
Progress
 Database Administration

Guide and Reference

© 2002 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This manual is also
copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, from Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Progress, Powered by Progress, Progress Fast Track, Progress Profiles, Partners in Progress, Partners en Progress, Progress en
Partners, Progress in Progress, P.I.P., Progress Results, ProVision, ProCare, ProtoSpeed, SmartBeans, SpeedScript, and
WebSpeed are registered trademarks of Progress Software Corporation in the U.S. and other countries. A Data Center of Your
Very Own, Allegrix, Apptivity, AppsAlive, AppServer, ASPen, ASP-in-a-Box, Empowerment Center, Fathom, Future Proof,
IntelliStream, OpenEdge, PeerDirect, POSSE, POSSENET, Progress Dynamics, Progress Software Developers Network,
SectorAlliance, SmartObjects and WebClient are trademarks or service marks of Progress Software Corporation in the U.S. and
other countries.

SonicMQ is a registered trademark of Sonic Software Corporation in the U.S. and other countries.

Vermont Views is a registered trademark of Vermont Creative Software in the U.S. and other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Any other trademarks and/or service marks contained herein are the property of their respective owners.

Progress Software Corporation acknowledges the use of Raster Imaging Technology copyrighted by Snowbound Software 1993-
1997, the IBM XML Parser for Java Edition, and software developed by the Apache Software Foundation (http://
www.apache.org/).

© IBM Corporation 1998-1999. All rights reserved. U.S. Government Users Restricted Rights — Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

Progress is a registered trademark of Progress Software Corporation and is used by IBM Corporation in the mark Progress/400

under license. Progress/400 AND 400® are trademarks of IBM Corporation and are used by Progress Software Corporation
under license.

The implementation of the MD5 Message-Digest Algorithm used by Progress Software Corporation in certain of its products is
derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

Product Code: 4590

Item Number: 89434;V9.1D

May 2002

Contents
Preface . xxiii
Purpose . xxiii
Audience . xxiii
Organization of This Manual . xxiii

Part I Planning . xxiii
Part II Administration . xxiv
Part III Reference . xxv

How To Use This Manual . xxvi
Typographical Conventions . xxvi
Syntax Notation . xxvii
Example Procedures . xxxi
Progress Messages . xxxiv
Other Useful Documentation . xxxvi

Getting Started . xxxvi
Development Tools . xxxvii
Reporting Tools . xxxviii
4GL . xxxix
Database . xl
DataServers. xl
SQL-89/Open Access . xli
SQL-92 . xli
Deployment . xlii
WebSpeed. xlii
Reference . xliii

1. The Progress Database . 1–1
1.1 Progress Database Architecture . 1–2

1.1.1 Other Database-related Files . 1–4
1.2 Storage Design Overview . 1–5

Contents

iv
1.2.1 Storage Objects . 1–7
1.2.2 Extents . 1–7
1.2.3 Storage Areas . 1–7

1.3 Determining Configuration Variables . 1–9
1.3.1 System Platform . 1–9
1.3.2 Connection Modes . 1–9
1.3.3 Database Location . 1–10
1.3.4 Database Configurations. 1–10

1.4 Operating System Resources . 1–12
1.5 Multi-threaded Architecture . 1–13
1.6 Multi-tier and Cluster Configurations . 1–14
1.7 Self-service and Network Clients . 1–15
1.8 Relative- and Absolute-path Databases . 1–15

2. Administrative Planning . 2–1
2.1 Block Size Considerations . 2–2

2.1.1 Guidelines For Choosing Storage Area Locations 2–3
2.2 Calculating Database Disk Requirements . 2–3
2.3 Storing Database Extents On Raw Partitions . 2–7

3. Progress Database Limits . 3–1
3.1 Database Block Sizes . 3–2
3.2 Number and Size Of Storage Areas . 3–2
3.3 Maximum Number Of Records Per Block . 3–5
3.4 Table and Index Limits . 3–5
3.5 Number Of Sequences . 3–5
3.6 Maximum Size Of the Primary Recovery (BI) Area 3–6
3.7 Maximum Database Size . 3–6
3.8 Number Of Connections Per Database . 3–7
3.9 Number Of Simultaneous Transactions Per Database 3–7
3.10 Size Of Database Buffer Pool . 3–7
3.11 Progress Database Name Limits . 3–8
3.12 Applicable Operating System Limits . 3–8
3.13 Data Types and Values . 3–10

4. Creating and Deleting Databases . 4–1
4.1 Ways To Create a Progress Database . 4–2
4.2 Creating a Database With PROSTRCT CREATE 4–2

4.2.1 Creating a Structure Description File 4–3
4.2.2 Create a Database Structure Extent . 4–10
4.2.3 Adding Schema To a Void Database . 4–11

4.3 Creating a Database With the PRODB Utility . 4–12
4.4 Creating a Database With the Data Administration Tool 4–14
4.5 Migrating Version 8 Databases To Version 9 Databases 4–15

Contents
4.5.1 Converting a Single-volume Version 8 Database With
PROCOPY . 4–16

4.5.2 Converting a Single-volume Version 8 Database With
PROREST . 4–17

4.5.3 Converting a Single-volume Version 8 Database With
PROSTRCT . 4–18

4.5.4 Converting a Version 8 Database To Version 9. 4–18
4.6 Using the Schema Mover After Conversion . 4–19
4.7 Copying a Database . 4–22
4.8 AutoConvert Utility . 4–24
4.9 Deleting a Database . 4–24

5. Starting Up and Shutting Down . 5–1
5.1 The Progress Explorer Framework . 5–2

5.1.1 AdminServer . 5–2
5.1.2 Progress Explorer . 5–2
5.1.3 Command-line Configuration Utilities 5–3
5.1.4 Using the DBMAN Command-Line Utility 5–4

5.2 Starting a Server Or Broker . 5–5
5.2.1 Using the PROSERVE Command . 5–5
5.2.2 Specifying International Character Sets 5–6
5.2.3 Network Addressing With Progress (- S and -H) 5–7
5.2.4 Starting Network Brokers and Servers. 5–7
5.2.5 Starting Multiple Brokers Using the Same Protocol 5–8
5.2.6 Accessing a Server Behind a Firewall 5–9

5.3 Starting and Stopping Background Writers . 5–10
5.3.1 Starting and Stopping an APW . 5–10
5.3.2 Starting and Stopping a BIW . 5–11
5.3.3 Starting and Stopping an AIW . 5–11

5.4 Stopping a Server Or Broker . 5–12
5.4.1 PROSHUT Command . 5–12
5.4.2 PROMON Shut Down Database Option 5–15

6. Backup and Recovery Strategies . 6–1
6.1 Identifying Files For Back Up . 6–2
6.2 Determining the Type Of Backup . 6–3

6.2.1 Incremental Backups . 6–4
6.2.2 Online Backups . 6–5
6.2.3 Offline Backups . 6–6

6.3 Choosing Backup Media . 6–6
6.4 Creating a Backup Schedule . 6–7

6.4.1 Database Integrity . 6–7
6.4.2 Database Size . 6–8
6.4.3 Time . 6–8
v

Contents

vi
6.4.4 Unscheduled Backups . 6–9
6.5 Developing a Recovery Plan . 6–9

6.5.1 Lost Transactions . 6–10
6.5.2 Duration Of Offline Applications . 6–10
6.5.3 Time Needed For Recovery . 6–11
6.5.4 Distributed Transactions Occurring Inconsistently 6–12

6.6 Recovery Guidelines . 6–13

7. Backing Up a Database. 7–1
7.1 Performing a Progress Backup . 7–2

7.1.1 Performing an Online Full Backup With PROBKUP 7–3
7.1.2 Progress Backup Options . 7–5
7.1.3 Testing Backups . 7–6
7.1.4 Archiving Backups . 7–8

7.2 Performing an Offline Progress Backup . 7–9
7.3 Performing an Online Progress Backup . 7–10
7.4 Using Database Quiet Points . 7–11
7.5 Performing a Non-Progress Backup . 7–13
7.6 Database Backup Examples . 7–14

7.6.1 UNIX Incremental Backup Example . 7–14
7.6.2 Windows Full Backup Example. 7–17
7.6.3 Incremental Backup Example . 7–20

7.7 Verifying a Backup . 7–23
7.8 CRC Codes and Redundancy In Backup Recovery 7–24

7.8.1 CRC Codes . 7–24
7.8.2 Error-correction Blocks . 7–25

7.9 Restoring a Database . 7–25
7.9.1 Using the PROREST Utility To Restore a Database 7–26
7.9.2 Important Rules For Restoring Backups 7–27
7.9.3 Obtaining Storage Area Descriptions Using PROREST 7–28
7.9.4 Database Restore Examples . 7–29

8. Recovering a Database. 8–1
8.1 Introduction To Recovery Mechanisms . 8–2

8.1.1 Crash Recovery . 8–3
8.1.2 Roll-forward Recovery. 8–4
8.1.3 Two-phase Commit . 8–6

8.2 File Locations That Ensure Safe Recovery . 8–6
8.3 Sample Recovery Plans . 8–7

8.3.1 Example 1: Low Availability Requirements 8–7
8.3.2 Example 2: Moderate Availability Requirements 8–8
8.3.3 Example 3: Moderate-to-High Availability Requirements 8–9
8.3.4 Example 4: High Availability Requirements 8–10
8.3.5 Sample Recovery Scenarios. 8–11

Contents
8.4 After-imaging and Roll-forward Recovery Commands 8–16
8.5 Recovering From System Failures . 8–17

8.5.1 System Crash While Running RFUTIL ROLL FORWARD. . . . 8–17
8.5.2 System Crash While Running Other Utilities 8–17
8.5.3 System Crash While Backing Up the Database. 8–18
8.5.4 System Crash While Database Is Up. 8–18

8.6 Recovering From Media Failures . 8–18
8.6.1 Loss Of the DB Files, BI Files, Or Both 8–19
8.6.2 Loss Of the AI File . 8–19
8.6.3 Loss Of Database Backup . 8–20
8.6.4 Loss Of Transaction Log File . 8–21

8.7 Recovering From a Full Disk . 8–21
8.7.1 After-image Area Disk . 8–22
8.7.2 Control Or Primary Recovery Area Disk 8–22
8.7.3 Transaction Log File Disk . 8–23

8.8 Truncating the BI File . 8–24
8.9 Recovering From a Crash . 8–24
8.10 Recovering From a Lost Or Damaged Control Area 8–25
8.11 Unlocking Damaged Databases . 8–26
8.12 Dumping Tables From a Damaged Database . 8–27
8.13 Forcing Access To a Damaged Database With the -F Parameter 8–28

9. Maintaining Database Structure . 9–1
9.1 The Progress Structure Utility . 9–2
9.2 Progress Structure Statistics Utility . 9–2
9.3 Progress Structure List Utility . 9–3
9.4 Progress Structure Add Utility . 9–5

9.4.1 PROSTRCT ADD and Pathnames . 9–6
9.4.2 Adding Extents to Existing Storage Areas 9–7

9.5 Progress Structure Remove Utility . 9–8
9.6 Maintaining Indexes and Tables . 9–9

9.6.1 Moving Tables . 9–9
9.6.2 Moving Indexes . 9–11
9.6.3 Compacting Indexes . 9–11

9.7 Using Virtual System Tables To Obtain Status Of Administration Utilities 9–12

10. Maintaining Security . 10–1
10.1 Establishing a Progress User ID and Password 10–2

10.1.1 Progress User ID . 10–2
10.1.2 Progress Password . 10–2
10.1.3 Validating a Progress User ID and Password 10–3

10.2 Establishing Authentication For Your Progress Database 10–3
10.2.1 4GL Tables Only . 10–3
10.2.2 SQL-92 Tables Only . 10–3
vii

Contents

viii
10.2.3 Both 4GL and SQL-92 Tables. 10–4
10.3 Connection Security . 10–5

10.3.1 Designating a Security Administrator . 10–5
10.3.2 Adding a User . 10–7
10.3.3 Deleting a User . 10–9
10.3.4 Changing a Password . 10–9

10.4 Running a User Report . 10–10
10.5 Schema Security . 10–11

10.5.1 Freezing and Unfreezing a Table . 10–12
10.6 Operating Systems and Database Security . 10–12

11. After-Imaging . 11–1
11.1 After-image Areas and Extents . 11–2
11.2 Estimating After-imaging Disk Space Requirements 11–3
11.3 Creating After-image Areas . 11–4
11.4 Enabling After-imaging . 11–5
11.5 Managing After-imaging Files . 11–6

11.5.1 Monitoring AI File Status . 11–6
11.5.2 Switching To a New AI File . 11–7
11.5.3 Archiving an AI File . 11–8

11.6 Performing Roll-forward Recovery . 11–12
11.7 Disabling After-imaging . 11–13

12. Using Two-phase Commit . 12–1
12.1 Distributed Transactions . 12–2
12.2 How The Database Engine Implements Two-phase Commit 12–3

12.2.1 Two-phase Commit and Roll-forward Recovery 12–6
12.3 Enabling Two-phase Commit . 12–7

12.3.1 Modifying the Database Nickname and Priority 12–8
12.3.2 Transaction Log Area . 12–9

12.4 Detecting Limbo Transactions . 12–10
12.5 Resolving Limbo Transactions . 12–11

12.5.1 Resolving Limbo Transactions With the Database In Use 12–11
12.5.2 Resolving Limbo Transactions With the Database Shut Down. 12–15
12.5.3 Resolving Limbo Transaction Scenarios. 12–17

12.6 Deactivating Two-phase Commit . 12–19
12.7 Case Study . 12–19

13. Dumping and Loading . 13–1
13.1 Overview Of Dumping and Loading . 13–2

13.1.1 Dump and Load Limitations . 13–3
13.2 Dumping 4GL Database Definitions . 13–3

13.2.1 Definition File Format . 13–4
13.2.2 Dumping 4GL Definitions . 13–6

Contents
13.2.3 Creating an Incremental 4GL Data Definitions File 13–7
13.2.4 Dumping Sequence Definitions . 13–8
13.2.5 Dumping Auto-connect Records . 13–9

13.3 Dumping Database Contents . 13–9
13.3.1 Dumping Table Contents With PROUTIL. 13–10
13.3.2 Dumping Field Contents With PROUTIL 13–12
13.3.3 Dumping Table Contents With a Data Tool 13–14
13.3.4 Contents File Format . 13–15
13.3.5 Dumping Sequence Values . 13–17
13.3.6 Dumping User Table Contents. 13–17
13.3.7 Dumping an SQL View File’s Contents 13–18

13.4 Loading Database Definitions . 13–18
13.4.1 Loading Table Definitions . 13–18
13.4.2 Loading Updated 4GL Data Definitions 13–19

13.5 Loading Database Contents . 13–20
13.5.1 Loading Table Contents With the PROUTIL Command. 13–21
13.5.2 Loading Table Contents With a Data Tool 13–22
13.5.3 Loading User Table Contents . 13–23
13.5.4 Loading an SQL View File Contents . 13–24
13.5.5 Loading Sequence Values . 13–24

13.6 Bulk Loading . 13–25
13.6.1 Creating a Bulk Loader Description File. 13–25
13.6.2 Modifying a Bulk Loader Description File 13–26
13.6.3 Loading Table Contents With the Bulk Loader Qualifier 13–27

13.7 Reconstructing Bad Load Records . 13–30
13.8 Specialized Dump and Load Techniques . 13–30

13.8.1 Creating a Starting Version Of a Database 13–30
13.8.2 Using a Constant Table In Multiple Databases 13–32
13.8.3 Economizing Disk Space . 13–32
13.8.4 Optimizing Data For Sequential Access. 13–33
13.8.5 Optimizing Data For Random Access 13–34
13.8.6 Using No-integrity Mode Bulk Data Loading 13–36
13.8.7 Using 4GL Tools To Save Space By Deactivating Indexes . . . 13–36

14. Managing Performance . 14–1
14.1 Introduction To Performance Managing . 14–2
14.2 Tools For Monitoring Performance . 14–3

14.2.1 PROMON Utility . 14–3
14.2.2 Virtual System Tables . 14–3
14.2.3 NT Performance Monitor . 14–3

14.3 Server Performance Factors . 14–4
14.4 CPU Utilization . 14–5

14.4.1 Idle CPU. 14–5
14.4.2 Unproductive CPU Processing. 14–5
ix

Contents

x

14.5 Disk I/O . 14–6
14.5.1 Database I/O . 14–6
14.5.2 Before-image I/O . 14–18
14.5.3 After-image I/O . 14–27
14.5.4 Direct I/O . 14–30

14.6 Memory Utilization . 14–31
14.6.1 Monitoring Memory Utilization. 14–31
14.6.2 Controlling Memory Use . 14–32

14.7 Operating System Resources . 14–33
14.7.1 Processes . 14–33
14.7.2 Semaphores . 14–34
14.7.3 Spin Locks . 14–37
14.7.4 File Descriptors . 14–37

14.8 Database Fragmentation . 14–37
14.8.1 Analyzing Database Fragmentation . 14–37
14.8.2 Eliminating Database Fragmentation . 14–39

14.9 Index Use . 14–39
14.9.1 Analyzing Index Use . 14–40
14.9.2 Compacting Indexes . 14–41
14.9.3 Rebuilding Indexes . 14–42

14.10 Virtual System Tables . 14–47

15. Replicating Data . 15–1
15.1 Replication Schemes . 15–2

15.1.1 Trigger-based Replication . 15–2
15.1.2 Log-based Site Replication . 15–2

15.2 Replication Models . 15–2
15.2.1 Synchronous Model . 15–2
15.2.2 Asynchronous Model. 15–3
15.2.3 Database Ownership Models . 15–3

15.3 Implementing Log-based Site Replication . 15–7
15.3.1 Log-based Replication Procedure. 15–7

16. Using the Event Log . 16–1
16.1 Progress Version 9 Event Log File . 16–2
16.2 Managing the Event Log File Size . 16–2
16.3 Event Logging On Windows . 16–2

16.3.1 Managing Progress Events On Windows 16–3
16.3.2 Understanding the Event Log Components 16–4
16.3.3 The Event Log and the Registry . 16–7

17. Startup and Shutdown Commands . 17–1
17.1 Startup Command Syntax . 17–2
17.2 Database Startup and Shutdown Commands . 17–3

Contents
PROAIW Command . 17–4
PROAPW Command . 17–5
PROBIW Command . 17–6
PROQUIET Command . 17–7
PROSERVE Command . 17–9
PROSHUT Command . 17–11
PROWDOG Command . 17–15

18. Database Startup Parameters . 18–1
18.1 Issuing Startup Parameters . 18–2
18.2 Database Server Performance Parameters . 18–2
18.3 Database Server-type Parameters . 18–4
18.4 Database Server Internationalization Parameters 18–4
18.5 Database Server Statistics Parameters . 18–5
18.6 Database Server Network Parameters . 18–6
18.7 Startup Parameter Usage Categories . 18–8
18.8 Alphabetical Listing Of Database Startup Parameters 18–8

18.8.1 AdminServer Port (-adminport) . 18–8
18.8.2 After-image Buffers (-aibufs) . 18–9
18.8.3 After-image Stall (-aistall) . 18–10
18.8.4 Blocks In Database Buffers (-B). 18–10
18.8.5 Base Index (-baseindex) . 18–11
18.8.6 Base Table (-basetable). 18–12
18.8.7 Before-image Buffers (-bibufs) . 18–13
18.8.8 Threshold Stall (-bistall) . 18–13
18.8.9 Recovery Log Threshold (-bithold). 18–14
18.8.10 SQL-92 Server Java Classpath (-classpath) 18–14
18.8.11 Conversion Map (-convmap) . 18–15
18.8.12 Case Table (-cpcase). 18–15
18.8.13 Collation Table (-cpcoll) . 18–16
18.8.14 Internal Code Page (-cpinternal) . 18–17
18.8.15 Log File Code Page (-cplog) . 18–18
18.8.16 Print Code Page (-cpprint) . 18–18
18.8.17 R-code In Code Page (-cprcodein) . 18–19
18.8.18 Stream Code Page (-cpstream) . 18–20
18.8.19 Terminal Code Page (-cpterm). 18–21
18.8.20 Direct I/O (-directio) . 18–21
18.8.21 Event Level (-evtlevel) . 18–22
18.8.22 Before-image Cluster Age (-G) . 18–23
18.8.23 Group Delay (-groupdelay) . 18–23
18.8.24 Host Name (-H) . 18–24
18.8.25 Hash Table Entries (-hash) . 18–24
18.8.26 No Crash Protection (-i) . 18–25
18.8.27 Index Range Size (-indexrangesize) . 18–26
xi

Contents

xii
18.8.28 Lock Table Entries (-L) . 18–26
18.8.29 Auto Server (-m1) . 18–27
18.8.30 Manual Server (-m2) . 18–28
18.8.31 Secondary Login Broker (-m3) . 18–28
18.8.32 Maximum Clients Per Server (-Ma) . 18–29
18.8.33 Maximum Dynamic Server (-maxport) 18–29
18.8.34 Delayed BI File Write (-Mf) . 18–30
18.8.35 Minimum Clients Per Server (-Mi) . 18–31
18.8.36 Minimum Dynamic Server (-minport) . 18–32
18.8.37 Maximum Servers (-Mn) . 18–32
18.8.38 Servers Per Protocol (-Mp) . 18–33
18.8.39 Maximum Servers Per Broker (-Mpb) . 18–33
18.8.40 VLM Page Table Entry Optimization (-Mpte) 18–34
18.8.41 Shared-memory Overflow Size (-Mxs) 18–34
18.8.42 Network Type (-N). 18–35
18.8.43 Number Of Users (-n) . 18–35
18.8.44 Parameter File (-pf) . 18–36
18.8.45 Pin Shared Memory (-pinshm) . 18–36
18.8.46 Configuration Properties File (-properties) 18–37
18.8.47 Buffered I/O (-r) . 18–37
18.8.48 Service Name (-S) . 18–38
18.8.49 Semaphore Sets (-semsets) . 18–39
18.8.50 Server Group (-servergroup). 18–40
18.8.51 Spin Lock Retries (-spin). 18–40
18.8.52 Table Range Size (-tablerangesize) . 18–41

19. Database Administration Utilities . 19–1
DBMAN Utility . 19–3
_DBUTIL CMPDB Qualifier . 19–7
PROADSV Utility . 19–8
PROBKUP Utility . 19–10
ProControl Utility . 19–14
PROCOPY Utility . 19–17
PRODB Utility . 19–19
PRODEL Utility . 19–22
Progress Explorer Utility . 19–23
PROLOG Utility . 19–24
PROMON Utility . 19–25
PROMON User Control Option . 19–27
PROMON Locking and Waiting Statistics Option . 19–30
PROMON Block Access Option . 19–32
PROMON Record Locking Table Option . 19–35
PROMON Activity Option . 19–37
PROMON Shared Resources Option . 19–41

Contents
PROMON Database Status Option . 19–43
PROMON Shut Down Database Option . 19–45
PROMON Transactions Control Option . 19–46
PROMON Resolve Limbo Transactions Option . 19–48
PROMON Coordinator Information Option . 19–49
PROMON Modify Defaults Option . 19–50
PROREST Utility . 19–52
PROSTRCT Utility . 19–54
PROSTRCT ADD Qualifier . 19–56
PROSTRCT BUILDDB Qualifier . 19–57
PROSTRCT CREATE Qualifier . 19–58
PROSTRCT LIST Qualifier . 19–60
PROSTRCT REMOVE Qualifier . 19–61
PROSTRCT REPAIR Qualifier . 19–63
PROSTRCT STATISTICS Qualifier . 19–64
PROSTRCT UNLOCK Qualifier . 19–66
PROUTIL Utility . 19–67
PROUTIL 2PHASE BEGIN Qualifier . 19–71
PROUTIL 2PHASE COMMIT Qualifier . 19–73
PROUTIL 2PHASE END Qualifier . 19–74
PROUTIL 2PHASE MODIFY Qualifier . 19–75
PROUTIL 2PHASE RECOVER Qualifier . 19–76
PROUTIL BIGROW Qualifier . 19–77
PROUTIL BULKLOAD Qualifier . 19–78
PROUTIL BUSY Qualifier . 19–79
PROUTIL CHANALYS Qualifier . 19–81
PROUTIL CODEPAGE-COMPILER Qualifier . 19–82
PROUTIL CONV89 Qualifier . 19–83
PROUTIL CONVCHAR Qualifier . 19–84
PROUTIL CONVFILE Qualifier . 19–87
PROUTIL DBANALYS Qualifier . 19–89
PROUTIL DBAUTHKEY Qualifier . 19–90
PROUTIL DBIPCS Qualifier . 19–92
PROUTIL DUMP Qualifier . 19–94
PROUTIL DUMPSPECIFIED . 19–97
PROUTIL ENABLELARGEFILES Qualifier . 19–99
PROUTIL ENABLEPDR Qualifier . 19–100
PROUTIL HOLDER Qualifier . 19–101
PROUTIL IDXANALYS Qualifier . 19–103
PROUTIL IDXBUILD Qualifier . 19–104
PROUTIL IDXCHECK Qualifier . 19–107
PROUTIL IDXCOMPACT Qualifier . 19–109
PROUTIL IDXFIX Qualifier . 19–111
PROUTIL IDXMOVE Qualifier . 19–114
PROUTIL IOSTATS Qualifier . 19–116
xiii

Contents

xiv
PROUTIL LOAD Qualifier . 19–118
PROUTIL MVSCH Qualifier . 19–121
PROUTIL RCODEKEY Qualifier . 19–122
PROUTIL TABANALYS Qualifier . 19–124
PROUTIL TABLEMOVE Qualifier . 19–127
PROUTIL TRUNCATE AREA Qualifier . 19–130
PROUTIL TRUNCATE BI Qualifier . 19–132
PROUTIL UPDATEVST Qualifier . 19–134
PROUTIL WBREAK-COMPILER Qualifier . 19–135
PROUTIL WORD-RULES Qualifier . 19–136
RFUTIL Utility . 19–137
RFUTIL AIMAGE AIOFF . 19–139
RFUTIL AIMAGE BEGIN Qualifier . 19–140
RFUTIL AIMAGE END Qualifier . 19–141
RFUTIL AIMAGE EXTENT EMPTY Qualifier . 19–142
RFUTIL AIMAGE EXTENT FULL Qualifier . 19–143
RFUTIL AIMAGE EXTENT LIST Qualifier . 19–144
RFUTIL AIMAGE NEW Qualifier . 19–145
RFUTIL AIMAGE SCAN Qualifier . 19–146
RFUTIL AIMAGE TRUNCATE Qualifier . 19–147
RFUTIL MARK BACKEDUP Qualifier . 19–149
RFUTIL ROLL FORWARD Qualifier . 19–150
RFUTIL ROLL FORWARD RETRY Qualifier . 19–152
SQLDUMP Utility . 19–154
SQLLOAD Utility . 19–159
SQLSCHEMA Utility . 19–164

20. Virtual System Tables . 20–1
20.1 Update Access To Virtual System Tables . 20–2
20.2 Virtual System Table Summaries . 20–2
20.3 Progress Virtual System Table Schema Descriptions 20–8

A. Progress Monitor R&D Options . A–1
Accessing PROMON R&D Options . A–2
PROMON R&D Main Menu . A–4
Menu Options . A–7
Status Displays→ Database . A–10
Status Displays→ Backup . A–13
Status Displays→ Servers . A–14
Status Displays→ Processes/Clients→ All Processes . A–16
Status Displays→ Processes/Clients→ Blocked Clients . A–20
Status Displays→ Processes/Clients→ Active Transactions A–21
Status Displays→ Processes/Clients→ Local Interactive Clients A–22
Status Displays→ Processes/Clients→ Local Batch Clients A–23

Contents
Status Displays→ Processes/Clients→ Remote Clients . A–24
Status Displays→ Processes/Clients→ Background Processes A–25
Status Displays→ Files . A–26
Status Displays→ Lock Table . A–27
Status Displays→ Buffer Cache . A–29
Status Displays→ Logging Summary . A–30
Status Displays→ BI Log . A–31
Status Displays→ AI Log . A–32
Status Displays→ Two-phase Commit . A–33
Status Displays→ Startup Parameters . A–34
Status Displays→ Shared Resources . A–36
Status Displays→ Shared Memory Segments . A–38
Activity Displays→ Summary . A–39
Activity Displays→ Servers . A–43
Activity Displays→ Buffer Cache . A–44
Activity Displays→ Page Writers . A–46
Activity Displays→ BI Log . A–48
Activity Displays→ AI Log . A–50
Activity Displays→ Lock Table . A–52
Activity Displays→ I/O Operations By Type . A–54
Activity Displays→ I/O Operations By File . A–56
Activity Displays→ Space Allocation . A–57
Activity Displays→ Index . A–59
Activity Displays→ Record . A–60
Activity Displays→ Other . A–62
Other Displays→ Performance Indicators . A–63
Other Displays→ I/O Operations By Process . A–65
Other Displays→ Lock Requests By User . A–66
Other Displays→ Checkpoints . A–67
Administrative Functions→ Resolve Limbo Transactions A–68
Administrative Functions→ Adjust Latch Options . A–69
Administrative Functions→ Adjust Page Writer Options . A–70
Administrative Functions→ Adjust Monitor Options . A–71

B. Setting Up Progress To Utilize Compaq’s NT Clusters B–1
B.1 Defining NT Clusters . B–2

B.1.1 Cluster Administrator . B–2
B.1.2 Failover Manager . B–2

B.2 Configuring the NT Cluster System . B–4
B.3 Progress Database Server Considerations and Configuration B–5

B.3.1 ProControl Command-line Interface . B–6
B.4 4GL Client Considerations . B–11

Index . Index–1
xv

Contents

xvi
Figures

Figure 1–1: Version 9 Structure . 1–2
Figure 1–2: Physical Storage Model . 1–5
Figure 1–3: Logical Storage Model . 1–6
Figure 1–4: Federated Database Configuration . 1–11
Figure 1–5: Distributed Database Configuration . 1–12
Figure 1–6: Sample Multi-tier Configuration . 1–14
Figure 1–7: Relative-path Database Creation . 1–16
Figure 2–1: Matching Database and File Block Sizes . 2–2
Figure 4–1: How The Schema Mover Works . 4–21
Figure 8–1: Progress Recovery Mechanisms . 8–2
Figure 8–2: Storing Database Files . 8–6
Figure 8–3: Recovery Scenario - Day 1 . 8–11
Figure 8–4: Recovery Scenario - Day 2 . 8–12
Figure 8–5: Recovery Scenario - Day 3 . 8–13
Figure 8–6: Recovery Scenario - Day 4 . 8–14
Figure 8–7: Recovery Scenario - Day 5 . 8–15
Figure 11–1: After-image Extents Switching . 11–2
Figure 12–1: Data Inconsistency . 12–2
Figure 12–2: Two-phase Commit Algorithm . 12–4
Figure 12–3: Limbo Transaction . 12–5
Figure 12–4: How PROUTIL Processes React To Limbo Transactions 12–10
Figure 13–1: Sample Data Definitions File . 13–5
Figure 13–2: Sample Contents File . 13–15
Figure 13–3: Dictionary-created Description File Example . 13–29
Figure 13–4: Copying the Starting Version Of a Database . 13–31
Figure 14–1: Database I/O . 14–7
Figure 14–2: Reads and Writes To Database Buffers . 14–9
Figure 14–3: Evicting Buffers . 14–10
Figure 14–4: Monitoring Buffer Activity . 14–11
Figure 14–5: Block Table (BLKTBL) Chain . 14–15
Figure 14–6: APWs and the Least Recently Used Chain . 14–16
Figure 14–7: PROMON Page Writers Activity Display . 14–17
Figure 14–8: PROMON BI Log Activity Display . 14–19
Figure 14–9: BI Clusters At Startup . 14–22
Figure 14–10: BI Clusters Over Time . 14–22
Figure 14–11: PROMON AI Log Activity Display . 14–28
Figure 14–12: How a Semaphore Coordinates Concurrent Access 14–34
Figure 15–1: Data Distribution Model . 15–3
Figure 15–2: Data Consolidation Models . 15–5
Figure 15–3: Peer-to-peer Model . 15–6
Figure 15–4: Example Of Site Replication . 15–9
Figure 16–1: NT Event Log Components . 16–4
Figure 16–2: NT Event Detail Dialog Box . 16–6

Contents
Figure 17–1: Syntax Conventions . 17–2
Figure 19–1: Utility Syntax Conventions . 19–2
Figure 19–2: ProControl Main Window . 19–15
Figure 19–3: PROMON Utility Main Menu . 19–25
Figure 19–4: Sample Output For PROMON User Control Option 19–27
Figure 19–5: Sample Output For PROMON Locking and Waiting Statistics Option . 19–30
Figure 19–6: Sample Output For PROMON Block Access Option 19–32
Figure 19–7: Sample Output For PROMON Record Locking Table Option 19–35
Figure 19–8: Sample Output For PROMON Activity Option 19–37
Figure 19–9: Sample Output For PROMON Shared Resources Option 19–41
Figure 19–10: Sample Output For PROMON Database Status Option 19–43
Figure 19–11: Sample Output For PROMON Shut Down Database Option 19–45
Figure 19–12: Sample Output For PROMON Transaction Control Option 19–46
Figure 19–13: Sample Output For PROMON Resolve Limbo Transactions Option . . 19–48
Figure 19–14: Sample Output For PROMON Coordinator Information Option 19–49
Figure 19–15: PROMON Modify Defaults Menu . 19–50
Figure A–1: PROMON Database Status Display . A–10
Figure A–2: PROMON Backup Status Display . A–13
Figure A–3: PROMON Servers Status Display . A–14
Figure A–4: PROMON Processes/Clients Status Display . A–16
Figure A–5: PROMON Blocked Clients Status Display . A–20
Figure A–6: PROMON Active Transactions Status Display A–21
Figure A–7: PROMON Local Interactive Clients Status Display A–22
Figure A–8: PROMON Local Batch Clients Status Display A–23
Figure A–9: PROMON Remote Clients Status Display . A–24
Figure A–10: PROMON Background Processes Status Display A–25
Figure A–11: PROMON Files Status Display . A–26
Figure A–12: PROMON Lock Table Status Display . A–27
Figure A–13: PROMON Buffer Cache Status Display . A–29
Figure A–14: PROMON Logging Summary Status Display . A–30
Figure A–15: PROMON BI Log Status Display . A–31
Figure A–16: PROMON AI Log Status Display . A–32
Figure A–17: PROMON Two-phase Commit Status Display A–33
Figure A–18: PROMON Startup Parameters Status Display A–34
Figure A–19: PROMON Shared Resources Status Display A–36
Figure A–20: PROMON Shared Memory Segments Status Display A–38
Figure A–21: PROMON Summary Activity Display . A–39
Figure A–22: PROMON Servers Activity Display . A–43
Figure A–23: PROMON Buffer Cache Activity Display . A–44
Figure A–24: PROMON Page Writers Activity Display . A–46
Figure A–25: PROMON BI Log Activity Display . A–48
Figure A–26: PROMON AI Log Activity Display . A–50
Figure A–27: PROMON Lock Table Activity Display . A–52
Figure A–28: PROMON I/O Operations By Type Activity Display A–54
Figure A–29: PROMON I/O Operations By File Activity Display A–56
xvii

Contents

xviii
Figure A–30: PROMON Space Allocation Activity Display . A–57
Figure A–31: PROMON Index Activity Display . A–59
Figure A–32: PROMON Record Activity Display . A–60
Figure A–33: PROMON Other Activity Display . A–62
Figure A–34: PROMON Performance Indicators Display . A–63
Figure A–35: PROMON I/O Operations By Process Display A–65
Figure A–36: PROMON Lock Requests By User Display . A–66
Figure A–37: PROMON Checkpoints Display . A–67
Figure A–38: PROMON Resolve Limbo Transactions Menu A–68
Figure A–39: PROMON Adjust Latch Options Menu . A–69
Figure A–40: PROMON Adjust Page Writer Options Menu . A–70
Figure A–41: PROMON Adjust Monitor Options Menu . A–71

Contents
Tables

Table 1–1: Other Database-related Files . 1–4
Table 1–2: Interactive Mode Versus Batch Mode . 1–10
Table 1–3: Database Configurations . 1–11
Table 2–1: Formulas For Calculating Database Size . 2–3
Table 2–2: Formulas For Calculating Field Storage . 2–4
Table 2–3: Calculating Database Size . 2–5
Table 3–1: Storage Area Types . 3–2
Table 3–2: Maximum Application Data Storage Area Size 3–3
Table 3–3: Maximum Number Of Sequences . 3–5
Table 3–4: Maximum Primary Recovery (BI) Area Size . 3–6
Table 3–5: Maximum Number Of Connections Per Database 3–7
Table 3–6: Maximum Number Of Simultaneous Transactions 3–7
Table 3–7: Maximum Buffer Pool Size . 3–7
Table 3–8: Database Name Limits . 3–8
Table 3–9: SQL-92 Data Type Limits . 3–10
Table 4–1: ST File Tokens and Storage Areas . 4–7
Table 4–2: Reserved Storage Area Names . 4–9
Table 5–1: PROSHUT Menu Options . 5–14
Table 5–2: PROSHUT Parameters . 5–14
Table 6–1: Backup Options . 6–3
Table 6–2: Operating System Backup Utilities . 6–4
Table 6–3: Backup Media Questions . 6–6
Table 6–4: Availability and Transaction Loss . 6–10
Table 6–5: Availability and Backup Time . 6–10
Table 6–6: Availability and Recovery Time . 6–11
Table 6–7: Reliability and Two-phase Commit . 6–12
Table 7–1: PROREST Utility Verification Parameters . 7–7
Table 8–1: Sample Low Availability Requirements . 8–7
Table 8–2: Sample Moderate Availability Requirements . 8–8
Table 8–3: Sample Moderate-to-High Availability Requirements 8–9
Table 8–4: Sample High Availability Requirements . 8–10
Table 8–5: Utilities Used With Roll-forward Recovery . 8–16
Table 8–6: Shared-memory Segment Status Fields . 8–25
Table 11–1: File Tokens . 11–4
Table 11–2: Operating System Backup Utilities . 11–10
Table 13–1: Definitions Dumped To the Definition File . 13–4
Table 13–2: Data Definitions File Trailer Values . 13–6
Table 13–3: Contents File Trailer Variables . 13–16
Table 13–4: Modifying the Description File . 13–26
Table 14–1: Startup Parameters That Affect Memory Allocation 14–32
Table 14–2: UNIX Kernel Parameters That Affect Semaphores 14–35
Table 14–3: Factor Values . 14–41
Table 16–1: The Progress Event Logging Components . 16–3
xix

Contents

xx
Table 16–2: Event Level Values . 16–3
Table 16–3: How Progress Uses Event Log Components . 16–4
Table 17–1: Progress Command Components . 17–2
Table 17–2: Database Startup and Shutdown Commands . 17–3
Table 18–1: Server Performance Parameters . 18–2
Table 18–2: Server-type Parameters . 18–4
Table 18–3: Server Internationalization Parameters . 18–4
Table 18–4: Server Statistics Collection Parameters . 18–5
Table 18–5: Server Network Parameters . 18–6
Table 18–6: Startup Parameter Categories . 18–8
Table 18–7: Parameter Interpretation With Service Name (-S) 18–39
Table 19–1: Progress Command Components . 19–2
Table 19–2: Type Column Values . 19–27
Table 19–3: Wait Column Values . 19–28
Table 19–4: Flag Values . 19–36
Table 19–5: Event Types . 19–38
Table 19–6: Process Types . 19–40
Table 19–7: PROUTIL Utility Qualifiers . 19–67
Table 19–8: RFUTIL Utility Qualifiers . 19–137
Table 20–1: Progress Virtual System Tables . 20–2
Table 20–2: After-image Log Activity File (_ActAILog) . 20–8
Table 20–3: Before-image Log Activity File (_ActBILog) . 20–9
Table 20–4: Buffer Activity File (_ActBuffer) . 20–10
Table 20–5: Index Activity File (_ActIndex) . 20–11
Table 20–6: Input/Output Activity File (_ActIOFile) . 20–11
Table 20–7: Input/Output Type Activity File (_ActIOType) . 20–12
Table 20–8: Lock Table Activity File (_ActLock) . 20–13
Table 20–9: Other Activity File (_ActOther) . 20–14
Table 20–10: Page Writer Activity File (_ActPWs) . 20–15
Table 20–11: Record Activity File (_ActRecord) . 20–16
Table 20–12: Server Activity File (_ActServer) . 20–16
Table 20–13: Space Allocation Activity File (_ActSpace) . 20–17
Table 20–14: Summary Activity File (_ActSummary) . 20–18
Table 20–15: Area Status File (_AreaStatus) . 20–19
Table 20–16: Block File (_Block) . 20–20
Table 20–17: Buffer Status File (_BuffStatus) . 20–20
Table 20–18: Checkpoint File (_Checkpoint) . 20–21
Table 20–19: Database Connection File (_Connect) . 20–22
Table 20–20: Database Status File (_DbStatus) . 20–23
Table 20–21: Database File Status File (_Filelist) . 20–25
Table 20–22: Index Statistics File (_IndexStat) . 20–25
Table 20–23: Latch Statistics File (_Latch) . 20–26
Table 20–24: License Management (_License) . 20–26
Table 20–25: Lock Table Status File (_Lock) . 20–27
Table 20–26: Lock Request File (_LockReq) . 20–27

Contents
Table 20–27: Logging File (_Logging) . 20–28
Table 20–28: Master Block File (_MstrBlk) . 20–30
Table 20–29: User Connection (_MyConnection) . 20–32
Table 20–30: Resource Queue Statistics File (_Resrc) . 20–32
Table 20–31: Segments File (_Segments) . 20–32
Table 20–32: Servers File (_Servers) . 20–33
Table 20–33: Startup File (_Startup) . 20–33
Table 20–34: Index and Table Statistics Range (_StatBase) 20–34
Table 20–35: Table Statistics File (_TableStat) . 20–35
Table 20–36: Transaction File (_Trans) . 20–35
Table 20–37: Transaction End Lock Statistics (_TxeLock) . 20–36
Table 20–38: Database Input/Output File (_UserIO) . 20–36
Table 20–39: Record Locking Table File (_UserLock) . 20–37
Table 20–40: User Status (_UserStatus) . 20–37
Table A–1: PROMON R&D Main Menu . A–4
Table A–2: Database States . A–10
Table A–3: Database Damaged Flags . A–11
Table A–4: Integrity Flags . A–11
Table A–5: Server Types . A–15
Table A–6: Process Types . A–16
Table A–7: Process Wait Types . A–17
Table A–8: Transaction States . A–21
Table A–9: Lock Table Flags . A–27
Table A–10: Process Types . A–42
xxi

Contents

xxiii

Procedures

p-dump.p . 8–27
disttran.p . 12–2
StartProService.cmd . B–9
StopProService.cmd . B–10
StartCluDemo1.cmd . B–11
repeat.p . B–12
updcust.p . B–13

Preface

Purpose

This manual describes Progress database administration concepts, procedures, and utilities. The
procedures allow you to create and maintain your Progress databases and manage their
performance.

