Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

Programming with Mathematica

Introduction to programming - Your first Mathematica program - Programming paradigms -
Creating programs - Getting started - Starting and running Mathematica - Mathematical
expressions - Functions - Lists - Semicolons - Alternative input syntax - Comments - Getting help -
Errors - Getting out of trouble - Function information - Documentation - Notes and further reading

Mathematica is a large system used across an astonishing array of disciplines — physics, bioinformat-
ics, geo-science, linguistics, network analysis, optics, risk management, software engineering, and
many more. It integrates tools for importing, analyzing, simulating, visualizing, reporting, and
connecting to other programs. Underlying all of these tools is a modern programming language
with which you can extend the things you can do with Mathematica almost limitlessly.

This book focuses on the programming language, but before we dive into details of syntax and
structure, it will be helpful to look at some of the essential elements of actual programs to give you a
better sense of what it means to program with Mathematica. So, to start, let us walk through the
creation of a short program so you can see how a Mathematica programmer might solve a problem.
We will not attempt to write the most efficient or shortest code here, but will instead concentrate
on the process of programming — things like rewording the problem, finding the right tools and
approach, and testing your program. Hopefully, this prelude will give you a better sense of the
breadth and depth of the Mathematica language and help you answer the question, “Why use Mathe-
matica to write programs?”

The second aim of this chapter is to help you become familiar with the Mathematica environment,
showing you how to get started, how to work with the interface, documentation, and programming
tools, and how to start putting them together to do interesting things. The basic syntax used by
Mathematica is introduced, including functions and lists and several alternate syntaxes that you can
use to input expressions. This is followed by information on how to get help when you get stuck or
have trouble understanding an error that has occurred. If you are already familiar with these aspects
of Mathematica, feel free to skim or skip these topics and return to them when the need arises.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

2 Programming with Mathematica

1.1 Introduction to programming

Computer programs are detailed and explicit descriptions of the steps to take to accomplish a
specific task. The key is converting the original statement of the problem from something you
might describe to a colleague in your native natural language into something that a computer can
understand and operate on. As an example, suppose you want to write a program for your home’s
programmable thermostat to control the temperature in your house. A description such as “turn on
the heat when it is cold and turn on the air conditioner when it is hot” may be entirely understand-
able to the humans in your household, but will be of little help in communicating with the thermo-
stat. Instead, imagine formulating the problem as follows: if the ambient temperature drops below
17°C, turn on the heater until the ambient temperature reaches 22°c; if the temperature rises above
29°C, turn on the air conditioner until the temperature drops below 24°c. With this formulation you
have enough to translate those instructions into a program.

Let’s take this thought experiment one step further. What if you are away at work or school and
a door in your house blew open causing the heater to stay on in an attempt to warm the house while
cold air rushes in. Although this scenario is atypical, your program could include a conditional
check that turns the unit off for one hour say, if it has been on continuously for over two hours.

The task that we commonly think of as “programming” is the set of steps that take a description
like the explicit formulation above for the thermostat and actually write code in a language that can
be executed on a processor on your computer or on the thermostat itself (with an embedded
application). We will pick it up from here with an example that walks through the steps of creating,
testing, and refining a program. Using a problem that is simple to describe and does not require a lot
of sophisticated programming will help to better focus on these “meta” steps.

Your first Mathematica program
We will create a small program to solve a specific problem — finding and counting palindromic

numbers. The process involves stating and then reformulating the problem, implementation,
checking typical and atypical input, analyzing and improving efficiency, and performing a post-
mortem. There are more aspects that will be discussed throughout this book, such as localization,
options, argument checking, and documentation, but at this stage we will keep this initial problem
simple. You are not expected to be familiar with all aspects of the program at this point; instead, try
to focus on the process here, rather than the details.

As you read through the problem, enter each of the inputs in a Mathematica notebook exactly as
they appear here, being careful about the syntax. When you have completed each input, press
[suT]+[evieRl on your keyboard to evaluate, then go on to the next input (see Section 1.2 for details).

Problem Find all palindromic numbers less than one thousand, then determine how many palin-
dromes there are that are less than one million.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

1.1 Introduction to programming 3

Reformulate the problem A number is a palindrome if it is equal to the number formed by reversing its
digits. For example, 1552551 is a palindrome, 1552115 is not. The problem is to create a function that
checks if a number is palindromic (returns True if it is, False otherwise); then, from a list of the
numbers one through n, find all those that pass this palindrome test.

We have restated the problem with an eye toward creating explicit instructions. The ability to do
this comes from a knowledge of the constructs and paradigms present in our language, something
that is learned over time and experience with that language.

