method, 156-157

complex, 174-176
updating, 172-173

shader effect, 198-199

205

shapes

206

shapes. See WPF shapes
skeleton(s)

browsing, 22-24

convert to screen space, 41-42

detecting eye position, 86-88

determining stability, 75-79

displacement speed, 79-82

global orientation, 82-83

graphic feedback for sensor tracking, 167-168

hand depth values, 36

as mouse, 149

tracking, 19-24

20 control points, 19-20

See also hand movements, joints
skeleton display manager, 37-45
SkeletonDisplayManager class, 37
SkeletonFrame, constraint, 59
SkeletonFrameReady event, 165-166
skeleton frame, recording, 53-54
Skeleton objects, array, 53
SkeletonRecorder, 50
skeleton stream, controlling position and

orientation with, 195-197
skeleton stream, using analysis to move
mouse pointer, 152-157

skeleton tracking, and depth display, 32
smoothing filter, 154-157, 163-164
sound source angle, 46
SoundSourceAngleConfidence properties, 19
SoundSourceAngle properties, 19
SpeechRecognitionEngine class, 69-70
speed, displacement, 79-82
SpriteBatch object, 189
Stability

list, 129

skeleton, 75-79
standard mode, 16
Start method, 65
Stop method, 57-58
streams

accessing with polling, 13, 15

audio, 17-19, 46-47

multiple, 11

skeleton, controlling saber with, 195-197

video, 12-13
streams, color, 42

managing display, 27-32

recording, 51-52

replaying, 59-60

streams, depth, 14-17, 42
managing display, 32-36
recording, 52
replaying, 61-62

T

TemplatedGestureDetector class, 119-121, 135-136
TemplatedPostureDetector, initializing, 135-136
templates
filling learning machine with, 119
pattern matching gestures, 103-119
posture, 121-123
saving. See learning machine, saving in
Texture2D object, 189
time interval, and progress bar, 168-169
TimeStamp, 57
toolkit, Kinect Studio, 6
as companion to Kinect for Windows SDK, 49
to detect eye position, 86—-87
Tools class
adding methods, 37-38, 41
creating, 22
for recording skeleton frames, 53
Tools.Convert method, 152-153
Trace method, 40, 42-43
Tracked, 23
trackingID, 78-79
TrackingState, 23

U

Update method, 29, 188, 190
USB/power cable, need for, 3
user interface
adapting, 152-161
creating specifically for Kinect, 163
Gestures Viewer, 127, 129-131
prior to mouse, 149
user. See skeleton(s)

\'

Vector3, 76

vertex
lightsaber, 191-192
shader, 199
See also 3D

YUV format

VertexPositionColor class, 191-192
video background
adding, 189-190
creating lightsaber on top, 191-195
video stream, 12-13
Viewbox, 131
View Depth/View Color button, 137
visual feedback
beam angle, 46
for sensor tracking, 164-168
Visual Studio projects list, 7
voice command
controlling record system with, 69-72
Gesture Viewer, 143
VoiceCommander class, 69-72, 143

w

Wheatley, Patrick O., 110
Windows
integrating sensor within, 11-12
See also Kinect for Windows SDK
Windows Game application, beginning, 186-187
Windows Presentation Foundation (WPF) 4.0
creating shapes, 37, 43-44
as default environment, 27
Windows versions, compatibility with Kinect SDK, 12
WriteableBitmap, 27, 29

X

XAML
adding behavior for easy integration, 177-184
adding page, 46
Xbox 360 sensor, for developing, 6
XNA
creating project, 186-188
shader effect, 198-199
summarizing code, 194
3D, converting from Kinect, 197

Y

YUV format, and color display manager, 30-32

207

About the Author

DAVID CATUHE is a Microsoft Technical Evangelist Leader in
France. He drives a team of technical evangelists on subjects
about Windows clients (such as Windows 8 and Windows
Phone 8). He is passionate about many subjects, including
XAML, C#, HTML5, CSS3 and Javascript, DirectX, and of course,
Kinect.

David defines himself as a geek. He was the founder of Vertice
(www.vertice.fr), a company responsible for editing a complete 3D real-time engine
written in C# and using DirectX (9 to 11). He writes a technical blog on http://blogs.
msdn.com/eternalcoding and can be found on Twitter under the name of @deltakosh.

http://www.vertice.fr
http://blogs.msdn.com/eternalcoding
http://blogs.msdn.com/eternalcoding

What do

you think of
this book?

We want to hear from you!

To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

Microsoft
Press

	Cover
	Copyright Page

	Contents at a Glance
	Contents
	Introduction
	Chapter 3: Displaying Kinect data
	The color display manager
	The depth display manager
	The skeleton display manager
	The audio display manager

	Chapter 6: Algorithmic gestures and postures
	Defining a gesture with an algorithm
	Creating a base class for gesture detection
	Detecting linear gestures

	Defining a posture with an algorithm
	Creating a base class for posture detection
	Detecting simple postures

	Index