Audience

This manual is designed as a guide and reference for Database Administrators.

Organization Of This Manual

Part I Planning

Chapter 1, “The Progress Database”

Provides an overview of the Progress database architecture.

Chapter 2, “Administrative Planning”

Presents guidelines that help you make initial decisions about how to administer and
maintain a Progress database.

Chapter 3, “Progress Database Limits”

Lists the Progress database limits you need to know when configuring a Progress database.

Progress Database Administration Guide and Reference
Part II Administration

Chapter 4, “Creating and Deleting Databases”

Describes how to create and delete Progress databases.

Chapter 5, “Starting Up and Shutting Down”

Describes the commands required to start up and shut down a Progress database.

Chapter 6, “Backup and Recovery Strategies”

Describes backup and recovery strategies.

Chapter 7, “Backing Up a Database”

Describes how to use the Progress PROBKUP utility to back up a database.

Chapter 8, “Recovering a Database”

Describes how to use the Progress PROREST utility to restore a database.

Chapter 9, “Maintaining Database Structure”

Describes methods to manage the database structure and alter it as necessary to improve
storage and performance.

Chapter 10, “Maintaining Security”

Describes how Progress implements database security, including assigning user IDs,
designating database administrators.

Chapter 11, “After-Imaging”

Describes after-imaging and how to use it for data recovery. Also, describes how to
implement after-imaging with after image extents.

Chapter 12, “Using Two-phase Commit”

Describes two-phase commit and how to use it to ensure database integrity.

Chapter 13, “Dumping and Loading”

Describes how to dump and load databases, including tables, indexes, and sequences.
xxiv

Preface
Chapter 14, “Managing Performance”

Describes how to tune database performance.

Chapter 15, “Replicating Data”

Describes replication schemes and how to implement log-based replication.

Chapter 16, “Using the Event Log”

Describes the logging of significant events.

Part III Reference

Chapter 17, “Startup and Shutdown Commands”

Describes Progress commands for starting up and shutting down sessions and processes.

Chapter 18, “Database Startup Parameters”

Describes the Progress database startup parameters.

Chapter 19, “Database Administration Utilities”

Describes the Progress database administration utilities.

Chapter 20, “Virtual System Tables”

Describes the Virtual System Tables that allow 4GL and SQL-92 applications to examine
the status of a database and monitor its performance.

Appendix A, “Progress Monitor R&D Options”

Describes the Progress Monitor R&D Options.

Appendix B, “Setting Up Progress To Utilize Compaq’s NT Clusters”

Describes how to set up and use NT clusters.
xxv

Progress Database Administration Guide and Reference
How To Use This Manual

This book is organized into three distinct but complementary parts:

• Part 1, “Planning,” provides an overview and introduction to the Progress database. Read
this part first, beginning with Chapter 1, “The Progress Database.”

• Part 2, “Administration,” describes the procedures a Database Administrator uses to
manage a database in a flexible business environment. Each chapter discusses a particular
administrative activity, such as Chapter 6, “Backing Up and Restoring.”

• Part 3, “Reference,” describes the Progress database commands, startup parameters,
utilities, and system tables in alphabetical order. Refer to the chapters in Part 3 when you
need to access specific descriptive information, such as the syntax of an administration
utility.

Typographical Conventions

This manual uses the following typographical conventions:

• Bold typeface indicates:

– Commands or characters that the user types

– That a word carries particular weight or emphasis

• Italic typeface indicates:

– Progress variable information that the user supplies

– New terms

– Titles of complete publications

• Monospaced typeface indicates:

– Code examples

– System output

– Operating system filenames and pathnames
xxvi

Preface
The following typographical conventions are used to represent keystrokes:

• Small capitals are used for Progress key functions and generic keyboard keys.

END-ERROR, GET, GO
ALT, CTRL, SPACEBAR, TAB

• When you have to press a combination of keys, they are joined by a dash. You press and
hold down the first key, then press the second key.

CTRL-X

• When you have to press and release one key, then press another key, the key names are
separated with a space.

ESCAPE H
ESCAPE CURSOR-LEFT

Syntax Notation

The syntax for each component follows a set of conventions:

• Uppercase words are keywords. Although they are always shown in uppercase, you can
use either uppercase or lowercase when using them in a procedure.

In this example, ACCUM is a keyword:

• Italics identify options or arguments that you must supply. These options can be defined
as part of the syntax or in a separate syntax identified by the name in italics. In the
ACCUM function above, the aggregate and expression options are defined with the
syntax for the ACCUM function in the Progress Language Reference.

• You must end all statements (except for DO, FOR, FUNCTION, PROCEDURE, and
REPEAT) with a period. DO, FOR, FUNCTION, PROCEDURE, and REPEAT
statements can end with either a period or a colon, as in this example:

SYNTAX

ACCUM aggregate expression

FOR EACH Customer:
 DISPLAY Name.
END.
xxvii

Progress Database Administration Guide and Reference
• Square brackets ([]) around an item indicate that the item, or a choice of one of the
enclosed items, is optional.

In this example, STREAM stream, UNLESS-HIDDEN, and NO-ERROR are optional:

In some instances, square brackets are not a syntax notation, but part of the language.

For example, this syntax for the INITIAL option uses brackets to bound an initial value
list for an array variable definition. In these cases, normal text brackets ([]) are used:

NOTE: The ellipsis (...) indicates repetition, as shown in a following description.

• Braces ({ }) around an item indicate that the item, or a choice of one of the enclosed
items, is required.

In this example, you must specify the items BY and expression and can optionally specify
the item DESCENDING, in that order:

In some cases, braces are not a syntax notation, but part of the language.

For example, a called external procedure must use braces when referencing arguments
passed by a calling procedure. In these cases, normal text braces ({ }) are used:

SYNTAX

DISPLAY [STREAM stream] [UNLESS-HIDDEN] [NO-ERROR]

SYNTAX

INITIAL [constant [, constant] ...]

SYNTAX

{ BY expression [DESCENDING] }

SYNTAX

{ &argument-name }
xxviii

Preface
• A vertical bar (|) indicates a choice.

In this example, EACH, FIRST, and LAST are optional, but you can only choose one:

In this example, you must select one of logical-name or alias:

• Ellipses (...) indicate that you can choose one or more of the preceding items. If a group
of items is enclosed in braces and followed by ellipses, you must choose one or more of
those items. If a group of items is enclosed in brackets and followed by ellipses, you can
optionally choose one or more of those items.

In this example, you must include two expressions, but you can optionally include more.
Note that each subsequent expression must be preceded by a comma:

In this example, you must specify MESSAGE, then at least one of expression or SKIP, but
any additional number of expression or SKIP is allowed:

SYNTAX

PRESELECT [EACH | FIRST | LAST] record-phrase

SYNTAX

CONNECTED ({ logical-name | alias })

SYNTAX

MAXIMUM (expression , expression [, expression] ...)

SYNTAX

MESSAGE { expression | SKIP [(n)] } ...
xxix

Progress Database Administration Guide and Reference
In this example, you must specify {include-file, then optionally any number of argument
or &argument-name = "argument-value", and then terminate with }:

• In some examples, the syntax is too long to place in one horizontal row. In such cases,
optional items appear individually bracketed in multiple rows in order, left-to-right and
top-to-bottom. This order generally applies, unless otherwise specified. Required items
also appear on multiple rows in the required order, left-to-right and top-to-bottom. In cases
where grouping and order might otherwise be ambiguous, braced (required) or bracketed
(optional) groups clarify the groupings.

In this example, WITH is followed by several optional items:

In this example, ASSIGN requires one of two choices: either one or more of field, or one
of record. Other options available with either field or record are grouped with braces and
brackets. The open and close braces indicate the required order of options:

SYNTAX

{ include-file

 [argument | &argument-name = "argument-value"] ... }

SYNTAX

WITH [ACCUM max-length] [expression DOWN]
 [CENTERED] [n COLUMNS] [SIDE-LABELS]
 [STREAM-IO]

SYNTAX

ASSIGN { { [FRAME frame]
 { field [= expression] }
 [WHEN expression]
 } ...
 | { record [EXCEPT field ...] }
 }
xxx

Preface
Example Procedures

This manual provides example procedures that illustrate syntax and concepts. Examples use the
following conventions:

• They appear in boxes with borders.

• If they are available online, the name of the procedure appears above the left corner of the
box and starts with a prefix associated with the manual that references it, as follows:

– e- — Progress External Program Interfaces, for example, e-ddeex1.p

– lt- — Progress Language Tutorials, for example, lt-05-s3.p

– p- — Progress Programming Handbook, for example, p-br01.p

– r- — Progress Language Reference, for example, r-dynbut.p

If the name does not start with a listed prefix, the procedure is not available online.

• If they are not available online, they compile as shown, but might not execute for lack of
completeness.

Accessing Files In Procedure Libraries

Documentation examples are stored in procedure libraries, prodoc.pl and prohelp.pl, in the
src directory where Progress is installed.

You must first create all subdirectories required by a library before attempting to extract files
from the library. You can see what directories and subdirectories a library needs by using the
PROLIB -list command to view the contents of the library. See the Progress Client Deployment
Guide for more details on the PROLIB utility.

Creating a Listing Of the Procedure Libraries

Creating a listing of the source files from a procedure library involves running PROENV to set
up your Progress environment, and running PROLIB.

1 ♦ From the Control Panel or the Progress Program Group, double-click the Proenv icon.

2 ♦ The Proenv Window appears, with the proenv prompt.

Running Proenv sets the DLC environment variable to the directory where you installed
Progress (by default, C:\Program Files\Progress). Proenv also adds the DLC
environment variable to your PATH environment variable and adds the bin directory
(PATH=%DLC%;%DLC%\bin;%PATH%).
xxxi

Progress Database Administration Guide and Reference
3 ♦ Enter the following command at the proenv prompt to create the text file prodoc.txt
which contains the file listing for the prodoc.pl library.

Extracting Source FilesFrom Procedure Libraries On Windows Platforms

Extracting source files from a procedure library involves running PROENV to set up your
Progress environment, creating the directory structure for the files you want to extract, and
running PROLIB.

1 ♦ From the Control Panel or the Progress Program Group, double-click the Proenv icon.

2 ♦ The Proenv Window appears, with the proenv prompt.

Running Proenv sets the DLC environment variable to the directory where you installed
Progress (by default, C:\Program Files\Progress). Proenv also adds the DLC
environment variable to your PATH environment variable and adds the bin directory
(PATH=%DLC%;%DLC%\bin;%PATH%).

3 ♦ Enter the following command at the proenv prompt to create the prodoc directory in your

Progress working directory (by default, C:\Progress\Wrk):

4 ♦ Create the langref directory under prodoc:

5 ♦ To extract all examples in a procedure library directory, run the PROLIB utility. Note that
you must use double quotes because “Program Files” contains an embedded space:

PROLIB extracts all examples into prodoc\langref.

PROLIB %DLC%\src\prodoc.pl -list > prodoc.txt

MKDIR prodoc

MKDIR prodoc\langref

PROLIB "%DLC%\src\prodoc.pl" -extract prodoc\langref*.*
xxxii

Preface
To extract one example, run PROLIB and specify the file that you want to extract as it is
stored in the procedure library:

PROLIB extracts r-syshlp.p into prodoc\langref.

Extracting Source Files From Procedure Libraries On UNIX Platforms

To extract p-wrk1.p from prodoc.pl, a procedure library, follow these steps at the UNIX
system prompt:

1 ♦ Run the PROENV utility:

Running proenv sets the DLC environment variable to the directory where you installed
Progress (by default, /usr/dlc). The proenv utility also adds the bin directory under the
DLC environment variable to your PATH environment variable
(PATH=$DLC/bin:$PATH).

2 ♦ At the proenv prompt, create the prodoc directory in your Progress working directory:

3 ♦ Create the proghand directory under prodoc:

4 ♦ To extract all examples in a procedure library directory, run the PROLIB utility:

PROLIB extracts all examples into prodoc/proghand.

PROLIB "%DLC%\src\prodoc.pl" -extract prodoc/langref/r-syshlp.p

install-dir/dlc/bin/proenv

mkdir prodoc

mkdir prodoc/proghand

prolib $DLC/src/prodoc.pl -extract prodoc/proghand/*.*
xxxiii

Progress Database Administration Guide and Reference
To extract one example, run PROLIB and specify the file that you want to extract as it is
stored in the procedure library:

PROLIB extracts p-wrk-1.p into prodoc/proghand.

Progress Messages

Progress displays several types of messages to inform you of routine and unusual occurrences:

• Execution messages inform you of errors encountered while Progress is running a
procedure (for example, if Progress cannot find a record with a specified index field
value).

• Compile messages inform you of errors found while Progress is reading and analyzing a
procedure prior to running it (for example, if a procedure references a table name that is
not defined in the database).

• Startup messages inform you of unusual conditions detected while Progress is getting
ready to execute (for example, if you entered an invalid startup parameter).

After displaying a message, Progress proceeds in one of several ways:

• Continues execution, subject to the error-processing actions that you specify, or that are
assumed, as part of the procedure. This is the most common action taken following
execution messages.

• Returns to the Progress Procedure Editor so that you can correct an error in a procedure.
This is the usual action taken following compiler messages.

• Halts processing of a procedure and returns immediately to the Procedure Editor. This
does not happen often.

• Terminates the current session.

Progress messages end with a message number in parentheses. In this example, the message
number is 200:

prolib $DLC/src/prodoc.pl -extract prodoc/proghand/p-wrk-1.p

** Unknown table name table. (200)
xxxiv

Preface
On the Windows platform, use Progress online help to get more information about Progress
messages. Many Progress tools include the following Help menu options to provide information
about messages:

• Choose Help→Recent Messages to display detailed descriptions of the most recent
Progress message and all other messages returned in the current session.

• Choose Help→Messages, then enter the message number to display a description of any
Progress message. (If you encounter an error that terminates Progress, make a note of the
message number before restarting.)

• In the Procedure Editor, press the HELP key (F2 or CTRL-W).

On the UNIX platform, use the Progress PRO command to start a single-user mode character
Progress client session and view a brief description of a message by providing its number.
Follow these steps:

1 ♦ Start the Progress Procedure Editor:

2 ♦ Press F3 to access the menu bar, then choose Help→Messages.

3 ♦ Type the message number, and press ENTER. Details about that message number appear.

4 ♦ Press F4 to close the message, press F3 to access the Procedure Editor menu, and choose
File→Exit.

install-dir/dlc/bin/pro
xxxv

Progress Database Administration Guide and Reference
Other Useful Documentation

This section lists Progress Software Corporation documentation that you might find useful.
Unless otherwise specified, these manuals support both Windows and Character platforms and
are provided in electronic documentation format on CD-ROM.

Getting Started

Progress Electronic Documentation Installation and Configuration Guide (Hard copy only)

A booklet that describes how to install the Progress EDOC viewer and collection on UNIX
and Windows.

Progress Installation and Configuration Guide Version 9 for UNIX

A manual that describes how to install and set up Progress Version 9.1 for the UNIX
operating system.

Progress Installation and Configuration Guide Version 9 for Windows

A manual that describes how to install and set up Progress Version 9.1 for all supported
Windows and Citrix MetaFrame operating systems.

Progress Version 9 Product Update Bulletin

A bulletin that provides a list of new and changed features by release, a list and description
of changes to documentation by release, and critical information about product changes
that might require changes to existing code and configurations.

This bulletin also provides information about where to go for detailed information about
the new and changed features and documentation.

Progress Application Development Environment — Getting Started (Windows only)

A practical guide to graphical application development within the Progress Application
Development Environment (ADE). This guide includes an overview of the ADE and its
tools, an overview of Progress SmartObject technology, and tutorials and exercises that
help you better understand SmartObject technology and how to use the ADE to develop
applications.

Progress Language Tutorial for Windows and Progress Language Tutorial for Character

Platform-specific tutorials designed for new Progress users. The tutorials use a
step-by-step approach to explore the Progress application development environment using
the 4GL.
xxxvi

Preface
Progress Master Glossary for Windows and Progress Master Glossary for Character (EDOC
only)

Platform-specific master glossaries for the Progress documentation set. These books are
in electronic format only.

Progress Master Index and Glossary for Windows and Progress Master Index and Glossary for
Character (Hard copy only)

Platform-specific master indexes and glossaries for the Progress hard-copy documentation
set.

Progress Startup Command and Parameter Reference

A reference manual that describes the Progress startup and shutdown commands that you
use at the command line, and the startup parameters that you use for Progress processes.
This guide also provides information about parameter usage and parameter files.

Welcome to Progress (Hard copy only)

A booklet that explains how Progress software and media are packaged. An icon-based
map groups the documentation by functionality, providing an overall view of the
documentation set. Welcome to Progress also provides descriptions of the various services
Progress Software Corporation offers.

Development Tools

Progress ADM 2 Guide

A guide to using the Application Development Model, Version 2 (ADM 2) application
architecture to develop Progress applications. It includes instructions for building and
using Progress SmartObjects.

Progress ADM 2 Reference

A reference for the Application Development Model, Version 2 (ADM 2) application. It
includes descriptions of ADM 2 functions and procedures.

Progress AppBuilder Developer’s Guide (Windows only)

A programmer’s guide to using the Progress AppBuilder visual layout editor. AppBuilder
is a Rapid Application Development (RAD) tool that can significantly reduce the time and
effort required to create Progress applications.
xxxvii

Progress Database Administration Guide and Reference
Progress Basic Database Tools (Character only; information for Windows is in online help)

A guide for the Progress Database Administration tools, such as the Data Dictionary.

Progress Basic Development Tools (Character only; information for Windows is in online help)

A guide for the Progress development toolset, including the Progress Procedure Editor and
the Application Compiler.

Progress Debugger Guide

A guide for the Progress Application Debugger. The Debugger helps you trace and correct
programming errors by allowing you to monitor and modify procedure execution as it
happens.

Progress Help Development Guide (Windows only)

A guide that describes how to develop and integrate an online help system for a Progress
application.

Progress Translation Manager Guide (Windows only)

A guide that describes how to use the Progress Translation Manager tool to manage the
entire process of translating the text phrases in Progress applications.

Progress Visual Translator Guide (Windows only)

A guide that describes how to use the Progress Visual Translator tool to translate text
phrases from procedures into one or more spoken languages.

Reporting Tools

Progress Report Builder Deployment Guide (Windows only)

An administration and development guide for generating Report Builder reports using the
Progress Report Engine.

Progress Report Builder Tutorial (Windows only)

A tutorial that provides step-by-step instructions for creating eight sample Report Builder
reports.

Progress Report Builder User’s Guide (Windows only)

A guide for generating reports with the Progress Report Builder.
xxxviii

Preface
Progress Results Administration and Development Guide (Windows only)

A guide for system administrators that describes how to set up and maintain the Results
product in a graphical environment. This guide also describes how to program, customize,
and package Results with your own products. In addition, it describes how to convert
character-based Results applications to graphical Results applications.

Progress Results User’s Guide for Windows and Progress Results User’s Guide for Unix

Platform-specific guides for users with little or no programming experience that explain
how to query, report, and update information with Results. Each guide also helps advanced
users and application developers customize and integrate Results into their own
applications.

4GL

Building Distributed Applications Using the Progress AppServer

A guide that provides comprehensive information about building and implementing
distributed applications using the Progress AppServer. Topics include basic product
information and terminology, design options and issues, setup and maintenance
considerations, 4GL programming details, and remote debugging.

Progress External Program Interfaces

A guide to the external programming interfaces supported by Progress. This manual
covers the Host Language Call (HLC) Interface, the system clipboard, named pipes,
shared libraries and DLLS, Windows Dynamic Data Exchange (DDE), COM objects,
ActiveX Automation, ActiveX controls, sockets, XML, SAX, and the SonicMQ 4GL
Adapter.

Progress Internationalization Guide

A guide to developing Progress applications for markets worldwide. The guide covers
both internationalization—writing an application so that it adapts readily to different
locales (languages, cultures, or regions)—and localization—adapting an application to
different locales.

Progress Language Reference

A three-volume reference set that contains extensive descriptions and examples for each
statement, phrase, function, operator, widget, attribute, method, and event in the Progress
language.
xxxix

Progress Database Administration Guide and Reference
Progress on the Web

A manual that describes how to use the new WebClient, AppServer Internet Adapter,
SmartObjects, and SonicMQ Adapter to create applications tailored for Internet, intranet,
and extranet environments.

Progress Programming Handbook

A two-volume handbook that details advanced Progress programming techniques.

Database

Progress Database Design Guide

A guide that uses a sample database and the Progress Data Dictionary to illustrate the
fundamental principles of relational database design. Topics include relationships,
normalization, indexing, and database triggers.

DataServers

Progress DataServer Guides

These guides describe how to use the DataServers to access non-Progress databases. They
provide instructions for building the DataServer modules, a discussion of programming
considerations, and a tutorial.

Each DataServer has its own guide as follows:

• Progress/400 Product Guide

• Progress DataServer for Microsoft SQL Server Guide

• Progress DataServer for ODBC Guide

• Progress DataServer for ORACLE Guide

MERANT ODBC Branded Driver Reference

The Enterprise DataServer for ODBC includes MERANT ODBC drivers for all the
supported data sources. For configuration information, see the MERANT documentation,
which is available as a PDF file in installation-path\odbc. To read this file you must
have the Adobe Acrobat Reader Version installed on your system. If you do not have the
Adobe Acrobat Reader, you can download it from the Adobe Web site at:
http://www.adobe.com/products/acrobat/readstep.html.
xl

Preface
SQL-89/Open Access

Progress Embedded SQL-89 Guide and Reference

A guide to Progress Embedded SQL-89 for C, including step-by-step instructions on
building ESQL-89 applications and reference information on all Embedded SQL-89
Preprocessor statements and supporting function calls. This guide also describes the
relationship between ESQL-89 and the ANSI standards upon which it is based.

Progress Open Client Developer’s Guide

A guide that describes how to write, build, and deploy Java and ActiveX applications, and
Java applets that run as clients of the Progress AppServer. This guide includes information
about how to expose the AppServer as a set of Java classes or as an ActiveX server, and
how to choose an Open Client distribution package for run time.

Progress SQL-89 Guide and Reference

A user guide and reference for programmers who use interactive Progress/SQL-89. It
includes information on all supported SQL-89 statements, SQL-89 Data Manipulation
Language components, SQL-89 Data Definition Language components, and supported
Progress functions.

SQL-92

Progress Embedded SQL-92 Guide and Reference

A guide to Progress Embedded SQL-92 for C, including step-by-step instructions for
building ESQL-92 applications and reference information about all Embedded SQL-92
Preprocessor statements and supporting function calls. This guide also describes the
relationship between ESQL-92 and the ANSI standards upon which it is based.

Progress JDBC Driver Guide

A guide to the Java Database Connectivity (JDBC) interface and the Progress SQL-92
JDBC driver. It describes how to set up and use the driver and details the driver’s support
for the JDBC interface.

Progress ODBC Driver Guide

A guide to the ODBC interface and the Progress SQL-92 ODBC driver. It describes how
to set up and use the driver and details the driver’s support for the ODBC interface.
xli

Progress Database Administration Guide and Reference
Progress SQL-92 Guide and Reference

A user guide and reference for programmers who use Progress SQL-92. It includes
information on all supported SQL-92 statements, SQL-92 Data Manipulation Language
components, SQL-92 Data Definition Language components, and Progress functions. The
guide describes how to use the Progress SQL-92 Java classes and how to create and use
Java stored procedures and triggers.

Deployment

Progress Client Deployment Guide

A guide that describes the client deployment process and application administration
concepts and procedures.

Progress Developer’s Toolkit

A guide to using the Developer’s Toolkit. This guide describes the advantages and
disadvantages of different strategies for deploying Progress applications and explains how
you can use the Toolkit to deploy applications with your selected strategy.

Progress Portability Guide

A guide that explains how to use the Progress toolset to build applications that are portable
across all supported operating systems, user interfaces, and databases, following the
Progress programming model.

WebSpeed

Getting Started with WebSpeed

Provides an introduction to the WebSpeed Workshop tools for creating Web applications.
It introduces you to all the components of the WebSpeed Workshop and takes you through
the process of creating your own Intranet application.

WebSpeed Installation and Configuration Guide

Provides instructions for installing WebSpeed on Windows and UNIX systems. It also
discusses designing WebSpeed environments, configuring WebSpeed Brokers,
WebSpeed Agents, and the NameServer, and connecting to a variety of data sources.

WebSpeed Developer’s Guide

Provides a complete overview of WebSpeed and the guidance necessary to develop and
deploy WebSpeed applications on the Web.
xlii

Preface
WebSpeed Product Update Bulletin

A booklet that provides a brief description of each new feature of the release. The booklet
also explains where to find more detailed information in the documentation set about each
new feature.

Welcome to WebSpeed (Hard copy only)

A booklet that explains how WebSpeed software and media are packaged. Welcome to
WebSpeed! also provides descriptions of the various services Progress Software
Corporation offers.

Reference

Pocket Progress (Hard copy only)

A reference that lets you quickly look up information about the Progress language or
programming environment.

Pocket WebSpeed (Hard copy only)

A reference that lets you quickly look up information about the SpeedScript language or
the WebSpeed programming environment.
xliii

Progress Database Administration Guide and Reference
xliv

PART I
Planning

The Progress Database

Administrative Planning

Progress Database Limits

1
The Progress Database

When administering a Progress database, it is important to understand its architecture and the
configuration options it supports. This chapter presents an overview of the Progress Version 9
database. Specifically, it contains the following sections:

• Progress Database Architecture

• Storage Design Overview

• Determining Configuration Variables

• Operating System Resources

• Multi-threaded Architecture

• Multi-tier and Cluster Configurations

• Self-service and Network Clients

• Relative- and Absolute-path Databases

Progress Database Administration Guide and Reference
1.1 Progress Database Architecture
The three Progress Version 9 databases (Enterprise, Workgroup, and Personal) contain not only
data but also information about their schema. Figure 1–1 illustrates the components of a
Progress Version 9 Database.

Figure 1–1: Version 9 Structure

.st file .lg file

Version 9
Database

Database Control
Area

.db

Primary Recovery Area

.bn .bn

Schema Area

.dn .dn

.tn .tn

Transaction Log
Area

(Optional)

After Image Area

.an

(Optional)

Application Data
Area

.dn .dn

(Optional)
1–2

The Progress Database
As shown in Figure 1–1, a typical Progress Version 9 database consists of:

• A structure description (.st) file, which defines the database’s structure. The .st file is a text
file with an .st filename extension. The administration utility PROSTRCT CREATE uses
the information in the .st file to create the database’s areas and extents. See Chapter 4,
“Creating and Deleting Databases,” for detailed information about structure description
files.

• An event log file, which is a text file with a .lg filename extension. The .lg file contains a
history of significant database events, such as startup and shutdown.

• One database (.db) control area, which contains a database structure extent (a binary file
with a .db filename extension). The control area and its .db file act as a table of contents,
for the database engine, listing the name and location of every area and extent in the
database.

• One primary recovery (before image) area, which contains one or more extents with a .bn
filename extension. The .bi file stores notes about data changes. In the event of hardware
failure, the database engine uses these notes to undo any incomplete transactions and
maintain data integrity.

• One schema area, which contains at least one variable-length extent with a .dn filename
extension. The schema area contains the master and sequence blocks, as well as schema
tables and indexes. If no application data areas are created, the schema area contains all
user data.

• Optionally, one transaction log (.tl) area when two-phase commit is in use. It contains one
or more fixed-length extents with the .tn filename extension; variable-length extents are
not allowed. The transaction log lists committed two-phase commit transactions.

• Optionally, one after-image (.ai) area when after-imaging is enabled. The after-image area
can contain many fixed-length extents and/or one variable-length extent with the .an
filename extension. In the event of hardware failure, the database engine uses the .ai file
and the most recent backup to reconstruct the database.

NOTE: After-imaging is only available on the Progress Enterprise database.

• Optionally, one or more application data areas each containing extents with the .dn
filename extension. Application data areas contain tables, indexes, and other objects.
1–3

Progress Database Administration Guide and Reference
NOTE: Throughout this guide, the word database means collectively, the database, event
log, transaction log, schema files and recovery files. You should treat these files as
an indivisible unit. For example, the phrase “back up the database” means “back up
the database data, .lg, .dn, .tl, .ai, and .bi files together.” This is an important concept
to remember as you read through this guide.

1.1.1 Other Database-related Files
While maintaining your database, you might encounter files with the extensions listed in Table
1–1.

Table 1–1: Other Database-related Files

File Description

.bd Binary dump file (table-based)

.cf Schema cache file

.cp Binary compiled code page information file

.dfsql SQL-92 data definition file

.dsql SQL-92 table dump file

.d 4GL table dump file

.df 4GL data definition file

.fd 4GL bulk loader description file

.lic License file

.lk Lock file

.rpt License usage report file
1–4

The Progress Database
1.2 Storage Design Overview
The storage design of a Progress Version 9 database is divided into a physical model and a
logical model. You manipulate the physical storage model through 4GL, SQL-92, and database
administration utility interfaces. Figure 1–2 shows how areas can be stored on and even span
different file slices. Note that though an area’s extents can contain many disk files, an extent can
only be associated with one storage area.

Figure 1–2: Physical Storage Model

Physical - Database Files Data Extents

/usr1

D
em

o_
7.

d1

D
em

o_
7.

d2

D
em

o_
7.

d3
/usr2

D
em

o_
8.

d1

/usr3

D
em

o_
8.

d2

D
em

o_
8.

d3

D
em

o_
8.

d4
1–5

Progress Database Administration Guide and Reference
The logical storage model can be manipulated through 4GL and SQL-92 interfaces. Logical
database objects are described in the database schema and include tables, indexes, and
sequences. You update these objects through 4GL and SQL-92 language statements. Figure 1–3
illustrates how logical objects can span physical extents.

Figure 1–3: Logical Storage Model

Logical - Storage Objects Storage Objects

/usr2

D
em

o_
8.

d1

/usr3

D
em

o_
8.

d2

D
em

o_
8.

d3

D
em

o_
8.

d4

Customer Name Index

/usr1

D
em

o_
7.

d1

D
em

o_
7.

d2

D
em

o_
7.

d3

Cust-num
Index

Customer
Table
1–6

The Progress Database
The following sections describe the three components of the Progress Version 9 storage model.

1.2.1 Storage Objects
Storage objects are collections of disk space associated with one or more specific database
objects. Each storage object is an instance of a database object described in the schema. Types
of storage objects include tables and indexes.

1.2.2 Extents
Extents make it possible for a Progress Version 9 database to extend across more than one file
system or physical volume. Extents are disk files or UNIX raw partitions that store physical
blocks of database objects.

There are two types of extents: fixed-length and variable-length. With fixed-length extents you
control how much disk space each extent uses by defining in the .st file the size of the extent in
kilobytes. Variable-length extents do not have a predefined length and can continue to grow
until they use all available space on a disk.

See Chapter 4, “Creating and Deleting Databases,” for information on defining both fixed- and
variable-length extents in the .st file.

1.2.3 Storage Areas
Storage areas consist of one or more extents and are the largest physical units of a database.
With storage areas, you have physical control over the location of database objects: you can
place each database object in its own storage area, place many database objects in a single
storage area, and place objects of different types in the same storage area. See Chapter 2,
“Administrative Planning,” for information on managing storage areas. Though you can extend
a table or index across multiple extents, you cannot split them across storage areas.

Certain storage areas have restrictions on the types of extents they support. The transaction log
storage area, used for two-phase commit, uses only fixed-length extents but can use more than
one. The other storage areas can use many extents but only one variable-length extent, which
must be the last extent.

Storage areas are identified by their names. The number and type of storage areas used varies
from database to database; however, all Progress databases must contain a control area, a
schema area, and a primary recovery area. These three mandatory storage areas are detailed
below, along with the optional areas.
1–7

Progress Database Administration Guide and Reference
Control Area

The control area contains only one variable-length extent: the database structure extent, which
is a binary file with a .db extension. The .db file contains the _area table and the _area-extent
table, which list the name of every area in the database, as well as the location and size of each
extent.

Schema Area

The schema area can contain as many fixed-length extents as needed; however, every schema
area should have a variable-length extent as its last extent. The schema area stores all database
system and user information, and any objects not assigned to another area. If you choose not to
create any optional application data areas, the schema area contains all of the database’s objects
and sequences.

Primary Recovery Area

The primary recovery area can contain as many fixed-length extents as needed, as long as the
last extent is of variable length. The primary recovery area is also called the before-image area
because the .bn files of its extents record data changes. In the event of a hardware failure, the
Progress Restore (PROREST) utility uses the contents of the .bn files to restore the database.

Application Data Area

The application data storage area contains all application-related database objects. Defining
more than one application data area allows you to improve database performance by storing
different objects on different disks. Each application data area contains one or more extents with
a .dn extension.

Transaction Log Area

The transaction log area is required if two-phase commit is used. This area contains one or more
fixed-length extents with the .tn filename extension; variable-length extents are not allowed.
See Chapter 12, “Using Two-phase Commit,” for more information about the transaction log
area.
1–8

The Progress Database
1.3 Determining Configuration Variables
The Progress Version 9 database architecture and its wide range of supported system platforms
allow flexible configuration options. A very simple configuration might support a single user
on a PC system. A complex configuration might include heterogeneous, networked systems
supporting hundreds of users accessing multiple databases, including non-Progress databases.

Your business needs determine your choices for the following variables:

• System platform

• User connection modes

• Location of databases

• Database configurations

The following sections explain how these variables affect your configuration.

1.3.1 System Platform
The Progress Version 9 database provides a multi-threaded database server that can service
multiple network clients. Each server handles many simultaneous requests from clients. The
server processes simple requests as a single operation to provide rapid responses; it divides
complex requests into smaller tasks to minimize the impact on other users of the database.

Certain administration tasks, such as setting up user-interface environments and performance
tuning, differ among operating systems.

1.3.2 Connection Modes
Progress databases run in one of two connection modes: single-user or multi-user. Connection
modes control how many users can access a database simultaneously.

Single-user Mode

A database running in single-user mode allows one user to access a specified database at a time.
If another user is already accessing a database, you cannot connect to that database from a
different Progress session. The database engine uses a lock file (.lk) to lock out other users.

Running a database in single-user mode is helpful when you perform system administration
tasks that require exclusive access to the database.
1–9

Progress Database Administration Guide and Reference
Multi-user Mode

A database running in multi-user mode enables more than one user to access it simultaneously.
A broker coordinates all the database requests from all the users using a single database. For
example, the broker process locks the database to prevent any other broker or single-user
process from opening it. Also, all users must request access from the broker to connect to the
database.

Both single-user and multi-user processes can run in either interactive or batch mode. Table 1–2
compares these modes.

1.3.3 Database Location
A Progress Version 9 database can be either local or remote. A database located on the same
machine as the application session is local. A database located on a machine that is networked
to the machine containing the application session is remote.

1.3.4 Database Configurations
When the user connects to more than one database, there are two basic configurations: federated
and distributed. Table 1–3 compares these configurations. Figure 1–4 and Figure 1–5 show the
two configurations.

Table 1–2: Interactive Mode Versus Batch Mode

Mode Description

Interactive mode The user interacts directly with the database.

Batch mode Processing occurs without user interaction. Batch mode is convenient
for large-scale database updates or procedures that can run unattended
(at night, for example). However, multi-user batch jobs can degrade
the response time for interactive users.
1–10

The Progress Database
Figure 1–4: Federated Database Configuration

Table 1–3: Database Configurations

Database
Configuration Description

Federated All databases are local. Figure 1–4 shows a sample federated
database configuration.

Distributed One or more of the databases reside on one or more remote
machines in the network, and Progress sessions connect to the
database using a single networking protocol. Figure 1–5 shows
a sample distributed configuration.

Machine 1
User

User

User
Database

Database

Local
Connections

Local
Connections
1–11

Progress Database Administration Guide and Reference
Figure 1–5: Distributed Database Configuration

1.4 Operating System Resources
The Progress Version 9 database relies on operating system resources, such as the file system
and processes, to perform its operations. The following sections introduce resources you should
be aware of. For more information, see Chapter 14, “Managing Performance.”

Semaphores

Semaphores are interprocess communications that act as resource counters. The database engine
uses semaphores to synchronize the activities of server and self-service client processes that are
connected to a database. By default, each database has an array of semaphores, one for each user
or server. Each process uses its semaphore when it must wait for a shared resource. Semaphores
are not used for single-user sessions. The Semaphore sets (-semsets) Progress broker startup
parameter allows you to change the number of semaphore sets available to the broker.

You might also need to set some kernel or system parameters to increase the number of
semaphores. For information on setting kernel and system parameters, see the “Semaphores”
section of Chapter 14, “Managing Performance.”

Homogenous Workstations

Database

Local
Connection

Local
Connection

Database

Remote Connections

Machine
1

Machine
2

Remote
User

Remote
User

Remote
User
1–12

The Progress Database
Spin Locks

The database engine uses a spin lock algorithm to control access to shared-memory structures.
You can control how the database engine uses spin locks with the Spin Lock Retries (-spin)
startup parameter. For more information on -spin, see the “Unproductive CPU Processing”
section in Chapter 14, “Managing Performance.”

File Descriptors

A file descriptor is an identifier assigned to a file when it is opened. There is a system limit on
the number of file descriptors. Each database process (clients, remote client servers, and the
broker) uses several file descriptors. You might have to adjust the system file descriptor limit.

Processes

Brokers, servers, clients, and background writers run as processes. Processes implement the
client, the server, or the functions for both on a node. Processes also coordinate communication
among nodes, and provide operating system and application services for the node. A kernel or
system parameter in the operating system limits the number of active processes that can run on
a system. You might have to raise the parameter to allow for more processes.

Shared Memory

Shared memory is an area in system memory that multiple users can access concurrently. You
might have to adjust the maximum shared-memory segment size and the total number of
available segments to improve system performance. For more information on shared memory,
see the “Memory Utilization” section in Chapter 14, “Managing Performance.”

1.5 Multi-threaded Architecture
The Progress Version 9 database supports a multi-threaded architecture, which provides
multiple paths to a database. Each self-service client can access the database and service its own
requests. Each network server queues and runs requests for one or more network clients. The
database broker initializes shared memory and starts a new server for each additional client or
set of clients that access the database. By removing the server architecture bottleneck,
multi-threaded architecture increases overall performance.

On multi-processor systems, the multi-threaded architecture allows several processes to access
the database simultaneously.
1–13

Progress Database Administration Guide and Reference
1.6 Multi-tier and Cluster Configurations
For large installations, a multi-tier or cluster configuration might improve system performance.
Figure 1–6 illustrates a three-tier configuration that consists of a database-tier that supports
self-service clients, an application tier that supports remote clients, and a thin client tier.

Figure 1–6: Sample Multi-tier Configuration

Database

Broker

Self-service
Client

Server

Self-service
Client

Remote
Client Remote

Client

Thin-client Thin-client

Shared Memory
Database

Server

Application
Server

or
Remote
Client

High Speed Network

... Thin-client-tier

Application-tier

Database-tier
1–14

The Progress Database
1.7 Self-service and Network Clients
The Progress Version 9 database architecture supports self-service and network clients. A
self-service client is a multi-user session that runs on the same machine as the broker.
Self-service clients access the database directly through shared memory and not through
servers, because server code is part of the self-service client process. Self-service clients also
perform server and client functions in one process, and they execute application logic. On
shared-memory UNIX and Windows systems, the database engine provides self-service clients
with nearly simultaneous access to the database.