Implementation Given an integer, first we will get a list of its digits, then reverse that list, and finally
check that the reversed list is identical to the original list. Start by getting the digits of a number.

IntegerDigits[1552551]
{1,5,5,2,5,5,1}

Function names like IntegerDigits are spelled out in full, capitalizing the first letter of each
complete word. Arguments to functions, 1552551 in this example, are enclosed in square brackets.
Next, reverse the digits.

Reverse [IntegerDigits[1552551] ]
{1,5,5,2,5,5,1}
Check if the list of digits is equal to the list of reversed digits.

IntegerDigits[1552551] == Reverse[IntegerDigits[1552551]]
True

Turn this into a program/function that can be run/evaluated for any input.
PalindromeQ[n ] := IntegerDigits[n] == Reverse[IntegerDigits[n]]
Check a few numbers:
PalindromeQ[12345678]

False

PalindromeQ[9991999]
True

Check atypical input Try the function with input for which it was not meant, for example, a symbol.
PalindromeQ[f]
True

That is not handling bad input correctly. We should try to restrict the function to integer input
(Section 6.2 discusses the framework for issuing warning messages when bad input is given).

Clear [PalindromeQ] ;
PalindromeQ[n_ Integer] := IntegerDigits[n] == Reverse[IntegerDigits[n]]

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

4 Programming with Mathematica

Check a few bad inputs:

nror= PalindromeQ[f]
outriol= PalindromeQ[f]

nr11- PalindromeQ[{a, b, c}]
outr11- PalindromeQ[ {a, b, c}]

Solve original problem The original questions were: find all palindromes below one thousand and
determine how many there are below one million.

In[12]: Select[Range[103] , PalindromeQ]

our2l- {1,2,3,4,5,6,7,8,9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141,
151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313,
323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444 454 464, 474, 484,
494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595, 606, 616, 626, 636, 646, 656,
666, 676, 686, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 808, 818, 828,
838, 848, 858, 868, 878, 888, 898, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999}

In(13]:= Count[Range[ms] , b /3 PalindromeQ[p]]
Out[13] 1998

Efficiency How fast is this function for a large list of integers?
In[141:= AbsoluteTiming[
Select [Range[10°], Palindromeq] ;

]

out(141= {2.50386, Null}

Not too bad, but perhaps we can speed things up. In the definition of PalindromeQ, we compute
IntegerDigits[n] twice, once on each side of the equality check. Instead we can create a local
variable digs and initialize it with the value of IntegerDigits [n], thus only doing that computa-
tion once.

in51= Clear [PalindromeQ] ;

6= PalindromeQ[n_ Integer] := With[{digs = IntegerDigits[n]},
digs == Reverse[digs]
]
w71~ AbsoluteTiming [
Select [Range[10°], PalindromeQ] ;

]

our7- {2.31562, Null}

That didn’t help much — probably introducing the scoping construct With negated any small
gains from reducing the size of the computation. Another strategy might consider using strings

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

1.1 Introduction to programming 5

which, we know from experience, can be very fast to work with. We will save this approach for
Chapter 7 where we discuss strings and compare implementations using lists versus strings.

Actually this problem will parallelize well as the list of numbers to be checked can be distributed
across kernels and processors. Any speed improvement will be tied to the number of processors
available to run the kernels.

LaunchKernels[]

{KernelObject[1, local], KernelObject[2, local],
KernelObject[3, local], KernelObject[4, local]}

DistributeDefinitions [PalindromeQ]
{PalindromeQ}

AbsoluteTiming [
Parallelize[Select [Range[10°], PalindromeqQ] ];

]

(0.887734, Null}

Postscript  As you work through this example note that the notebook in which the code was devel-
oped and tested becomes a documentation of sorts with comments in text cells interspersed here
and there to help whoever looks at the code to understand your thinking (including yourself several
months or years later). In other words, the notebook interface is your development environment.
You could also bundle up your code into a formal package — a platform-independent text file
containing Mathematica commands — that could be loaded when needed (see Chapter 10).

The code in these examples uses a variety of programming styles and constructs that may be new
to you. It is entirely forgivable if you do not understand them at this point — that is what this book is
all about! By the time you have worked through a good deal of the book you should be comfortable
solving problems using the basic principles of programming — making assignments, defining rules,
using conditionals, recursion, and iteration.

Programming paradigms
As you start to write programs in Mathematica, it is natural to ask, “How does it compare with

programming in other languages?” To start, there are certain details shared by all programming
languages and environments. In any language, there is a finite collection of objects that must be put
together in a specific order to make statements that are valid in that language. In natural languages,
say English, those objects are the alphabet, punctuation symbols, spaces, and so on. The rules of the
language describe what are valid statements in that language. In computer languages, those state-
ments are used to communicate instructions to a computer, say to add two integers, or to print a
string to the screen, or to iterate a function until a condition is met.

