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1. Introduction to the Program Editor 

Functions and Programs are found in the menu of the Calculator application. We will 

only be working with Programs in this introduction. 

Let us construct our first simple program where we will simulate a throw of a dice. To get 

started choose New from the Program Editor in the menu. 

 

 

In the pop-up window we are able to name our program Dice. We choose Program under 

Type and None under Library access (the possibilities are None, LibPriv, and LibPub). 

If we chose LibPub the program would be accessible in other documents from the 

Catalog. We will return to this later but will not be working with LibPriv in this 

introduction: 

 

The page is split into two with a Calculator application to the left and a Program Editor 

to the right: 

 

In the Program Editor we notice that the cursor is placed just behind the name of our 

program in the parenthesis. Our first program does not depend on any given input and 

we therefore jump to the line under Prgm. This is the first and only line, which is 

reflected in the top of the Program Editor: 1/1. 
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Here we define a local variable, a, via Local from the menu Define Variables. Write, a, 

after Local and press enter to insert a new line: 

 

Notice the star (*) in front of the name of the program. This reflects a change of the 

program since it was last stored. We choose Check syntax & store from the menu 

Check syntax & store and the star disappears. In the top to the right we now see that 

the cursor is placed in the second line out of two: 2/2.  

With the command randInt(1,6) a random number between 1 and 6 is given. We can use 

this command to simulate a throw of a dice and the command is found in Catalog: 

 

In the second line we define our local variable as a := randInt(1,6) and press enter to 

insert a line: 

 

Our program is almost finished. We just need to ensure that the program will display our 

output. In the third line we choose Disp from the menu: I/0 and after the command Disp 

we write: “The dice shows the number”, a. The syntax is checked and the program is 

stored. We are now ready to test it in the Calculator application: 
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In the calculator we write dice(): 

 

Press enter a couple of times to check that our simulation works. Our first program is 

only a trivial expansion of the command randInt(): 

 

In the first line of the program we insert a comment by choosing Insert comment from 

the menu Actions. After the symbol © we write Simulating a throw with a dice as 

description of our program: 

 

For now we can only use the program in the current problem. Let us change this so that 

the program is accessible in every new TI-Nspire document from the Catalog. From the 

menu Actions we can select LibPub from Change library access: 
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We need to store the file in the folder Mylib in the directory: Documents > TI-Nspire > 

MyLib. Finally we must update the library by pressing the icon:  (or using Refresh 

Libraries from the menu Tools). 

If we now open a new document we should be able to access the program from the 

Catalog: 

 

Notice our description of the program is included. 

 

1.1 Exercise: Sum of the throw of two dices 

Construct a program that simulates the throw of two dices. The program shall display 

the outcome of each dice and the sum of the dices. 



 6 

Programming with TI-Nspire  

2. Programming with ”if… then… endif” and “elseif… then…” 

Let us now construct a more interesting and relevant program. We will be working with 

second degree polynomial functions ���� = � ∙ �� + 
 ∙ � + �. The graph is called a parabola 

which can have up to two intersection points with the x-axis: 

 

If we solve the second degree equation 0 = � ∙ �� + 
 ∙ � + � we are able to determine the 

intersection points. A solution to the equation is called a root. The number of roots can 

be determined by calculating the discriminant  = 
� − 4 ∙ � ∙ �. If  < 0 there are no roots, 

if  = 0 there is a double root and if  > 0 there are two distinct roots. 

We will construct a program that determines the roots for any given second degree 

polynomial function. The program is called roots and we want to add it to the Catalog: 

 

Notice that the program as input depends on the coefficients a, b and c.  
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The program will be constructed step vice. Let us first calculate the discriminant where 

we define a local variable d: 

 

We now need an If-command to separate the three possible numbers of roots. We choose 

If…Then…endif from the menu. After If we write:  > 0. In this case there are two 

distinct roots r1 and r2 which we define as local variables: 

 

The two roots are given as either �1 =
–��√�

��
 or �2 =

–��√�

��
 which will be calculated in the 

program. Finally we want the program to display the discriminant and the roots:  
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We add the case where  = 0. In line 10 (just above Endif) we insert Elseif…then which 

can be chosen from the menu Control. After Elseif we write  = 0: 

 

As mentioned earlier there is a double root in this case and it is given by calculating 

� =
–�

��
 which is written into the program. The discriminant and the root are displayed 

while we must remember to add r to the list of local variables: 
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Now, the last case where  < 0. Again we add the command Elseif…then in a line above  

Endif and we write  < 0 after Elseif. We want the program to display the message that 

there are no roots together with the discriminant: 

 

 

2.1 Exercise: The minimum/maximum of the parabola 

Add the determination of the minimum/maximum to the program roots. 