A network client can be local or remote but cannot connect to a database directly; rather it must
use a server. The network client accesses the database through a server process that the broker
starts over a network connection. The network client does not have access to shared memory,
and it must communicate with a server process.

1.8 Relative- and Absolute-path Databases
Progress Version 9 databases can be either relative- or absolute-path. Relative-path databases
are only used for special situations, such as installing the master database associated with a new
application. Absolute-path databases are used in production environments. The following
sections detail relative- and absolute-path databases.

Relative-path Databases

Relative-path databases are the simplest form of Version 9 databases. They contain most of the
properties associated with pre-Version 9 (single volume) databases, in that they are made up of
a minimum number of files and can be copied with OS commands. A relative-path database
stores all extents associated with the database in the same directory as the control area. The
control area contains relative paths to all the extents. You would use a relative-path database in
the following situations:

• When the database needs to be opened across a network for demonstration purposes

• When the database needs to be copied with OS tools, as when installing a demonstration
database

• When the database is the master database to be associated with a new application
1–15

Progress Database Administration Guide and Reference
Use the PRODB utility to create a relative-path database from an empty database. Figure 1–7
shows the result of using the PRODB utility. The dot at the start of each extent name indicates
a relative path.

Figure 1–7: Relative-path Database Creation

Schema must be loaded into an empty relative-path database to make it useful. Any standard
technique for loading schema, such as a dump and load or by using PROCOPY, can be used.
The database maintains its relative-path as long as its structure is not changed. As soon as areas
or extents are added, the database becomes an absolute-path database.

Absolute-path Databases

An absolute-path database is used in most production situations. With an absolute-path
database, extents associated with the database can be stored anywhere on the system. The
control area contains absolute paths to each extent. Absolute-path databases should not be
copied using OS tools; rather, PROBKUP and PROCOPY should be used so that all underlying
files are properly backed up or copied.
1–16

2
Administrative Planning

As the Database Administrator (DBA) of a Progress database, you maintain and administer
either an Enterprise, Workgroup, or Personal database. A well-planned Progress database can
simplify your job by reducing the time spent maintaining the database structure. This chapter
contains the following sections:

• Block Size Considerations

• Calculating Database Disk Requirements

• Storing Database Extents On Raw Partitions

Progress Database Administration Guide and Reference
2.1 Block Size Considerations
When planning your database, make sure your block size is equal to, or a multiple of, your file
system block size. Matching the database block size to the file system block size will help
prevent unneccesary I/O, as shown in Figure 2–1.

Figure 2–1: Matching Database and File Block Sizes

Database blocks in shared
memory buffer pool

File system blocks
in kernel buffers

Blocks on Disk

read write write

copy copy

1024 8192

81928192
2–2

Administrative Planning
2.1.1 Guidelines For Choosing Storage Area Locations
When you choose the locations for your database storage areas, consider the following:

• Protect against disk failures by creating the after-image storage area on a separate physical
disk from the disks that store the database control and primary recovery areas.

Never store the primary recovery area extents or data extents on the same physical disk as
the after-image extents. Failure of the disk results in the loss of all necessary recovery data.

• Improve performance by creating the primary recovery area on a separate disk from the
disk that stores the database control area and its extents.

• If using two-phase commit, create the transaction log area in the same directory as the
database control area to simplify management.

2.2 Calculating Database Disk Requirements
The Version 9 database engine stores all database fields and indexes in variable-length format
and does not store trailing blanks in character fields or leading zeros in numeric fields. The
benefits of this variable-length storage technique are:

• Disk storage is reduced.

• An application is easier to change since you can increase the maximum storage space for
a field without copying or restructuring the entire database. You can put more characters
into newly created records without affecting existing records.

Table 2–1 lists the formulas you use to calculate the approximate amount of disk space (in
bytes) required for a database.

Table 2–1: Formulas For Calculating Database Size (1 of 2)

Size Formula

Database size schema size + data table size + index size

Schema size Typically, between 1 and 100MB1

Data table size Sum of individual table sizes

1 To determine the schema size, load the schema into an empty database and check the size of your database—this
is the size of your schema.
2–3

Progress Database Administration Guide and Reference
Table 2–2 lists the formulas you use to calculate the field storage values (in bytes) for different
data types.

Individual table size number of records x field storage x 1.5

Index size Sum of individual index sizes

Individual index size number of records in the table being indexed x

(7 + number of fields index +field storage) x 2

Table 2–2: Formulas For Calculating Field Storage (1 of 2)

4GL Data Type
(SQL-92

Equivalent) Value Field Storage In Bytes

CHARACTER

(VARCHAR)

1 + number of characters, excluding trailing blanks. If the number of
characters is greater than 240, add 3 to the number of characters
instead of 1.

DATE

(DATE)

3

DECIMAL

(DECIMAL or

NUMERIC)

Zero 1

Nonzero 2 + (number of significant digits + 1) / 2

INTEGER

(INTEGER)

Zero to 126 1

127 to 32,766 2

32,767 to 7.99 million 3

8 million to 1.99 billion 4

2 billion 5

Table 2–1: Formulas For Calculating Database Size (2 of 2)

Size Formula

1 To determine the schema size, load the schema into an empty database and check the size of your database—this
is the size of your schema.
2–4

Administrative Planning
EXAMPLE

You want to calculate the estimated database size for a database with a single customer table.
The table has three fields:

• Cust-num — An integer field that is always three digits.

• Name — A character field containing 12–30 characters, with an average of 21 characters.

• Start-date — A date field.

The table is indexed on just one field (Name) and you would expect to have about 500,000
records in the customer table. Table 2–3 lists formulas (and examples) for estimating the size of
your database.

LOGICAL

(BIT)

False 1

True 2

Table 2–2: Formulas For Calculating Field Storage (2 of 2)

4GL Data Type
(SQL-92

Equivalent) Value Field Storage In Bytes

Table 2–3: Calculating Database Size (1 of 2)

Database
Component Size

Schema = 421,000 (This number is the size of an empty database with

the schema loaded in.)

Field storage = Cust-num + Name + Start-date

= 3 + 21 + 3

= 27

Customer table = number of records x field storage x 1.5
= 500,000 x 27 x 1.5
= 20,250,000
2–5

Progress Database Administration Guide and Reference
These formulas are conservative since they often result in a large estimate of your database size.
However, you also must allow for temporary disk space for each database user for the following
purposes:

• Sorting. Twice the space required to store the table.

• Temporary storage of the primary recovery (BI) area.

• Before-image storage in the primary recovery area.

• After-image storage in the after-image storage area.

Database-related Size Criteria

When planning the size of your database, see Chapter 3, “Progress Database Limits,” for a
description of the following database-related criteria:

• Database block size

• Number and size of storage areas

• Maximum number of records per block

• Table and index size

• Number of sequences

• Primary recovery area size

• Maximum database size

Name index = number of records x (7 + number of fields in index + index field
storage) x 2 = 500,000 x (7 + 1 + 21) x 2 = 29,000,000

Database = schema size + data table size + index size
= 421,000 + 20,250,000 + 29,000,000
= 49,671,000 bytes

Table 2–3: Calculating Database Size (2 of 2)

Database
Component Size
2–6

Administrative Planning
2.3 Storing Database Extents On Raw Partitions
Progress allows users to store database extents on raw partitions. Storing database extents on
raw partitions can sometimes improve performance issues associated with the UNIX file
system, such as asynchronous I/O, large file sizes, and security.

To create a database with raw partitions, use the PROSTRCT CREATE command:

However, the structure file must have the following line format:

devicename

Specifies the disk where the database will be created.

size

Specifies the size of the raw partition. You must specify a raw partition size, because a raw
partition cannot have a variable-length extent.

NOTE: For the complete syntax of the PROSTRCT utility see Chapter 19, “Database
Administration Utilities.”

For example, the following structure file creates a database with two data extents and one BI
extent on raw partitions. The remaining overflow extents are on the filesystem and look like
regular files:

NOTE: All databases must have an overflow BI extent that is variable length. This overflow
extent must reside on the filesystem.

prostrct create db-name structure-file-name

d devicename r size

d /dev/rdsk/c0d1s0 r 50000
d /dev/rdsk/c0d2s0 r 50000
d /usr1/data/dbname.d1
b /dev/rdsk/c0d3s0 r 50000
b /usr2/bifile/dbname.b1
2–7

Progress Database Administration Guide and Reference
2–8

3
Progress Database Limits

This chapter lists the Progress database limits you need to know when configuring a database
and supporting an application development environment. Specifically, this chapter contains the
following sections:

• Database Block Sizes

• Number and Size Of Storage Areas

• Maximum Number Of Records Per Block

• Table and Index Limits

• Number Of Sequences

• Maximum Size Of the Primary Recovery (BI) Area

• Maximum Database Size

• Number Of Connections Per Database

• Number Of Simultaneous Transactions Per Database

• Size Of Database Buffer Pool

• Progress Database Name Limits

• Applicable Operating System Limits

• Data Types and Values

Progress Database Administration Guide and Reference
3.1 Database Block Sizes
Progress supports the following database block sizes:

• 1024 bytes (1K)

• 2048 bytes (2K)

• 4096 bytes (4K)

• 8192 bytes (8K)

3.2 Number and Size Of Storage Areas
A Progress database supports a maximum of 1,000 storage areas, including 994 application data
storage areas. Storage areas are identified by their names. Table 3–1 describes the area types in
a Progress database.

Application data and schema data storage areas allow you to specify the maximum number of
records per block for each area. Table 3–2 describes the maximum application data storage area
size determined by database block size and records per block.

Table 3–1: Storage Area Types

Reserved Area Name Contents File Extension

Control Physical Database Structure .db

Primary Recovery Recovery Log Data .b[n]

Transaction Log Two-phase Commit
Transaction Log

.t[n]

After Image After-image Log Data .a[n]

Schema Schema Data .d[n]

None Application Data .d[n]
3–2

Progress Database Limits
Table 3–2: Maximum Application Data Storage Area Size (1 of 2)

Database Block Size Records Per Block Maximum Area Size

8192 bytes (8K) 1 16TB

8192 bytes (8K) 2 8TB

8192 bytes (8K) 4 4TB

8192 bytes (8K) 8 2TB

8192 bytes (8K) 16 1TB

8192 bytes (8K) 32 512GB

8192 bytes (8K) 64(default) 256GB

8192 bytes (8K) 128 128GB

8192 bytes (8K) 256 64GB

4096 bytes (4K) 1 8TB

4096 bytes (4K) 2 4TB

4096 bytes (4K) 4 2TB

4096 bytes (4K) 8 1TB

4096 bytes (4K) 16 512GB

4096 bytes (4K) 32 (default) 256GB

4096 bytes (4K) 64 128GB

4096 bytes (4K) 128 64GB

4096 bytes (4K) 256 32GB

2048 bytes (2K) 1 4TB

2048 bytes (2K) 2 2TB

2048 bytes (2K) 4 1TB

2048 bytes (2K) 8 512GB
3–3

Progress Database Administration Guide and Reference
2048 bytes (2K) 16 256GB

2048 bytes (2K) 32 (default) 128GB

2048 bytes (2K) 64 64GB

2048 bytes (2K) 128 32GB

2048 bytes (2K) 256 16GB

1024 bytes (1K) 1 2TB

1024 bytes (1K) 2 1TB

1024 bytes (1K) 4 512GB

1024 bytes (1K) 8 256GB

1024 bytes (1K) 16 128GB

1024 bytes (1K) 32 (default) 64GB

1024 bytes (1K) 64 32GB

1024 bytes (1K) 128 16GB

1024 bytes (1K) 256 8GB

Table 3–2: Maximum Application Data Storage Area Size (2 of 2)

Database Block Size Records Per Block Maximum Area Size
3–4

Progress Database Limits
3.3 Maximum Number Of Records Per Block
You can define the maximum number of records per block for each application data area. When
you define an area you can specify 1, 2, 4, 8, 16, 32, 64, 128, or 256 records per block. If you
do not explicitly specify the number of records per block when you define an application data
area, the default number of records per block is:

• 64 if the block size is 8K

• 32 for all other block sizes

3.4 Table and Index Limits
You cannot split a table or an index across storage areas. Each table and each index can be
assigned to only one storage area. Therefore, the size of a table or index is limited to the size of
the storage area in which it resides (see Table 3–2).

Regardless of block size, the maximum number of tables supported is 32,767.

Regardless of block size, the maximum number of indexes supported is 32,767.

Index entries have a maximum of 16 fields per index. Total variable-length storage
requirements of all fields in an index entry must be less than 200 characters.

NOTE: Because the 200 character limit includes storage overhead, the actual index key is
limited to approximately 188 characters.

3.5 Number Of Sequences
The number of unique sequences supported in a database varies by block size. An application
that uses more than 250 sequences does not work on all database block sizes. Table 3–3 lists the
number of sequences per database block size.

Table 3–3: Maximum Number Of Sequences

Database Block Size Maximum Number of Sequences

1024 bytes (1K) 250

2048 bytes (2K) 500

4096 bytes (4K) 1000

8192 bytes (8K) 2000
3–5

Progress Database Administration Guide and Reference
3.6 Maximum Size Of the Primary Recovery (BI) Area
Only the operating system or the size of your extents imposes a limitation on the size of a
primary recovery (BI) area. Multiple BI extents can be added. The maximum possible size of a
BI area is 32TB. Table 3–4 lists the maximum BI area size by block size used.

3.7 Maximum Database Size
The maximum size of a Progress Version 9 database is determined by the:

• Database block size

• Number of records per block in each area

• Number of storage areas

Database block size and number of records per block determine the maximum storage area size.
For example, using one (1) record per block and an 8K (8192) byte block size allows a
maximum storage area size equal to 16TB (terabytes).

The result of multiplying the maximum number of areas by the maximum area size identifies
the maximum size of a Progress database to be approximately 16PB (petabytes):

1,000 areas (maximum number of areas) * 16TB (maximum area size) = ~16PB.

Table 3–4: Maximum Primary Recovery (BI) Area Size

Block Size Maximum BI Area Size

16,384 bytes (16K) 32TB

8192 bytes (8K) (default) 16TB

4096 bytes (4K) 8TB

2048 bytes (2K) 4TB

1024 bytes (1K) 2TB
3–6

Progress Database Limits
3.8 Number Of Connections Per Database
Table 3–5 lists the maximum number of connections per database.

3.9 Number Of Simultaneous Transactions Per Database
Table 3–6 lists the maximum number of simultaneous transactions per database.

3.10 Size Of Database Buffer Pool
The size of the database buffer pool is set by the -B (Blocks in Database Buffers) startup
parameter. The maximum is 500,000 blocks. Table 3–7 lists the maximum size of the buffer
pool.

Table 3–5: Maximum Number Of Connections Per Database

Database Type Limit

Single-user 1

Multi-user Maximum number is machine dependent: up to 10,000
unless constrained by semaphore limits, process limits,
or machine performance.

Table 3–6: Maximum Number Of Simultaneous Transactions

Database Type Limit

Single-user 1

Multi-user 1 per user (maximum users = 10,000)

Table 3–7: Maximum Buffer Pool Size

Block Size Maximum Buffer Pool Size

1024 bytes (1K) 500 MB

2048 bytes (2K) 1 GB

4096 bytes (4K) 2 GB

8192 bytes (8K) 4 GB
3–7

Progress Database Administration Guide and Reference
Progress allows you to specify some number of buffers in the buffer pool as private read-only
buffers. The -Bp (Private Read-Only Buffers) startup parameter allows you to specify what
number of buffers you wish to be private read-only buffers. The default number of private
read-only buffers that a single user can request is 64 and the maximum number is limited by the
-bpmax parameter. The maximum number of private read-only buffers for all simultaneous
Progress users is limited to 25% of the database buffer pool.

3.11 Progress Database Name Limits
Table 3–8 lists the database name limits for each operating system.

Database names can consist of any combination of English letters and numbers, beginning with
A–Z or a–z. They cannot include Progress 4GL or SQL-92 reserved words, any accented letters,
or the following special characters:

3.12 Applicable Operating System Limits
Progress uses file handles (a UNIX term, roughly equivalent to the number of open files) when
reading and writing to the Progress database and related files. Most operating systems limit the
number of file handles a user process can allocate at one time. Most versions of UNIX guarantee
at least 20. Therefore, before you can effectively design a database, you must know your
operating system limits and how Progress will use the file handles that are available to it.

Table 3–8: Database Name Limits

Name
Type Limit

Database names One to 11 characters, excluding the pathname. You cannot use a file
extension.

Pathnames One to 255 characters, including the database name.

 \ " ’ * ; | ? [] () ! { } < > @ + = : ~
3–8

Progress Database Limits
Use the following formula to determine the number of file handles Progress uses:

H

The number of file handles Progress uses.

Static Handles

The number of handles allocated for any Progress database. The number of static file
handles that the process requires depends on whether you are running a Progress client
process or a Progress server process:

• Client — Requires nine file handles (PROMSGS + LG + DB + LBI + SRT+ STDIN
STDOUT + 2). The file handles used for the input and output devices (STDIN and
STDOUT) are allocated by the operating system.

• Server — Requires five handles (PROMSGS + LG + DB + 2).

of .dn files

The number of DB files defined for the database.

of .bn files

The number of BI files defined for the database.

of .an files

The number of AI files defined for the multi-volume database.

When calculating the number of file handles, consider the following exceptions:

• If you are running a server in a UNIX environment that uses sockets for interprocess
communication, add one file handle for each user.

• Application programs use additional file handles when reading and writing text files and
when compiling programs. The formula does not account for these additional resource
requests.

H = Static Handles + (# of .dn files) + (# of .bn files) + (# of .an files)
3–9

Progress Database Administration Guide and Reference
3.13 Data Types and Values
Table 3–9 lists the Progress SQL-92 data types and value limits.

Table 3–9: SQL-92 Data Type Limits (1 of 2)

SQL-92 Data Type Limit

BIGINT -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

BINARY 2000 bytes

BIT 0 or 1

CHAR 2000 characters

DATE Year: 1 to 9999; Month: 1 through 12; Date: 1 through the last
day of the month

DECIMAL Defined in terms of precision and scale. Precision=number of
digits; scale=number of digits to the right of the decimal point.
Note that scale cannot be greater than precision. Precision is
limited to 50. Scale is limited to 10.

DOUBLE PRECISION 2.2250738585072014E-308 through
1.7976931348623157E+308

FLOAT 2.2250738585072014E-308 through
1.7976931348623157E+308

INTEGER -2,147,483,648 to 2,147,483,647

NUMERIC Defined in terms of precision and scale. Precision=number of
digits; scale=number of digits to the right of the decimal point.
Note that scale cannot be greater than precision. Precision is
limited to 50. Scale is limited to 10.

REAL 1.175494351E-38F to 3.402823466E+38F

SMALLINT -32,768 to 32,767

TIME 00:00:00 to 23:59:59

TIMESTAMP Combination of Date and Time limits

TINYINT -128 to 127
3–10

Progress Database Limits
The following table lists the 4GL data types and value limits:

NOTE: Data columns created using the Progress SQL-92 environment and having a data
type that is not supported in the Progress 4GL environment are not accessible by
Progress 4GL applications. Data columns created using the Progress 4GL
environment can be accessed by Progress SQL-92 applications and utilities.

VARBINARY 31,995 bytes

VARCHAR 31,995

4GL Data Type Limit

CHARACTER Constrained by record size. (If a field has more than 3,000
bytes, you must write your own dump/reload procedure
because the Progress dump/reload procedure cannot handle
fields larger than 3,000 bytes.)

DATE 1/1/32768 B.C. to 12/31/32767 A.D.

DECIMAL 50 digits total; 1 to 10 decimal places

INTEGER –2,147,483,648 to 2,147,483,647.

LOGICAL TRUE/FALSE, YES/NO.

Table 3–9: SQL-92 Data Type Limits (2 of 2)

SQL-92 Data Type Limit
3–11

Progress Database Administration Guide and Reference
The following table describes data types supported by Progress 4GL and their corresponding
SQL-92 data types:

Progress 4GL Data Type Progress SQL-92 Data Type

CHARACTER VARCHAR

DATE DATE

DECIMAL DECIMAL or NUMERIC

INTEGER INTEGER

LOGICAL BIT

RAW VARBINARY

RECID INTEGER
3–12

PART II
Administration

Creating and Deleting Databases

Starting Up and Shutting Down

Backup and Recovery Strategies

Backing Up a Database

Recovering a Database

Maintaining Database Structure

Maintaining Security

After-Imaging

Using Two-phase Commit

Dumping and Loading

Managing Performance

Replicating Data

Using the Event Log

4
Creating and Deleting Databases

This chapter describes the methods to create and delete a Progress database.

Specifically, this chapter contains the following sections:

• Ways To Create a Progress Database

• Creating a Database With PROSTRCT CREATE

• Creating a Database With the PRODB Utility

• Creating a Database With the Data Administration Tool

• Migrating Version 8 Databases To Version 9 Databases

• Copying a Database

• AutoConvert Utility

• Deleting a Database

Progress Database Administration Guide and Reference
4.1 Ways To Create a Progress Database
There are several ways to create a Progress database:

• From a structure description file with the PROSTRCT CREATE utility

• With the PRODB utility on the command line

• With the Data Dictionary tool if you are using a graphical interface or a character interface

• With the Data Administration tool if you are using a graphical interface

• With the PROCOPY utility

• Convert a Progress Version 8 multi-volume database to a Version 9 database

When you create a database, you can create any of the following:

• A new but empty database

• A copy of an existing database (such as the Progress sports2000 database)

NOTE: Do not create your database in the Progress Install directory ($DLC on UNIX or
%DLC% on Windows) or in any subdirectory of the Progress Install directory.
Databases residing in these directories cannot be opened.

4.2 Creating a Database With PROSTRCT CREATE
To create a Progress database using PROSTRCT CREATE you must:

• Create a structure description (ST) file to define storage areas and extents.

• Use PROSTRCT CREATE to create a database structure extent.

• Add schema to the void database.
4–2

Creating and Deleting Databases
4.2.1 Creating a Structure Description File
The structure description file is a text file you prepare that actually defines the database
structure. It contains all of the information required by the PROSTRCT CREATE utility to
create a database control area.

Use any text editor, such as vi, edit, or the Progress Procedure Editor, to create the structure
description file. The name you give to the structure description file is usually the name of the
database you define, with a .st extension.

The structure description file is made up of one or more lines of text that provide information
about each storage area of the database. Each line of text is composed of tokens, which are text
strings made up of alphanumeric characters that describe the following characteristics:

• The storage area type

• The extent pathname

• The extent length

• Optionally, the records per block

• An area name and database engine-generated area number (for application data areas only)

Example Structure Description File

The following example shows the information that is needed in a structure description (ST) file
named sports2000.st to define a database with:

• One primary recovery area.

• One schema area.

• Three after-image areas each with a fixed-length extent.

• One transaction log area with a fixed-length extent used with two-phase commit.

• Six application data areas each with one fixed- and one variable-length extent. The area
names for the six application data areas are: Employee, Inventory, Cust_Data, Cust_Index,
Order, and Misc.
4–3

Progress Database Administration Guide and Reference
Sample Structure Description File: sports2000.st
#
The following defines the Primary Recovery Area consisting of one
variable length extent. It resides in the /usr2/bi directory:
#
b /usr2/bi
#
The following defines the Schema Area consisting of one variable length #
extent, residing in the current working directory:
#
d “Schema Area” .
#
The following defines three fixed length After Image Areas each equal to
1 MB in size:
#
a /usr3/ai f 1024
a /usr3/ai f 1024
a !”/usr3/ai data” f 1024
#
The following defines a Transaction Log Area equal to 4 MB in size and
residing in the current working directory. This storage area is used
for 2 phase commit:
#
t . f 4096
#
The following defines six Application Data Areas each with one fixed
length extent equal to 1 MB in size and 1 variable length extent:
#
d “Employee”,32 /usr1/emp f 1024
d “Employee”,32 /usr1/emp
#
d “Inventory”,32 /usr1/inv f 1024
d “Inventory”,32 /usr1/inv
#
d “Cust_Data”,32 /usr1/cust f 1024
d “Cust_Data”,32 /usr1/cust
#
d “Cust_Index”,32 /usr1/cust f 1024
d “Cust_Index”,32 /usr1/cust
#
d “Order”,32 /usr1/ord f 1024
d “Order”,32 /usr1/ord
#
d “Misc”,32 !”/usr1/misc data” f 1024
d “Misc”,32 !”/usr1/misc data”
#
Note that the directory pathname for the “Misc” application data area
contains spaces, and to recognize that the pathname is specified with
an ! (exclamation point) and “ “ (quotation marks).
4–4

Creating and Deleting Databases
The following is a syntax description of the line format for a structure description (ST) file:

Note that you can comment the ST file and use blank lines. Precede comments with a pound
sign (#), colon (:), or asterisk (*) in the first column of each comment line.

CR = blank line

LINE = comment | areatype pathname [sizeinfo]
comment = * | : | #
areatype = a | b | d | t [areainfo]
areainfo = [“areaname”[:areanum][, recsPerBlock]]

areaname = string
areanum = numeric value
recsPerBlock = numeric value

pathname = . | string | !”string 2"
sizeinfo = extentType size

extentType = fixed (f) | raw device (r) | variable length (v)
size = numeric value > 32
4–5

Progress Database Administration Guide and Reference
Example Structure Description File For Large Files

When creating a new database, large file processing is enabled if the ST file specifies a fixed
length extent size or a maximum size for a variable length extent that is greater than 2 GB. The
following example shows the ST file of a database with large file processing enabled.

For more information on enabling large file processing, see the “PROUTIL
ENABLELARGEFILES Qualifier” section in Chapter 19, “Database Administration Utilities.”

Sample Structure Description File: largedb.st
#
largedb.st to create database largedb with large file processing enabled.
#
A fixed length bi file of 1GB and a variable length bi file with a maximum
size of 4GB.
#
b tests/largedb.b1 f 1048576
b tests/largedb.b2 v 4194304
#
SCHEMA AREA with a fixed length file of 3GB and a variable length file with
a maximum size of 3GB.
#
d “Schema Area”:6,64 tests/largedb.d1 f 3145728
d “Schema Area”:6,64 tests/largedb.d2 v 3145728
#
TABLE AREA with a fixed length file of just over 2GB and a variable length
file with a maximum size of 1TB.
#
d “Table Area”:7,64 tests/largedb_7.d1 f 2097280
d “Table Area”:7,64 tests/largedb_7.d2
#
A fixed length ai file of 2GB and a variable length file with a maximum size
of 1TB.
a tests/largedb.a1 f 2097152
a tests/largedb.a2
#

4–6

Creating and Deleting Databases
Defining Storage Areas and Extents

Define each storage area and extent on a separate line of text in the ST file. Each line is
composed of tokens. The first token of each line identifies the type of storage area to be created.
These tokens must be lowercase. Table 4–1 lists each token with the corresponding storage area
type.

Extent Pathnames and Naming Conventions

If the first token defines an application data storage area (d), add an area name after it. Then, the
next token defines the file pathname. This pathname must represent a standard operating system
file. The only pathname restrictions are those that might be imposed by your operating system’s
create and read permissions for a particular file.

NOTE: In a structure description (ST) file, to specify a pathname that contains spaces (such
as \usr1\misc data), precede the pathname with an exclamation point (!) and wrap
the pathname in quotation marks (“ “). For example, !”\usr1\misc data”.

The PROSTRCT CREATE utility is designed to allow the end user to specify the minimum
amount of information necessary to create a database. Only the area type and extent location
must be specified. A specific filename or file extension need not be provided.

The utility will generate filename and file extensions for all database files according to the
following naming convention:

• If the pathname is for a raw device, the name is taken as is with no changes.

• If a relative pathname is provided, including using common dot(.) notation, the relative
pathname will be expanded to an absolute pathname.

• For BI extents, the filename is the database name with a .bn extension, where n represents
the order in which the extents were created.

Table 4–1: ST File Tokens and Storage Areas

Token Type of Storage Area

a After-image (AI) Area

b Primary Recovery (BI) Area

d Schema Area and Application Data Areas

t Transaction Log (For Two-phase Commit)
4–7

Progress Database Administration Guide and Reference
• For AI extents, the filename is the database name with a .an extension, where n represents
the order in which the extents were created.

• For TL extents, the filename is the database name with a .tl extension.

• For Schema area extents, the filename is the database name with a .dn extension, where n
represents the order in which the extents were created and will be used.

• For application data area extents, the filename is the database name and an area number.
The area number is a unique identifier set by Progress to differentiate between different
areas. The application data area extent filenames also have a .dn extension, where n
represents the order in which the extents were created and will be used.

Rules For Creating Storage Areas and Extents

When you are defining storage areas and extents in order to create a new database:

• The minimum information required in an ST file is one schema area extent definition
statement and one primary recovery (BI) area extent definition statement.

• The minimum information needed to specify any extent is the storage area type and extent
pathname. For example:

NOTE: Progress Software Corporation recommends you define a primary recovery area
on a different disk than the schema and after-image areas. However, if you do not
define a primary recovery extent path in the ST file, the PROSTRCT CREATE
utility automatically creates one in the same directory as the database control
area.

• You cannot use any of the reserved storage area names defined in Table 4–2 as application
data storage area names.

Primary Recovery Area
b .
Schema Area
d .
4–8

Creating and Deleting Databases
Extent Length

You can specify a fixed-length or variable-length extent:

• Fixed-length

When you create a fixed-length extent, its blocks are preallocated and preformatted
specifically for the database. If the extent is on a raw partition, the third token of the extent
description line is r. If you want the extent to be fixed length, the third token of the extent
description line is f. This token must be lowercase. If the extent is fixed length, or raw, use
a fourth token to indicate its length in kilobytes.

The size of the extent, in kilobytes, must be a multiple of 16K. If you specify a size that is
not a multiple of 16K, PROSTRCT CREATE displays a warning message and rounds the
size up to the next multiple of 16K. The minimum length for a fixed-length file is 16K,
and the maximum length of a file depends on the size of the file system and the physical
volume containing the extent.

• Variable-length

Typically, you use a variable-length extent as an overflow file when all fixed-length
extents have been exhausted. For DB and BI extents, you can define one variable-length
extent for each area. There is no limit to the number of variable-length AI extents you can
define.While you indicate a variable-length extent by leaving out the extent size in the ST
file entry line, you may also specify the maximum size to which the extent can grow by
indicating the “v” extent type and a size in kilobytes. The initial allocation for a
variable-length extent is 128K.

Table 4–2: Reserved Storage Area Names

Reserved Storage Area Name File Extension Of Extents

Control .db

Primary Recovery .bn

Schema .dn

After Image .an

Transaction Log .tn
4–9

Progress Database Administration Guide and Reference
4.2.2 Create a Database Structure Extent
Use the PROSTRCT CREATE utility to create the physical database files for the database. The
PROSTRCT CREATE syntax is:

NOTE: For the complete syntax of the PROSTRCT CREATE utility see Chapter 19,
“Database Administration Utilities.”

For example, to create a database named sports2000 from the sports2000.st structure
description file, use PROSTRCT CREATE as follows:

Running the PROSTRCT CREATE utility on sports2000.st generates the following extents
for a database named sports2000:

prostrct create db-name structure-description-file

prostrct create sports2000 sports2000.st

prostrct create sports2000 sports2000.st

Formatting extents:
 size area name path name
 32 Primary Recovery Area /usr2/bi/sports2000.b1 00:00:00
 32 Schema Area /usr1/sports2000.d1 00:00:00
 1024 After Image Area 1 /usr3/ai/sports2000.a1 00:00:02
 1024 After Image Area 2 /usr3/ai/sports2000.a2 00:00:03
 1024 After Image Area 3 /usr3/ai/sports2000.a3 00:00:03

4096 Transaction Log Area /usr1/sports2000.t1 00:00:01
 1024 Employee /usr1/emp/sports2000_7.d1 00:00:01
 32 Employee /usr1/emp/sports2000_7.d2 00:00:00
 1024 Inventory /usr1/inv/sports2000_8.d1 00:00:00
 32 Inventory /usr1/inv/sports2000_8.d2 00:00:00
 1024 Cust_Data /usr1/cust/sports2000_9.d1 00:00:01
 32 Cust_Data /usr1/cust/sports2000_9.d2 00:00:00
 1024 Cust_Index /usr1/cust/sports2000_10.d1 00:00:00
 32 Cust_Index /usr1/cust/sports2000_10.d2 00:00:00
 1024 Order /usr1/ord/sports2000_11.d1 00:00:01
 32 Order /usr1/ord/sports2000_11.d2 00:00:00
 1024 Misc /usr1/misc data/sports2000_12.d1 00:00:00
 32 Misc /usr1/misc data/sports2000_12.d2 00:00:01
4–10

Creating and Deleting Databases
4.2.3 Adding Schema To a Void Database
When you use the PROSTRCT CREATE utility on an ST file, the resulting database files are
referred to as a void database. A void database does not contain any Progress metaschema
information. The void database consists of the DB extent and whatever BI, AI, TL, and Dn
extents you defined in the ST file. You must add Progress metaschema information to a void
database. Progress provides an empty database in the size of each supported database block size
for this purpose.

NOTE: The empty DB file and the database you want copied to it must have the same block
size.

Follow these steps to use the PROCOPY utility to add Progress metaschema information to a
void database:

1 ♦ Use the PROCOPY utility to copy the system tables (the Progress metaschema) from a
Progress empty database into the void database you created with PROSTRCT CREATE.
On UNIX, use the following command syntax:

On Windows, use the following command syntax:

2 ♦ Use the PROSTRCT LIST utility to verify that you have the correct database files in the
correct locations. The following example uses PROCOPY and PROSTRCT LIST on
UNIX:

The following example uses PROCOPY and PROSTRCT LIST on Windows:

3 ♦ Use the Data Dictionary to load the existing user tables (DF file) into your database.

procopy $DLC/emptyn db-name

procopy %DLC%\emptyn db-name

procopy $DLC/empty8 sports

prostrct list sports

procopy %DLC%\empty8 sports

prostruct list sports
4–11

Progress Database Administration Guide and Reference
4.3 Creating a Database With the PRODB Utility
The PRODB utility creates a new database from a specified source database. PRODB creates a
new database using the structure of the source database and places all of the extents in the
current working directory. You can use PRODB to make a copy of any of the demonstration or
empty Progress databases.

NOTE: When using PRODB to create a copy of a database, all the files of the database copy
will reside in the same directory, unless you specify a structure description (ST) file
for the target database.

EXAMPLES

To create an empty database called mysample from a copy of the Progress default empty
database, enter the following:

To create a new database called mysports2000 from a copy of the Progress sports2000 database,
enter the following:

To create a new database called pastinfo from a copy of an existing database named
currentinfo, enter the following:

PRODB does not copy the external triggers associated with the database you are copying.

NOTE: See Chapter 9, “Maintaining Database Structure,” for information about changing
pathname conventions when adding storage areas and extents to a structure
description file.

prodb mysample empty

prodb mysports2000 sports2000

prodb pastinfo currentinfo
4–12

Creating and Deleting Databases
PRODB Maintains Pathname Convention

When you use the PRODB utility, the target database you create maintains the same pathname
convention, relative or absolute, as the source database. For example, if you use PRODB to
create a database and name it example1, and use a relative path database such as sports2000 as
the source database, PRODB maintains the pathname convention of sports2000 (the source
database), and example1 (the target database) becomes a relative path database. Conversely, if
the source database is an absolute path database, the target database you create with PRODB
will also be an absolute path database. Use PROSTRCT LIST to verify whether the pathname
is relative or absolute. For example:

In the following sample output of the PROSTRCT LIST utility, note the relative pathname of
the database, example1.db:

prodb example1 sports2000
prostrct list example1

Area Name: Control Area, Type6, BlockSize 1024, Extents 1, Records/Block32
 Ext # 1, Type VARIABLE, Size 0, Name: ./example1.db

Area Name: Primary Recovery Area, Type3, BlockSize 8192, Extents 1
 Ext # 1, Type VARIABLE, Size 0, Name: ./example1.b1

Area Name: Schema Area, Type6, BlockSize 1024, Extents 1, Records/Block 32
 Ext # 1, Type VARIABLE, Size 0, Name: ./example1.d1

Area Name: Employee, Type 6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: ./example1_7.d1
 Ext # 2, Type VARIABLE, Size 0, Name: ./example1_7.d2

Area Name: Inventory, Type 6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 608, Name: ./example1_8.d1
 Ext # 2, Type VARIABLE, Size 0, Name: ./example1_8.d2

Area Name: Cust_Data, Type 6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: ./example1_9.d1
 Ext # 2, Type VARIABLE, Size 0, Name: ./example1_9.d2

Area Name: Cust_Index, Type 6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: ./example1_10.d1
 Ext # 2, Type VARIABLE, Size 0, Name: ./example1_10.d2

Area Name: Order, Type 6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 1280, Name: ./example1_11.d1
 Ext # 2, Type VARIABLE, Size 0, Name: ./example1_11.d2
4–13

Progress Database Administration Guide and Reference
4.4 Creating a Database With the Data Administration Tool
Follow these steps to create a database using the Data Administration tool:

1 ♦ Access the Data Administration tool. The Progress Data Administration main window
appears.

2 ♦ Choose Database→ Create. The Create Database window appears.

3 ♦ Enter the database name.

4 ♦ Specify whether you want to create a new database, copy the sports database, or copy an
existing Progress database.

5 ♦ Specify whether you want to overwrite any existing database with the same name, then
choose OK.

If a database already exists with the name you specify, Progress prompts you to verify that
you want to overwrite it. If no database with that name exists, the Database Connect dialog
box appears.

6 ♦ Enter the appropriate information, then choose OK to return to the Data Administration
main window.
4–14

Creating and Deleting Databases
4.5 Migrating Version 8 Databases To Version 9 Databases
You can convert Progress Version 8 multi-volume databases to Progress Version 9 databases
using the CONV89 qualifier with the PROUTIL utility. If your Progress Version 8 database is
single-volume, you must convert it to a multi-volume Version 8 database before using the
PROUTIL CONV89 utility. This section describes how to convert Version 8 single-volume
databases to Version 8 multi-volume database and how to convert Version 8 multi-volume
databases to Progress Version 9 databases.

You can use one of three methods described in this section to convert a Version 8 single-volume
database to a Version 8 multi-volume database:

• Use the PROCOPY utility to convert an existing single-volume database to a
multi-volume database.

• Use the PROREST utility to convert a single-volume database to a multi-volume database,
while minimizing disk space usage.

• Use the PROSTRCT utility to convert an existing single-volume database to a
multi-volume database.

For more information about administration utilities, such as PROCOPY, PROREST,
PROSTRCT and PROUTIL, see Chapter 19, “Database Administration Utilities.”
4–15

Progress Database Administration Guide and Reference
4.5.1 Converting a Single-volume Version 8 Database With
PROCOPY

Follow these steps to convert an existing Version 8 single-volume database to a multi-volume
database:

1 ♦ Create a structure description file to define the appropriate files for the multi-volume
database. Give this structure description file a different name from the single-volume
database you want to convert.

For example, suppose you have a single-volume database called finance.db on a UNIX
machine. You might create the following structure description file:

2 ♦ Use the PROSTRCT utility with the CREATE qualifier to create a void multi-volume
database structure from the information in the structure description. Give this database the
same name as the structure description file. Following is an example of the command:

*
* This is a structure description file for a multi-volume Progress
* database composed of two fixed-length data extents, one variable-
* length data extent, one BI extent and two variable-length AI
* extents.
*
*
*
*
*
d /vol1/fsys1/finance2.d1 f 224000
d /vol2/fsys1/finance2.d2 f 96000
d /vol2/fsys2/finance2.d3
b /vol2/fsys2/finance2.b1
a /vol2/fsys3/finance2.a1
a /vol2/fsys3/finance2.a2

prostrct create finance2
4–16

Creating and Deleting Databases
3 ♦ Use the PROCOPY utility to copy the single-volume database to the void multi-volume
database structure. The source database cannot be in use when you attempt to use
PROCOPY. In addition, you cannot use PROCOPY against a crashed database; you must
recover the database first. Following is an example of the PROCOPY command:

The resulting database is then ready to use with Progress applications and can be directly
converted to Progress Version 9.

4.5.2 Converting a Single-volume Version 8 Database With
PROREST

Follow these steps to convert a Progress Version 8 single-volume database to a multi-volume
database, while minimizing disk space usage.

1 ♦ Use the PROBKUP utility to back up the single-volume database. Create at least two
backup copies of the database, so that if one copy is damaged, a second copy is available.

2 ♦ Test both backups using the PROREST utility with the Full Verify (-vf) parameter.

3 ♦ Delete the single-volume database.

4 ♦ Create a structure description file to define the appropriate files for the multi-volume
database. For details, see the “Converting a Single-volume Version 8 Database With
PROCOPY” section.

5 ♦ Use PROSTRCT CREATE to create the new void multi-volume structure. For details, see
the command description in Chapter 19, “Database Administration Utilities.”