The chief way in which languages differ is in the style of programming that each language uses.
Early programming languages, such as FORTRAN and C (and a bit later PERL, PYTHON, and many

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

6 Programming with Mathematica

others), use what is referred to as an imperative style of programming. This is one in which a specific
sequence of operations are explicitly given and the flow of execution is controlled by the program-
mer. In other words, the instructions describe how to perform each step.

Declarative languages, in contrast, describe the desired result instead of focusing on the underly-
ing machine instructions to get there. That is, they describe what to do, rather than how. Lisp,
SCHEME, HASKELL, and Mathematica are mostly declarative languages, although each allows an
imperative-style of programming (particularly procedural) to be used as well.

Further distinguishing languages from one another are the steps the programmer takes to try out
their programs. In most traditional languages such as FORTRAN, C, and JAva, you start by writing
code in an editor using the constructs of the language. In Java, you might write the following
source code in an editor:

public class HelloWorld {

public static voidmain (String[] args) {
System.out.println ("Hello, World");

}
}
For a similar program in C, you would type:
main () {
printf ("hello, world");
}

After saving your code in an appropriately named file, you then run it through a compiler to
create an executable file that can be run on your computer. If there is an error somewhere in your
program, you go back to your source code and, perhaps with the aid of a debugger, you find and
correct any errors and then recompile your program and execute it again.

But there is another way. Some languages, such as Lisp, PERL, PYTHON, RUBY, and Mathematica,
are referred to as interpreted languages. What this means is that you use them in an interactive mode:
you type in a command, evaluate it in place, and the result is returned. The environment in which
you type in the command and see the results is the same; in Mathematica, that environment is the
notebook.

In PERL, the “Hello World” program is simply:

print "Hello World!\n";

In Mathematica, you type in and then evaluate the following:
1= Print["Hello world”]
Hello world
The advantage of interpreted languages is that you entirely avoid the compile/run/debug cycle of
other languages. In addition, these so-called high-level interpreted languages contain functions for

performing many tasks that you would typically have to implement in a lower-level language (if
you are a C programmer, compare Reverse [lis] in Mathematica with a C program to do the same

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

1.1 Introduction to programming 7

thing). This saves you time and lets you focus more on the problem at hand and less on the intrica-
cies of memory management, libraries, and registers say.

In the old days, the advantages of compiled languages were speed and access to low-level aspects
of your computer. But with advances in hardware, these seeming advantages are much less clear. If
a program runs a few tenths of a second faster but takes many more minutes to create, your produc-
tivity gains start to evaporate pretty quickly.

Creating programs
In any language, the creation of computer programs involves many different tasks. For our pur-

poses here it is useful to distinguish two broad categories: programming and software development.
Programming involves:
e Analysis of the problem. This includes understanding precisely what is being asked and what the
answers will look like.

e Restatement of the problem. Phrasing the problem in a way that is closer to how you will actually
write the program; creating pseudo-code.

o Formulating a plan of attack. With what type of data can you prototype the problem? Is the
problem one that can be solved using list manipulation? Should you use string functions?
Will the computation require extraordinary resources?

o Implementation. Translating the problem into code; modularization; if using an interactive
language, trying out pieces as you go.

Software development includes:
o Verification of correctness. Checking solutions for many types of input; comparing with known
solutions; using different algorithms to make comparisons.

e Debugging. Finding and correcting errors — from bad syntax or from incorrect algorithms.

e Robustness. Checking atypical input that includes special cases, bad input, and generally input
that your program was not designed for.

o Performance and efficiency. Identifying bottlenecks (possibly through profiling) to improve
memory usage and reduce compute time, network bandwidth.

e Documentation. Comments and notes about why a specific function or approach was used at a
certain step; documenting lightly as you program and then adding more substantial
information later.

o User interface. What does the user need to know to understand how to use your program? Does
it behave like built-in functions or will the user need to learn a new interface element.

e Portability. Does your program work on different platforms, environments? Do you need to
compile for different operating systems? (Your Mathematica programs will run unchanged on
any platform that runs Mathematica.)

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

8 Programming with Mathematica

o Code maintenance. Periodic checks that your code runs in the latest version of your
programming language, on the latest operating system, etc.

Not every program you create will include all of the above pieces, and the order in which you
implement them is not so well-defined and discrete as stated here. For example, the PalindromeQ
program created in the previous section did not include formal documentation outside of com-
ments in the notebook itself. Smaller programs written to solve a basic problem, or programs that
you have no intention of sharing with a colleague, student, or client, may not need some of the
niceties (such as user interface elements) that another program would have. But the availability of
these programming tools and constructs makes Mathematica a good choice for both small programs
and large-scale applications that will be used by others. This book is designed to give you a good
sense of this breadth and depth and to provide a foundational set of tools to use in your Mathematica
programming.