 

2.2 Exercise: Heads or tails 

Construct a program that simulates a flip of a coin n times. Input must be the number of 

times the coin is flipped. The program must display the different outcomes together with 

the number of both heads and tails. 
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3. Number theory with TI-Nspire 

We will not cover the number theory needed to understand the affine cryptosystem but 

only discuss the use of TI-Nspire in this connection. This material can be used as 

supplement to a mathematical learning of the relevant number theory.   

Greatest common divisor gcd is a built-in command in TI-Nspire: 

 

We see that 2 is a factor in both 10 = 2 ∙ 5 and 6 = 2 ∙ 3 and it is the greatest common 

factor. We also see that the numbers 6 and 36 are relatively prime to each other as their 

greatest common divisor is the unity 1. 

By modulus calculation we see that 7 is a divisor in 35 as the remainder is zero and we 

see that the principal remainder of 67 divided by 8 is 3: 

 

In this way we can show that two numbers are congruent:  

 

Here 57 is congruent with 1 modulus 8 as 8 is a divisor in 57 − 1. This is written: 57 ≡ 1 

(mod 8) as 8 | �57 − 1�. 

With a sequence we can determine the set of different remainders when dividing with 27 

which typically is written ℤ�%: 

 

 



 11 

Programming with TI-Nspire  

Using Eulers formula we can determine the number of remainders that are prime to 27 

in ℤ�% (this corresponds to the Euler &-function 
1 2

1 1 1
( ) 1 1 ... 1

k

n n
p p p

    
ϕ = ⋅ − ⋅ − ⋅ ⋅ −    

    
, 

where p1, p2, ..., pk are the different prime factors associated with the number n): 

 

First we make a factorization of the number 27 and see that the only distinct prime 

number is 3. By calculation &�27� = 18.  

Using Eulers theorem ( ) 1(mod )na nϕ
≡  provided a and n are relatively prime, the different 

inverse elements to the remainders that are relatively prime to 27 can be determined: 

 

We see that 14 is inverse element to 2 modulus 27 because 14 ∙ 2 ≡ 1 (mod 27). Here the 

inverse element to 2 is determined by the calculation: 2'��%��( ≡ 2()�( ≡ 2(% ≡ 14 (mod 27). 

And the inverse element to 4 modulus 27 is 7. 

From the sequence command we see that 3 has no inverse elements because 3()�( ≡ 0 

(mod 27) while 3 is not relatively prime to 27. The same accounts for 6, 9, 12…  

 

3.1 Exercise: Number theory 

a) Determine the principal remainder of 674 divided by 13 

b) Determine the greatest common divisor of the numbers 349 og 154 

c) Show that -9 is congruent to 3 modulus 4 and that 54 is congruent to 11 modulus 

6 

d) Determine ℤ*+ and &�30� 
e) Determine if 16 has an inverse element modulus 27. If so, what is the inverse 

element? 
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4.1 Affine cryptosystems with TI-Nspire 

The starting point for our treatment of the affine cryptosystem is the English alphabet 

and messages in English. Characters are written in capital and the symbol @ is used for 

space between words. Therefore 26 + 1 signs are available and we are working in ℤ�% with 

18 remainders that are relatively prime to 27. Before we start encrypting messages we 

will look at some commands.  

The command str2lst(streng) converts a string to a list: 

 

The above command is used in the command chr2num(string) which converts a string 

to a list of numbers so that @ is assigned the value 0, A the value 1, B the value 2, and 

so on: 

 

The command lst2str(liste) converts a list to a streng: 

 

The command lst2str(liste) is used in the command num2chr(liste) to convert a list of 

numbers to a streng: 

 

 

4.1.1 Exercise 

Investigate the commands str2lst(streng) and chr2num(string) and determine how they 

work.
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4.2 Affine encryption og decryption with TI-Nspire 

In this part we are able to number the characters in the English alphabet from 0 to 26 

corresponding to the order of the characters. Spaces between words are symbolized by 

the sign @ and given the number 0. 