6 ♦ Use PROREST to restore the backup into the void structure.

The resulting database is then ready to use with Progress and can be directly converted to
Progress Version 9.

procopy finance finance2
4–17

Progress Database Administration Guide and Reference
4.5.3 Converting a Single-volume Version 8 Database With
PROSTRCT

Enter the following syntax, where db-name is the name of the database to be converted, to
convert a Progress Version 8 single-volume database to a multi-volume database:

4.5.4 Converting a Version 8 Database To Version 9
The PROUTIL CONV89 utility converts the schema of a multi-volume Version 8 database to a
multi-volume Version 9 database. To convert the schema of a multi-volume Version 8 database
to the schema of a Version 9 database, follow these steps:

1 ♦ Using Progress Version 8, back up your database.

CAUTION: There is always a chance that your schema could become corrupt during
conversion. The conversion process consists of three phases. If the conversion
fails after Phase 1 begins, your database cannot be recovered. Progress issues error
messages that your database is corrupt. When this happens, you must revert to the
backup copy of your database and begin the conversion again.

2 ♦ Disable after-imaging and two-phase commit.You should disable after-imaging and
two-phase commit before starting the conversion; however, if you forget to do so,
PROUTIL will disable after-imaging and two-phase commit for you. PROUTIL issues an
informational message when after-imaging and/or two-phase commit is disabled.

3 ♦ Truncate your before-image file. PROUTIL will not convert your Version 8 database
schema if you do not truncate the before-image file before you start the conversion.

4 ♦ Verify that your Version 8 backup exists, then install Progress Version 9 following the
instructions in the Progress Installation Notes.

5 ♦ Execute PROUTIL -C CONV89 to convert your database:

NOTE: For a complete description of the PROUTIL CONV89 utility, see Chapter 19,
“Database Administration Utilities.”

6 ♦ After you have successfully converted your database, back up your Version 9 database.

prostrct convert db-name

proutil db-name -C conv89
4–18

Creating and Deleting Databases
You should back up your Version 9 database in case it is damaged due to some failure. If
you have only a Version 8 backup of your database, then you would need to go through
the conversion process again to convert your Version 8 backup to a Version 9 database.
Back up your Version 9 database before you start moving your tables and indexes out of
the schema area.

7 ♦ Create at least one application data storage area and move your user tables and indexes into
it.

By default, the PROUTIL CONV89 utility places all user tables and indexes in the schema
area. Progress Software Corporation recommends that you move them to at least one
application data storage area. For instructions on how to create a storage area and move
tables and indexes into it, see the “Maintaining Indexes and Tables” section in Chapter 9,
“Maintaining Database Structure.”

8 ♦ If you intend to enable two-phase commit, add a transaction log area to your Version 9
database. For a description of how to add storage areas to your database see the “Progress
Structure Add Utility” section in Chapter 9, “Maintaining Database Structure.”

4.6 Using the Schema Mover After Conversion
When you complete the conversion from a Version 8 to a Version 9 database, the database’s
schema and data are located within the Schema Area (Area 6). After conversion, it is possible
to move data into new areas by using PROUTIL dump and load or bulkload qualifiers, the
Database Administration Tool, the Database Dictionary, or 4GL code. However, as long as
schema remains in an area, the area continues to hold disk space, even after the removal of data.
To free this disk space, use PROUTIL with the Schema Mover qualifier to remove the schema.
Once the area’s schema is removed the area can be truncated.

Follow these steps to move schema to a new area:

1 ♦ Truncate the database’s BI file. PROUTIL will send an error message if you do not.

2 ♦ Back up the database.

CAUTION: PROUTIL with the MVSCH qualifier is a non-recoverable utility. If the execution
fails, you cannot connect to the database.
4–19

Progress Database Administration Guide and Reference
3 ♦ Enter the following syntax, where dbname is the name of the converted database, to begin
the schema move:

As shown in Figure 4–1, after you convert your database from Version 8 to Version 9, Area 6
(NewDB.db) contains both the database’s schema and data. When you initiate the schema move
by entering the syntax shown in Step 3, PROUTIL finds the next unused data area (starting at
Area 7) and creates the target data area and the target data area’s extent. After creating the target
data area, PROUTIL moves the schema from NewDB.db to NewDB_7.d1. All the schema
records and indexes are deleted from NewDB.db. PROUTIL opens the .d1 files of the
NewDB.db and NewDB_7.d1 and then updates and switches the master and area blocks. After
the switch, the areas and their extents are renamed. Now that the schema is gone from the “Old
Default Area,” you can truncate it and recover any unused space.

NOTE: Data in the “Old Default Area” not moved prior to area truncation will be lost.

SYNTAX

proutil dbname -C mvsch
4–20

Creating and Deleting Databases
Figure 4–1: How The Schema Mover Works

With Schema
Mover

Version 9
NewDB.db

Schema moved
to next available

area

2

NewDB.d1

60 GB

NewDB_7.d1

3

NewDB.d1

“Schema
Area”

OldDB.db

Version 8

OldDB.d1 1

Database
conversion from

Version 8 to
Version 9

3

Areas renamed

NewDB_7.d1
60 GB

“Old Default
Area”

Unused space in
“Old Default Area”

can now be
recovered

4

Without
Schema Mover

Dump and Load;
Index Rebuild

Version 9
NewDB.db

2
NewDB.d1

60 GB

OldDB.db

OldDB.d1

Version 8

1

Database
conversion from

Version 8 to
Version 9

39 GB
NewDB_8.d1

20 GB
NewDB_7.d1

NewDB.d1 continues to
hold 60 GB of disk space
after the Dump and Load
4–21

Progress Database Administration Guide and Reference
4.7 Copying a Database
To copy a source database to a target database, use one of the following:

• The PROCOPY utility

• The PRODB utility

• The Progress Data Dictionary

These utilities copy not only the contents of a database but the database structure as well.
Consequently, a target database must contain the same physical structure as the source database.
For example, it must have the same number of storage areas, records, blocks, and block size.

NOTE: Do not use an operating system utility to copy a Progress database.

For more information about administration utilities, such as PROCOPY and PRODB, see
Chapter 19, “Database Administration Utilities.”

EXAMPLE

Use the PROCOPY utility to copy an existing database. For example, to copy the Sports2000
database to a database named mysports2000, enter the following:

PROCOPY supports storage areas. Therefore, if a target database exists, it must contain at a
minimum the same type and number of storage areas and same extent types as the source
database. However, the number of extents in the storage areas of the target database do not need
to match the number of extents in the source database. Progress attempts to extend the existing
extents in the target database to accommodate the possible increase in size.

If a target database does not exist, PROCOPY creates one using an existing structure description
(ST) file in the target database directory. If an ST file does not exist, PROCOPY creates the
target database using the structure of the source database and places all of the extents in the same
directory as the target database structure (DB) file, even when the source database resides in
multiple directories.

procopy Sports2000 mysports2000
4–22

Creating and Deleting Databases
PROCOPY Uses Absolute Pathnames

When you use the PROCOPY utility, the target database you create always has an absolute
pathname regardless of the pathname convention used by the source database. For more
information on absolute pathnames, see the “Relative- and Absolute-path Databases” section in
Chapter 1, “The Progress Database.”

For example, if you use PROCOPY to create a database, name it example2, and use a relative
path database such as sports2000 as the source database, example2 will have an absolute
pathname even though the source database, sports2000, uses a relative pathname. Use
PROSTRCT LIST to verify the absolute pathname of your target database. For example:

In the following sample output of the PROSTRCT LIST utility, note the absolute pathname of
the database, example2.db:

procopy sports2000 example2
prostrct list example2

Area Name: Control Area, Type6, BlockSize 1024, Extents 1, Records/Block32
 Ext # 1, Type VARIABLE, Size 0, Name: /usr1/wrk/example2.db

Area Name: Primary Recovery Area, Type3, BlockSize 8192, Extents 1
 Ext # 1, Type VARIABLE, Size 0, Name: /usr1/wrk/example2.b1

Area Name: Schema Area, Type6, BlockSize 1024, Extents 1, Records/Block 32
 Ext # 1, Type VARIABLE, Size 0, Name: /usr1/wrk/example2.d1

Area Name: Employee, Type6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: /usr1/wrk/example2_7.d1
 Ext # 2, Type VARIABLE, Size 0, Name: /usr1/wrk/example2_7.d2

Area Name: Inventory, Type6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 608, Name: /usr1/wrk/example2_8.d1
 Ext # 2, Type VARIABLE, Size 0, Name: /usr1/wrk/example2_8.d2

Area Name: Cust_Data, Type6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: /usr1/wrk/example2_9.d1
 Ext # 2, Type VARIABLE, Size 0, Name: /usr1/wrk/example2_9.d2

Area Name: Cust_Index, Type6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 320, Name: /usr1/wrk/example2_10.d1
 Ext # 2, Type VARIABLE, Size 0, Name: /usr1/wrk/example2_10.d2

Area Name: Order, Type6, BlockSize 1024, Extents 2, Records/Block 32
 Ext # 1, Type FIXED , Size 1280, Name: /usr1/wrk/example2_11.d1
 Ext # 2, Type VARIABLE, Size 0, Name: /usr1/wrk/example2_11.d2
4–23

Progress Database Administration Guide and Reference
4.8 AutoConvert Utility
The first time an existing Version 9 database (a database created prior to Progress Version 9.1)
is opened for write access, an AutoConvert utility automatically updates the metaschema to
support SQL-92 features. The AutoConvert process occurs only once. When it does, the
following messages are displayed in the log file:

No further action is required.

AutoConvert cannot be executed within a transaction. In order to successfully complete
AutoConvert, you must make a direct connection — single-user and not read only — or start a
server. If a transaction has already begun when AutoConvert is invoked, the utility detects that
transaction, displays an error message, and aborts the session. AutoConvert aborts the session
because the database would be in an unsafe state if the outer transaction aborted after another
transaction was completed relying on information associated with the upgrade.

NOTE: Once the AutoConvert utility has run, you cannot revert to your previous
metaschema. To retain a copy of your pre-AutoConverted metaschema, back up your
existing database prior to opening it for write access with Progress Version 9.1.

4.9 Deleting a Database
Use the PRODEL utility to delete a database. For example:

NOTE: For the complete syntax, see Chapter 19, “Database Administration Utilities.”

When you delete a database, PRODEL displays a message that it is deleting all files that start
with db-name (the name of the database). PRODEL prompts you to confirm the deletions,
depending on your system.

When you delete a database, PRODEL deletes all associated files and extents that were created
using the structure description file (database, log, before-image, and after-image files, and with
two-phase commit, the transaction log file).

NOTE: The PRODEL utility does not delete the actual structure description file so that a file
of your database structure is retained.

Starting minor version upgrade from 0 to 2. (9111)

Database is now available for updates. (9110)

prodel mysports2000
4–24

5
Starting Up and Shutting Down

This chapter describes how to start up and shut down a Progress database.

Specifically, this chapter contains the following sections:

• The Progress Explorer Framework

• Starting a Server Or Broker

• Starting and Stopping Background Writers

• Stopping a Server Or Broker

Progress Database Administration Guide and Reference
5.1 The Progress Explorer Framework
The Progress Explorer Framework is a system administration framework that provides a
consistent interface for managing all Progress products installed on your network. The
framework consists of the following elements:

• AdminServer — Provides secure administrative access to Progress server products.

• Progress Explorer — A graphical user interface that provides an easy way for you to
manage Progress servers.

• Command line configuration utilities — Character versions of the Progress Explorer
configuration tools.

5.1.1 AdminServer
An AdminServer is installed on every system where you install a Progress database. The
AdminServer grants access to each instance of an installed Progress product. The AdminServer
must be running in order to use the Progress Explorer configuration tools or command-line
configuration utilities to manage your Progress database.

On Windows NT-based systems, the AdminServer starts automatically and runs as an NT
service. For UNIX-based systems, a command-line utility (PROADSV) is used to start and stop
the AdminServer. For more information about the AdminServer, see the Progress Installation
and Configuration Guide Version 9 for Windows or the Progress Installation and Configuration
Guide Version 9 for UNIX.

5.1.2 Progress Explorer
Progress Explorer is a graphical administration utility that runs on Windows platforms. To use
the Progress Explorer configuration tools, you must first start Progress Explorer and connect to
a running AdminServer. Progress Explorer then presents you with a view of all the products to
which the AdminServer grants you administrative access.

You can select an instance of each of the products displayed and manage its operation or modify
its configuration. For example, you can do the following:

• Connect to an AdminServer

• Start, stop, and query the status of Progress databases and associated server groups

For more information about working with the Progress Explorer tool, click the Help icon in the
Progress Explorer application.
5–2

Starting Up and Shutting Down
Starting Progress Explorer

To launch Progress Explorer choose Programs→ Progress→ Progress Explorer Tool from the
Windows Start menu.

Managing Database Configurations

The database configurations you create with Progress Explorer are saved in the
conmgr.properties file. It stores the database, configuration, and server group properties.
When you use either the Progress Explorer database configuration tool or the DBMAN utility
to start a database, a separate process interprets the information in the properties file and starts
and stops whatever server the configuration specifies.

The conmgr.properties file resides in the properties subdirectory of the Progress install
directory.

CAUTION: Do not edit the conmgr.properties file directly. Instead, use Progress Explorer
to create and edit database configurations.

5.1.3 Command-line Configuration Utilities
The command-line configuration utilities allow you to start, stop, and configure installed
Progress products. The database related command-line configuration utilities that are part of the
Progress Explorer Framework include:

• DBMAN — Starts, stops, and queries the current configuration of a Progress database.

• PROADSV — Starts-up and shuts-down an AdminServer on UNIX. For more
information about the AdminServer, see the Progress Installation and Configuration
Guide Version 9 for UNIX or the Progress Installation and Configuration Guide Version
9 for Windows.

• SQLEXP — Starts SQL Explorer, a tool you use to execute SQL-92 statements. For more
information about SQL Explorer, see the Progress SQL-92 Guide and Reference.
5–3

Progress Database Administration Guide and Reference
5.1.4 Using the DBMAN Command-Line Utility
After you use Progress Explorer to create the database configuration and store it in the
conmgr.properties file, use the DBMAN command-line utility to start, stop, or query a
database:

The dbman command-line utility supports the following parameters:

-database db-name

Specifies the name of the database you want to start. It must match the name of a database
in the conmgr.properties file.

-config config-name

Specifies the name of the configuration with which you want to start the database.

-start

Starts the database db-name as defined by the configuration config-name.

-stop

Stops the database db-name.

-query

Queries the Connection Manager for the status of the database db-name.

-host host-name

Identifies the host machine where the AdminServer is running. The default is the local
host. If your AdminServer is running on a remote host, you must use the -host host-name
parameter to identify the host where the remote AdminServer is running.

-port port-number|service-name

Identifies the port that the AdminServer is listening on. If your AdminServer is running on
a remote host, you must use the -port port-number parameter to identify the port on
which the remote AdminServer is listening. The default port number is 20931.

dbman [-host host-name -port port-number | service-name -user user-name]

-database db-name [-config config-name -start|-stop|-query]
5–4

Starting Up and Shutting Down
-user user-name

If your AdminServer is running on a remote host, you must use the -user user-name
parameter to supply a valid user name for that host. You will be prompted for the
password.

5.2 Starting a Server Or Broker
 The server process coordinates all the database requests from all the users using a single
database.

NOTE: On UNIX and Windows NT systems that run shared-memory versions of Progress,
the main database server is called the broker. The broker process manages shared
resources and starts servers for remote users, if necessary. For more information, see
the “Operating System Resources” section in Chapter 1, “The Progress Database.”

5.2.1 Using the PROSERVE Command
 Use Progress Explorer or use the PROSERVE startup command to start the server process:

-db db-name

Specifies the database you want to start Progress against. (-db is implicit)

-servergroup servergroup-name

Specifies the logical collection of server processes to start. The servergroup-name you
specify must match the name of a servergroup in the conmgr.properties file. You create
servergroups using the Progress Explorer Database Configuration Tools, which saves
them in the conmgr.properties file.

parameters

Specifies the startup parameters for the broker/server. See Chapter 18, “Database Startup
Parameters,” for a list of broker/server startup parameters.

For more information about the PROSERVE command see Chapter 17, “Startup and Shutdown
Commands.”

proserve -db db-name | -servergroup servergroup-name [parameters]
5–5

Progress Database Administration Guide and Reference
5.2.2 Specifying International Character Sets
A Progress international database has one character set (code page) associated with all its data.
This database character set information is stored in the database.

In addition, a database server has an operating character set. The operating character set is used
for every character operation such as, compare and substring. You can use the Internal Code
Page (-cpinternal) international startup parameter, to define the operating character set. If you
do not use -cpinternal, the default operating character set is iso8859–1.

Specifying the Operating Character Set

Use Progress Explorer to look up the operating character set name in the database configuration
properties windowpane and reset it appropriately.

To specify the operating character set from the command line, use the PROSERVE
administration utility. For example:

Specifying the Character Set Name Of the Database Log File

To specify the output character set for database log messages, use Progress Explorer to look up
the log character set (LogCharacterSet) name in the database configuration properties
windowpane and reset it appropriately.

Otherwise, use the Log Character Set (-cplog) international startup parameter with the
PROSERVE administration utility. For example:

For more information on character sets and character conversion, see the “PROUTIL Utility”
section in Chapter 19, “Database Administration Utilities.”

proserve db-name -cpinternal character-set-name

proserve db-name -cplog character-set-name
5–6

Starting Up and Shutting Down
5.2.3 Network Addressing With Progress (- S and -H)
In all network environments, you use the Service Name (-S) startup parameter to assign a name
to a Progress broker/server. You then address this broker/server from a remote client by using
the same value for -S as a startup or database connection parameter. Depending on your network
type, you might also have to specify additional addressing criteria for remote Progress clients.
In terms of Progress addressing, the TCP protocol uses host addressing.

The TCP protocol requires a remote client to explicitly address the database server machine (or
host) on which the server runs. In a TCP network, you must use the Host Name (-H) startup
parameter to specify the host address. The -H value is the name assigned to the database server
machine in your TCP/IP hosts file.

Use Host Name (-H) to identify the host name. For example:

-H host-name

The TCP/IP host-name (address) of the database server machine.

-H localhost

A reserved word that specifies that the Database server communicates only with clients on
the database server machine. Not applicable for DataServers.

NOTE: The -H parameter has a special purpose when used with the Progress/400 DataServer
and SNA. If you are connecting to multiple AS/400 machines, you must supply this
parameter for each AS/400.

5.2.4 Starting Network Brokers and Servers
You can start most network brokers and servers using the PROSERVE command for your
database server machine. For example, on a UNIX machine, you enter the following command
to start brokers for two databases (sports and news) using the TCP network type:

proserve sports -S spsrv -N TCP -db news -S nwsrv -N TCP
5–7

Progress Database Administration Guide and Reference
5.2.5 Starting Multiple Brokers Using the Same Protocol
You can start multiple brokers that use the same protocol. The -Mn parameter and a new
parameter, Maximum Servers per Broker (-Mpb), determine the number of servers a broker can
start. In addition, you can use Progress Explorer to manage and configure servergroups.

Use the following commands to start two brokers that use TCP and start multiple servers each:

db-name

Specifies the database you want to start. If the database is not in the current directory, you
must specify the full pathname of the database.

-S service-name

Specifies the database server or broker process service name. You must specify the service
name in a TCP network.

-H host-name

Specifies the machine where the database server runs.

-Mn n

Specifies the maximum number of remote client servers and login brokers that the broker
process can start.

-Mpb n

Specifies the number of servers that the login broker can start to serve remote users. This
applies to the login broker that is being started.

-m3

Starts the secondary login broker.

proserve db-name -S server-name -H host-name -Mnn -Mpbn
proserve db-name -S server-name -H host-name -Mpbn -m3
5–8

Starting Up and Shutting Down
For example, you would use the following commands to start two brokers that use TCP and start
four servers each:

As the example shows, the -Mn value must be large enough to account for each additional broker
and all servers. If you do not specify -Mpb, the value of -Mn becomes the default.

You must include the -m3 parameter with every secondary broker startup command. While the
-Mpb parameter sets the number of servers a broker can start, the -m3 parameter actually starts
the secondary broker.

If you start multiple brokers, you should also run the Progress Watchdog process (PROWDOG).
PROWDOG enables you to restart a dead secondary broker without shutting down the database
server. For more information on PROWDOG, see “PROWDOG Command” section in Chapter
17, “Startup and Shutdown Commands.”

5.2.6 Accessing a Server Behind a Firewall
Progress allows you to use the Minimum Dynamic Server Port (-minport) and the Maximum
Dynamic Server Port (-maxport) server startup parameters to provide client access to a Progress
server that is behind a firewall. This communication is possible only when the access to the
server can be limited. You supply this limit when you specify a group of port numbers with the
-minport and -maxport parameters.

For example, suppose you start the following two login brokers:

A client requesting a connection from the first broker, demosv1, is assigned a port number in
the range of 4000 to 4040. The 4000-to-4040 range limits access to the server by limiting
communication to just 41 ports.

The default for -minport is 1025 for all platforms. Ports lower than 1025 are usually reserved
for system TCP and UDP. The default for -maxport is 2000 for all platforms. Remember that
some operating systems choose transient client ports in the 32,768-to-65,535 range. Choosing
a port in this range might produce unwanted results.

proserve db -S demosv1 -H myhost -Mn 9 -Mpb 4
proserve db -S demosv2 -H myhost -Mpb 4 -m3

proserve db -S demosv1 -H myhost -minport 4000 -maxport 4040
proserve db -S demosv2 -H myhost -minport 4041 -maxport 4080 -m3
5–9

Progress Database Administration Guide and Reference
5.3 Starting and Stopping Background Writers
On shared-memory systems, background writers improve performance by continually
performing overhead functions in the background. You must manually start these background
writers.

There are three types of background writers: asynchronous page writers (APWs), before-image
writers (BIWs), and after-image writers (AIWs). The following sections explain how to start up
and shut down background writers. See Chapter 14, “Managing Performance,” for detailed
information about background writers.

5.3.1 Starting and Stopping an APW
A database can have between zero and nine APWs running simultaneously. The optimal number
is highly dependent on your application and environment. To start, use one page writer for each
disk where the database resides. If this is insufficient, add more. For an application that
performs many updates, start one APW for each disk containing your database, plus one
additional APW. Applications that perform fewer changes to a database require fewer APWs.

NOTE: If you perform no updates, no page writers are required.

To start an APW process, use Progress Explorer or enter the following command on the local
machine:

Each APW counts as a process connected to a database and uses resources associated with a
user. You might have to increase the value of the Number of Users (-n) parameter to allow for
APWs. However, APWs are not counted as licensed users.

Stop an APW by disconnecting the process with the PROSHUT command.

For detailed information on the PROAPW and PROSHUT commands, see Chapter 17, “Startup
and Shutdown Commands.”

proapw db-name
5–10

Starting Up and Shutting Down
5.3.2 Starting and Stopping a BIW
You can only run one BIW per database. You can start and stop the BIW process at any time
without shutting down the database.

To start the BIW process, use Progress Explorer or enter the following command on the local
machine:

The BIW counts as a process connected to a database and uses resources associated with a user.
You might have to increase the value of the Number of Users (-n) parameter to allow for the
BIW. However, the BIW is not counted as a licensed user.

Stop the BIW by disconnecting the process with the PROSHUT command.

5.3.3 Starting and Stopping an AIW
You can run only one AIW process per database at a time. You can start and stop an AIW at any
time without shutting down the database.

To start the AIW process, use Progress Explorer or enter the following command:

You must have after-imaging enabled to use an AIW. For more information on after-imaging,
see Chapter 11, “After-Imaging.”

The AIW counts as a process connected to a database and uses resources associated with a user.
You might have to increase the value of the Number of Users (-n) parameter to allow for the
AIW. However, the AIW is not counted as a licensed user.

To stop the AIW process, disconnect it with the PROSHUT command.

probiw db-name

proaiw db-name
5–11

Progress Database Administration Guide and Reference
5.4 Stopping a Server Or Broker
Before you turn off your computer or back up the database, you must shut down the server or
broker process. Before you shut down the server, all application users must quit their Progress
sessions. If necessary, you can disconnect all users with the PROSHUT command’s Disconnect
a User or Unconditional Shutdown qualifiers. For more information, see the “PROSHUT
Command” section.

You can shut down a database using:

• Progress Explorer

• DBMAN utility

• PROSHUT command

• PROMON utility

To shut down the database, you must either be the user who started the database or have root
privileges.

NOTE: Do not use operating system commands to shut down the database.

5.4.1 PROSHUT Command
To shut down a Progress database server with the PROSHUT command, enter one of the
following:

db-name

Specifies the database the server is running against.

-b

Indicates a batch shutdown will be performed. When no client is connected, the database
automatically shuts down. When one or more clients are connected, PROSHUT prompts
the user to enter “yes” to perform an unconditional batch shutdown and to disconnect all
active users; or “no” to perform a batch shutdown only if there are no active users. The -b
parameter combines the functionality of the -by or -bn parameters.

proshut db-name [-b | -by | -bn | -H host-name | -S service-name
 -F | -Gw
5–12

Starting Up and Shutting Down
-by

Directs the broker to perform an unconditional batch shutdown and to disconnect all active
users.

-bn

Directs the broker to perform a batch shutdown only if there are no active users.

-H host-name

Specifies the machine where the database server runs. You must specify the host name if
you issue the shutdown command from a machine other than the host.

-S service-name

Specifies the database server or broker process service name. A TCP network requires the
-S parameter.

-F

Forces an emergency shutdown. To use this parameter, you must run PROSHUT on the
machine where the server resides, and on UNIX systems. This parameter is not applicable
for remote shutdowns or DataServer shutdowns.

CAUTION: Using -by with -F causes an emergency shutdown.

-Gw

For DataServers, specifies the DataServer broker to shut down.

For complete PROSHUT syntax, see the “PROSHUT Command” section in Chapter 17,
“Startup and Shutdown Commands.”

When you enter the PROSHUT command without the -by, -bn, or -F parameters, the PROSHUT
menu appears:

1 Disconnect a User
2 Unconditional Shutdown
3 Emergency Shutdown (Kill All)
x Exit
5–13

Progress Database Administration Guide and Reference
Table 5–1 lists the PROSHUT menu options and their actions.

If you want to execute the shutdown command noninteractively and avoid the PROSHUT
menu, issue the PROSHUT command using either of the parameters described in Table 5–2.

Table 5–1: PROSHUT Menu Options

Option Action

1 Prompts you for the number of the user you want to disconnect.

2 Stops all users and shuts down the database. If you have a shared-memory
system with multiple users, Progress stops all servers. To stop a specific server
process, use the appropriate operating system command.

3 Prompts you to confirm your choice. If you cancel the choice, you cancel the
shutdown. If you confirm the choice, PROSHUT waits for five seconds before
taking any action, then displays the following message:

Emergency shutdown initiated...

PROSHUT marks the database for abnormal shutdown and signals all
processes to exit. After 10 more seconds, PROSHUT kills all remaining
processes connected to the database, and deletes shared-memory segments and
semaphores. The database is in a crashed state. Progress performs normal crash
recovery when you restart the database and backs out any active transactions.

This option is available only if the database is on the same machine where you
are logged in.

x Cancels the shutdown without taking any action.

Table 5–2: PROSHUT Parameters

Parameter Action

Kill Users (-by) Unconditional batch shutdown; kills all active users.

Proceed If No Users (-bn) Batch shutdown only if there are no active users.
5–14

Starting Up and Shutting Down
In a TCP/IP network, when using the shutdown command from a machine other than the host,
you must use the Host Name (-H) and Service Name (-S) parameters. The Host Name is the
machine where the database server is running. The Service Name is the name of the database
server or broker process, as defined in the /etc/services file on UNIX. For example, the
following command shuts down the sports database from a remote machine in a BSD UNIX
network:

5.4.2 PROMON Shut Down Database Option
You can use the PROMON utility to stop the database or disconnect any subset of users.

Follow these steps to shut down a database using PROMON:

1 ♦ Enter the following PROMON command:

When you start the monitor, the Database Monitor main menu appears:

proshut sports -H host-name -S sports-broker -by

promon db-name

Progress MONITOR
Database: PROGRESS/WRK/sports2000
1. User Control
2. Locking and Waiting Statistics
3. Block Access
4. Record Locking Table
5. Activity
6. Shared Resources
7. Database Status
8. Shut Down Database

T. Transaction Control
L. Resolve Limbo Transactions
C. Coordinator Information

M Modify Defaults
Q. Quit

Enter your selection:
5–15

Progress Database Administration Guide and Reference
2 ♦ Choose option 8, Shut Down Database.

The following figure shows an example of this option’s output:

3 ♦ Choose an option.

If you choose 1 (Disconnect a User), the system prompts you for a user number. Choose
2 (Unconditional Shutdown) to stop all users and shut down the database. If you have
multiple remote-user servers, this stops all the servers.

Enter your selection: 8

Usr PID Time of login Userid tty Limbo?
1 6358 Dec 14 15:10:52 sue /dev/ttyp0 no
4 7007 Dec 14 15:25:09 mary /dev/ttyp5 no

1 Disconnect a User
2 Unconditional Shutdown
3 Emergency Shutdown (Kill All)
4 Exit

Enter choice>
5–16

6
Backup and Recovery Strategies

Backup and recovery strategies work together to restore a database that is lost due to hardware
or software failure. It is important to develop backup and recovery strategies that you can follow
consistently and effectively. This chapter lists the steps needed to develop effective backup and
recovery plans. Specifically, it contains the following sections:

• Identifying Files For Back Up

• Determining the Type Of Backup

• Choosing Backup Media

• Creating a Backup Schedule

• Developing a Recovery Plan

• Recovery Guidelines

Progress Database Administration Guide and Reference
6.1 Identifying Files For Back Up
To correctly back up a Progress database, you must archive all of the files associated with the
database. Files you must back up are:

• Database files (.db, .bn, dn)

These files contain data and recent transaction information. You must back up these files
as a unit; you need all these files to recover a consistent database.

• After-image files (.an)

After-image (AI) files contain information required to reconstruct a database if a database
disk is lost or damaged. You roll forward these files to reprocess all transactions that
occurred since the last backup. Archive each AI file when it is full or when the database is
not in use. You must use an operating system backup utility.

• Event log files (.lg)

Event log (LG) files contain dates and times of important database events. They also
contain messages and other historical information to help you diagnose complex problems
by understanding the circumstances surrounding a failure. Back up these files regularly as
part of the normal system backup procedures. You must use an operating system backup
utility.

• Transaction log files (.tl)

If you use two-phase commit, the transaction log files contain information used to resolve
in-doubt two-phase commit transactions. Back up these files regularly as part of the
database backup procedures. You must use an operating system backup utility.

• Application files and program library files (.pl)

Back up these files regularly as part of database backup procedures. You must use an
operating system backup utility.

If you store database triggers in a program library, you should maintain the library to make
sure it matches the database schema. When you back up the database, PROBKUP backs
up the database schema and any schema references to 4GL triggers, but it does not back
up 4GL trigger code that is referenced in the schema.
6–2

Backup and Recovery Strategies
6.2 Determining the Type Of Backup
It is possible to use either a Progress backup (the PROBKUP utility) or a non-Progress
(Operating System) backup. Which you choose depends upon the needs of your business. Table
6–1 contrasts Progress with non-Progress backups.

To determine whether an online or offline backup should be used, ask:

• Is the database active 24 hours a day, 7 days a week? Is it possible to shut down the
database for backing up?

If the database must run 24 hours a day, 7 days a week, an online backup is necessary. If
it does not, an offline backup can be used.

To determine whether a full or incremental backup is best, ask:

• Does the entire database fit on one volume of backup media? If not, will someone be
present to change volumes during the backup?

If the database fits on one volume or someone is present to change volumes, a full backup
can be performed. If not, consider using incremental backups.

Progress Software recommends that you use the Progress Backup (PROBKUP) utility to
perform database backups for the following reasons:

• PROBKUP automatically backs up all files required to recover a consistent database.

• PROBKUP allows both online and incremental backups, in addition to offline and full
backups.

• PROBKUP allows users access to the database during an online backup.

• PROBKUP automatically marks the database as backed up.

• The Progress Restore (PROREST) utility lets you easily verify backups.

Table 6–1: Backup Options

Progress Non-Progress

Online or Offline Offline Only

Full or Incremental Full Only
6–3

Progress Database Administration Guide and Reference
If you choose not to use PROBKUP, you can use an operating system backup utility, but you
cannot perform online or incremental backups. Table 6–2 lists the backup utilities for various
operating systems.

CAUTION: Backups performed by an operating system utility must be done offline, unless the
PROQUIET utility is used with disk mirroring. Be sure that the backup utility you
choose backs up the entire set of files. Backing up a partial database provides an
invalid result.

NOTE: If you do not use the Progress backup utility and chose to use another mechanism,
Progress Software Corporation recommends that you take great care to ensure that
the other mechanism provides a valid backup. Regardless of the backup method
chosen, perform a complete database restore using PROREST to test all backups and
validate that the database is correct.

A full backup backs up all of the data of a database, including the BI files. You can perform a
full backup using either the PROBKUP utility or an operating system utility. Ideally, you should
perform a full backup of your database every day. However, depending on your recovery plan,
you might decide to do less frequent full backups and more frequent incremental backups, or
use after-imaging.

6.2.1 Incremental Backups
An incremental backup backs up only the data that has changed since the last full or incremental
backup. Incremental backups might take less time and media to back up the database; the
amount of time you can save depends on the speed of your backup device. You must use
PROBKUP to perform an incremental backup.

Table 6–2: Operating System Backup Utilities

Operating
System Backup Utilities

UNIX tar, cpio, or a manufacturer-supplied backup utility

Windows Windows backup or any backup utility that can back up and restore
individual files
6–4

Backup and Recovery Strategies
In a Progress database, the master block and every database block contains a backup counter.
The counter in the master block is incremented each time the database is backed up with an
online, offline, full, or incremental backup. When a database block is modified, Progress copies
the backup counter in the master block to the backup counter in the modified database block.
When you perform an incremental backup, PROBKUP backs up every database block where
the counter is greater than or equal to the master block counter. If you specified the Overlap (-io)
parameter, PROBKUP backs up every database block where the counter is greater than or equal
to the master block counter, less the overlap value you specify. For more information on the -io
parameter, see the “Performing a Progress Backup” section in Chapter 7, “Backing Up a
Database.”

You must perform a full backup of a database before you can perform the first incremental
backup. You should also perform full backups regularly in conjunction with incremental
backups. If you do not perform full backups regularly, you will use large amounts of backup
media and increase recovery time.

6.2.2 Online Backups
An online backup lets you back up the database while it is in use. You must use PROBKUP to
perform online backups. Perform an online backup if the database cannot be taken offline long
enough to perform an offline backup. You can perform both full and incremental online
backups.

When deciding whether to use online backups, consider the following:

• You can perform an online backup if after-imaging is enabled. See Chapter 11,
“After-Imaging,” for more information about after-imaging.

• You cannot perform an online backup on a system running in single-user mode.

• When you perform an online backup of a database, the database engine automatically
switches over to the next AI file. Before you start an online backup, you must make sure
that the next AI file is empty. If the file is not empty, PROBKUP aborts and notifies you
that it cannot switch to the new file. See Chapter 11, “After-Imaging,” for information
about the AIMAGE EXTENT LIST qualifier with the RFUTIL utility.

• The PROQUIET utility allows you to put the database in a quiet state while users are
connected. You can then use backup techniques without shutting down the database.
However, no active use of the database is allowed while the database is quiet. This
approach is useful when split-mirrors are used as a backup technique.
6–5

Progress Database Administration Guide and Reference
• When you begin an online backup, make sure that you properly mount the backup media.
If the media is not properly mounted, the database engine cannot write header information
to it. Until the database engine writes the header information, you cannot update the
database. If you use more than one volume to back up the database, there is a similar delay
each time you switch volumes.

• You cannot use the PROBKUP parameters Scan (-scan) or Estimate (-estimate) for
online backups.

6.2.3 Offline Backups
To perform offline backups, you must first shut down the database. If you perform an offline
backup with an operating system utility on a database while it is running, the backup is invalid.
You can use PROBKUP or an operating system utility to perform offline backups.

For more information, see Chapter 8, “Recovering a Database.”

6.3 Choosing Backup Media
Depending on the operating system, there are many different options available for backup
media. Media available for UNIX and Windows include:

• Disk files (single or multiple)

• Tape cartridges

• Disk cartridges

• Writable compact disks

When choosing backup media, consider the media’s speed, accessibility, location, and capacity
for storage. Table 6–3 lists questions to ask yourself when choosing backup media.

Table 6–3: Backup Media Questions (1 of 2)

To Consider This. . . Ask This. . .

Storage capacity Is the media large enough to contain all the files you
need to back up?

Data transfer speed Is the media fast enough to allow backup of files in a
reasonable time?
6–6

Backup and Recovery Strategies
6.4 Creating a Backup Schedule
The backup schedule is a fundamental part of the recovery plan. It determines how frequently
you must perform backups, assigns responsibility for making backups, and serves as a record of
when backups are performed.

Ideally, you should perform a full backup of the database every day. However, depending on
availability requirements and your recovery plan, a less frequent full backup and frequent
incremental backups might be sufficient. For information on determining availability
requirements and developing a recovery plan, see Chapter 8, “Recovering a Database.”

Several considerations affect the backup schedule:

• Database integrity

• Database size

• Time

• Unscheduled backups

6.4.1 Database Integrity
To preserve database integrity:

• Back up the database frequently.

• Back up the AI files separately from the database backup.

• Use the PROREST verify parameters Partial Verify (-vp) and Full Verify (-vf) to verify
that a backup is valid.

Accessibility Can you use the media at the time you need to run the
backup?

Location Is the device accessed through a network? If so, can the
network handle the large volume of activity generated
during a backup?

Table 6–3: Backup Media Questions (2 of 2)

To Consider This. . . Ask This. . .
6–7

Progress Database Administration Guide and Reference
6.4.2 Database Size
If the database is very large, it might be impractical to fully back up the database daily. You
might choose to back up the database file every other day, or even once a week. Instead of
performing daily full backups, consider performing daily incremental backups or, if you have
after-imaging enabled, only backing up the after-image file.

You can perform daily incremental backups. Incremental backups only back up the blocks that
have changed since the previous backup. You can specify an overlap factor to build redundancy
into each backup and help protect the database. However, you should also perform a full backup
at least once a week to limit the amount of backup media used for incremental backups and to
ease data recovery. See Chapter 7, “Backing Up a Database,” for more information about
incremental backups.

If you enable after-imaging, back up the after-image files every time you perform a backup.
Immediately after performing a full or incremental backup, start a new after-image file. The
after-image file continues to grow until the next time you back up the database and after-image
file. When you back up AI files, you back up whole transactions, but incremental backups back
up just the blocks that have changed. As a result, AI file backups can use more space than
incremental backups.

If you make many database updates and you are on a weekly full backup schedule, it is possible
that the after-image file will grow very large during the week. If so, backup the AI file and start
a new one every day. This daily backup approach keeps the AI file relatively small and ensures
that the AI file is archived on a regular schedule.

NOTE: PROBKUP does not back up AI files. You must use an operating system backup
utility.

6.4.3 Time
When creating a backup schedule, consider both the time required to perform backups and the
time required to recover a database from the backups:

• Performing daily full backups of your system might require too much time. If you make
few updates to the database each day, a daily full backup might be unnecessary. Thus, you
might want to perform daily incremental backups and a weekly full backup. If you have
after-imaging enabled, remember to back up the after-image files for both incremental and
full backups.

• If you perform incremental backups less frequently than once a day, you risk losing
substantial amounts of data. If you perform full backups less than once a week, you must
maintain multiple incremental backups, which makes recovery more complicated and
prone to operator error.
6–8

Backup and Recovery Strategies
• If you enable after-imaging, you can perform daily backups of the after-image file instead
of performing incremental backups. However, recovering from the AI file backups
requires restoring the AI files then rolling forward through multiple after-image files.
Because backing up AI files backs up whole transactions instead of just the blocks that
have changed since the most recent backup, restoring a database from incremental backups
is quicker than restoring AI files and rolling forward the AI files.

6.4.4 Unscheduled Backups
In addition to scheduled backups, you might have to perform additional backups for the
following reasons:

• To run a large job with the No Crash Protection (-i) startup parameter. Before running the
job, back up the database and after-image file.

• To re-establish a valid environment required by the recovery plan.

• As part of the recovery process.

• Before and after any major changes to an application or database.

• When installing a new version of Progress.

6.5 Developing a Recovery Plan
A recovery plan documents how you will recover your system if it fails. When developing a
recovery plan, you must consider every potential failure, from short-term power outages and
disk failures to environmental disasters such as earthquakes.

To develop a database recovery plan, determine the availability requirements for the database
application. Consider the following questions:

• How many transactions can you afford to lose?

• How long can the application be offline while you perform scheduled maintenance, such
as backups?

• If the system or database becomes unavailable, how much time can you spend recovering?

• If you use transactions that affect more than one database, can you allow transactions to
occur inconsistently in those databases?