1.2 Getting started

Let us now turn to some of the basics needed to start using Mathematica. If you are not familiar with
Mathematica, it would be helpful to try out the examples in this section before going further. These
examples should give you a sense of what it means to enter, evaluate, and work with some simple
computations. If you are already familiar with Mathematica, feel free to skim this section lightly.

Starting and running Mathematica
After launching Mathematica, parts of it will load into memory and soon a blank window will appear
on the screen. This window, called a notebook, is the visual interface to Mathematica.

o0 @ % Untitled-1

100% »

When a blank notebook first appears on the screen, either from just starting Mathematica or from
selecting New in the File menu, you can start typing immediately. For example, type N[Pi, 200]
and then press [srT+[ae (hold down the Shift key while pressing the Enter key) to evaluate the
expression. Mathematica will evaluate the result and print the 200-decimal-digit approximation to .

When you evaluate an expression in a notebook, Mathematica automatically adds input and
output prompts after you evaluate your input. In the example notebook at the top of the next page,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt

More information

1.2 Getting started 9

these are denoted In[1]:= and Out[1]=. These prompts can be thought of as markers (or labels) that
you can refer to during your Mathematica session.

LXK B Untitled-1
ni= N[Pi, 200] ]

oul1}= 3.1415926535897932384626433832795028841971693.
99375105820974944592307816406286208998628034 -
82534211706798214808651328230664709384460955
05822317253594081284811174502841027019385211 -
055596446229489549303820

100% »

New input can be entered whenever there is a horizontal line that runs across the width of the
notebook. If one is not present where you wish to place an input cell, move the cursor up and down
until it changes to a horizontal bar and then click the mouse once. A horizontal line should appear
across the width of the window. You can immediately start typing and an input cell will be created.

Mathematical expressions can be entered in a traditional-looking two-dimensional format using
either palettes for quick entry of template expressions, or keyboard equivalents. For example, the
following expression can be entered by using the Basic Math Assistant palette (under the Palettes
menu), or through a series of keystrokes as described in the tutorial Entering Two-Dimensional
Input in the Wolfram Language Documentation Center (WLDC).

nm= 2192
outl= 1267650600228 229401496703 205376
To refer to the result of the previous calculation, use the symbol %.
2= %+ 1
out2l= 1267650600228 229401496703 205377

To refer to the result of any earlier calculation, use its Out[ i] label or, equivalently, % i.

ni= Out[1]

out3]- 1267650600228 229401496703 205376
4= (%1) /290

outi4= 1024

Mathematical expressions
Mathematical expressions can be entered in a linear syntax using arithmetic operators common to
almost all computer languages.

5= 39713

out(s}= 3

Enter this expression in the traditional form by typing 39, [crif /], then 13.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-11666-5 - Essentials of Programming in Mathematica®
Paul Wellin

Excerpt
More information
10 Programming with Mathematica
39
Inf6l:= =
13
outisl= 3

The caret (*) is used for exponentiation.
7= 25
out7l= 32
To enter this expression in a more traditional typeset form, type 2, [c®f* |, and then 5.
nigl= 2°
outigl= 32
Multiplication can be indicated by putting a space between the two factors, as in mathematical

notation. Mathematica will automatically display the traditional multiplication sign, x, between two
numbers. The asterisk (*) is also used for that purpose, as is traditional in most computer languages.

InEl= 2X5
outol= 10
o= 2% 5

outr10l= 10

Operations are given the same precedence as in mathematics. In particular, multiplication and
division have a higher precedence than addition and subtraction: 3 + 4 X 5 equals 23 and not 35.
n1- 3+4x5
outf11]= 23

You can enter typeset expressions in several different ways: directly from the keyboard as we did
above, using a long (functional) form, or via palettes available from the Palettes menu. Table 1.1
shows some of the more commonly used typeset expressions and how they are entered through the
keyboard. Try to become comfortable entering these inputs so that you can easily enter the kinds of
expressions used in this book.

TABLE L.I.  Entering typeset expressions

Display form Long (functional) form Keystrokes
x2 Superscript[x,2] X, [CTRL+ 6, 2
Xi Subscript[x,i] X, [CR]+_, 1
;j FractionBox [x,2] X, R+ /, y
x SqrtBox [x] [crR]+2, x
x=y GreaterEqual [x,2] X, [est], >=, [Ec], y

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107116665
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107116665: 