Encryption with the affine cryptosystem is determined by linear functions: 

,��� ≡ � ∙ � + 
 (mod 27) where �, 
 ∈  ℤ�% 

Decryption is possible if a is prime to 27, that is if � ∈  ℤ�%
∗ , because � then has an inverse 

element ��(. By solving the equation, where ,��� = 0, we get the following: 

0 ≡ � ∙ � + 
 (mod 27) 

0 − 
 ≡ � ∙ � (mod 27) 

��( ∙ �0 − 
� ≡ ��( ∙ � ∙ � (mod 27) 

� ≡ ��( ∙ �0 − 
� (mod 27) 

Therefore the decryption function is given by: 

1�0� ≡ ��( ∙ �0 − 
� (mod 27) 

 

4.2.1 Example 

Let us watch an example of an affine encryption function: 

,��� ≡ 2 ∙ � + 3 (mod 27) 

The starting point is the English alphabet, where every character is represented by a 

number from 0-26: 

 

The xdata are the numbers 0-26 that represent the characters @, A, B, C, …, X, Y, Z 

from the plaintext (plaintxt). The ydata are determined by modulus calculation and 

represents the cryptotext (cryptxt). 

Notice that we here use the char command to convert at number to a character.  
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We make a scatter plot of our xdata and ydata. Then we draw the graph of our 

encryption function: 

 

Now we are going to graphically determine the decryption function, which can be used as 

a method in crypto analysis. We do this by interchanging the independent and 

dependent variables by drawing a scatter plot with ydata and xdata along the x- and y-

axis: 

 

We are searching for a linear decryption function: 

1��� ≡ �� ∙ � + 
� (mod 27) where �� , 
�  ∈  ℤ�% 

We observe that when ydata equals 0 then xdata equals 12 which correspond to the 

intersection between the linear line and the y-axis. Therefore 
� = 12. The slope is 

determined by connecting two neighboring points with a line segment and measuring the 

slope. Therefore �� = 14. 

Our guess of an affine decryption function is 

1��� ≡ 14 ∙ � + 12 (mod 27) 
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We now draw the graph of our idea of a decryption function together with ydata and 

xdata: 

 

As mentioned this method to determine a decryption function can be used in crypto 

analysis in the attempt to break an encrypted message. Let us be sure that the 

decryption function equals the one that could be determined analytic if the encryption 

function was known: 

,��� ≡ 2 ∙ � + 3 (mod 27) 

From the theory we know that the decryption function is given by: 

1�0� ≡ 2�( ∙ �0 − 3� (mod 27) 

From the part about number theory we know that by calculation we get: 

 

Therefore we have:  1�0� ≡ 14 ∙ �0 − 3� (mod 27) 

And by multiplication we get: 

1�0� ≡ 14 ∙ �0 − 3� ≡ 14 ∙ 0 − 14 ∙ 3 ≡ 14 ∙ 0 + 12 (mod 27) 

Because: 

 

This equals the decryption function we determined graphically. 

 

4.2.2. Exercise 

Determine graphically the decryption function associated with: 

,��� ≡ 5 ∙ � + 8 (mod 27) 

Compare with the analytically determined decryption function. 
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4.3 A program for affine encryption 

This program can be used for affine encryption of English plain text. The program 

receives a plaintext as a string a slope, and a constant of the linear encryption 

function: 

 

Let us imagine that ALICE wants to send a secret massage to BOB by using the affine 

crypto system. She wants to send this message: 

DEAR BOB I MISS YOU SO MUCH MEET ME UNDER THE BRIDGE AT TEN 

PM TOMORROW LOVE ALICE 

Alice writes the plaintext as a string where the spaces are represented by @ and she 

decides to use this encryption function: 

,��� ≡ 12 ∙ � + 7 (mod 27) 
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She realizes that this function does not work because the slope does not have an inverse 

element modulus 27. 

With the function:  

,��� ≡ 11 ∙ � + 7 (mod 27) 

it goes much better: 

 

The crypto text that she can send to BOB is: 

XHRPGBJBGYGOY@@GLJVG@JGOVMNGOHHKGOHGVZXHPGKNHGBPYXC

HGRKGKHZGUOGKJOJPPJQGDJFHGRDYMH 

Via a secure communication line BOB is told which encryption function ALICE has used.  

Notice that the program will give you a warning if the plaintext exceeds 1000 characters.  
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4.3 A program for affine decryption 

This program can be used to make an affine decryption of an English encrypted plain 

text. The program receives a crypto text as a string, a slope and a constant of the 

linear encryption function: 

 

Imagine that BOB has received the message from Alice which is encrypted by the affine 

system. He receives this crypto text: 

XHRPGBJBGYGOY@@GLJVG@JGOVMNGOHHKGOHGVZXHPGKNHGBPYXC

HGRKGKHZGUOGKJOJPPJQGDJFHGRDYMH 

BOB is by a secure communication line told that ALICE has used the encryption 

function: 

,��� ≡ 11 ∙ � + 7 (mod 27) 

Now it is easy for BOB to decrypt the message from ALICE: 

 