• How will you test your recovery plan?
6–9

Progress Database Administration Guide and Reference
Use the tables in the following sections to develop a recovery plan. These tables provide a range
of answers to these questions and backup and recovery suggestions for each.

6.5.1 Lost Transactions
The type of recovery mechanisms you use depends on the number of committed transactions
you can afford to lose if the database becomes unavailable. Table 6–4 provides examples.

6.5.2 Duration Of Offline Applications
The type of backup you perform depends on how long you can take the database offline while
you back it up. Table 6–5 provides examples.

Table 6–4: Availability and Transaction Loss

If You Can Lose . . . Then Use . . .

No committed transactions After-imaging

One day of committed transactions Daily backups

One week of committed transactions Weekly backups

Table 6–5: Availability and Backup Time

If the Application Can Be
Offline . . . Then Perform . . .

Never Online backups with after-image files.1

Eight hours per week Weekly offline backups with daily online full or
incremental backups. For daily backups, use
incremental backups to avoid switching tapes during the
backup, or to reduce the amount of time spent
performing the backup.2

Eight hours per day Daily offline backups.

1 After-image files let you switch after-image extents without taking the database offline.
2 The amount of time you save by performing incremental backups depends on the speed of the backup device.
6–10

Backup and Recovery Strategies
6.5.3 Time Needed For Recovery
How you archive and restore data depends on how long you can spend recovering the database
if it becomes unavailable. Table 6–6 provides examples.

You might decide to perform daily backups of the AI files instead of performing incremental
backups. However, backing up the AI files backs up whole transactions, not just the blocks that
have changed since the most recent backup. Therefore, performing and restoring AI file backups
might require more space and time than incremental backups.

Before deciding to back up the AI files every day, consider that recovering the database from
many smaller AI files is more intricate than recovering from few larger AI files.

In addition to the time required to recover the database, you must allow time to repair hardware,
file systems, system disks, and other system components. If you can afford no more than eight
hours to recover your entire system, you should consider using redundant hardware
components, such as mirrored disks, and a high availability system with failover support.

Table 6–6: Availability and Recovery Time

If You Can Spend . . . Then Save Changes In . . .

Four hours recovering A duplicate database on warm standby. Use
roll-forward recovery to keep the standby database
current with the production database.

Eight hours recovering A full backup and one incremental or AI file.

Sixteen hours recovering A full backup and several incremental backups or AI
files.

Twenty-four hours recovering A full backup and any number of incremental or AI
files.
6–11

Progress Database Administration Guide and Reference
6.5.4 Distributed Transactions Occurring Inconsistently
Two-phase commit ensures that distributed transactions (that is, single transactions involving
multiple databases) occur consistently across all databases. Two-phase commit protects against
inconsistencies by making sure that all databases commit the transaction, or that none commit.
Two-phase commit is not necessary for transactions involving a single database. Table 6–7
provides examples.

Table 6–7: Reliability and Two-phase Commit

If the Applications . . . Then . . .

Do not perform distributed transactions Do not implement two-phase commit.

Perform distributed transactions and do not
require consistency across databases

Do not implement two-phase commit.

Perform distributed transactions and require
consistency across databases

Implement two-phase commit.
6–12

Backup and Recovery Strategies
6.6 Recovery Guidelines
Follow these guidelines to ensure a safe recovery:

Always:

• Include step-by-step instructions and checklists in the recovery plan.

• Keep a hard copy of the recovery plan.

• Back up the database on a regular basis.

• Back up the AI files on different media from the database and BI files.

• Label, test, and keep the backups.

Do Not:

• Store a BI file on the same disk as an AI file.

• Erase a DB, BI, or AI file unless you are certain you no longer want the database, or unless
you have a secure, complete backup.

• Copy a database file without also copying the BI files associated with that database.

• Restore a database file without restoring the corresponding BI file.

• Copy a database with an operating system utility while the database is in use without
running PROQUIET.

CAUTION: If you run Progress with the Unreliable Buffered I/O (-r) parameter and the system
fails because of a system crash or power failure, you cannot recover the database.
If you run Progress with the No Crash Protection (-i) parameter and the database
fails for any reason, you cannot recover the database.
6–13

Progress Database Administration Guide and Reference
6–14

7
Backing Up a Database

Backing up your database is an important part of database maintenance. Regular backups
provide a starting point for recovery of a database lost to hardware or software failure. This
chapter contains the following sections:

• Performing a Progress Backup

• Performing an Offline Progress Backup

• Performing an Online Progress Backup

• Using Database Quiet Points

• Performing a Non-Progress Backup

• Database Backup Examples

• Verifying a Backup

• CRC Codes and Redundancy In Backup Recovery

• Restoring a Database

• Database Restore Examples

Progress Database Administration Guide and Reference
7.1 Performing a Progress Backup
Using the Progress Backup utility (PROBKUP) you can perform an online full backup, an
online incremental backup, an offline full backup, or an offline incremental backup. Which you
use is determined by your backup plan. See Chapter 6, “Backup and Recovery Strategies,” to
learn more about creating a backup plan. The syntax below details the parameters to use with
PROBKUP:

online

Performs an online backup.

db-name

Specifies the database you want to back up.

incremental

Performs an incremental backup. If you do not specify this parameter, PROBKUP
performs a full backup. Perform a full backup of a database before performing the first
incremental backup. Following the first incremental backup, you can perform any number
of incremental backups. However, you should perform a full backup at least once a week.

device-name

Identifies a special device (for example, a tape drive) or a standard file. If device-name
identifies a special device, Progress assumes the device has removable media, such as a
tape or a floppy diskette. For Windows NT, use \\.\tape0 for the device name if you are
backing up to a tape drive.

-estimate

Gives a rough estimate of the amount of media required for offline backups.

NOTE: PROBKUP does not perform a backup when the -estimate parameter is used.

probkup[online] db-name [incremental] device-name
 [-estimate
 | -vs n
 | -bf n
 | -verbose
7–2

Backing Up a Database
-vs n

Indicates the volume size in database blocks that can be written to each removable volume.
Before PROBKUP writes each volume, it displays a message that tells you to prepare the
next volume. After writing each volume, a message tells you to remove the volume.

If you use the Volume Size (parameter, the value must be greater than the value of the
Blocking Factor (-bf) parameter. For example, do not specify a zero value with the
Volume Size parameter. See the “UNIX Incremental Backup Example” section for an
example of how to use the Volume Size parameter.

If you do not use the Volume Size parameter, PROBKUP assumes there is no limit and
writes the backup until completion or until the volume is full. When the volume is full,
PROBKUP prompts you for the next volume.

-bf n

Improves the transfer speed to tape-backup devices by specifying that the data is
transferred in amounts optimal for the particular backup device. It indicates the blocking
factor for blocking data output to the backup device. The blocking factor specifies how
many blocks of data are buffered before being transferred to the backup device. NT uses
a variable block size up to 4K. For all other operating systems, each block is the size of
one disk block (1K on UNIX). The default for the blocking factor parameter is 34.

-verbose

Directs the PROBKUP utility to display information during the backup. If you specify the
Verbose parameter, PROBKUP displays “Backed up n blocks in hh:mm:ss” every 10
seconds. If you do not specify the Verbose parameter, the message appears only once
when the backup is complete.

For more information, see the description of the PROBKUP utility in Chapter 19, “Database
Administration Utilities.”

7.1.1 Performing an Online Full Backup With PROBKUP
To perform an online, full backup, run PROBKUP from the operating system prompt using the
following command syntax:

probkup online db-name device-name [parameters]
7–3

Progress Database Administration Guide and Reference
UNIX Full Backup Example

The database administrator of Company X’s development department performs a full backup of
the devel.db database every Friday on 9-track tapes.

Company X’s DBA prepares the backup media according to the operating system
documentation, then follows these steps to perform a full online backup of the devel.db:

1 ♦ Verify that the database is not in use by entering the following command:

2 ♦ Enter the following command to perform a full online database backup:

These are the parameters for the commands:

devel

Identifies the name of the database you are backing up.

online

Specifies that the backup is an online backup.

/dev/rrm/0m

Specifies the output destination is a tape drive, /dev/rrm/0m.

-vs 35

Indicates that the volume size in database blocks is 35. If you do not specify the
volume size, Progress fills the entire tape before prompting you for a new tape.

-bf 20

Specifies that the blocking factor is 20.

-verbose

Displays information at 10-second intervals during the installation.

proutil devel -C BUSY

probkup online devel /dev/rrm/0m -vs 35 -bf 20 -verbose
7–4

Backing Up a Database
As the full offline backup of devel.db begins, the following report appears:

The number of backup blocks is the number of -bf units written to the tape. Backup blocks
contain data, primary recovery, and error-correction blocks.

This example backs up a very small database. Using the -red parameter on a larger
database increases the amount of time and backup media required for the backup. Also,
PROBKUP displays the number of blocks and the amount of backup required for an
uncompressed database because you cannot specify the -scan parameter for an online
backup.

3 ♦ If you enable after-imaging, back up the AI files to a separate tape or disk using a UNIX
backup utility.

7.1.2 Progress Backup Options
By default, PROBKUP performs a full backup. To perform an incremental backup, specify the
incremental qualifier:

online

Performs an online backup.

db-name

Specifies the database you want to back up.

64 bi blocks will be dumped.
336 out of 336 blocks in devel will be dumped.
This will require 369664 bytes of backup media.
This backup will require a minimum of 400 blocks to restore.
1 volume will be required.
Backed up 400 blocks in 00:00:05.
Wrote a total of 18 backup blocks using 369664
bytes of media.
Backup complete.

probkup online db-name incremental device-name [parameters]
7–5

Progress Database Administration Guide and Reference
incremental

Performs an incremental backup. If you do not specify this parameter, PROBKUP
performs a full backup. Perform a full backup of a database before performing the first
incremental backup. Following the first incremental backup, you can perform any number
of incremental backups. However, you should perform a full backup at least once a week.

device-name

Identifies a special device (for example, a tape drive) or a standard file. If device-name
identifies a special device, Progress assumes the device has removable media, such as a
tape or a floppy diskette. For Windows NT, use \\.\tape0 for the device name if you are
backing up to a tape drive.

parameters

For a complete list of PROBKUP parameters and more detailed information, see the
description of the PROBKUP utility in Chapter 19, “Database Administration Utilities.”

7.1.3 Testing Backups
Test backups regularly to ensure they are valid and available when you need them. Be sure to
test the backup before you need it to restore a database. Ideally, you should test the backup
immediately after you perform it. Then, if there are problems with the backup, you can make
another backup copy. If you wait until you need the backup to test it, the database will no longer
be available.
7–6

Backing Up a Database
Table 7–1 lists the Progress Restore (PROREST) utility parameters you can use to test backups
performed with PROBKUP.

The Partial Verify and Full Verify parameters do not restore or alter the database.

For more information, see the description of the PROREST utility in Chapter 19, “Database
Administration Utilities.”

If you use an operating system utility to back up the database, with each backup, verify that you
have backed up the entire database. The PROBKUP utility automatically backs up the
appropriate files; with an operating system utility, you must make sure the files are included in
the backup.

Table 7–1: PROREST Utility Verification Parameters

Parameter Description

-vp Specifies that the restore utility read the backup volumes, and
compute and compare the backup block cyclic redundancy
checks (CRCs) with those in the block headers. To recover any
data from a bad block, you must have specified a redundancy
factor when you performed the database backup. See the “CRC
Codes and Redundancy In Backup Recovery” section for more
information about error correction blocks and data recovery.

You can use the Partial Verify parameter with both online and
offline backups.

-vf Specifies that the PROREST utility will compare the backup
block-for-block to the database.
7–7

Progress Database Administration Guide and Reference
7.1.4 Archiving Backups
Properly archiving backups helps you ensure database integrity. Follow these guidelines when
archiving backups:

• Clearly label each backup volume. Information on the label should include:

– The type of backup (incremental or full, online or offline)

– The date and time of the backup

– The full pathname of the database

– The volume number and total number of volumes of the media (volume 1 of 4, for
example)

– The initials of the person who performed the backup

– The exact command used to back up the database

• Keep a minimum of 10 generations of full backups. Keep daily backups for at least two
weeks, weekly backups for at least two months, and monthly backups for a year. Buying
extra tapes is much less expensive than manually reconstructing lost databases.

• Keep backups in an area other than where the computer is located, preferably in another
building. In the event of building damage, you are less likely to lose both the online and
backup versions of the database.
7–8

Backing Up a Database
7.2 Performing an Offline Progress Backup
You can perform both full and incremental backups offline. You must perform a full backup
before performing an incremental backup. Following the first full backup, you can perform any
number of incremental backups. However, you should perform a full backup at least once a
week.

Follow these steps to perform an offline backup, either full or incremental:

1 ♦ Verify that the database is not in use.

If you are performing an offline backup, the database must not be in use. The server must
be shut down and no single-user session can be active. PROBKUP does not allow access
to the database during a full offline backup.

On UNIX systems that support file locking and where backup utilities (for example, cpio)
honor file locks, an attempt to back up a database in use causes the utility to hang, waiting
for the Progress session to end. On all other systems, there is no way to prevent you from
backing up a database in use.

Use the PROUTIL BUSY utility to determine whether the database is in use:

The BUSY qualifier returns a code indicating whether the database is in use. You can use
the codes returned by the BUSY qualifier in scripts, files, or procedures. For more
information about this qualifier, see the description of the PROUTIL utility in Chapter 19,
“Database Administration Utilities.”

2 ♦ Shut down the database server.

Before you back up the database, you must shut down the database server. See Chapter 5,
“Starting Up and Shutting Down,” for information about shutting down the database
server.

3 ♦ Perform the offline backup.

Use PROBKUP to perform either a full or incremental offline backup. Run PROBKUP
from the operating system prompt:

proutil db-name -C busy

probkup db-name device-name [parameters]
7–9

Progress Database Administration Guide and Reference
For more information about this qualifier, see the description of PROBKUP parameters
listed earlier in this chapter, or see the description of the PROUTIL utility in Chapter 19,
“Database Administration Utilities.”

By default, PROBKUP performs a full backup. To perform an incremental backup,
specify the incremental qualifier.

As you begin the full backup of a database, a report appears on your terminal that indicates
how many:

• Bytes are required on the backup media

• Active data blocks are written to the backup media

• Blocks are dumped

• Blocks are required to restore the database

When the backup successfully completes, the report displays the total number of bytes on
the backup media and how long it took to complete the backup.

NOTE: If a system failure occurs while you are performing the full backup, perform the
backup again.

7.3 Performing an Online Progress Backup
Use PROBKUP to perform either a full or incremental online backup. Run PROBKUP from the
operating system prompt. Use the following command syntax:

By default, PROBKUP performs a full backup. To perform an incremental backup, specify the
incremental qualifier:

probkup online db-name device-name [parameters]

probkup online db-name incremental device-name [parameters]
7–10

Backing Up a Database
7.4 Using Database Quiet Points
If you use OS disk mirroring to provide data redundancy as part of your backup and recovery
strategy, you can use database quiet points to maintain database consistency during an OS
mirror fracture or split operation on an active online database.

Follow these steps to maintain database consistency during an OS mirror fracture or split
operation on an active online database:

1 ♦ Use the PROQUIET command to enable a database quiet point:

dbname specifies the name of the database for which you are enabling a database quiet
processing point.

NOTE: For more information on and the complete syntax for the PROQUIET command,
see Chapter 17, “Startup and Shutdown Commands.”

During a database quiet processing point all file write activity to the database is stopped.
Any processes that attempt to start a transaction while the quiet point is enabled must wait
until you disable the database quiet processing point.

2 ♦ Use an operating system utility to perform the OS mirror fracture or split operation.

Upon successful completion of this command, the fractured disk contains a duplicate of
the active online database.

3 ♦ Use the PROQUIET command to disable the database quiet point:

dbname specifies the name of the database for which you are disabling the database quiet
processing point.

For more information on, and the complete syntax for, PROQUIET, see Chapter 17,
“Startup and Shutdown Commands.”

4 ♦ Update the structure description (.st) file of the fractured version of the database. Replace
the logical location reference (which still references the active database) with the physical
location reference of the fractured mirror.

proquiet dbname enable

proquiet dbname disable
7–11

Progress Database Administration Guide and Reference
5 ♦ Use the PROSTRCT utility with the REPAIR qualifier to update the shared memory and
semaphore identification information to reflect the offline status of the fractured version
of the database, and to update the file list information for a database with the information
in the updated .st file:

dbname

Specifies the name of the database for which you are repairing the extent list and
master block.

description-file

Specifies the name of the structure description (.st) file.

6 ♦ Use the PROBKUP utility with the -norecover startup parameter to back up the fractured
version of the database:

dbname

Specifies the name of the fractured version of the database.

NOTE: The -norecover parameter prevents Progress from performing crash recovery or
switching to a new AI extent as part of the backup process. Use of the -norecover
parameter is noted as an entry in the .lg file.

prostrct repair dbname [description-file]

probkup dbname -norecover
7–12

Backing Up a Database
7.5 Performing a Non-Progress Backup
When performing a backup using an operating system utility instead of the Progress Backup
utility, you must perform the following extra steps:

• Be sure to back up all the proper files. For a list of files to back up, see the “Identifying
Files For Back Up” section in Chapter 6, “Backup and Recovery Strategies.”

• Make sure that the database is not used during the backup. Otherwise, the backup will be
invalid. You can do this either by using the PROQUIET command to create a database
quiet point or by shutting down the server and making any single-user session inactive.

• After you perform and verify the backup, mark the database as backed up.

Follow these steps:

1 ♦ Shut down the database server.

Before you back up the database, you must shut down the database server. See Chapter 5,
“Starting Up and Shutting Down,” for information about shutting down the database.

2 ♦ Verify that the database is not in use.

Use the PROUTIL BUSY utility to determine whether the database is in use:

The BUSY qualifier returns a code indicating whether the database is in use. You can use
the codes returned by the BUSY qualifier in scripts, files, or procedures. For detailed
information, see the description of the PROUTIL BUSY utility in Chapter 19, “Database
Administration Utilities.”

3 ♦ Make a note of the last entry in the log file. You will use this information later to verify
that the database is not used during the backup.

4 ♦ Back up the database.

Use an operating system backup utility to back up the database files. Table 6–2 in Chapter
6, “Backup and Recovery Strategies,” lists the backup options available for each operating
system. Ensure that your backup technique backs up the entire file. On many UNIX
systems, certain utilities (for example, cpio) back up only the first part of files that are
larger than a specified size (controlled by the ULIMIT parameter). Backups of only the
first portion of a database file are of no value.

proutil dbname -C busy
7–13

Progress Database Administration Guide and Reference
5 ♦ Verify that the backup is valid.

First, compare the last entry in the log file against the entry you noted in Step 3. If an entry
has been added to the log file since you checked in Step 3, the database might have been
used. If the database was used during the backup, then the backup is invalid. You must
perform another backup.

Second, verify that you have backed up the entire database. The PROBKUP utility
automatically backs up the proper files; with an operating system utility, you must make
sure the proper files are included in the backup.

6 ♦ Mark the database as backed up.

After you have verified the backup, use the RFUTIL MARK BACKEDUP utility to mark
the database as backed up:

For more information, see the description of the RFUTIL utility in Chapter 19, “Database
Administration Utilities.”

7.6 Database Backup Examples
This section includes examples of how to use PROBKUP to perform database backups on
UNIX and Windows.

7.6.1 UNIX Incremental Backup Example
This example shows how to use all of the possible incremental backup parameters.

Follow these steps to perform an incremental offline backup of the devel.db database. To
perform an online backup, skip Steps 2 through 4:

1 ♦ Prepare the backup media according to the operating system documentation.

2 ♦ Verify that the database is not in use by entering the following command:

rfutil dbname -C mark backedup

proutil devel -C BUSY
7–14

Backing Up a Database
3 ♦ Shut down the devel.db database by using the PROSHUT command:

4 ♦ Run PROBKUP -estimate to determine how much media is necessary for the backup:

5 ♦ Enter the following command to perform an incremental offline database backup:

Enter the following command to perform an incremental online database backup:

These are the parameters for the commands:

devel

Identifies the name of the database you are backing up.

online

Specifies that the backup is an online backup.

/dev/rrm/0m

Specifies the output destination is a tape drive, /dev/rrm/0m.

CAUTION: Do not use the same reel of tape that was used for the full backup.

incremental

Specifies that the backup is an incremental backup.

proshut devel

probkup devel incremental /dev/null -estimate

probkup devel /dev/rrm/0m incremental -vs 4000 -bf 20
-verbose -io 1 -com -red 5 -scan

probkup online devel /dev/rrm/0m incremental -vs 35
-bf 20 -verbose -io 1 -com -red 5
7–15

Progress Database Administration Guide and Reference
-vs 35

Indicates that the volume size in database blocks is 35. If you do not specify the
volume size, PROBKUP fills the entire tape before prompting you for a new tape.

-bf 20

Specifies that the blocking factor is 20.

-verbose

Displays information at 10-second intervals during the installation.

-io 1

Specifies that you can lose one incremental backup and still be able to restore the
database. Specifies that all blocks that have changed since the backup before the last
backup should be archived.

-com

Indicates that the data should be compressed before it is written to the tape drive. If
you specify the -com parameter and do not use -scan, PROBKUP displays the
number of blocks and the amount of backup media required for an uncompressed
database.

-red 5

Specifies that Progress creates one error-correction block for every five blocks that
are backed up.

-scan

Allows the backup utility to scan the database before backing it up to determine the
number of blocks to be backed up.

As the incremental offline backup of devel.db executes, the following report appears:

64 bi blocks will be dumped.
13 out of 336 blocks in devel will be dumped.
This will require 103424 bytes of backup media.
This backup will require a minimum of 400 blocks to restore.
1 volume will be required.
Backed up 77 blocks in 00:00:01.
Wrote a total of 5 backup blocks using 103424 bytes of media.
Backup complete.
7–16

Backing Up a Database
The number of backup blocks is the number of -bf units written to the tape. Backup blocks
contain data, BI, and error-correction blocks.

This example backs up a very small database. Using the -red parameter on a larger
database increases the amount of time and backup media required for the backup.

As the incremental online backup of devel.db executes, the following report appears:

6 ♦ If you have after-imaging enabled, back up the AI files to a separate tape or disk using a
backup utility.

7.6.2 Windows Full Backup Example
The database administrator of Company X’s development department performs a full backup of
the devel.db every Friday, and incremental backups on other weekdays. Both full and
incremental backups are done on disk and on a single disk file.

This example shows how to use several of the full backup parameters. Because Windows limits
you to nine tokens per command, you cannot use all the parameters with the PROBKUP
command. If you want to use all the available parameters, you must run the backup in a
procedure file.

When choosing the parameters, consider that the backup takes significantly longer when you
use the -com or -red parameters. If you use the -red parameter, the backup also uses more
backup media.

Follow these steps to perform an incremental offline backup of the devel.db database. To
perform an online backup, skip Steps 2 through 4:

1 ♦ Prepare the backup diskettes according to the operating system documentation.

2 ♦ Verify that the database is not in use by entering the following command:

Incremental backup started.
Backed up 70 blocks in 00:00:01.
Wrote a total of 3 backup blocks using 103424 bytes of media.
Backup complete.

proutil devel -C BUSY
7–17

Progress Database Administration Guide and Reference
3 ♦ Shut down the devel.db database by entering the following command:

4 ♦ Run PROBKUP -estimate to determine how much media is necessary for the backup,
since this is the first time you are making a backup of the database:

The following message tells you about the state of your system, and how much media is
necessary for backup:

5 ♦ Enter the following command to perform a full offline database backup:

Enter the following command to perform a full online database backup:

NOTE: You cannot use the -scan parameter for online backups.

These are the parameters for the commands:

devel

Identifies the name of the database you are backing up.

online

Specifies that the backup is an online backup.

proshut devel

probkup devel a:\devback -com -red 5 -scan -estimate

devel requires a total of 338 blocks of full backup media.
devel requires a total of 3 blocks of incremental backup media.
devel requires a total of 14 blocks of incremental backup media

with one overlap.
Total number of allocated blocks = 336
Total number of allocated blocks that are free: 2
Total number of allocated blocks that are used: 334

probkup devel a:\devback -vs 708 -verbose -com -red 5 -scan

probkup online devel a:\devback -verbose -com -red 5
7–18

Backing Up a Database
a:\devback

Specifies the output destination is a file, \devback, on the a: drive.

-verbose

Tells Progress to display information at 10-second intervals during the installation.

-com

Indicates that the data should be compressed before it is written to the disk drive. If
you specify the -com parameter and do not use -scan, PROBKUP displays the
number of blocks and the amount of backup required for an uncompressed database.

-red 5

Creates one error-correction block for every five blocks that are backed up.

-scan

Allows the backup utility to scan the database before backing it up to determine the
number of blocks to be backed up.

As the full offline backup of devel.db executes, the following report appears:

As the full online backup of devel.db executes, the following report appears:

64 bi blocks will be dumped.
336 out of 336 blocks in devel will be dumped.
This will require 369664 bytes of backup media.
This backup will require a minimum of 400 blocks to restore.
1 volume will be required.
Backed up 400 blocks in 00:00:04.
Wrote a total of 12 backup blocks using 369664 bytes of media.
Backup complete.

64 bi blocks will be dumped.
336 out of 336 blocks in devel will be dumped.
This will require 369664 bytes of backup media.
This backup will require a minimum of 400 blocks to restore.
Backed up 400 blocks in 00:00:04.
Wrote a total of 12 backup blocks using 369664 bytes of media.
Backup complete.
7–19

Progress Database Administration Guide and Reference
The number of backup blocks is the number of -bf units written to the tape. Backup blocks
contain data, primary recovery (BI), and error-correction blocks.

This example backs up a very small database. Using the -red parameter on a larger
database increases the amount of time and backup media required for the backup.

6 ♦ If you have after-imaging enabled, back up the AI files onto a separate disk using a
separate operating system backup utility.

7.6.3 Incremental Backup Example
This example shows how to use several of the incremental backup parameters. Because
Windows limits you to nine tokens per command, you cannot use all the parameters with the
PROBKUP command. If you want to use all the available parameters, run the backup in a
procedure file.

When choosing the parameters, consider that the backup takes significantly longer when you
use the -com or -red parameters. If you use the -red parameter, the backup also uses more
backup media.

Follow these steps to perform an incremental offline backup of the devel.db database. To
perform an online backup, skip Steps 2 through 4:

1 ♦ Prepare the backup diskettes according to the operating system documentation.

2 ♦ Verify that the database is not in use by entering the following command:

3 ♦ Shut down the devel.db database by entering the following command:

4 ♦ Run PROBKUP -estimate to determine how much media is necessary for the backup:

proutil devel -C BUSY

proshut devel

probkup devel -estimate
7–20

Backing Up a Database
5 ♦ Enter the following command to perform an incremental offline database backup:

Enter the following command to perform an incremental online database backup:

NOTE: You cannot use the -scan parameter for online backups.

These are the arguments and parameters for the commands:

devel

Identifies the name of the database you are backing up.

online

Specifies that the backup is an online backup.

a:\devback

Specifies the output destination is a file, \devback, on the a: drive.

incremental

Specifies that the backup is an incremental backup.

-bf 20

Specifies that the blocking factor is 20 to match the blocking factor of the disk drive.

-io 1

Specifies that you can lose one incremental backup and still be able to restore the
database.

-com

Indicates that the data should be compressed before it is written to the disk drive. If
you specify the -com parameter and do not use -scan, PROBKUP displays the
number of blocks and the amount of backup required for an uncompressed database.

probkup devel d:\devback1 incremental -bf 20 -io 1

probkup online devel d:\devback1 incremental -io 1 -com
7–21

Progress Database Administration Guide and Reference
As the incremental offline backup of devel.db executes, the following report appears:

Because you did not specify the -scan parameter, Progress does not scan the database
before beginning the backup, and therefore cannot determine how many blocks will be
backed up. The number of backup blocks is the number of -bf units written to the tape.
Backup blocks contain data, primary recovery (BI), and error-correction blocks.

As the incremental online backup of devel.db executes, the following report appears:

6 ♦ If you have after-imaging enabled, back up the AI files to a separate disk using a separate
operating system backup utility.

The bi file requires a total of 64 blocks of backup media.
sales requires an unknown amount of blocks for backup media.
An unknown number of volumes are required.
Backed up 77 blocks in 00:00:01.
Wrote a total of 4 backup blocks using 82944 bytes of media.
Backup complete.

Incremental backup started.
Backed up 70 blocks in 00:00:01.
Wrote a total of 3 backup blocks using 103424 bytes of media.
Backup complete.
7–22

Backing Up a Database
7.7 Verifying a Backup
Immediately after backing up the database, verify that the backup does not contain any
corrupted blocks. Use the Progress Restore utility to verify the integrity of a full or incremental
backup of a database as follows:

• Run the Progress Restore utility with the Partial Verify (-vp) parameter. With this
parameter, Progress checks the backup for bad blocks and reports whether any exist.

• Run the Progress Restore utility with the Full Verify (-vf) parameter. With this parameter,
Progress compares the backup to the database block-for-block.

These parameters do not actually restore the database. They only verify the status of the backup,
notify you if there are any bad blocks, and report whether the blocks are recoverable. You must
run the restore utility again (without the partial or full verify parameters) to restore the database.

When you use the -vp parameter, PROREST scans the backup and recalculates the CRC code
for each block. It then compares the newly calculated CRC code with the CRC code stored in
the block header. If the codes do not match, Progress marks the block as bad and displays the
following message:

If the backup contains error-correction blocks and a redundancy set contains only one bad block,
PROBKUP uses the error-correction block (and the other blocks in the redundancy set) to
re-create the bad block. The error-correction block is the EXCLUSIVE OR of the backup blocks
in the redundancy set. When Progress recovers the block, the following message appears:

If the redundancy set contains more than one bad block or if the backup does not include
error-correction blocks, Progress cannot recover the bad block and displays the following
message:

CRC check failed reading backup block n

Recovered backup block n

n CRC error within recovery group - recovery impossible
7–23

Progress Database Administration Guide and Reference
Progress also cannot recover a corrupted block if the error-correction block itself has a CRC
check failure. In this case, the following message appears:

If Progress encounters 10 unrecoverable errors during the verify pass or during the database
restore, you can terminate the verify operation:

7.8 CRC Codes and Redundancy In Backup Recovery
To recover corrupted backup blocks, Progress relies on:

• CRC codes to identify bad blocks. A CRC code is automatically calculated for each
Progress backup block whether or not you specify a redundancy factor.

• Error-correction blocks to recover bad blocks. Error-correction blocks are included in the
backup only if you explicitly request them with the -red parameter of the backup utility.

7.8.1 CRC Codes
When Progress writes a block of data to the backup media, it calculates a CRC code based on
the contents of the block and stores it with the block. When restoring, Progress reexamines the
contents of the block and verifies that they are consistent with the accompanying CRC code. If
the block contents are not consistent with the CRC code, the backup block is corrupted.

If the backup includes error-correction blocks, Progress automatically uses the information in
those blocks to recover the corrupted block. If the backup does not include error-correction
blocks, Progress cannot recover the corrupted block when you restore the database.

Unable to recover previous block in error

10 read errors have occurred.
Do you want to continue? [y/n]
7–24

Backing Up a Database
7.8.2 Error-correction Blocks
Error-correction blocks contain information about the preceeding set of backup blocks and
allow Progress to recover corrupted blocks in a backup. The error-correction block and the
blocks it is based on are called a redundancy set. You can provide error-correction blocks in the
backup by specifying the -red parameter in the backup command.

The -red parameter specifies a redundancy factor. The redundancy factor determines how many
backup blocks are in each redundancy set. For example, if you specify a redundancy factor of
2, Progress creates an error-correction block for every two backup blocks. Therefore, every
redundancy set contains two backup blocks and an error-correction block.

Progress can recover a bad backup block if it is the only corrupted block in the redundancy set.
If a redundancy set contains more than one bad backup block or a bad backup block and a bad
error-correction block, Progress cannot recover any of the bad blocks in the redundancy set.

If you specify a very low redundancy factor (for example, 2), the chance of having two or more
bad database blocks in a redundancy set is low. If you specify a higher redundancy factor, the
chances are higher. However, lower redundancy values also produce larger backups that require
more time and media. If the backup media is highly reliable, you might use a high redundancy
factor; if the media is less reliable, you might want to specify a lower redundancy factor.

The size of each backup block—and therefore of each error-correction block—is determined by
the -bf parameter. The default blocking factor is 34. For example, if the database block is 1,024
bytes and the blocking factor is 40, each backup block is 40K; that is, the size of 40 database
blocks.

7.9 Restoring a Database
In the event of database loss or corruption, you can restore the database from a backup. You
must restore a database with the same version of Progress that you used to create the backup.
For example, you cannot restore backups created with Version 6 with the Version 7 Restore
utility. Nor can you back up a Version 6 database with the Version 7 backup utility.

This section describes:

• How to use the PROREST utility to restore a database

• Important rules for restoring backups

• Operating-system-specific examples of database restores
7–25

Progress Database Administration Guide and Reference
7.9.1 Using the PROREST Utility To Restore a Database
Use the PROREST utility to restore a full or incremental backup of a database:

dbname

Specifies the name of the database where you want to restore the backups.

device-name

Identifies the directory pathname of the input device or standard file from which you are
restoring the data.

-list

Provides a description of all application data storage areas contained within a database
backup. Use the information to create a new structure description file and database so you
can restore the backup. For additional information, see the “Obtaining Storage Area
Descriptions Using PROREST” section later in this chapter.

-vp

Specifies that the restore utility reads the backup volumes and computes and compares the
backup block cyclical redundancy checks (CRCs) with those in the block headers.

To recover any data from a bad block, you must have specified a redundancy factor when
you performed the database backup. See the “Error-correction Blocks” section for more
information about error-correction blocks and data recovery.

-vf

Specifies that the restore utility compares the backup to the database block-for-block. Do
not compare the backup to a database that is in use.

NOTE: When you specify the -vp or -vf parameter, PROREST does not actually restore the
database. You must restore the database in a separate step.

The first time you start the database after restoring an online backup, Progress runs normal crash
recovery to make sure that any uncompleted transactions at the time of the backup are discarded.

When you restore a full database backup, consider restoring the backup to a new database. This
allows you access to the corrupted database, if necessary. You must restore an incremental
database backup to a restored database.

prorest dbname device-name {-list | -vp | -vf}
7–26

Backing Up a Database
If PROREST encounters corrupted backup blocks that it is unable to recover, you lose the data
in the corrupted blocks. The amount of lost data is approximately equal to the number of bad
blocks multiplied by the blocking factor.

As you begin the restore procedure for a database, a report appears that indicates the date of the
backup and the number of blocks required to restore the database.

7.9.2 Important Rules For Restoring Backups
There are several important rules you must follow when you are restoring an incremental
backup:

• If you restore over an existing database, verify the tapes before doing the restore. If the
existing database is the only copy, back up the existing database before doing the restore.

• Restore a backup with the same Progress version that you used to perform the backup.

• You must restore an incremental database backup to an existing database.

• Create the void database before you restore the backup, or else use the existing structure,
overwriting it.

• You must restore a database in the same order that you backed it up. You must first restore
the full backup, followed by the first incremental backup, followed by the second
incremental backup, etc. If you try to restore a database out of sequence, you get an error
message and the restore operation fails.

• If you lose the second incremental and you used an overlap factor of 1, the third
incremental correctly restores the data lost in the second incremental.

• After you restore a full backup, do not use the database if you want to restore successive
incremental backups. If you make any database changes before completely restoring all
backups, any successive, incremental backups (that were not restored) are rejected unless
you restart the restore procedure beginning with the full backup.

• If a system failure occurs while you are restoring the database, restart the restore operation
beginning with the backup volume that you were restoring at the time of the system failure.

• If a target database exists, it must have the same block size and storage area configuration
as the source database. The PROREST utility attempts to expand storage areas to allow a
complete restore, but if the storage areas cannot expand, the restore fails.
7–27

Progress Database Administration Guide and Reference
7.9.3 Obtaining Storage Area Descriptions Using PROREST
Use the PROREST utility with the -list parameter to obtain a description of the application
data storage areas within a database backup:

The following example shows the output from the prorest -list command:

Use this information to create a new structure description file and database so you can restore
the backup.

prorest db-name device-name -list

PROGRESS version 9. as of Thu Jan 19 2000

Area Name: Schema Area
Size: 7168, Records/Block: 32, Area Number: 6

Area Name: Employee
Size: 2784, Records/Block: 32, Area Number: 7

Area Name: Inventory
Size: 9952, Records/Block: 32, Area Number: 8

Area Name: Cust_Data
Size: 2784, Records/Block: 32, Area Number: 9

Area Name: Cust_Index
Size: 2784, Records/Block: 32, Area Number: 10

Area Name: Order
Size: 20960, Records/Block: 32, Area Number: 11

Area Name: Misc
Size: 2784, Records/Block: 32, Area Number: 12
7–28

Backing Up a Database
7.9.4 Database Restore Examples
This section includes examples of database restores using PROREST for UNIX and Windows.

UNIX Full Backup Restore Example

The database administrator of Company X’s Development department wants to restore the
devel.db database that was previously backed up.

Follow these steps to restore the devel.db database to a new database from a full backup:

1 ♦ Enter the following command:

The newdev.db database is an empty database. The 9-track tape drive (/dev/rrm/0m)
specifies the device from which the full backup is being restored. As the restore begins,
the following report appears:

This command restores the database devel.db from a tape to newdev.db. The report
indicates that volume 1 is being processed.

2 ♦ Use newdev.db with Progress once the restore is complete.

UNIX Incremental Backup Restore Example

If you want to restore an incremental backup of the devel.db database to a new database, you
must first restore a full backup, then follow these steps:

1 ♦ Enter the following command to run an incremental restore of the database from a tape
once the full restore is done:

prorest newdev /dev/rrm/0m

This is a full backup of /usr1/develop/devel.db. (6759)
This backup was taken Wed Nov 18 15:34:43 1999. (6760)
The blocksize is 1024. (6990)
It will require a minimum of 3065 blocks to restore. (6763)
Read 41 blocks in 00:00:02

prorest newdev /dev/rrm/0m
7–29

Progress Database Administration Guide and Reference
The following report appears as the restore begins:

2 ♦ Once the restore is complete, use newdev.db with Progress.

Windows Full Backup Restore Example

The database administrator of Company X’s development department wants to restore the
devel.db database.

Follow these steps to restore the devel.db database to a new database from a full backup:

1 ♦ Enter the following command:

The newdev.db database is an empty database. The name of the device is d: and \devback
specifies the file from which the full backup is being restored. As the restore begins, the
following report appears:

This command restores the database devel.db from a diskette to newdev.db. The report
indicates that volume 1 is being processed.

2 ♦ Once the restore is complete, use newdev.db with Progress.

This is an incremental backup of /usr1/develop/devel.db. (6759)
This backup was taken Wed Nov 18 15:41:47 1999. (6760)
The blocksize is 1024. (6990)
It is based on the full backup of Wed Nov 18 15:34:43 1999. (6761)
It will require a minimum of 3065 blocks to restore. (6763)
Read 41 blocks in 00:00:00

prorest newdev d:\devback

This is a full backup of d:\deve1.db. (6759)
This backup was taken Wed Nov 18 15:56:28 1999. (6760)
The blocksize is 4096. (6994)
It will require a minimum of 1337 blocks to restore. (6763)
Read 1274 blocks in 00:00:02
7–30

Backing Up a Database
Windows Incremental Backup Restore Example

If you want to restore an incremental backup of the devel.db database to a new database, you
must first restore a full backup, then follow these steps:

1 ♦ Enter the following command to run an incremental restore of the database from a tape
once the full restore is complete:

The newdev.db database is an empty database. The name of the device is a: and \devback
specifies the file from which the full backup is being restored. As the restore begins, the
following report appears:

2 ♦ Once the restore is complete, use newdev.db with Progress.

prorest newdev e:\devback1

This is an incremental backup of D:\deve1.db. (6759)
This backup was taken Wed Nov 18 15:56:28 1999. (6760)
The blocksize is 4096. (6994)
It is based on the full backup of Wed Nov 18 15:56:28 1999 (6761)
It will require a minimum of 1337 blocks to restore. (6763)
Read 1274 blocks in 00:00:02
7–31

Progress Database Administration Guide and Reference
7–32

8
Recovering a Database

This chapter describes the different ways to recover your Progress database and transactions if
your system or disks fail.

Specifically, this chapter contains the following sections:

• Introduction To Recovery Mechanisms

• File Locations That Ensure Safe Recovery

• Sample Recovery Plans

• After-imaging and Roll-forward Recovery Commands

• Recovering From System Failures

• Recovering From Media Failures

• Recovering From a Full Disk

• Truncating the BI File

• Recovering From a Crash

• Recovering From a Lost Or Damaged Control Area

• Unlocking Damaged Databases

• Dumping Tables From a Damaged Database

• Forcing Access To a Damaged Database With the -F Parameter

Progress Database Administration Guide and Reference
8.1 Introduction To Recovery Mechanisms
The Progress Version 9 database has three kinds of recovery mechanisms:

• Crash recovery — Uses primary recovery (BI) data to recover from system failures

• Roll-forward recovery — Uses backups and after-image data to recover from media
failures

• Two-phase commit — Ensures that transactions occur consistently across multiple
databases

Depending on your site requirements, you might choose not to implement all three of these
recovery mechanisms. Figure 8–1 shows the order of precedence of these mechanisms. Crash
recovery requires use of a recovery (BI) log and occurs without any interaction. Roll-forward
recovery requires use of an after-image (AI) log. Two-phase commit requires use of a
transaction log (TL). If you use two-phase commit, be sure to also use after-imaging.

Figure 8–1: Progress Recovery Mechanisms

Each mechanism relies on notes that are written to a file to record database changes. A note is
a record of the smallest unit of change in a database. For example, a record of one change made
to one block in the database. The database engine automatically records database changes as
notes in the primary recovery (BI) log. If after-imaging is enabled, it also records notes to the
after-image (AI) log. If two-phase commit is enabled, it also records transactions and notes to
the transaction log (TL).

With transactions involving multiple
databases, ensures that transactions
complete on all databases, or none at
all.

Recovery of transactions lost
when your media is damaged
or lost.

Recovery of
transactions lost from
memory during a
system failure.

Two-phase
Commit

(Optional)

Roll-forward
Recovery

(Optional; also requires
backups and after-imaging)

Crash Recovery
(Automatically performed)
8–2

Recovering a Database
8.1.1 Crash Recovery
Crash recovery occurs automatically. With this feature, the database engine uses information
from the primary recovery (BI) log to recover from system failures.

The BI files are a vital part of the database. You should treat the files as an integral part of the
database unit. When you back up and restore the database, back up and restore the DB and BI
files together. Never manually delete the BI files.

While the database is running, database transaction information exists in three areas:

• In the database on disk

• In the buffer pool in memory

• In the BI files on disk

When database records are modified, the changes occur first in memory. When a transaction is
committed, the change is recorded to the BI file. Over time, the database engine makes the
change to the database file on disk. If the system fails, the information stored in the buffer pool
is lost. The database engine performs crash recovery using the information logged to the BI file
to re-create lost transactions and undo transactions that were not committed.

Before updating the database, the database engine makes a copy of the current information and
writes it to the BI file. This activity begins at the end of an update operation. If the system fails
during the transaction, the engine uses the information in the BI file to restore the database to
its pretransaction state. The engine also uses the information in the BI files during normal
processing to undo transactions.

For example, suppose you execute the following Progress 4GL procedure:

FOR EACH customer:
UPDATE name max-credit.

END.
8–3

Progress Database Administration Guide and Reference
You update customers 1 and 2, and while you are updating customer 3, the system fails. When
you restart the database, messages appear in the database .lg file similar to the following:

The messages indicate the necessary phases of crash recovery performed by the database engine
to bring the database to the consistent state that existed prior to the system failure. Since the
engine performs crash recovery every time you open the database, not all of the recovery phases
are logged in the database .lg file. For example, the engine performs and logs the Physical Redo
phase unconditionally, but the Physical Undo and Logical Undo phases are only performed and
logged when outstanding transactions are found.

When you rerun the same procedure, customers 1 and 2 remain updated, but the database engine
has used the BI file to restore customer 3 to the state it was in before you began the update.

Crash recovery protects you from system failures, but it does not protect you from loss of media.
In the event of media loss, you must restore from a backup, and either manually re-enter the lost
transactions or use the roll-forward recovery mechanism to re-create the transaction.

8.1.2 Roll-forward Recovery
Roll-forward recovery, used together with after-imaging and backup, lets you recover from
media failures. When a database disk fails, you can restore the most recent backup, then use
roll-forward recovery to restore the database to the condition it was in before you lost the disk.
With roll-forward recovery, the database engine uses data in the AI files to automatically
reprocess all the transactions that have been executed since the last backup was made.

To use roll-forward recovery, you must:

• Perform regularly scheduled backups of the database. Regular backups are a fundamental
part of recovery. For detailed information on backups and developing a backup schedule,
see Chapter 6, “Backup and Recovery Strategies.”

• Enable after-imaging immediately after you complete the backup. See Chapter 11,
“After-Imaging,” for information about enabling after-imaging.

11:13:54 Single-user session begin for marshall on /dev/pts/25 (451)
11:13:54 Begin Physical Redo Phase at 256 . (5326)
11:13:56 Physical Redo Phase Completed at blk 800 of 8165 and 31829 (7161)
11:13:56 Begin Physical Undo 1 transactions at blk 800 offset 8189 (7163)
11:14:38 Physical Undo Phase Completed at 1020 . (5331)
11:14:38 Begin Logical Undo Phase, 1 incomplete transactions are being backed
out. (7162)
11:14:38 Logical Undo Phase Complete. (5329)
11:14:46 Single-user session end. (334)
8–4

Recovering a Database
• Perform regularly scheduled backups of the AI files. See Chapter 7, “Backing Up a
Database,” for information about backing up the AI files.

• Store the AI files on different disks than those containing the database and BI files.

When you enable after-imaging, the database engine writes database changes to the AI
files. If you store the AI files on the same disks as the database or BI files and a disk is
corrupted, you cannot use the AI files to recover that database.

• Archive the AI files to tape or other durable media as they become full.

This example shows how the database engine uses the AI files to restore the database. Suppose
you execute the following Progress 4GL procedure:

You update customers 1 and 2, and while you are updating customer 3, the disk where the
database file is stored is damaged. You cannot use the BI file to restore the transactions because
the original database is no longer valid.

However, because you enabled after-imaging, you can use roll-forward recovery to recover the
database. If you do not enable after-imaging, you lose all the updates since the last database
backup.

Before updating the database, the database engine makes a copy of the current information and
writes it to the BI file and the AI file.

After updating customers 1 and 2, the database disk fails while updating customer 3. The AI
files have a copy of all transactions completed since the last backup. Restore the last backup of
the database and then roll forward the AI files to produce a restored database that contains all
completed transactions.

FOR EACH customer:
UPDATE name max-credit.

END.
8–5

Progress Database Administration Guide and Reference
8.1.3 Two-phase Commit
Two-phase commit ensures that distributed transactions (that is, transactions involving multiple
databases) occur consistently across all databases. Two-phase commit is not necessary for
transactions involving a single database.

For detailed information on two-phase commit, see Chapter 12, “Using Two-phase Commit.”

NOTE: If you use two-phase commit, you should also use after-imaging to ensure database
integrity and avoid backup synchronization problems. Although two-phase commit
ensures that two databases remain synchronized, it does not protect you from a lost
database or BI file. If you lose an entire file or disk, you must use the AI file to roll
forward to the point of the crash.

8.2 File Locations That Ensure Safe Recovery
The AI files, together with the most recent database backup, contain the same information as
the DB files. If you lose the disk containing the DB and BI files, you can use the AI files and
database backup to reconstruct the database. For this reason, you should place the AI files on a
different disk from the one that contains the DB and BI files.

Figure 8–2 shows sample locations for each of the DB, BI, AI, and event log files.

Figure 8–2: Storing Database Files

Disk
Volume 2

Disk
Volume 1

Disk
Volume 3

AI File

BI File
DB File

TL File

LG File

Machine
8–6

Recovering a Database
8.3 Sample Recovery Plans
This section provides sample recovery plans to meet a range of availability requirements,
including low, moderate, moderately high, and high availability requirements.

8.3.1 Example 1: Low Availability Requirements
The database administrators at site A have determined the following availability requirements.
Table 8–1 provides examples.

Given these requirements, the database administrators perform a full offline backup every
Monday at 5 PM. Incrementals are not required because the site can afford to lose one week of
transactions, and full backups are performed weekly. The backup is tested Tuesday at 5 PM
using disk space reserved for that purpose.

Table 8–1: Sample Low Availability Requirements

Question Answer Recovery Technique

How many committed transactions
can you afford to lose?

1 week of
transactions

Perform weekly backups.

How long can the application be
offline while you perform
scheduled maintenance?

8 hours per day Perform weekly backups offline.

How long can you spend
recovering if the database becomes
unavailable?

24 hours Keep a full backup and any
number of incrementals or AI
files.

Must distributed transactions occur
consistently across databases?

No Do not implement two-phase
commit.
8–7

Progress Database Administration Guide and Reference
8.3.2 Example 2: Moderate Availability Requirements
The database administrators at site B have determined the following availability requirements.
Table 8–2 provides examples.

Given these requirements, the database administrators perform a full offline backup every
Saturday night. Because they can lose only one day of transactions, they supplement weekly
backups with daily online incremental backups. Because they can only allow time to restore a
single incremental, they perform incremental backups with an overlap factor of six. This means
that each incremental backup saves changes that were saved in the last six incremental backups.
The full backup is tested Saturday night, and after the incremental backups finish they are tested
using disk space reserved for that purpose.

Table 8–2: Sample Moderate Availability Requirements

Question Answer Recovery Technique

How many committed transactions
can you afford to lose?

1 day of
transactions

Perform daily backups.

How long can the application be
offline while you perform scheduled
maintenance?

8 hours per
week

Perform weekly offline backups
with daily online full or
incremental backups.

How long can you spend recovering if
the database becomes unavailable?

8 hours Keep a full backup and one
incremental or AI file.

Must distributed transactions occur
consistently across databases?

No Do not implement two-phase
commit.
8–8

Recovering a Database
8.3.3 Example 3: Moderate-to-High Availability Requirements
The database administrators at site C have determined the following availability requirements.
Table 8–3 provides examples.

Given these requirements, the database administrators perform a full online backup every
Saturday night. Because they can afford to lose only a few minutes of transactions, the site also
enables after-imaging. They switch AI extents every day at 7 PM and archive the resulting full
after-image extent. (Because they switch AI extents at scheduled intervals rather than waiting
for an extent to fill, they must be sure to monitor AI extent usage in case an extent fills before
the scheduled switch.) Because applications at this site perform distributed transactions that
must be consistent across databases, this site implements two-phase commit. The full backup is
tested Saturday night. After they are archived, AI files are applied to the tested backup since so
few transactions can be lost.

Table 8–3: Sample Moderate-to-High Availability Requirements

Question Answer Recovery Technique

How many committed transactions
can you afford to lose?

A few minutes
of transactions

Enable after-imaging.

How long can the application be
offline while you perform scheduled
maintenance?

Never Perform online backups with
after-image files.

How long can you spend recovering if
the database becomes unavailable?

24 hours Restore a full backup and a series
of any number of incrementals or
AI files.

Must distributed transactions occur
consistently across databases?

Yes Implement two-phase commit.
8–9

Progress Database Administration Guide and Reference
8.3.4 Example 4: High Availability Requirements
The database administrators at site D have determined the following availability requirements.
Table 8–4 provides examples.

Given these high availability requirements, the database administrators keep a duplicate
database on warm standby. They follow these steps:

1 ♦ Restore a backup of the production database to an empty database with a duplicate
structure on a different system.

2 ♦ On the production database, enable after-imaging using AI files with fixed-length extents.

3 ♦ On the production database, whenever a fixed-length AI extent becomes full, copy it to the
standby system and roll it forward on the standby database.

4 ♦ After bringing the standby database up to date, mark the full after-image extent on the
production database as empty to make it available for reuse.

In addition, backups and AI files are constantly tested and verified on the standby database. The
standby database is put through crash recovery, verified, and if possible, backed up before
restoring online backups of the production database to the standby database.

Table 8–4: Sample High Availability Requirements

Availability Question Answer Recovery Technique

How many committed transactions
can you afford to lose?

None Enable after-imaging.

How long can the application be
offline while you perform scheduled
maintenance?

Never Perform online backups with
after-image files.

How long can you spend recovering if
the database becomes unavailable?

4 hours Keep a duplicate system on
warm standby. Use roll-forward
recovery to keep the standby
database current with the
production database.

Must distributed transactions occur
consistently across databases?

No Do not implement two-phase
commit.
8–10

Recovering a Database
8.3.5 Sample Recovery Scenarios
To show how the parts of a recovery plan fit together, this section presents an overview of the
steps and commands you use to implement a database recovery plan.

Figure 8–3 through Figure 8–7 show sample scenarios of a one-week period.

Figure 8–3: Recovery Scenario - Day 1

- Start the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up, unless
you are using PROBKUP.

- Add after-image storage areas to the
database and enable after-imaging.

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up and
establish a new busy AI file, unless you are
using PROBKUP.

- Archive all the full AI files to media different
than that used to back up the database.

Monday AM

Friday PM
Start Implementing After-
imaging

Monday PM
Perform a Daily Full
Backup
8–11

Progress Database Administration Guide and Reference
Figure 8–4: Recovery Scenario - Day 2

- Start the database.Tuesday AM

Tuesday Noon
System Failure

Tuesday PM
Perform a Daily
Full Backup

- Restart the database. It automatically
performs crash recovery.

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up and
establish a new busy AI file, unless you are
using PROBKUP.

- Archive all the full AI files to media different
than that used to back up the database.
8–12

Recovering a Database
Figure 8–5: Recovery Scenario - Day 3

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up and
establish a new busy AI file, unless you are
using PROBKUP.

- Archive all the full AI files to media different
than that used to back up the database.

- Start the database.

- Back up the busy and full AI files.

- Restore the last backup of database files.
Do not restore any AI files.

- Roll forward the full and busy AI files.

- Back up the database files as a unit.

- Mark the database as backed up, unless
you are using PROBKUP.

- Enable after-imaging.

Wednesday Noon
Database Disk Lost

Wednesday PM
Perform a Daily
Full Backup

Wednesday AM
8–13

Progress Database Administration Guide and Reference
Figure 8–6: Recovery Scenario - Day 4

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Archive the AI file to a different type.

- Disable after-imaging.

- Run the batch job.

- Start the database.Thursday AM

Thursday PM
Perform a
Full Backup

Start a Large
Batch Job To Run
Overnight
8–14

Recovering a Database
Figure 8–7: Recovery Scenario - Day 5

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up and
establish a new busy AI file, unless you are
using PROBKUP.

- Archive all the full AI files to media different
than that used to back up the database.

Friday PM
Perform a Daily
Full Backup

DB or BI File
Is On Full Disk

- Remove some files from the full disk or add
more extents on another disk.

- Start the database, letting it automatically
perform crash recovery.

Friday Noon
AI File Is
On Full Disk

- Back up the busy and full AI files.

- Disable after-imaging.

- Back up the database files as a unit and
mark the database as backed up.

- Use PROSTRCT REMOVE to remove one
or more AI files from the full disk.

- Add new AI files to a disk that has space but
still separate from any disks containing
database or BI data.

- Enable after-imaging.

- Start the database.

Friday AM
Perform a Full
Backup

- Stop the database.

- Verify that the database is not in use.

- Back up the database files as a unit.

- Mark the database as backed up.

- Enable after-imaging.

- Start the database.
8–15

Progress Database Administration Guide and Reference
8.4 After-imaging and Roll-forward Recovery Commands
Table 8–5 lists the utilities you use to perform the steps in the scenarios shown in Figure 8–3
through Figure 8–7. These utilities are described in detail in Chapter 19, “Database
Administration Utilities.”

Table 8–5: Utilities Used With Roll-forward Recovery

Function Utility Command

Verify that the database is not in use. The
database cannot be in use when you perform
a full offline backup.

PROUTIL BUSY

Back up the database. You must perform a
full backup of the database before you can
use roll-forward recovery.

PROBKUP or operating system utility

Mark the database as backed up. If you do
not use PROBKUP to back up the database,
you must mark the database as backed up to
begin after-imaging or start a new
after-image file.

RFUTIL MARK BACKEDUP

Start a new AI file. After you back up the
database and AI files, you can truncate the
existing AI file.

RFUTIL AIMAGE NEW

Disable after-imaging. Before you run a
batch job, you might want to disable
after-imaging to improve performance.

RFUTIL AIMAGE END

Restart the roll-forward operation. Use of
this qualifier is limited to RFUTIL
roll-forward operations that fail because of
power outages or system failures.

RFUTIL ROLL FORWARD RETRY
8–16

Recovering a Database
8.5 Recovering From System Failures
Before-imaging is automatically enabled to let you recover from a system failure. If the system
fails, the technique for recovering the database depends on the database operation you were
performing when the system crashed. The following sections provide specific information.

8.5.1 System Crash While Running RFUTIL ROLL FORWARD
If the system crashes while you are using the RFUTIL Roll Forward utility, use the RETRY
qualifier to resume the roll forward:

Use of this qualifier is limited to RFUTIL roll-forward operations that fail because of power
outages or system failures. The ROLL FORWARD RETRY qualifier restarts the roll-forward
operation on the after-image extent that was in the process of rolling forward. The retry
operation finds the transaction in process at the time of failure and resumes rolling forward.

8.5.2 System Crash While Running Other Utilities
If the system crashes while you are using any of the following utilities, simply rerun the utility:

• PROUTIL BUSY

• PROUTIL HOLDER

• PROUTIL TRUNCATE BI

• RFUTIL AIMAGE BEGIN

• RFUTIL AIMAGE END

• RFUTIL AIMAGE NEW

• RFUTIL MARK BACKEDUP

• RFUTIL ROLL FORWARD RETRY

• RFUTIL AIMAGE AIOFF

rfutil db-name -C roll forward retry
8–17

Progress Database Administration Guide and Reference
• RFUTIL AIMAGE END

• RFUTIL AIMAGE SCAN

• RFUTIL AIMAGE EXTENT EMPTY

• RFUTIL AIMAGE TRUNCATE

• RFUTIL AIMAGE EXTENT FULL

8.5.3 System Crash While Backing Up the Database
If the system crashes while you are backing up the database, restart the backup.

8.5.4 System Crash While Database Is Up
If the system crashes while the database is up, restart the database. Crash recovery automatically
performs, using the information stored in the BI files.

NOTE: If you run the database with the -r parameter and your system fails because of a
system crash or power failure, you cannot recover the database. If you run the
database with the -i parameter and it fails for any reason, you cannot recover the
database.

8.6 Recovering From Media Failures
After-imaging combined with backup and roll-forward recovery lets you recover the database
if a disk holding a database file is damaged. After-imaging is optional; you must enable it before
a disk fails, and you must have performed backups to use roll-forward recovery. You should
also keep backups and archived AI files until they are no longer required.

The technique for recovering the database depends on the circumstances that require recovery.
The next sections provide scenarios and explanations of how to use the PROUTIL and RFUTIL
utilities to handle the following problems:

• Loss of the DB files, BI files, or both

• Loss of the AI files

• Loss of the database backup

• Loss of the TL file
8–18

Recovering a Database
8.6.1 Loss Of the DB Files, BI Files, Or Both
If a disk holding the DB or BI files is damaged, or the files are accidentally deleted, follow these
steps to restore the database:

1 ♦ Back up the current AI file and any full AI files not already archived before rolling
forward. This step is important to protect yourself in case you lose the AI files if anything
goes wrong, such as inadvertently overwriting the AI file. Be sure to back up the AI files
on media different from the media where the database files are backed up. The AI files
have the information you require to bring the database backup files up to date.

2 ♦ Create the structure for the database. You will restore the database to this structure.

3 ♦ Restore the most recent full database backup. If you are using incremental backups, you
must restore the most recent full backup and then apply all the incremental backups.

4 ♦ If you use after-imaging, roll forward the AI files starting after the last backup. Use the
RFUTIL ROLL FORWARD utility. See Chapter 11, “After-Imaging,” for more
information.

5 ♦ Perform a full backup of the restored, recovered database. Follow the standard backup
procedure described in Chapter 7, “Backing Up a Database.”

6 ♦ Restart after-imaging and two-phase commit, if you are using it.

7 ♦ Restart the database.

8 ♦ Restart the applications and continue database processing.

8.6.2 Loss Of the AI File
Follow these steps if a disk holding the AI files is damaged or the AI file is accidentally deleted:

1 ♦ If two-phase commit is enabled for the database, end two-phase commit using the
PROUTIL 2PHASE END utility. You must do so before you can perform the next step.

NOTE: If you end two-phase commit and a coordinator recorded any distributed
transaction commits in this database, the user cannot resolve any limbo
transactions where this database was the coordinator.

2 ♦ Disable after-imaging using the RFUTIL AIMAGE END utility.

3 ♦ If you have a database, re-create the lost extent using PROSTRCT ADD.

4 ♦ Back up the database using the PROBKUP utility or an operating system backup utility.
8–19

Progress Database Administration Guide and Reference
5 ♦ If you used an operating system backup utility to back up the database, mark the database
as backed up using the RFUTIL MARK BACKEDUP utility.

6 ♦ Enable after-imaging.

7 ♦ Re-enable two-phase commit if you disabled it in Step 1.

8.6.3 Loss Of Database Backup
If after-imaging is enabled for a database, you can recover from a lost or corrupted database
backup as long as you have archived the AI files every time you backed up the database.

Follow these steps to restore the database:

1 ♦ Archive the current AI file to ensure that a second copy is available in case the original
extents are damaged (for example, if you inadvertently overwrite the current busy AI file
when restoring archived AI files in Step 3). The AI files have the information you need to
bring the database backup files up to date.

Be sure to archive the AI files on different media than the database files backup.

2 ♦ Restore the backup you made immediately before the lost backup. If you are using
incremental backups, you must restore the most recent full backup and then apply all the
incremental backups to the full backup.

3 ♦ Restore the AI files you archived at the same time you made the backup that was lost or
corrupted.

4 ♦ Use the RFUTIL ROLL FORWARD utility to roll forward the AI files you restored in
Step 3. See Chapter 11, “After-Imaging,” for more information.

5 ♦ Use the RFUTIL ROLL FORWARD utility to roll forward the current AI files (that is, the
AI files in use since the lost backup).

6 ♦ Back up the database following the standard backup procedure described in Chapter 7,
“Backing Up a Database.”

7 ♦ Enable after-imaging and two-phase commit if you are using them.

8 ♦ Restart the database.

9 ♦ Restart any applications and continue database processing.
8–20

Recovering a Database
8.6.4 Loss Of Transaction Log File
Follow these steps if you cannot access the database because of a lost or corrupt transaction log
file:

1 ♦ If two-phase commit is enabled for the database, end two-phase commit using the
PROUTIL 2PHASE END utility.

NOTE: If you end two-phase commit and a coordinator recorded any distributed
transaction commits in this database, the user cannot resolve any limbo
transactions for that distributed transaction unless after-imaging is also enabled
for the database.

2 ♦ Enable two-phase commit using the PROUTIL 2PHASE BEGIN utility.

3 ♦ Put the database back online.

8.7 Recovering From a Full Disk
The database engine terminates if a disk holding a database file becomes full while the Progress
database is running. If this happens, follow these steps:

1 ♦ Remove any nonessential files from the full disk.

2 ♦ Start the Progress database, letting it automatically perform crash recovery of the database.

If you cannot make enough room on your disk to allow the database engine to perform crash
recovery, you must take further steps. The steps vary, depending on the contents of the full disk,
as explained in the following sections.
8–21

Progress Database Administration Guide and Reference
8.7.1 After-image Area Disk
If a variable-length after-image extent fills a disk, the database engine automatically switches
to the next AI extent if that extent is empty. If the extent is not empty, the database shuts down
unless the After-image Stall (-aistall) startup parameter was specified.

Follow these steps if the database shuts down because the engine cannot switch to the next
extent:

1 ♦ Back up the least recently used full after-image extent. Use the RFUTIL AIMAGE
EXTENT FULL utility to find out which extent this is.

2 ♦ Use the RFUTIL AIMAGE EXTENT EMPTY utility to mark the extent as available for
reuse.

3 ♦ Restart the database.

8.7.2 Control Or Primary Recovery Area Disk
The procedure you follow to recover from a full disk depends on whether the variable-length BI
extent is on the full disk. Because the BI extent grows during the crash recovery phase of the
Progress database startup, if the BI extent is on the full disk, you cannot start the database.

Variable-length BI Extent Is Not On the Full Disk

Follow these steps if the BI file is not on the full disk:

1 ♦ Truncate the BI file using the PROUTIL TRUNCATE BI utility. This rolls back any
transactions active at the time the database shuts down. You can also start a single-user
Progress session to accomplish the same thing.

2 ♦ Add one or more data extents to the database using the PROSTRCT ADD utility. This step
is not necessary to bring the database back online. However, if you omit this step, the
database will shut down when users begin adding data to it.

If you have no additional disk space, you must install a new disk or delete some data from
the database before you can bring the database online.

3 ♦ Restart the database.
8–22

Recovering a Database
Variable-length BI Extent Is On the Full Disk

The BI extent grows during the crash recovery phase of the Progress database startup. If the BI
extent is on the full disk, you will not be able to start the database until you make space available
for the BI file to expand.

Follow these steps if you cannot remove any files on the disk containing the variable-length BI
extent:

1 ♦ Use the PROSTRCT ADD utility to add a BI extent on a disk that contains some free
space. The maximum amount of additional BI space you require to recover the database is
equal to that currently consumed by the BI file. If you have a disk with this much free
space, then assign the new BI extent to that volume. Note that this is a worst-case space
requirement and the BI file normally grows much less than this. Adding the BI extent
makes the variable length extent a fixed-length extent.

2 ♦ Start a single-user Progress session against the database. This begins database crash
recovery. Exit the single-user Progress session.

3 ♦ Restart the database.

8.7.3 Transaction Log File Disk
Follow these steps if two-phase commit is enabled:

1 ♦ Use PROUTIL 2PHASE END to disable two-phase commit on the database.

NOTE: Unless after-imaging is also enabled for the database when you end two-phase
commit, the user will be unable to resolve any limbo transactions where the
database recorded the coordinator’s commit of a distributed transaction.

2 ♦ Truncate the BI file.

3 ♦ Enable two-phase commit.

4 ♦ Restart the database.
8–23

Progress Database Administration Guide and Reference
8.8 Truncating the BI File
Truncating the BI file resets the file to its minimum size. You should plan ahead to determine
the amount of disk space required to hold all the files required to process at your peak
transaction rate. However, under certain circumstances, the BI file might grow unusually large.
This usually occurs because of a long-running transaction, for example, if a user leaves the
terminal for a long period in the middle of a transaction. If a situation like this occurs, you can
truncate the BI file.

When you truncate the BI file, the database engine uses the information in the BI files to bring
the database and AI files up to date, waits to verify that the information has been successfully
written to the disk, then truncates the primary recovery file to its minimum length.

To truncate the BI file, use the TRUNCATE BI qualifier of the PROUTIL utility:

In this command, db-name specifies the database you are using.

See the description of the PROUTIL utility in Chapter 19, “Database Administration Utilities,”
for a complete description of the TRUNCATE BI qualifier.

8.9 Recovering From a Crash
If the broker dies or is killed by some means other than the database shutdown command, it does
not release attached shared-memory segments. Use PROUTIL -C DBIPCS to verify shared
memory has not been released; use the UNIX command ipcrm -m to free it.

Use the DBIPCS qualifier on PROUTIL to display the status of shared-memory segments
attached by all Progress databases on the system:

You do not have to include a database name. Here is an example of the status output:

proutil db-name -C truncate bi

PROUTIL -C DBIPCS

Progress SHARED MEMORY STATUS
ID ShMemVer Seg# InUse Database
68 - - - (not Progress)

100 3 0 Yes /db/work5/sports
101 3 1 - /db/work5/sports
120 3 0 No /db/work5/test
150 2 - - (unsupported shared memory version)
8–24

Recovering a Database
Table 8–6 describes the display fields in the output.

8.10 Recovering From a Lost Or Damaged Control Area
Use the PROSTRCT BUILDDB utility to recover when an existing database control area (DB)
is lost or damaged. The utility re-creates a control area from the structure description (ST) file
of an existing database. For example:

PROSTRCT BUILDDB uses the following parameters:

db-name

Specifies the database you are using.

structure-description-file

Specifies the existing structure description (ST) file. If a structure description file is not
specified, PROSTRCT BUILDDB assumes the name is db-name.st.

PROSTRCT BUILDDB does only minimal validation of the resulting control area.

Table 8–6: Shared-memory Segment Status Fields

Field Description

ID Indicates the shared-memory ID.

ShMemVer Specifies the shared-memory version.

Seg# Indicates the shared-memory segment number. One database can own
more than one segment.

InUse Specifies whether the segment is in use. Yes or No values are
displayed only if the segment is number 0. All other segments show a
dash (-). To determine whether a set of segments is in use, check the
InUse value of segment 0 for the relevant database.

Database Represents the full path name of the database.

prostrct builddb db-name structure-description-file
8–25

Progress Database Administration Guide and Reference
8.11 Unlocking Damaged Databases
With databases, inconsistencies can occur between extents from accidental misuse of operating
system copy utilities or from incorrectly administered backup and restore procedures. The
database engine synchronizes the opening and updating of the DB, BI, and AI extents to ensure
the consistency of the database. If the engine finds an inconsistency among these extents, it
returns an error message and stops any attempt to open the database. If this happens, try to
restore the database from backups. As a last resort, you can use the PROSTRCT utility with the
UNLOCK qualifier to open the database to dump the data. Use PROSTRCT UNLOCK only as
a last resort. The locked database might not unlock, or the resulting unlocked database might be
damaged and invalid.

Follow these steps to unlock a damaged database:

1 ♦ Unlock the database by entering the following command:

CAUTION: If you are missing any database extents when you run PROSTRCT
UNLOCK, Progress automatically replaces any missing extents with empty
formatted extents and displays a message. You can determine whether this
has occurred the next time any utility or program tries to open the database.

2 ♦ Use the Data Administration tool if you are using a graphical interface or the Data
Dictionary if you are using a character interface to dump the data definitions and the table
contents.

3 ♦ Exit the database.

4 ♦ Create a new void database.

5 ♦ Restart the database and reload the dumped data definitions and data into the new
database.

prostrct unlock db-name
8–26

Recovering a Database
8.12 Dumping Tables From a Damaged Database
Occasionally, data is damaged and the index rebuild utility does not work. When this happens,
you can use the following Progress 4GL procedure to dump the data in a table called item. The
p-dump.p procedure runs slowly on large databases. Use it only when you cannot use the Index
Rebuild utility:

In this procedure, data from the item table is dumped into the item.d file. Use the item.d file
with the reload procedure. For more information on loading, see Chapter 13, “Dumping and
Loading.”

In the p-dump.p procedure, you must set the end value for the DO block high enough (10,000
in the previous example procedure) so that every record in the database is examined. Calculate
a safe value using the following formula:

The database block size varies among systems. Use the PROSTRCT STATISTICS utility to
determine the database block size for your system.

p-dump.p

DEFINE VARIABLE i AS INTEGER.
FIND _file "item".
OUTPUT TO item.d.
DO i = 1 TO 10000:

FIND item WHERE RECID(item) = i NO-ERROR.
IF AVAILABLE item AND i <> INTEGER(_file._template)
THEN EXPORT item.

END.

100 + 32 (database-size-in-bytes / database-block-size)
8–27

Progress Database Administration Guide and Reference
8.13 Forcing Access To a Damaged Database With the -F Parameter
If you are unable to regain access to your database, you should restore the database from
backup. If you have no backup and no other alternative, you can use the -F startup parameter to
force entry to a damaged database.

CAUTION: You should use the -F parameter only as a last resort, since it compromises the
integrity of the database.

Follow these steps to force access to a damaged database:

1 ♦ Back up the database.

2 ♦ Execute the PROUTIL command using the -F parameter:

In this command, db-name specifies the name of the database.

The following messages appear:

3 ♦ Start a single-user Progress session against the database.

4 ♦ Use any of the database administration tools or utilities to dump and then load the
database. See Chapter 13, “Dumping and Loading,” for more information.

CAUTION: Forcing access to a damaged database is an action of last resort and might not
result in successfully opening the database. If the database cannot open, none of
the Progress recovery tools can be used to dump the contents of the database.

proutil db-name -C truncate bi -F

The -F option has been specified to proutil. (6260)
Forcing into the database skips database recovery. (6261)
8–28

9
Maintaining Database Structure

Once you create and start a database, you must manage the database so that it operates
efficiently and meets the needs of users. This chapter describes methods to manage the database
structure and alter it as necessary to improve storage and performance. It contains the following
sections:

• The Progress Structure Utility

• Progress Structure Statistics Utility

• Progress Structure List Utility

• Progress Structure Add Utility

• Progress Structure Remove Utility

• Maintaining Indexes and Tables

• Using Virtual System Tables To Obtain Status Of Administration Utilities

Progress Database Administration Guide and Reference
9.1 The Progress Structure Utility
Using the Progress Structure (PROSTRCT) Utilities, you can scale your Version 9 database to
meet business requirements. For example, if your business requires high availability, use
PROSTRCT to reorganize tables and indexes while users operate against the database. The
following sections detail how to maintain the structure of your Version 9 database, including
when to use PROSTRCT and PROUTIL utilities.

9.2 Progress Structure Statistics Utility
Use the Progress Structure Statistics Utility (PROSTRCT STATISTICS) to monitor database
growth and the availability of free blocks for storing additional data. For example:

You specify the database whose storage information you want and the PROSTRCT
STATISTICS utility displays information about:

• The database name

• The primary database block size and the before-image and after-image block sizes

• The storage area and each extent within it

• The total number of active blocks allocated for each data area

• The total number of empty blocks in each data area

• The total number of extent blocks for each data area

• The total number of blocks for each data area

• The total records per block for each data area

• The total number of all blocks (active, data, free, empty, extent, and total blocks)

• The date and time of the last full database backup

prostrct statistics db-name
9–2

Maintaining Database Structure
For example, this command displays database storage information for the database
/usr/joe/service.db:

If a full backup has not yet been performed against service.db, the message would read “NO
FULL BACKUP HAS BEEN DONE.”

9.3 Progress Structure List Utility
Your structure description file must reflect the current information in your database control area
to ensure continuity and ease database management. Therefore, update the structure description
file any time you make changes to the structure of a database, such as adding, moving, or
removing extents. Use the Progress Structure List (PROSTRCT LIST) utility to update your
structure description file. PROSTRCT LIST produces a new structure description file for the
database you name, using the current information stored in the database control area.

NOTE: You can use PROSTRCT LIST with an online database.

To update the structure description file with the current information stored in the database
control area, use the PROSTRCT LIST utility:

db-name

Specifies the database whose structure description file you want to update.

structure-description-file

Specifies the structure description file to create. If you do not specify the structure
description file, PROSTRCT LIST uses the base name of the database and appends a .st
extension. It replaces an existing file of the same name.

For example, to update the structure description file for /user/joe/service, enter the
following command:

prostrct statistics /usr/joe/service.db

prostrct list db-name [structure-description-file]

prostrct list /user/joe/service
9–3

Progress Database Administration Guide and Reference
PROSTRCT LIST displays the information it produces in the structure description file,
including storage area type, storage area name, records per block, extent pathname, and extent
type, either fixed or variable (a size of 0 indicates a variable-length extent). For example:

AreaName: ControlArea, Type 6, Block Size 1024, Extents 1, Records/Blck 32
Ext # 1, Type VARIABLE, Size 0, Name: /user/joe/service.db

AreaName: Primary Recovery Area, Type 3, Block Size 8192, Extents 1
Ext # 1, Type VARIABLE, Size 0, Name: /usrer/joe/service.b1

AreaName: Transaction Log Area, Type 4, Block Size 16384, Extents 1
Ext # 1, Type FIXED , Size 1024, Name:/user/joe/service.t1

AreaName: Schema Area, Type 6, Block Size 1024, Extents 1, Records/Blck 32
Ext # 1, Type VARIABLE, Size 0, Name: /user/joe/service.d1

AreaName: After Image Area 1, Type 7, Block Size 8192, Extents 1
Ext # 1, Type FIXED , Size 32, Name: /user/joe/service.a1

AreaName: service, Type 6, Blck Size 1024, Extents 6, Records/Block 32
Ext # 1, Type FIXED , Size 32, Name:/user/joe/service_8.d1
Ext # 2, Type FIXED , Size 32, Name:/user/joe/service_8.d2
Ext # 3, Type FIXED , Size 32, Name:/user/joe/service_8.d3
Ext # 4, Type FIXED , Size 32, Name:/user/joe/service_8.d4
Ext # 5, Type FIXED , Size 32, Name:/user/joe/service_8.d5
Ext # 6, Type VARIABLE , Size 0, Name:/user/joe/service_8.d6

AreaName: joe, Type 6, Block Size 1024, Extents 1, Records/Block 32
Ext # 1, Type VARIABLE, Size 0, Name: /user/joe/yy/z/service_1000.d1
9–4

Maintaining Database Structure
9.4 Progress Structure Add Utility
Use the Progress Structure Add (PROSTRCT ADD) utility to add storage areas and extents to
an existing database. Note that the database must be offline before you can use PROSTRCT
ADD. To add storage areas to an existing database using PROSTRCT ADD, follow these steps:

1 ♦ Back up your database.

2 ♦ Create a new structure description (ST) file that contains only information about the areas
you want to add. For example:

NOTE: To avoid overwriting the ST file for your existing database, the name of this ST
file must be different from the existing ST file for the database. For example,
name the new structure description file add.st.

3 ♦ Use the PROSTRCT Utility with the ADD qualifier, specifying the ST file you created in
Step 2. For example:

PROSTRCT ADD adds the new extents or storage areas and extents to the existing
database control area, and outputs descriptive information such as:

NOTE: After you modify the structure of your database (adding or removing extents), run
PROSTRCT LIST. PROSTRCT LIST automatically creates a structure
description (ST) file for your database if one does not exist, or overwrites an
existing ST file of the same name to reflect the changes you just made to the
structure of your database.

add.st
#
d "chris",128 . f 1024
d "chris" .

prostrct add db-name incremental-description-file

Formatting extents:
size area name path name
1024 chris /user/joe/service_9.d1 00:00:00

32 chris /user/joe/service_9.d2 00:00:01
9–5

Progress Database Administration Guide and Reference
9.4.1 PROSTRCT ADD and Pathnames
When you use PROSTRCT ADD to add additional storage areas or extents to a relative path
database, the relative path database is converted to an absolute path database. For example, if
you add an additional application data storage area named Misc to the relative path database
example1, PROSTRCT ADD converts the relative path database to an absolute path database.
Use PROSTRCT LIST to update the ST file with the added extents. For example:

In the following sample output of the PROSTRCT LIST utility, note the absolute pathname
(/usr1/example1.db) of the modified database:

prostrct add example1 add.st
prostrct list example1

Area Name: Control Area, Type6, BlockSize 1024, Extents 1, Records/Block32
Ext # 1, Type VARIABLE, Size 0, Name: /usr1/example1.db

Area Name: Primary Recovery Area, Type3, BlockSize 8192, Extents 1
Ext # 1, Type VARIABLE, Size 0, Name: /usr1/example1.b1

Area Name: Schema Area, Type6, BlockSize 1024, Extents 1, Records/Block 32
Ext # 1, Type VARIABLE, Size 0, Name: /usr1/example1.d1

Area Name: Employee, Type6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 320, Name: /usr1/example1_7.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_7.d2

Area Name: Inventory, Type6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 608, Name: /usr1/cmcguire/example1_8.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_8.d2

Area Name: Cust_Data, Type6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 320, Name: /usr1/example1_9.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_9.d2

Area Name: Cust_Index, Type 6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 320, Name: /usr1/example1_10.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_10.d2

Area Name: Order, Type6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 1280, Name: /usr1/example1_11.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_11.d2

Area Name: Misc, Type6, BlockSize 1024, Extents 2, Records/Block 32
Ext # 1, Type FIXED , Size 320, Name: /usr1/example1_12.d1
Ext # 2, Type VARIABLE, Size 0, Name: /usr1/example1_12.d2
9–6

Maintaining Database Structure
9.4.2 Adding Extents to Existing Storage Areas
To add extents to an existing area use the PROSTRCT utility with the ADD qualifier.

NOTE: You can only add after-image (AI) extents when after-imaging is disabled. You can
only add transaction-log (TL) extents when the database is offline.

To add extents to an existing database using PROSTRCT ADD, follow these steps:

1 ♦ Back up your database.

2 ♦ Create a new structure description (ST) file that contains only information about the areas
you want to add. For example:

NOTE: To avoid overwriting the ST file for your existing database, the name of this ST
file must be different from the existing ST file for the database. For example,
name the new structure description file add.st.

3 ♦ Use the PROSTRCT Utility with the ADD qualifier, specifying the ST file you created in
Step 2. For example:

PROSTRCT ADD adds the new extents or storage areas and extents to the existing
database control area and outputs descriptive information such as:

NOTE: After you modify the structure of your database (such as adding or removing
extents), run PROSTRCT LIST. It automatically creates a structure description
(ST) file for your database if one does not exist, or overwrites an existing ST file
of the same name to reflect the changes you just made to the structure of your
database.

add.st
#
d "chris",128 .

prostrct add db-name incremental-description-file

Formatting extents:
size area name path name

0 chris /user/joe/service_9.d3 00:00:01
9–7

Progress Database Administration Guide and Reference
9.5 Progress Structure Remove Utility
Use the Progress Structure Remove (PROSTRCT REMOVE) to remove extents from storage
areas. After all the extents are removed from a storage area, PROSTRCT REMOVE removes
the storage area. Follow these steps to remove storage areas:

1 ♦ If the extent to be removed is in the BI area, use the PROUTIL TRUNCATE BI utility to
truncate the primary recovery area to be removed. For example:

If the storage area to be removed is an application data area, remove all tables and indexes,
then use the PROUTIL TRUNCATE AREA utility to truncate the application data area.
For example:

NOTE: You must disable after-imaging before you can remove an AI extent. You must
also disable two-phase commit before you can remove a transaction-log (TL)
extent.

For more information about truncating areas, see the “PROUTIL TRUNCATE AREA
Qualifier” section in Chapter 19, “Database Administration Utilities.”

2 ♦ Use PROSTRCT REMOVE to remove extents from the storage area. For example:

NOTE: Use the area-name parameter only to remove application data extents. If the area
name contains a space, supply double-quotes around the area name. For example:
"test data."

proutil db-name -C truncate bi

proutil db-name -C truncate area area-name

prostrct remove db-name extent-type-token [area-name]
9–8

Maintaining Database Structure
You can remove one extent at a time. After you have removed all of the extents from a
storage area, PROSTRCT REMOVE removes the storage area and outputs descriptive
information such as:

3 ♦ Run PROSTRCT LIST after removing any areas. PROSTRCT LIST will overwrite your
existing ST file to reflect the changes made to the structure of your database.

9.6 Maintaining Indexes and Tables
You can add tables and indexes to existing storage areas in a database using the Create Table
and Create Index commands from the Progress 4GL Data Dictionary. However, you cannot add
tables or indexes to existing storage areas using the Modify Table command or the Index
property sheet. The following sections detail how to move tables and indexes and how to
compact indexes.

9.6.1 Moving Tables
Use the PROUTIL TABLEMOVE utility to move a table and its associated indexes from one
storage area to another while the database remains online. For example:

NOTE: For the complete syntax description, see Chapter 19, “Database Administration
Utilities.”

If you omit the index-area parameter the indexes associated with the table will not be moved.

Moving the records of a table from one area to another invalidates all the ROWIDs and indexes
of the table. Therefore the indexes are rebuilt automatically by the utility whether you move
them or not. You can move the indexes to an application data area other than the one to which
you are moving the table. If you want to move only the indexes of a table to a separate
application data area, use the PROUTIL IDXMOVE utility.

solaris:90a$ prostrct remove service d chris
/user/joe/service_9.d3 successfully removed
solaris:90a$ prostrct remove service d chris
/user/joe/service_9.d2 successfully removed
solaris:90a$ prostrct remove service d chris
/user/joe/service_9.d1 successfully removed

proutil db-name -C tablemove [owner-name.]table-name table-area
[index-area]
9–9

Progress Database Administration Guide and Reference
Moving a table’s indexes with the TABLEMOVE qualifier is more efficient than moving a table
separately and then moving the indexes with the IDXMOVE utility. Moving a table separately
from its indexes wastes more disk space and causes the indexes to be rebuilt twice, which also
takes longer.

NOTE: While you can move tables online, no access to the table or its indexes is
recommended during the move. The utility acquires an EXCLUSIVE lock on the
table while it is in the process of moving. An application that reads the table with an
explicit NO-LOCK might be able to read records, but in some cases can get the
wrong results, since the table move operation makes many changes to the indexes.
Progress Software Corporation recommends that you run the utility during a period
when the system is relatively idle, or when users are doing work that does not access
the table.

The PROUTIL TABLEMOVE utility operates in phases:

• Phase 1: The records are moved to the new area and a new primary key is built.

• Phase 2: All the secondary indexes are built.

– If you did not specify the index-area parameter then the indexes are rebuilt in their
original area.

– If you did specify the index-area parameter then all the indexes are moved to the
new area where they are rebuilt.

• Phase 3: All the records in the old area are removed.

• Phase 4: All the old indexes are removed and the _StorageObject records of the indexes
and the table are updated.

NOTE: Although PROUTIL TABLEMOVE operates in phases, it moves a table and its
indexes in a single transaction. To allow a full recovery to occur when a transaction
is interrupted, every move and delete of each individual record is logged. As a result,
moving a table requires the BI Recovery Area to be several times larger than the
combined size of the table and its indexes. Therefore, before moving your table,
determine if your available disk capacity is sufficient to support a variable BI extent
that might grow to more than three times the size of the table and its indexes.

The _UserStatus virtual system table displays the utility’s progress. For more information see
Chapter 20, “Virtual System Tables.”
9–10

Maintaining Database Structure
9.6.2 Moving Indexes
Use the PROUTIL IDXMOVE utility to move an index from one application data area to
another while the database remains online. You might be able to improve performance by
moving indexes that are heavily used to an application data area on a faster disk. For example:

NOTE: For the complete syntax description, see Chapter 19, “Database Administration
Utilities.”

The PROUTIL IDXMOVE utility operates in two phases:

• Phase 1: The new index is being constructed in the new area. The old index remains in the
old area and all users can continue to use the index for read operations.

• Phase 2: The old index is being removed and all the blocks of the old index are being
removed to the free block chain. For a large index this phase can take a significant amount
of time. During this phase all operations on the index are blocked until the new index is
available; users accessing the index might experience a freeze in their application.

The _UserStatus virtual system table displays the utility’s progress.

NOTE: While you can move indexes online, no writes to the table or its indexes are allowed
during the move. The IDXMOVE utility acquires a SHARE lock on the table, which
blocks all attempts to modify records in the table. Progress Software Corporation
recommends that you run the utility during a period when the system is relatively
idle, or when users are doing work that does not access the table.

9.6.3 Compacting Indexes
When the DBANALYS utility indicates that space utilization of an index is reduced to 60% or
less, use the PROUTIL IDXCOMPACT utility to perform index compaction online. Performing
index compaction increases space utilization of the index block to the compacting percentage
specified. For example:

NOTE: For the complete syntax description, see Chapter 19, “Database Administration
Utilities.”

proutil db-name -C idxmove [owner-name.]indexname area-name

proutil db-name -C idxcompact [owner-name.]table-name.index-name [n]
9–11

Progress Database Administration Guide and Reference
Performing index compaction reduces the number of blocks in the B-tree and possibly the
number of B-tree levels, which improves query performance.

The index compacting utility operates in phases:

• Phase 1: If the index is a unique index, the delete chain is scanned and the index blocks
are cleaned up by removing deleted entries.

• Phase 2: The nonleaf levels of the B-tree are compacted starting at the root working toward
the leaf level.

• Phase 3: The leaf level is compacted.

The _UserStatus virtual system table displays the utility’s progress.

NOTE: Because index compacting is performed online other users can use the index
simultaneously for read or write operation with no restrictions. Index compacting
only locks 1 to 3 index blocks at a time, for a short time. This allows full concurrency.

9.7 Using Virtual System Tables To Obtain Status Of Administration Utilities
Depending on the size and complexity of your database, some online database administration
utilities can take a significant amount of time to complete. You can use the _UserStatus virtual
system table (VST) to monitor the state of the following administration utilities that can be
performed online:

• PROUTIL IDXANALYS – displays information about index blocks

• PROUTIL IDXCOMPACT – increases space utilization of an index block

• PROUTIL IDXFIX – detects corrupt indexes and records with a missing or incorrect index

• PROUTIL IDXMOVE – moves indexes among application data storage areas

• PROUTIL TABLEMOVE – moves tables among application data storage areas

For more information on VSTs, see Chapter 20, “Virtual System Tables.”
9–12

Maintaining Database Structure
EXAMPLES

Using the virtual system table mechanism, you can monitor the status and progress of several
database administration utilities.

The following example describes how to use a Progress 4GL routine to monitor all the index
move (PROUTIL IDXMOVE) processes being performed:

The following is an equivalent SQL-92 statement to monitor all the index move (PROUTIL
IDXMOVE) processes being performed:

The following example describes how to use a Progress 4GL routine to monitor the status of all
administration utilities performed:

/* Monitor all "index move" processes every three seconds */
REPEAT:

FOR EACH _UserStatus WHERE _UserStatus-Operation = "Index move":
DISPLAY _UserStatus.

END.
PAUSE 3.
END.

SELECT * FROM _UserStatus WHERE _UserStatus-Operation = "Index move";

/*Monitor all user processes who report their status (admin utilities)*/
REPEAT:

FOR EACH _UserStatus WHERE _UserStatus-Operation <> ?:
DISPLAY _UserStatus.

END.
PAUSE 3.
END.
9–13

Progress Database Administration Guide and Reference
9–14

10
Maintaining Security

As a Progress database administrator, you want to ensure that only authorized users connect to
a database, as well as prevent unauthorized users from modifying or removing database files and
objects. This chapter describes how to maintain the security of your Progress database. It
contains the following sections:

• Establishing a Progress User ID and Password

• Establishing Authentication For Your Progress Database

• Connection Security

• Running a User Report

• Schema Security

• Operating Systems and Database Security

NOTE: For more information on compile-time and run-time security, see the chapter on
providing data security in the Progress Programming Handbook.

CAUTION: Before changing your database’s security implementation, make a backup of the
original database. This way you can restore the original database if you cannot
undo some of the security measures you set. For example, if you are the sole
security administrator and you forget your user ID or password, you might be
denied access to the database and the data contained in it. However, if you have a
backup of the original database, you can restore it. To prevent such a mishap,
Progress Software Corporation recommends that you designate at least two
security administrators for each database.

Progress Database Administration Guide and Reference
10.1 Establishing a Progress User ID and Password
Every Progress database connection has an associated user ID. Each type of Progress
application security uses the user ID to determine the user’s authority to access data.

At the first level, connection security, you decide whether to allow all users the authority to
connect to a database or to establish a list of authorized user IDs. Each user ID can be further
protected by a password to prevent unauthorized users from connecting to the database.

If you choose not to establish a list of valid user IDs, then the database inherits user IDs or user
names from the operating system.

On UNIX, the database uses the operating system user ID. Note that the user IDs or user names
on these operating systems must adhere to Progress rules on user IDs. For more information, see
the “Progress User ID” section.

If you choose to establish a list of valid user IDs with passwords, then you must enter the data
into the user list. You can access the user list through the Data Dictionary Security menu. The
database engine stores the user list in the _User table, which is hidden from users. From then
on, the user must specify a user ID and password when connecting to the database. Note that the
database no longer inherits the user ID or user name from the operating system once you have
established this list.

In an interactive session, the application can prompt the user for a user ID and password. In a
batch session, the user can specify a user ID and password by using the User ID (-U) and
Password (-P) startup parameters.

10.1.1 Progress User ID
A user ID is a string of up to 12 characters associated with a particular Progress database
connection. User IDs can consist of any printable character or digit except the following: #, *,
!, @. User IDs are not case sensitive; they can be uppercase, lowercase, or any combination of
these. A user ID can be blank, written as the string “ ”, but you cannot define it as such through
the Data Dictionary.

10.1.2 Progress Password
A password is a string of up to 16 characters that is associated with a user ID. When you add
the password to the user list, the password is encoded with the ENCODE function. Because
ENCODE returns different values for uppercase and lowercase input, all Progress passwords
are case sensitive.
10–2

Maintaining Security
10.1.3 Validating a Progress User ID and Password
If you establish a list of valid user IDs, Progress prompts the user for a user ID and password at
connection time. Typically, the application does this by running the Progress login procedure.
The standard Progress startup procedure, PROSTART, automatically runs a login procedure for
each connected database. If the application uses another startup procedure, the developer should
run a login procedure from that procedure.

The login procedure uses the SETUSERID function to check the user ID and password entered
by the user. The user has three attempts to enter the correct user ID and password for each
database. If the user fails to do so after three attempts, Progress exits the user from the database.
If the user ID and password combination is valid for the database, then SETUSERID establishes
that user ID for the connection.

If the application does not run the login procedure at connection time, or if the user bypasses the
login procedure (by pressing END-ERROR when prompted for the user ID and password), then
the user is assigned the blank user ID. While you cannot prevent users from connecting to the
database with the blank user ID, you can prevent them from accessing data by establishing
compile-time and run-time security.

10.2 Establishing Authentication For Your Progress Database
To prevent unauthorized users from accessing, modifying, or removing database files, you can
establish appropriate database administration (DBA) and user-access privileges. The process
for establishing authentication depends on whether your database has 4GL tables only, SQL-92
tables only, or both 4GL and SQL-92 tables

10.2.1 4GL Tables Only
By default, no user ID or password is required. You can use the Data Dictionary to designate a
database administrator (DBA) user ID and use it to grant user access privileges. A Progress 4GL
DBA has read, write, create, and delete permissions for the _USER table.

10.2.2 SQL-92 Tables Only
An SQL-92 database administrator (DBA) is a person assigned a sysdbauth record in the
database. SQL-92 DBAs have access to all meta data and data in the database. To support
Progress internal schema caching, every Progress database begins with a DBA defined as
“sysprogress.” Progress restricts the use of “sysprogress,” however, and the process you follow
to establish authentication depends on whether the database is newly created or created prior to
Progress Version 9.0B.
10–3

Progress Database Administration Guide and Reference
In New Databases

When you create a new Progress database using the PROCOPY or PRODB commands, and the
database does not have any _USER records defined (from the source database, for example),
then a DBA is automatically designated with the login ID of the person who creates the
database. This person can log into the database and use the GRANT statement to designate
additional SQL-92 DBAs, and use the CREATE USER and DROP USER statements to add and
delete user IDs.

In Earlier Databases

If your database was created earlier than Progress Version 9.0B and does not have any _USER
records defined, then do the following:

1 ♦ Log in as “sysprogress.”

2 ♦ Designate another DBA user ID and use it to grant user-access privileges.

NOTE: Use the GRANT statement to designate other SQL-92 DBAs. For extra
authentication protection through password checking, use the CREATE USER and
DROP USER statements. For more information about the GRANT, CREATE
USER, and DROP USER statements, see the Progress SQL-92 Guide and Reference.

10.2.3 Both 4GL and SQL-92 Tables
When your database contains both 4GL and SQL-92 tables, the process you follow to establish
authentication depends on whether the database is a new Progress database or a database created
earlier than Progress Version 9.0B, with and without _USER records defined.

In New Databases

When you create a new Progress database using the PROCOPY or PRODB commands, your
login ID is used to automatically designate you as DBA, but only if there are no
predefined_USER records or DBAs (other than “sysprogress”) in the source database.

Then, as creator of the new database, you can:

• Use the Data Dictionary to designate a 4GL DBA user ID and use it to grant access
privileges.

• Log into the database and use the GRANT statement to designate additional SQL-92
DBAs, and use the CREATE USER and DROP USER statements to add and delete user
IDs.
10–4

Maintaining Security
In Earlier Databases Without User Records Defined

If your database was created earlier than Progress Version 9.0B and does not have any _USER
records defined, then do the following:

1 ♦ Log in as “sysprogress.”

2 ♦ Use the GRANT statement to designate another SQL-92 DBA and to grant user-access
privileges.

In Earlier Databases With User Records Defined

If your database was created earlier than Progress Version 9.0B and has _USER records
defined, you must use the 4GL DBA permissions to create a “sysprogress” user ID and
password. Only then can you access the database from SQL-92 and use the GRANT statement
to create SQL-92 DBAs. The SQL-92 DBAs must have corresponding _USER records for them
to log in to the database successfully.

NOTE: Once you add one _USER record to a Progress database, a user ID and password is
then required by anyone who wants to access the database. Consequently, first create
all DBAs and be sure that at least one has a _USER record, then add additional user
IDs.

10.3 Connection Security
Connection security ensures that only authorized users connect to a database. To establish

connection security, you use the Edit User List utility in the Data Dictionary to create a list of
valid users. Once the user list is established, you can use the Security Administrators utility to
appoint one or more security administrators. From then on, only security administrators can

access the Edit User List utility.

Typically, users who are not security administrators have limited access to the Security menu.
They can only modify their own passwords and run a quick user report.

10.3.1 Designating a Security Administrator
If you establish a list of valid user IDs, you must designate one user, or preferably more than
one user, as security administrator. The security administrator is responsible for maintaining the
security information in the database. Typically, the database administrator also serves as
security administrator. Progress allows you to designate security administrators only if you have
connected to the database with a nonblank user ID and if your user ID is already in the user list.
You can then designate yourself, and preferably another user, as security administrators.
10–5

Progress Database Administration Guide and Reference
Once you designate security administrators, only they can access the following Data Dictionary
utilities on the Security menu:

• Edit User List

• Change/Display Data Security

• Security Administrators

• Disallow Blank Userid Access

All users can access the other two utilities in the Security submenu: Change Your Password and
Quick User Reports. Note that designating security administrators does not limit other users’
ability to create new tables or fields in the database.

You can designate security administrators by using one of three utilities: Edit User List
(CallAdmin option), Change/Display Data Security (CallAdmin option), and Security
Administrators. These utilities allow you to access the same screen, where you follow these
steps to enter user IDs for security administrators:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface. The following steps represent the
graphical interface.

2 ♦ Choose Admin→ Security→ Security Administrators. The Security Administrators dialog
box appears:
10–6

Maintaining Security
3 ♦ You can enter many user IDs here, but you must include your own user ID. Otherwise, the
following error message appears:

Use commas, not spaces, to separate user IDs. If you use spaces in the string, they will be
accepted as part of the string.

4 ♦ When you are done entering user IDs, choose OK. The Data Dictionary prompts you to
verify the security administrator entries.

Verify that you want to save the entries. The Data Dictionary stores these user IDs as security
administrators for the database.

10.3.2 Adding a User
Follow these steps to add a user to the user list:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface. The following steps represent the
graphical interface.

2 ♦ Choose Admin→ Security→ Edit User List. The Edit User List dialog box appears:

You cannot change a security field to exclude yourself.
10–7

Progress Database Administration Guide and Reference
3 ♦ Choose the Add button. The Add User dialog box appears:

Before you enter any value, remember that user IDs and user names are not case sensitive,
but passwords are case sensitive. Anytime you want to cancel your entries, press
END-ERROR.

4 ♦ Enter the user ID.

5 ♦ Enter the user name. The User Name field allows you to keep track of the user assigned to
that user ID. Since Progress does not use the value in this field for security purposes, you
can enter any text in this field.

6 ♦ Enter the password and choose OK. Progress prompts you to verify the password.

7 ♦ Enter the password again and choose OK. If you successfully enter the same password,
you will see the user record added to the user list. If you enter a different password, no user
record is created.

8 ♦ To add another user record, choose Add again. A new set of fields appears on the screen.

NOTE: You cannot change a User ID field or Password field once you have pressed TAB.
However, you can change a user ID or password by deleting and then re-creating
the user record. Note that the Modify button only allows you to make changes to
the User Name field.

9 ♦ When you are done adding user records, choose OK.

After a user record is added to the user list, the user can connect to that database using the
password you assigned. Users can then change the assigned passwords to their own private
passwords by using the Change Your Password option on the Security menu.

If users forget their passwords, you can delete their records from the user list and re-create new
user records for them.
10–8

Maintaining Security
10.3.3 Deleting a User
Follow these steps to delete a user from the user list:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface.

2 ♦ Choose Admin→ Security→ Edit User List. The Edit User List dialog box appears.

3 ♦ Select the user you want to delete, then choose Delete. Progress prompts you to verify that
you want to remove that user record. If you attempt to delete your own record, Progress
does not allow you to do so until all existing user records are deleted.

4 ♦ Verify that you want to delete the user record.

5 ♦ When you are done deleting user records, choose OK.

If you delete all user records from the user list, Progress prompts you to confirm that you want
to remove all security restrictions for the database. If you verify the deletions, Progress allows
all users to have security administrator privileges when they connect to the database. If you
choose No, you must add one or more users to the user list before you can exit to the Data
Dictionary main window.

10.3.4 Changing a Password
This section describes how to change a password previously entered in the user list. Users can
change their own passwords; they do not need security administrator privileges.

After you connect to the database with your user ID and password, follow these steps to change
your password:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface.

2 ♦ Choose Admin→ Security→ Change Your Password. Progress prompts you to enter your
password.

3 ♦ Enter your password and choose OK. Remember that passwords are case sensitive.
Progress prompts you to verify the new password.

4 ♦ Verify the password and choose OK.
10–9

Progress Database Administration Guide and Reference
As security administrator, you can change a user’s user ID or password, but only do so by
deleting and then re-creating the user record. This way, users cannot be locked out of a database
if they forget their user IDs or passwords.

Do not try to bypass the Data Dictionary or Data Administration tool to modify passwords. You
might lock yourself out of the database.

10.4 Running a User Report
This section describes how to display or print a list of user IDs and user names, as well as how
to find out which user IDs are protected by passwords.

All users can display and print a user report using the Quick User Report utility from the
Security menu. In addition to this utility, security administrators can access three other utilities
to run a user report: Edit User List, Change/Display Data Security, and Security Administrators.

Follow these steps to generate a user report:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface.

2 ♦ Choose Admin→ Security→ User Report or Database→ Reports→ User. Progress
generates a user report similar to this:
10–10

Maintaining Security
3 ♦ Choose the Print button to output the report to a printer or file:

4 ♦ Specify the report destination. You can display the report on your terminal, print it, or save
it to a file. If you want to save the report to a file, specify the filename and whether to
append the report to an existing file.

5 ♦ Specify the page length and whether to order the fields.

6 ♦ Specify whether you want the report to include only the selected table or all the tables
defined for the working database, then choose OK. If you specify a file or printer, Progress
generates the report to the specified output destination and returns you to the Data
Dictionary main window.

If you send the report to the terminal, the Detailed Table Report dialog box appears.
Choose either the Change File Order button to reorder the fields or the Print button to print
the report.

10.5 Schema Security
Schema security ensures that only authorized users can modify table, field, and index
definitions. To establish schema security, use the Data Dictionary Freeze/Unfreeze utility to
lock or freeze table, field, and index definitions in the database so that unauthorized users cannot
make any modifications to them. Schema modifications change file time stamps, or cyclic
redundancy check (CRC) values, making all procedures that reference the database invalid.
After you freeze a database, no user can make any changes to it.

You can unfreeze frozen tables when you have to make changes, such as adding or deleting
fields or indexes or modifying field or index definitions.
10–11

Progress Database Administration Guide and Reference
10.5.1 Freezing and Unfreezing a Table
Follow these steps to freeze or unfreeze a table:

1 ♦ Access the Data Administration tool if you are using a graphical interface or access the
Data Dictionary if you are using a character interface.

2 ♦ Choose Utilities→ Freeze/Unfreeze. Progress alphabetically lists the tables defined for the
working database.

3 ♦ Choose the table you want to freeze or unfreeze. The Freeze/Unfreeze Table dialog box
appears:

4 ♦ Specify the table status, then choose OK.

As security administrator, you can control which users have authority to freeze or unfreeze
database tables. To freeze or unfreeze tables, the user must have can-write access to the _File
table and can-write access to the _File_Frozen field.

10.6 Operating Systems and Database Security
Each operating system provides security measures that you can use to protect your database.

You might want to allow access to the database from within a Progress 4GL session, but not
from the operating system command level. On UNIX, you can use the operating system
permissions to define security for the application database file.

Protecting the application database file using operating system permissions prevents users from
accessing the database outside of the Progress 4GL, or with CONNECT statements from a
Progress 4GL session, but it does not prevent anyone from starting single-user or multi-user
Progress 4GL sessions. It also does not prevent anyone from accessing the database through a
server.
10–12

Maintaining Security
To protect the database file with operating system permissions, create the database under a
particular user ID. Change the permission of the database table by entering the following UNIX
command:

This permission ensures that only the owner of the database file can access the file directly.

chmod 600 db-name
10–13

Progress Database Administration Guide and Reference
10–14

11
After-Imaging

The after-imaging feature lets you recover a database that was damaged when a failure caused
the loss of the database or primary recovery (before image) area. When you enable
after-imaging, the database engine writes notes containing a description of all database changes
to the after-image (AI) files. You can use the AI files with the roll-forward recovery process to
restore the database to the condition it was in before you lost the database, without losing
completed transactions that occurred since the last backup. Chapter 8, “Recovering a Database,”
explains recovery mechanisms for Version 9 Progress databases, including after-imaging. This
chapter details how to use after-imaging and contains the following sections:

• After-image Areas and Extents

• Estimating After-imaging Disk Space Requirements

• Creating After-image Areas

• Enabling After-imaging

• Managing After-imaging Files

• Performing Roll-forward Recovery

• Disabling After-imaging

Progress Database Administration Guide and Reference
11.1 After-image Areas and Extents
You can define multiple AI areas in the structure description (ST) file, which lets you create AI
areas on multiple disk volumes and perform online backups while AI is enabled. Regardless of
how many AI areas are defined, each AI area contains only one extent. Before defining the AI
extents, consider the following:

• The database engine fills the AI areas in the order that you define them in the structure
description file. When you are defining areas, you can store more than one AI area on a
disk. However, you should store all the AI areas on disks other than the one that contains
the database (DB) files or primary recovery area (BI) files.

• For both fixed-length and variable-length extents, the database engine automatically
switches extents when the current extent becomes full, as long as the next extent is empty.
If you define three large fixed-length extents, you can use extent 1 for a full day’s worth
of transactions, and have extent 2 empty and ready to use when you need to switch over to
the next extent. This also leaves extent 3 available if you perform an unusually high
number of transactions and use both extents 1 and 2.

The database engine uses AI areas sequentially, in the order defined in the structure description
file. AI area filenames have a .an extension, where n indicates the numerical order in which you
defined the area. After it uses the last area, the database engine reuses the first area if it is empty.
Figure 11–1 illustrates this behavior. An extent switch is the operation of switching from one AI
area extent to another.

Figure 11–1: After-image Extents Switching

You must monitor the status of the extents to ensure that you do not try to reuse an unavailable
file. For information on monitoring the status of your AI extents, see the “Monitoring AI File
Status” section in this chapter.

AI Area 1
Extent

AI Area 2
Extent

AI Area 3
Extent
11–2

After-Imaging
Like DB and BI extents, there are two types of AI extents:

• Fixed length

• Variable length

Fixed-length Extents

Fixed-length extents are extents that you preallocate and preformat in the structure description
file. With fixed-length extents, you control how much disk space each extent uses.

Variable-length Extents

Variable-length AI extents do not have a predefined length. They continue to fill until they use
the entire disk, you back up the database, or you issue the RFUTIL AIMAGE NEW command.
The initial length of a variable-length extent is 128K. Like DB areas, you can define more than
one variable-length AI area for a single database.

11.2 Estimating After-imaging Disk Space Requirements
Before creating after-image (AI) files, it is important to accurately estimate the amount of disk
space required to hold all the AI data for your database. Even when you use variable extents, if
the disk runs out of space and there is no empty AI extent available, you must perform
emergency maintenance or the database is forced to shut down. See Chapter 8, “Recovering a
Database,” for details. To prevent the database engine from shutting down when it exhausts AI
disk space, start your database with the after-image stall (-aistall) startup parameter.

To determine the amount of AI file space required, use the PROMON utility BI Log Activity
Display to monitor the number of BI writes that occur during the activity period that you want
to use after-imaging. The information that is written in the BI file closely matches what is
written in the AI file. Typically 0.05% fewer bytes are written to an AI file than are written to
the BI file. Therefore, the BI Bytes written statistic provides a close estimate of the space
required for an AI file for the same activity period.

Measure the BI Bytes written statistic several times toward the end of the activity period that
you are considering using after-imaging. If your workload varies from day to day or peaks
during end-of-month processing, count the BI writes during a peak period to ensure that you
allocate enough space to handle peak days. If the workload grows, make sure you increase the
amount of space available for AI files. Always have extra disk space available for unanticipated
growth of the AI file.
11–3

Progress Database Administration Guide and Reference
11.3 Creating After-image Areas
Follow these steps to create AI areas:

1 ♦ Create the structure description file for the database. See Chapter 4, “Creating and
Deleting Databases,” for a complete description of how to create a structure description
file.

2 ♦ Define the data extents.

3 ♦ Define any BI extents.

4 ♦ Define any fixed-length AI extents. You must define four tokens in the file description
line. Table 11–1 describes each token and what you have to enter for fixed-length files.

The following example shows a fixed-length after-image extent definition:

Table 11–1: File Tokens

Token Description

First Specifies the file type. Type a to indicate that this extent is an AI
extent.

Second Specifies the extent file pathname. Enter a pathname that represents
a standard operating system file. If you do not supply an extension,
the database engine automatically appends a .an extension.

Third Specifies whether the extent is a fixed-length or variable-length
extent. Type f for a fixed-length extent. It must be lowercase.

Fourth Specifies the length of the extent in 1,024-byte (1K) units. The
minimum length for a fixed-length extent is 16K. The extent length
must be a multiple of 16K for all operating systems. If you specify
any other size, PROSTRCT displays a warning message and rounds
the size up to the next multiple of 16K. The maximum length of an
extent depends on the size of the file system and/or physical volume
that contains the extent.

a db/mary/apdir/test.a1 f 2048
11–4

After-Imaging
5 ♦ Define any variable-length after-image extents. You only have to specify the first two
tokens: the extent type and pathname. Unlike data or BI extents, you can define more than
one variable-length after-image extent for a single database.

6 ♦ Create the empty database structure using the PROSTRCT utility. For more information
about the structure description file and the PROSTRCT and PROCOPY utilities, see
Chapter 9, “Maintaining Database Structure.”

7 ♦ Create the initial database contents using the PROCOPY or PROREST utility. For more
information about the PROCOPY and PROREST utilities, see Chapter 19, “Database
Administration Utilities.”

11.4 Enabling After-imaging
Use the RFUTIL utility with the AIMAGE BEGIN qualifier to enable after-imaging. The use
of after-imaging requires a recent backup of the database because the database backup and AI
files are treated as a recoverable set of files.

Follow these steps to enable after imaging for a database:

1 ♦ Define AI areas in the structure description file. See the “Creating After-image Areas”
section for detailed instructions.

2 ♦ Back up the database.

3 ♦ After you create the database, use the following syntax to enable after-imaging:

db-name

Specifies the name of the database you are using. If the database has been modified
since it was last backed up, RFUTIL displays an error message and does not enable
after-imaging.

rfutil db-name -C aimage begin
11–5

Progress Database Administration Guide and Reference
11.5 Managing After-imaging Files
The primary tasks you must perform to manage after-imaging are:

• Monitor the AI extent status.

• Switch to a new extent.

• Archive the AI extents.

• Make a full AI extent available for reuse.

The following sections detail each task.

11.5.1 Monitoring AI File Status
You must monitor the status of the AI extents. The AI extent status can be one of the following:

• Empty — When an AI extent is empty, it is available for use.

• Busy — When an AI extent is busy, it is currently in use.

• Full — When a busy AI extent fills up, an extent switch occurs: the state of the AI extent
changes to full and the next AI extent becomes busy.

Monitoring AI Extent Status

Use the RFUTIL AIMAGE EXTENT LIST utility to display information about each extent,
including status. This command returns no information if after-imaging is disabled:

For more information, see the description of the AIMAGE EXTENT LIST utility in Chapter 19,
“Database Administration Utilities.”

Use the RFUTIL AIMAGE EXTENT FULL utility to provide the filename of the oldest full
file. You can then use this information to archive extents in the order in which they were filled.
Although there might be multiple full files, this command displays the pathname of the oldest
full file:

For more information, see the description of the AIMAGE EXTENT FULL utility in Chapter
19, “Database Administration Utilities.”

rfutil db-name -C aimage extent list

rfutil db-name -C aimage extent full
11–6

After-Imaging
11.5.2 Switching To a New AI File
You switch to a new AI extent for the following reasons:

• As part of the backup schedule

• When the current fixed-length AI extent is full, or when the disk holding the current
variable-length AI extent is full

• Before archiving an AI extent

Except when you switch to a new extent because the current extent is full, switching to a new
AI extent establishes a starting point for backup; after you restore the backup, you roll forward
starting from that extent.

NOTE: When you perform an online backup, PROBKUP automatically switches over to a
new extent as long as the next extent is empty. Before you perform the online backup,
make sure that the next extent is empty.

A fixed-length extent has a predefined size, so the database engine can determine when the
extent becomes full.

In contrast to a fixed-length extent, a variable-length extent does not have a predefined
maximum size. Therefore, the database engine cannot anticipate when the extent is about to
become full. Unless you force a switch using the RFUTIL AIMAGE NEW utility, the database
engine continues writing to the extent until there is no more room left on the disk or the 2GB
addressable AI file limit is reached. When the extent becomes full, the database engine
automatically switches to the next extent, provided that the next extent is empty.

If the next extent is full, the database engine shuts down the database. However, you can use the
After-image Stall (-aistall) parameter to suspend database activity and send a message to the
log file or you can use the RFUTIL qualifier AIMAGE AIOFF to disable after-imaging. If you
use -aistall, you can archive the extent and mark it as empty. The system will then
automatically switch to that extent and the database activity automatically resumes. For more
information on the -aistall parameter, see Chapter 18, “Database Startup Parameters.” If you
use RFUTIL AIMAGE AIOFF, after-imaging becomes disabled and can no longer write notes.

NOTE: You can only use the -aistall parameter and RFUTIL AIMAGE AIOFF in
multi-user mode.]
11–7

Progress Database Administration Guide and Reference
When the database engine suspends database activity or shuts down the database, it sends the
following message to the log file:

The database engine cannot resume database activity until the next extent is backed up and
marked as empty.

Manual Switching To a New AI Extent

You can manually perform an online AI extent switch if you want to archive the AI file at
regularly scheduled times instead of waiting until the extent becomes full.

Follow these steps to switch to the next extent in the sequence:

1 ♦ Make sure the next extent in the sequence is archived. If not, archive it. See the “Archiving
an AI File” section for details.

2 ♦ Use the RFUTIL AIMAGE NEW utility with the following syntax:

When you issue the RFUTIL AIMAGE NEW command, RFUTIL changes the status of the
current extent to full and changes the status of the next file to busy. For more information on
this command, see Chapter 19, “Database Administration Utilities.”

11.5.3 Archiving an AI File
Backing up the AI file involves:

• Scheduling the backup

• Performing the backup

• Marking a file as empty

• Labeling the backup

Can’t switch to after-image extent filename it is full.
Backup ai extent and mark it as empty (3774)

rfutil db-name -C aimage new
11–8

After-Imaging
Scheduling Backups

Depending on your database backup schedule and needs, you might want to back up the AI files:

• Each time you perform a database backup.

Back up the AI files each time you back up the database. It should be a routine part of every
backup. Also, back up the AI files on a backup media different from the database, log, and
BI files. This technique provides a way to reconstruct the database by rolling forward the
backup of the AI files against the previous backup of the database.

If you do choose to back up the AI files on the same media as the database, it is essential
that you back up the AI files in a way that lets you restore it separately from the database,
BI, and log files.

NOTE: If you back up the AI files when you perform a database backup, keep in mind
that the AI files backup is used with the previous database backup.

You can use the RFUTIL utility commands with online databases that have AI extents.
You can perform online backups while after-imaging is enabled. The backup utility
automatically marks the busy AI file as full and switches over to a new AI file.

• On a daily basis.

You should consider backing up the AI files on a daily basis if:

– You are on a weekly full backup schedule and the AI files will grow very large during
the week.

– You want to perform daily backups of the AI files instead of performing incremental
backups. However, it is quicker to restore your database from incremental backups
than AI backups.

Before deciding to back up the AI files every day, consider that recovering the database from
these small AI files is more intricate than recovering from a single, large AI file. Also, if you
are using a single AI file, you must shut down the database to switch to a new AI file.

If you are using multiple AI extents, you must back up the extents regularly to ensure that the
system does not run out of AI space. If you are using a single AI file, it is important to back up
the AI file before you fill the disk that contains it. If you do not back it up in time, the database
engine shuts down the database. For a complete description of how to recover from a full AI
disk, see Chapter 8, “Recovering a Database.”
11–9

Progress Database Administration Guide and Reference
Performing the Backup

You must use an operating system utility to back up the AI files regardless of whether you are
using a single AI file or multiple AI files. Table 11–2 presents some of the backup options
available for each operating system.

Ensure that the backup technique backs up the entire file. On many UNIX systems, certain
utilities (for example, cpio) will back up only the first part of files over a certain size (controlled
by the ULIMIT parameter). Backups of partial AI files are invalid and unusable.

Marking an AI File As Empty

After you back up a file, you must mark the file as empty so that the database engine can reuse
the file. To mark a file as empty, use the AIMAGE EXTENT EMPTY qualifier of the RFUTIL
utility. After you mark the file as empty, the database engine overwrites the contents of the file.

Use the following command to mark the AI file as empty:

db-name

Specifies the database you are using.

extent-number

Specifies the number of the file you want to mark as empty.

Table 11–2: Operating System Backup Utilities

Operating
System Available Backup Utilities

UNIX tar, cpio, or a manufacturer-supplied backup utility.

Windows Windows Backup or any backup utility that can back up and restore
individual files.

rfutil db-name -C aimage extent empty [extent-number | extent-path]
11–10

After-Imaging
extent-path

Specifies the pathname of the file you want to mark as empty.

If you do not specify an extent-number or extent-path, the database engine automatically
marks the oldest full extent as empty.

NOTE: Use the RFUTIL AIMAGE EXTENT LIST or RFUTIL AIMAGE EXTENT FULL
utility to determine the extent-number or extent-path.

Labeling the Backup

After you back up the AI file, you must properly label the backup. Properly labeling backups
helps you ensure database integrity. Follow these steps to label backups:

1 ♦ Clearly label each backup. Information on the label might include the:

– Date and time of the backup

– Name of the database

– Name and type of the file

– Volume number and total number of volumes of the media, even if there is only one
volume

– Initials of the person who made the backup

– Utility to use to restore the backup

2 ♦ Keep all daily database and AI file backups for at least two weeks. In the event that you
have to roll the database forward, you can then reapply each of these daily backups to
recover the lost data. If you do not keep a daily backup of the AI files and you lose the
database and AI files, the most recent backup might be as much as a week old. However,
if you have been doing daily backups of the AI files, you can use the most recent copy of
that file to reconstruct a more recent version of the database.

3 ♦ Keep backups in an area other than where the computer is located, preferably in another
building. Thus, in the event of building damage, you are less likely to lose both the online
and backup versions of the files.
11–11

Progress Database Administration Guide and Reference
11.6 Performing Roll-forward Recovery
To perform roll-forward recovery, roll forward all of the extents used since the last backup, in
the order they were filled. You must roll forward all of the extents before you can start the
database. If you inadvertently start a database before you restore all of the AI extents, the
database engine rolls back any incomplete transactions. Although these transactions might be
completed in other as yet unrestored AI files, they appear to the database engine as incomplete
during the roll-forward process. If you start the database before you restore all of the extents,
you must begin the roll forward again from the last backup.

Before performing roll-forward recovery, you must have the most recent database backup, all
AI files generated since the most recent backup, and no missing files. The last file is usually the
file in use when the system failed. If any AI file is missing, recovery can be performed up to the
missing file, but no further.

Use the ROLL FORWARD qualifier of the RFUTIL utility to restore each file:

db-name

Specifies the database you are using.

ai-name

Identifies the AI file of the specified database.

The ROLL FORWARD qualifier fails if:

• You omit the After-image Filename (-a) parameter

• It cannot open the AI file

• You name the wrong AI file

If the system fails while you are running the ROLL FORWARD operation, restore the database
files again and rerun the ROLL FORWARD operation.

rfutil db-name -C roll forward -a ai-name
11–12

After-Imaging
The ROLL FORWARD qualifier always disables after-imaging for the database before
beginning the roll-forward operation. After the roll-forward has completed, you must re-enable
after-imaging with the AIMAGE BEGIN qualifier if you want continued AI protection.

To perform a partial roll-forward recovery, use the endtime or endtrans options. The endtime
option lets you roll forward an AI file to a particular point. The endtrans option lets you roll
forward an AI file to a particular transaction.

For more information about the ROLL FORWARD qualifier, see Chapter 8, “Recovering a
Database” and the entry for the RFUTIL utility in Chapter 19, “Database Administration
Utilities.”

11.7 Disabling After-imaging
Follow these steps to disable after-imaging:

1 ♦ If you have a database, back up any full extents. This step is important because when you
disable after-imaging on a database with AI extents, the database engine marks all of the
AI extents as empty. This means that you cannot access any information that you did not
back up for roll-forward recovery.

2 ♦ If you have a database, back up the extent that is currently busy.

3 ♦ Disable after-imaging. Use the AIMAGE END qualifier with the RFUTIL utility:

db-name

Specifies the database you are using.

You can also use the AIMAGE AIOFF qualifier with RFUTIL. Use AIMAGE AIOFF
when you need to temporarily disable after-imaging, such as during scheduled
maintenance:

db-name

Specifies the database you are using.

rfutil db-name -C aimage end

rfutil db-name -C aimage aioff
11–13

Progress Database Administration Guide and Reference
11–14

12
Using Two-phase Commit

The Progress database engine uses two-phase commit to ensure database integrity when
updating two or more databases in a single transaction. Two-phase commit is not necessary for
transactions involving a single database.

This chapter contains the following sections:

• Distributed Transactions

• How The Database Engine Implements Two-phase Commit

• Enabling Two-phase Commit

• Detecting Limbo Transactions

• Resolving Limbo Transactions

• Deactivating Two-phase Commit

• Case Study

Progress Database Administration Guide and Reference
12.1 Distributed Transactions
Two-phase commit ensures that distributed transactions occur consistently across all databases.
A distributed transaction is a single transaction that updates two or more databases. The
following 4GL procedure is an example of a distributed transaction:

The following scenario illustrates how inconsistencies can occur during a distributed
transaction. A bank has two accounts, one on database sports1 and another on database sports2.
The bank runs an application that starts a transaction to withdraw a sum of money from sports1
and deposit it into sports2. To keep the accounts in balance, it is critical that both
operations—the withdrawal and the deposit—succeed, or that they both fail. For example, if
sports1 commits its part of the transaction and sports2 does not, there is an inconsistency in the
data, as shown in Figure 12–1.

Figure 12–1: Data Inconsistency

disttran.p

DO TRANSACTION:
FIND FIRST sports1.customer.
sports1.customer.credit-limit = sports1.customer.credit-limit - 10.
FIND sports2.customer WHERE sports2.customer.cust-num =

sports1.customer.cust-num.
sports2.customer.credit-limit = sports2.customer.credit-limit + 10.

END.

sports1 withdrawal deposit sports2

System failure interrupts the transaction,
and the money is not deposited.
12–2

Using Two-phase Commit
Two-phase commit protects against this type of inconsistency by making sure that all databases
commit the transaction, or that none commit. To ensure database integrity across all involved
databases, the database engine commits database updates in two distinct phases. During the first
phase, the database engine checks each database involved in a transaction to verify that it is
ready to commit the transaction. During the second phase, the database engine directs the
databases to commit the transaction and then verifies that they committed it properly.

If there is an inconsistency, the database engine displays error messages and allows you to
complete or roll back the inconsistent transaction to return the data to a consistent state.

12.2 How The Database Engine Implements Two-phase Commit
To implement two-phase commit, the database engine assigns a coordinator database and a
transaction number for each distributed transaction. The coordinator database establishes the
transaction’s status (either committed or terminated). The transaction number identifies
individual transactions. The transaction number for a distributed transaction is the transaction
number assigned to the coordinator database. The database engine stores the name of the
coordinator database and the transaction number in the before-image (BI) file of each database
involved in the distributed transaction.

The coordinator database establishes the status of the transaction by committing or terminating
the transaction. The action that the coordinator database takes is final and irreversible. If the
coordinator database commits a transaction, the status of the transaction is committed, even if
other databases do not commit the transaction. (This can happen because of a hardware or
software failure.) Likewise, if the coordinator terminates a transaction, the status of the
transaction is aborted. All of the other databases involved in the transaction must perform the
same action as the coordinator database, or your data will be inconsistent.

Figure 12–2 shows the algorithm that the database engine uses to implement two-phase commit.
Because this algorithm requires additional unbuffered I/O operations to ensure transaction
integrity, there might be a performance impact when you implement two-phase commit. If
two-phase commit is enabled, transactions that do not involve multiple databases do not incur
additional I/O for those transactions.
12–3

Progress Database Administration Guide and Reference
Figure 12–2: Two-phase Commit Algorithm

The database engine assigns the
coordinator database and transaction
number.

The database engine instructs all
databases except coordinator to prepare
to commit.

Databases write ready-to-commit notes
that include the coordinator name and the
transaction number to the BI files.

Databases return commit status to the
database engine.

Are all
databases ready to

commit?

The database engine instructs all
databases to terminate the transaction
and reflect the changes in BI files.

No Yes

The database engine tells the coordinator
database to commit.

Coordinator commits the transaction and
writes notes to its BI and transaction log
files.

Coordinator returns commit status to the
database engine.

Did
coordinator
commit?

The database engine instructs other
databases to terminate the transaction
and reflect the changes in BI files.

The database engine instructs other
databases to commit the transaction and
reflect changes in BI files.

Did other
databases

abort?

Did other
databases
commit?

End

Begin

NoNo YesYes

Abnormal termination.
Limbo transaction occurs.

Abnormal termination.
Limbo transaction occurs.

No Yes
12–4

Using Two-phase Commit
As Figure 12–2 shows, the coordinator database is the first database in the distributed
transaction to either commit or abort the transaction. By keeping track of the coordinator’s
action, two-phase commit allows you to resolve any inconsistent transactions.

A limbo transaction (also known as an in-doubt transaction) occurs if the coordinator database
commits or aborts a distributed transaction, but a hardware or software failure prevents other
databases from doing likewise. This is called a limbo transaction because the processing of the
transaction is temporarily suspended. A limbo transaction might occur for a variety of reasons,
for example, as a result of a power outage. Figure 12–3 illustrates a limbo transaction.

Figure 12–3: Limbo Transaction

When a limbo transaction occurs, you must resolve the transaction to re-establish data
consistency. You resolve a limbo transaction with the Progress Database Monitor (PROMON)
utility or with the database engine.

Commits!

PHASE TWO:
Coordinator database commits, but a hardware or software failure
prevents DB2 from committing. Limbo transaction occurs on DB2.

withdrawalDB1
Coordinator DB2deposit

Commits! X

PHASE ONE:
The database engine withdraws money from DB1 and deposits it
in DB2. The database engine asks both databases if they are
ready to commit the transaction.

withdrawalDB1
Coordinator DB2deposit
12–5

Progress Database Administration Guide and Reference
Once the coordinator database establishes the status of a distributed transaction, it writes the
status to its BI and TL (transaction log) files. The TL file tracks the status of all distributed
transactions that affect the coordinator database.

Since the database engine continually overwrites the contents of the BI file, the TL file is
necessary to permanently record the status of a transaction. If you must resolve limbo
transactions, the transaction log file ensures that the coordinator has a reliable record of the
transaction.

If you enable after-imaging for the coordinator database, the coordinator automatically uses the
after-image (AI) file to log the status of each distributed transaction, instead of using the
transaction log file. By using the AI file, the database engine writes to disk less often than if you
use both the AI and transaction log file, thus improving performance. However, the database
engine still uses the transaction log file to store information when you make an AI file available
for reuse. In addition, if you disable after-imaging, the coordinator once again uses the
transaction log file.

12.2.1 Two-phase Commit and Roll-forward Recovery
If you use two-phase commit, you should also use after-imaging to ensure database integrity and
avoid backup synchronization problems. Although two-phase commit ensures that distributed
databases remain synchronized, it does not protect you from a lost database or BI file. If you
lose an entire file or disk, you must use the AI file and roll-forward recovery to return to the
point of the crash.

Keep the following information in mind when performing roll-forward recovery using
RFUTIL:

• If you perform roll-forward recovery on a database that has after-imaging and two-phase
commit enabled, RFUTIL disables after-imaging and two-phase commit.

• When you roll forward an after-image file that contains coordinator transaction end notes,
RFUTIL writes a transaction log file containing the notes. Also, if two-phase commit is
not enabled, RFUTIL enables two-phase commit for the coordinator database.

See Chapter 8, “Recovering a Database,” for more information about roll-forward recovery and
after-imaging.
12–6

Using Two-phase Commit
12.3 Enabling Two-phase Commit
PROUTIL provides two-phase commit protection only if you enable two-phase commit on two
or more of the databases involved in a distributed transaction. For example, if a transaction
involves three databases and you enable two-phase commit for two of them, PROUTIL provides
two-phase commit protection for the two databases. However, PROUTIL protects only the
databases that you enable, so the transaction is not completely protected from failure. For true
integrity, enable two-phase commit for all three databases.

NOTE: You must create and maintain a transaction log (TL) area for your database in order
to use two-phase commit. For more information, see the “Transaction Log Area”
section. For a complete description of database storage areas see Chapter 1, “The
Progress Database.”

You enable two-phase commit with the PROUTIL 2PHASE BEGIN qualifier. When you
enable two-phase commit, you can specify the database that should serve as the coordinator
database. You can also specify an alternate name (nickname) for the coordinator database.

This is the syntax for enabling two-phase commit:

db-name

Specifies the database you are using.

-crd

Specifies that the database can serve as a coordinator database. For example, if you enable
two-phase commit for three databases (db1, db2, and db3) and you specify the -crd
parameter for db3, PROUTIL assigns db3 as the coordinator database. However, if you
specify the -crd parameter for more than one database, PROUTIL arbitrarily assigns a
coordinator database from the databases that received the -crd parameter. If you do not
assign any database as a coordinator, all two-phase-commit-enabled databases are
potential coordinator databases. PROUTIL randomly assigns a coordinator database from
one of these databases.

Choose a database on a reliable machine to serve as the coordinator database. This way,
you can be more certain that you have a reliable record of all transactions that occur. You
can also be more certain that a hardware or software failure does not affect the coordinator
database.

proutil db-name -C 2phase begin [-crd | -tp nickname]
12–7

Progress Database Administration Guide and Reference
-tp

Specifies a unique nickname that PROUTIL uses to identify the coordinator database. If
you do not specify a nickname, PROUTIL automatically chooses the name of the database
(without the .db extension) as the nickname.

For example, if you have a database named /usr/dbs/appl.db, the nickname for the
database is appl. If PROUTIL assigns appl.db as the coordinator database, it writes the
nickname appl to the BI file instead of the database’s full path name. Specify nicknames
of up to eight characters. Specifying a shorter nickname decreases the size of the notes that
must be written.

NOTE: Be sure to specify a unique nickname. If you must resolve limbo transactions
with two databases that have the same path name but are on different machines,
PROUTIL does not distinguish between the two databases.

12.3.1 Modifying the Database Nickname and Priority
If you want to change the nickname of a database, or if you want to change the priority of your
databases, use the 2PHASE MODIFY qualifier of the PROUTIL utility:

db-name

Specifies the database you are using.

-crd

Switches whether or not the database can serve as a coordinator database. If you specify
-crd against a database that is a candidate for coordinator database, it is no longer a
candidate. If you specify -crd against a database that is not a candidate, it becomes a
candidate.

-tp

Identifies a new nickname for the coordinator database.

proutil db-name -C 2phase modify [-crd | -tp nickname]
12–8

Using Two-phase Commit
12.3.2 Transaction Log Area
A separate transaction log (TL) storage area holds the transaction log data generated when
two-phase commit is in use. You must create and maintain a TL area for your database in order
to use two-phase commit.

The transaction log contains the transaction number of all committed distributed transactions.
When there is an in-doubt transaction, this log is scanned for the transaction number to
determine if the transaction committed or not. If the transaction number is found in the log, it
means the transaction committed. If the transaction number is not found in the log, it means the
transaction aborted.

When the last block of the TL area is written, PROUTIL automatically resets the current write
position to the first block of the area. Thus, the oldest transaction recorded in the log is in the
block after the current write position once the write pointer has wrapped around for the first
time. The record of the transaction commit written to the log is the 32-bit transaction id of the
committed transaction. Aborted transactions do not have a record written to the log.

The TL area can be composed of one or more fixed-length extents. The TL area cannot have a
variable-length extent. The TL block size is 16K. Each 16K block can contain the commit
record for 4,000 distributed transactions. The transaction log should contain enough space so
that the record of a committed transaction is not overwritten before a database containing an
in-doubt transaction can be brought back online.

To determine how large the TL area should be, use the PROMON utility to determine the
average number of transactions in a 24-hour period. Multiply that number by 1.2, then round up
to the nearest multiple of 16KB. The result is the number of bytes you should specify for your
TL extents.

For example, if a site commits 1,000,000 transactions per day, the TL extent size needed is:

1,000,000 * 1.2 = 1,200,000
1,200,000/16384 = 73.242 (or 74 rounded up)
74 * 16384 = 1212416
1212416/1024 = 1184 KB

This indicates that the total extent length of the TL area should be set to 1184K.
12–9

Progress Database Administration Guide and Reference
12.4 Detecting Limbo Transactions
When a limbo transaction occurs, PROUTIL writes information about the failed transactions to
the log (.lg) file and displays one of the following messages:

Figure 12–4 illustrates where messages are displayed.

Figure 12–4: How PROUTIL Processes React To Limbo Transactions

Limbo transactions can occur without any messages being displayed on screen, for example, if
a hardware or software failure occurs while a user is running a PROUTIL application or if a user
powers off a client machine. If possible, users on client machines should inform the system
administrator when these events occur. If such an event occurs, examine all of the databases that
might be involved to determine whether any limbo transactions occurred. You can use
PROMON or PROUTIL to examine a database for limbo transactions.

CAUTION: If an application is performing a distributed transaction when a client machine
fails or shuts down, the transaction remains open. If this continues unchecked, the
BI files of the databases involved in the transaction could grow to fill the disk, as
with any other long-running transaction.

Part of the distributed transaction might have failed.(2022)
Cannot roll back a limbo transaction.(2030)

Server
Writes to database.

Self-service Client
Writes to database.

Remote Client
Does not write to
database.

During Normal
Operations:

Server
Writes messages to
log file.

Self-service Client
Writes messages to
screen and log file.

Remote Client
Writes messages to
screen.

When Limbo
Transactions Occur:

DB

Screen

Log
File
12–10

Using Two-phase Commit
12.5 Resolving Limbo Transactions
When you detect a limbo transaction, follow these steps to resolve it:

1 ♦ Determine the transaction numbers and the coordinator database.

2 ♦ Find out if a limbo transaction was committed in the coordinator database.

3 ♦ Resolve the limbo transaction by committing or aborting it in the limbo database.

There are two techniques for resolving limbo transactions. You can:

• Resolve a limbo transaction on a database that is still in use with PROMON.

• Resolve limbo transactions on a database that is shut down. For this technique, try to start
a session against the database, then use PROUTIL 2PHASE RECOVER.

12.5.1 Resolving Limbo Transactions With the Database In Use
Use PROMON to resolve limbo transactions while the database is still in use. You can only run
PROMON against a database if a server is running against the database. If no server is running,
or if at any point during this procedure PROMON will not run against a database, see the
“Resolving Limbo Transactions With the Database Shut Down” section.

Follow these steps to resolve limbo transactions with PROMON:

1 ♦ Determine whether one or more limbo transactions occurred against a database by starting
the PROMON database monitor. Enter the following command:

db-name

Specifies the database you want to monitor.

promon db-name
12–11

Progress Database Administration Guide and Reference
When you enter the PROMON utility, the main menu appears:

2 ♦ Choose option T (Transaction Control). PROUTIL displays a screen similar to this:

3 ♦ Choose option 1 (Display all entries). PROUTIL displays a screen similar to this:

PROUTIL MONITOR Version 9
Database: /usr/dlc/sports

1. User Control
2. Locking and Waiting Statistics
3. Block Access
4. Record Locking Table
5. Activity
6. Shared Resources
7. Database Status
8. Shut Down Database

T. Transaction Control
L. Resolve Limbo Transaction
C. Coordinator Information

M. Modify Defaults
Q. Quit

Enter your selection:

1. Display all entries
2. Match a user number
3. Match a range of user numbers
Q. Return to main menu

Enter your selection:

 Tr ansact i on Cont r ol :

 Usr Name Tr ans Logi n Ti me R- comm? Li mbo? Cr d? Coor d Cr d- t ask
 2 paul 760 07/ 25/ 00 10: 15 yes yes no spor t s1 42453

A limbo transaction displays
yes in this field.
12–12

Using Two-phase Commit
NOTE: If you run PROMON against a database where no limbo transaction has occurred,
PROMON does not display any field information on the Transaction Control
screen.

Take note of any limbo transactions. For example:

A transaction is in limbo if yes is displayed in the Limbo field. For each limbo transaction,
write down the following information:

• The user number, shown in the Usr field

• The name of the coordinator database, shown in the Coord field

• The transaction number of the transaction in the coordinator database, shown in the
Crd-task field

You need this information to resolve the limbo transaction.

To resolve limbo transactions, you must consult the coordinator database of each
transaction to see if the coordinator committed the transaction. If the coordinator database
committed the transaction, you must also commit the transaction on the database where
the limbo transaction occurred. If the coordinator did not commit the transaction, you must
terminate the transaction on the database where the limbo transaction occurred.

4 ♦ For each limbo transaction, run PROMON against the coordinator database to determine
whether the coordinator committed the transaction.

 Tr ansact i on Cont r ol :

 Usr Name Tr ans Logi n Ti me R- comm? Li mbo? Cr d? Coor d Cr d- t ask
 2 paul 760 07/ 25/ 00 10: 15 yes yes no spor t s1 42453

Write down this information. You will
use it to resolve the limbo transaction.
12–13

Progress Database Administration Guide and Reference
5 ♦ From the PROMON main menu, choose option C (Coordinator Information). PROUTIL
displays a screen similar to this:

NOTE: If the coordinator database is shut down and you cannot run PROMON against
it, you must use the 2PHASE COMMIT qualifier of PROUTIL to determine
whether it committed the transaction. For more information, see the “Resolving
Limbo Transactions With the Database Shut Down” section.

6 ♦ Enter the transaction number that you recorded from the Crd-task field in Step 3, and press
RETURN. PROUTIL displays a message that tells you whether the transaction committed.

NOTE: To commit transactions on a database that is shut down, you must use the
2PHASE RECOVER qualifier of PROUTIL. For more information, see the
“Resolving Limbo Transactions With the Database Shut Down” section.

7 ♦ Run PROMON against the database where the limbo transaction occurred to commit or
abort each limbo transaction.

8 ♦ From the PROMON main menu, choose option L (Resolve Limbo Transactions). This
menu appears:

PROUTIL MONITOR Version 9

Database: /users/sports1

Q. Quit

Enter the transaction number you want to find out if committed:

1 Abort a Limbo Transaction
2 Commit a Limbo Transaction
Q Quit

Enter choice>
12–14

Using Two-phase Commit
9 ♦ To commit the transaction, choose 2 (Commit a Limbo Transaction). PROUTIL prompts
you to enter the user number you recorded in Step 3, then press RETURN. PROUTIL
displays a message similar to this:

To abort the transaction, choose 1 (Abort a Limbo Transaction). PROUTIL prompts you
to enter the user number of the transaction you want to abort. Enter the user number, then
press RETURN.

Repeat Steps 4 through 9 for all the limbo transactions. After you commit or abort all of the
limbo transactions, they are resolved.

12.5.2 Resolving Limbo Transactions With the Database Shut
Down

To resolve limbo transactions for a database that is shut down, use the PROUTIL utility. If a
server is running against the database, use PROMON to resolve the transactions.

Follow these steps:

1 ♦ To determine whether one or more limbo transactions occurred against a database that is
shut down, try to start a PROUTIL session against the database. If limbo transactions
occurred, the PROUTIL session fails to start and PROUTIL displays output similar to the
following, or writes it to the event log file for the database. If the PROUTIL session starts
successfully against a database, no limbo transactions have occurred on the database:

User 1: commit transaction and disconnect.

13: 27: 05 SRV 0: Tr ansact i on 760, on coor di nat or spor t s1 #42453, i s
 i n a l i mbo st at e. (2038)
13: 27: 05 SRV 0: The dat abase cont ai ns l i mbo t r ansact i ons.
 (2043)
13: 27: 05 SRV 0: See l i st on t he l og f i l e . l g. Use PROUTI L spor t s2
 - C 2phase r ecover . (2042)

Transaction number in
current database

Name of coordinator
database

Transaction number in
coordinator database
12–15

Progress Database Administration Guide and Reference
 For all the listed limbo transactions, capture the following information:

• The transaction number on the current database (that is, the database where you tried
to start the PROUTIL session)

• The name of the coordinator database

• The transaction number in the coordinator database

Once you have this information, you must consult the coordinator database to determine
whether it committed or aborted the transaction.

2 ♦ Enter the following command against the coordinator database to determine if the
coordinator committed or aborted the limbo transaction:

db-name

Specifies the coordinator database.

tr-number

Specifies the number of the transaction to check. Specify the number of the
transaction on the coordinator database.

If the coordinator committed the transaction, PROUTIL displays a message similar to this:

If the coordinator database committed the transaction, you must also commit the
transaction on the database where the limbo transaction occurred. If the coordinator did
not commit the transaction, you must abort the transaction on the database where the limbo
transaction occurred.

proutil db-name -C 2phase commit tr-number

Transaction 42453 has committed. (2048)
12–16

Using Two-phase Commit
3 ♦ Commit or abort the limbo transactions, depending on whether the coordinator committed
or aborted the transaction in Step 2.

Use the PROUTIL 2PHASE RECOVER utility to commit or abort transactions for a
database. Before you enter this command, determine whether you will commit or abort
each transaction; you must either commit or abort all limbo transactions to complete this
command:

db-name

Specifies the database with the limbo transaction.

When you run this command against a database with limbo transactions, PROUTIL
displays a message similar to this:

If you respond yes, PROUTIL commits the transaction. If you respond no, PROUTIL
aborts the transaction.

PROUTIL displays this message for all of the limbo transactions that exist in the database.

After you commit or abort all of the limbo transactions, they are resolved.

12.5.3 Resolving Limbo Transaction Scenarios
This section describes three scenarios in which you must resolve limbo transactions.

Scenario 1: You Are On a Client Machine and the Server Fails

If you are on a client machine running a distributed transaction and something goes wrong with
the server, PROUTIL displays this message:

proutil db-name -C 2phase recover

Commit transaction 760, on coordinator sports1 #42453 (y to commit/n to
abort)? (2039)

Part of the distributed transaction may have failed. (2022)
12–17

Progress Database Administration Guide and Reference
This message does not necessarily mean that a transaction failed. Occasionally, a transaction
commits properly, but a network communication failure intercepts the server’s message
verifying that it committed. When you see this message, or any similar message, the database
administrator must determine whether a limbo transaction occurred, then resolve the limbo
transaction.

To resolve limbo transactions, you complete the transactions from the point where they were
interrupted by the hardware or software failure. If the coordinator committed the transactions,
you must commit the transactions. If the coordinator did not commit the transactions, you must
abort the transactions.

Scenario 2: You Are Starting Up PROUTIL and Have a Power Failure

You have a power outage that shuts down all of the machines on your network. When the power
is restored, you try to start a PROUTIL session. PROUTIL fails to open the database and
displays a message similar to this:

This message indicates that limbo transactions must be resolved. Consult the log file for a record
of the limbo transactions.

Scenario 3: You Are On a Client Machine and It Fails

Suppose a hardware or software failure occurs on a running client machine, or a user
inadvertently powers off a machine while the database is running. PROUTIL cannot display a
message indicating that a limbo transaction occurred, since the client machine is down. In this
situation, use the PROMON utility against the server to determine whether any limbo
transactions occurred. If so, resolve them.

13:27:04 SRV 0: Multi-user session begin. (333)
13:27:05 SRV 0: The database contains limbo transactions. (2043)
13:27:05 SRV 0: See list on the log file .lg. Use PROUTIL sports2 -C 2phase

recover. (2042)
13:27:06 ** The server terminated with exit code 20. (800)
12–18

Using Two-phase Commit
12.6 Deactivating Two-phase Commit
To deactivate two-phase commit for a database, use the 2PHASE END qualifier of the
PROUTIL utility. The database cannot be in use:

db-name

Specifies the database where you want to disable two-phase commit. When you deactivate
two-phase commit, PROUTIL places a note in the database log file. However, PROUTIL
does not delete the database’s transaction log file.

12.7 Case Study
This case study illustrates the process of resolving a limbo transaction. It involves two
databases, sports1 and sports2, located on separate machines, mach1 and mach2, respectively.
Each database has two-phase commit enabled; each has a server running against it. The
coordinator database is sports1.

Suppose that you start a client process on mach1 against the sports1 database and then connect
to the sports2 database using this command:

After connecting, you try to run a distributed transaction.

While running this procedure, the client process is halted by a system error, and the following
messages appear:

The message indicates that a limbo transaction might have occurred. You must determine
whether a limbo transaction did occur, then resolve it.

proutil db-name -C 2phase end

CONNECT sports2 -H mach2 -S sportssv

Error reading socket, ret=-1, errno=2. (778)
Part of the distributed transaction might have failed. (2022)
Press space bar to continue.
12–19

Progress Database Administration Guide and Reference
You start PROMON against sports1, choose T (Transaction Control), and choose 1 (Display all
entries). This screen appears, indicating that there are no limbo transactions on sports1:

If PROMON failed to run against sports1, it indicates that the server also crashed and you must
use PROUTIL to determine whether any limbo transactions occurred.

After determining that no limbo transactions occurred on sports1, perform the same steps
against sports2. This time, the following screen appears, indicating that a limbo transaction has
occurred:

Write down the coordinator’s transaction number (indicated in the Crd-task field). The Coord
field indicates that sports1 is the coordinator database for this transaction. Therefore, you must
again run PROMON against sports1. This time, choose C (Coordinator Information). The
following screen appears, where you enter the transaction number 61061:

Transaction Control:
Usr Name Trans Login Time R-comm? Limbo? Crd? Coord Crd-task

RETURN - repeat, U - continue uninterrupted, Q - quit:

Transaction Control:
Usr Name Trans Login Time R-comm? Limbo? Crd? Coord Crd-task
15 paul 755 04/01/02 14:19 yes yes no sports1 61061

.

.

.
RETURN - repeat, U - continue uninterrupted, Q - quit

PROGRESS MONITOR Version 9

Database: /users/sports1

Q. QUIT

Enter the transaction number you want to find out if committed: 61061
12–20

Using Two-phase Commit
The following screen appears, indicating that the transaction committed:

Since the transaction committed on the coordinator sports1, you run PROMON against sports2
and choose 1 (Resolve Limbo Transactions). The following screen appears:

Choose 2 (Commit a Limbo Transaction), and this prompt appears:

Type 15 (the user number indicated on the previous screen). The PROMON utility commits the
transaction on sports2 and displays this message:

Since there are no more limbo transactions, the situation is resolved and no further action is
required.

Scan the logs...

** Transaction 61061 has committed.

Q. QUIT

Enter the transaction number you want to find out if committed:

Transaction Control:
Usr PID Time of Login User ID TTY Coord Crd-task
15 3308 Fri Apr 5 14:19:45 2002 paul mach1 ttyp1 sports1 61061

1 Abort a Limbo Transaction
2 Commit a limbo Transaction
Q Quit

Enter choice>

Enter the user number whose transaction you want to commit:

User 15: commit transaction and disconnect.
12–21

Progress Database Administration Guide and Reference
12–22

13
Dumping and Loading

Dumping and reloading data definitions and table contents is important for both application
development and database maintenance. This chapter details the different ways you can perform
a dump and load.

Specifically, this chapter contains the following sections:

• Overview Of Dumping and Loading

• Dumping 4GL Database Definitions

• Dumping Database Contents

• Loading Database Definitions

• Loading Database Contents

• Bulk Loading

• Reconstructing Bad Load Records

• Specialized Dump and Load Techniques

NOTE: For a complete description of dumping and loading SQL-92 content, see the
SQLDUMP and SQLLOAD descriptions in Chapter 19, “Database Administration
Utilities.”

Progress Database Administration Guide and Reference
13.1 Overview Of Dumping and Loading
You might want to dump and load your database to:

• Create a new version of a database

• Use a constant table in multiple databases

• Economize disk space

• Migrate a database to a different version of Progress or a different operating system
platform

• Load updated data definitions to upgrade a database schema

When you dump a database, you must first dump the database or table definitions, and then
dump the table contents. The definitions and contents must be in separate files and cannot be
dumped in one step. You perform both procedures with the Data Administration tool if you are
using a graphical interface, or the Data Dictionary if you are using a character interface.

You can also dump and load the table contents with the PROUTIL command. This option
dumps and loads the data in binary format.

4GL tools automatically attempt to disable triggers before performing the dump or load. If you
do not have Can-Dump and Can-Load privileges, the 4GL tool asks if you want to dump or load
the database without disabling the triggers. See Chapter 10, “Maintaining Security,” for
information about assigning privileges.
13–2

Dumping and Loading
13.1.1 Dump and Load Limitations
There are three restrictions for using the Dump and Load option from the 4GL tools:

• When you reload data from one database to another, the reload must be to a target database
that has the same fields, arranged in the same logical order as the source database. The
schema for each database must be identical. Otherwise, you must write your own reload
procedure. You can use 4GL statements such as INPUT FROM, CREATE, and IMPORT.

• If you define a database field with a data type of ROWID or RECID, then the ROWID
values in that field are dumped and reloaded as unknown value (?). You must write your
own dump and reload procedures to accommodate ROWID fields.

• If you do not have Can-Create and Can-Write privileges for a file, you can still dump the
data and data definitions for that file. You can also load the data definitions for the file, but
you cannot load the data for that file.

NOTE: Progress can also dump and load table data in formats other than those described in
this chapter. For information about other file formats Progress can dump and load,
see the EXPORT and IMPORT statements in the Progress Programming Handbook.

13.2 Dumping 4GL Database Definitions
Use the Data Dictionary or Data Administration tool to dump database definitions. There are
two ways to dump the database definitions:

• Dump the entire database, including all its tables, fields,

• Dump individual tables, sequences, or auto-connect records.
13–3

Progress Database Administration Guide and Reference
Whenever you run the dump utility to dump table definitions, the Data Dictionary or Data
Administration tool creates a data definitions (DF) file that contains definitions of tables, fields,
indexes, sequences, and auto-connect records, and all their characteristics. However, depending
on whether you choose to dump all tables or only selected tables when you dump the definitions,
the Data Dictionary or Data Administration Tool might or might not write all definitions to the
DF file. Table 13–1 shows the definitions that are dumped in each case.

If you dump individual tables, you must also dump the sequence definitions and auto-connect
records separately. For instructions, see the “Dumping Sequence Definitions” and “Dumping
Auto-connect Records” sections later in this chapter.

13.2.1 Definition File Format
When you dump definitions, the Data Dictionary or the Data Administration tool creates a data
definitions file. The Data tool then uses the data definitions file to load table definitions into the
database. Figure 13–1 shows a sample data definitions file for a single table.

Table 13–1: Definitions Dumped To the Definition File

Definitions All Tables Selected Tables

Tables, fields, and indexes Yes Yes

Sequence definitions Yes No

Auto-connect records Yes No

Collation No No

_User No No
13–4

Dumping and Loading
Figure 13–1: Sample Data Definitions File

 ADD TABLE "Customer"
 DESCRIPTION "Customer information"
 DUMP-NAME "customer"
 FOREIGN-NAME "n/a"
 TABLE-TRIGGER "CREATE" NO-OVERRIDE PROCEDURE "sports/crcust.p" CRC "?"
 TABLE-TRIGGER "DELETE" NO-OVERRIDE PROCEDURE "sports/delcust.p" CRC "?"
 TABLE-TRIGGER "WRITE" NO-OVERRIDE PROCEDURE "sports/wrcust.p" CRC "?"

 ADD FIELD "Cust-Num" OF "Customer" AS integer
 FORMAT ">>>>9"
 INITIAL "0"
 VALEXP "cust-num > 0"
 VALMSG "Customer number must be greater than zero"
 ORDER 10

 ADD FIELD "Name" OF "Customer" AS character
 FORMAT "x(20)"
 INITIAL ""
 ORDER 30

 ADD FIELD "Address" OF "Customer" AS character
 FORMAT "x(20)"
 INITIAL ""
 ORDER 40
 .
 .
 .
 ADD INDEX "Cust-Num" ON "Customer"
 UNIQUE
 PRIMARY
 DESCRIPTION ""
 INDEX-FIELD "Cust-Num" ASCENDING

 ADD INDEX "Comments" ON "Customer"
 WORD
 DESCRIPTION ""
 INDEX-FIELD "Comments" ASCENDING
 .
 .
.
PSC
codepage=ibm850
.
0000014953

Table definition

Field definition

Additional field definitions omitted

Index definition

Additional index definitions omitted

Indicates end of definitions
Always specified

Code page
Indicates end of variables
Character count (always
the last line)

Trailer
information
13–5

Progress Database Administration Guide and Reference
If you modify a data definitions file, tables, fields, and indexes can be intermixed within one
CREATE DATABASE section. However, be sure of the following:

• Define a file before any fields contained in that file.

• Define a field before any index using that field.

• Specify information using the correct syntax.

• All definitions must belong with the most recent ADD DATABASE or CREATE
DATABASE entry in the DF file.

The trailer information contains the values used by the database definitions. If you edit the
definitions file or create one manually, be sure to specify these values correctly. Table 13–2
explains these values.

13.2.2 Dumping 4GL Definitions
Follow these steps to dump database or table definitions:

1 ♦ Access the Data Administration tool. The Data Administration main window appears.

2 ♦ Make sure you are using the database (the source) from which you want to dump the table
definitions.

3 ♦ Choose Admin→ Dump Data and Definitions→ Data Definitions (.df file). The Data
Administration tool lists all the tables defined for the database alphabetically.

Table 13–2: Data Definitions File Trailer Values

Field Description

codepage=codepage The code page used by the database. For more
information, see the Progress Internationalization
Guide.

Character count The number of characters contained in the contents file,
up to and including the period that indicates the end of
the contents. This number is always a 10-digit number
with leading zeros, if necessary.
13–6

Dumping and Loading
4 ♦ Choose the table where you want to dump the definitions, or choose ALL.

If you choose ALL, the DF file will also contain the sequences and auto-connect record
definitions, but not the collation/conversion table. The Data Administration tool displays
a default name for the file that you can dump data definitions into (hidden tables are not
dumped). This default file is always the name of the table or database with a .df extension.
The Data Administration tool truncates table names to eight characters. When you dump
only one table, the table dump name becomes the default for its corresponding contents
dump file. For example, if you specify customer.d as the filename, when you dump the
file contents, the default filename is customer.d. If you specify to dump all the tables, the
default name is db-name.d.

5 ♦ Accept this default or enter a different name and choose OK. The Data Administration tool
displays each object name as it writes its definition to the data definitions file.

You see each table name on the screen as the Data Administration tool writes its definition
to the DF file. After all of the table definitions are dumped, the Data Administration tool
displays a status message and prompts you to continue.

6 ♦ Choose OK to return to the Data Administration main window.

13.2.3 Creating an Incremental 4GL Data Definitions File
An incremental data definitions file is a data definitions file that contains the schema differences
between two databases. When you load the incremental data definitions file into a target
database, the target database will then have the same schema as the source database. For
example, you might use this to upgrade a production database to the same schema as a
development database.

NOTE: If the data type of the extent of a field has changed, the Data tool writes a DROP
statement to the .df file to delete the existing field, and then an ADD statement to
re-create the field with its new definition. When the field is deleted from the
database, the contents of that field are also deleted.

To save the contents of the field, save the data before running this procedure, or
rename the old field, create a new field separately, and write a Progress 4GL
procedure that transfers the data from the old field to the new field. Then use the
incremental dump procedure to update the rest of the schema, including deleting the
obsolete old field.
13–7

Progress Database Administration Guide and Reference
Follow these steps to create an incremental data definitions file:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Select the source database as the current working database. The source database is the
database that has the schema that you want the definitions file to have.

3 ♦ Choose Admin→ Dump Data and Definitions→ Create Incremental .df File. The Data tool
lists all the connected databases.

4 ♦ If you have more than two databases connected, choose the target database. The target
database is the database to update.

The Data tool prompts you for the file where you want to write the differences.

5 ♦ Specify the file where you want to write the differences. The default filename is delta.df.
The Data tool displays the file, field, sequence, and index names as it compares the
databases.

6 ♦ After comparing the database, the Data Administration tool or the Data Dictionary returns
you to the main window.

NOTE: If you use this option to create a DF file in conjunction with r-code files to update
schema changes, you must load the DF file and recompile before you can run the new
r-code. You must recompile because the Data tool reorders the indexes during the
dump and load procedure.

13.2.4 Dumping Sequence Definitions
You can dump sequence definitions and values using either Data tool. The Data tool stores the
sequence definitions in the full database schema definition file that you name, and stores the
sequence values in a separate _seqvals.d file (or the file you name). You can dump the
sequence definitions and values separately.

Follow these steps to dump sequence definitions:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure that the database containing the sequences you want to dump or load is the
current working database.
13–8

Dumping and Loading
3 ♦ Choose Admin→ Dump Data and Definitions→ Sequence Definitions. The Data tool
prompts you for the file where you want to write the sequence definitions. The default
filename is _seqdefs.df.

4 ♦ Specify the filename or use the default value. After dumping the sequence definitions, the
Data tool displays a status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

13.2.5 Dumping Auto-connect Records
Follow these steps to dump auto-connect records:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Choose Admin→ Dump Data and Definitions→ Auto-connect Records Only. The data
tool prompts you for the output file where you want to write the auto-connect records. The
default filename is _auto.df.

3 ♦ Specify a new filename or accept the default. After dumping the auto-connect records, the
Data tool displays a status message and prompts you to continue.

4 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

13.3 Dumping Database Contents
When you dump database contents, you can dump the following:

• Table contents

• Sequence values

• User table contents

• SQL View File contents

NOTE: For a complete description of dumping and loading SQL-92 content, see Chapter 19,
“Database Administration Utilities.”

Progress provides two methods of dumping database contents: you can use the PROUTIL
command to dump the data in binary format, or you can use the Data Administration tool user
interface to dump the data in text format. Dumping the data in binary format with the PROUTIL
command is faster.
13–9

Progress Database Administration Guide and Reference
13.3.1 Dumping Table Contents With PROUTIL
Use the following PROUTIL command to perform a binary dump:

db-name

Specifies the database from which you want to dump. You must completely define the
path.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by PUB. By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the name of the table containing the data you want to dump.

directory

Specifies the name of the target directory where the data will be dumped.

[-index num]

Specifies an index to use to dump the table’s contents. If you choose not to use this option,
the command uses the primary index to dump the table.

You can use the PROUTIL IDXANALYS utility to help determine what the index number
is. For the complete syntax of the PROUTIL IDXANALYS utility, see Chapter 19,
“Database Administration Utilities.”

Results Of a Binary Dump With PROUTIL

PROUTIL DUMP writes data from a table to a dump file. The name of the resulting dump file
depends on the owner of the table. By default, Progress 4GL tables are owned by PUB. When
tables owned by PUB are dumped to a file, the filename is the table name with .bd appended.
For example, tablename.bd.

However, when tables owned by anyone other than PUB are dumped to a file, the resulting
filename contains the owner name and table name. For example, ownername_tablename.bd.

proutil db-name -C dump [owner-name.]table-name directory [-index num]
13–10

Dumping and Loading
On UNIX systems that have a 2GB file size limitation (Alpha OSF does not), PROUTIL DUMP
creates multiple files when you dump a table larger than 2GB. For example, when you dump
data from a table with the name “customer” that is 6.4GB, PROUTIL DUMP creates four binary
dump files: customer.bd, customer.bd2, and customer.bd3, each of which is approximately
2GB, and customer.bd4, which is approximately 0.4GB. The PROUTIL DUMP procedure
adds header blocks to the binary dump files. As a result, the total size of the binary dump files
is slightly larger than the table itself.

On Windows NT and Alpha OSF, however, there is no 2GB file size limitation. On Windows
NT and Alpha OSF, PROUTIL DUMP creates only one binary dump file regardless of the size
of the table.

Format Of a Binary Dump File

Each binary dump file contains a header and a description for each record in the table. The dump
file appears in the following format:

The file header contains information that appears in this order:

1. Version number

2. Date and time the file was created

3. Name of the table being dumped

4. Number of the table being dumped

5. CRC of the table being dumped

6. Number of fields in the table

7. Name of the database where the table resides

8. Section number

9. Number of the first record

10. Table owner

Header Record length Table number Binary record Record CRC
13–11

Progress Database Administration Guide and Reference
Section numbers that appear in the file header correspond to a binary dump file created by
PROUTIL DUMP when the table was larger than the UNIX 2GB file size limitation. (See the
“Results Of a Binary Dump With PROUTIL” section.) For example, Section 1 corresponds to
the binary dump file named customer.bd, Section 2 corresponds to customer.bd2, Section 3
corresponds to customer.bd3, and Section 4 corresponds to the customer.bd4 binary dump
file.

NOTE: To support the dump and load of binary large objects (BLOBS), PROUTIL DUMP
adds more items to the header of the binary dump file.

13.3.2 Dumping Field Contents With PROUTIL
Use the following syntax to perform a selective binary dump:

SYNTAX

db-name

Specifies the database from which the dump will occur. You must completely define the
path.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the name of the table containing the data you want to dump.

field-name

Specifies the name of the field containing the data you want to dump.

operator

Specifies the operator to be used: EQ (equals to), GT (greater than), GE (greater than or
equal), LT (less than), or LE (less than or equal).

Operating
System Syntax

UNIX
Windows

proutil db-name -C dumpspecified

[owner-name.]table-name.field-name operator field-value
directory
13–12

Dumping and Loading
field-value

Specifies the value against which the filed contents will be compared.

directory

Specifies the name of the target directory where the data will be dumped. A directory must
be specified.

EXAMPLES

The following syntax dumps all order date values greater than 2/3/02 from the Sports2000
database:

The following syntax dumps all item prices less than $25.90 from the Sports2000 database:

The following syntax dumps all order ship dates of 12/24/01 from the Sports2000 database into
the /dev/results directory:

The following syntax dumps all back ordered items from the Sports2000 database into the
/inventory/warehouse1 directory:

For more information on selective binary dumps, see the “PROUTIL DUMPSPECIFIED”
section of Chapter 19, “Database Administration Utilities.”

proutil sports2000 -C dumpspecified order.order_date GT ’2/3/02’

proutil sports2000 -C dumpspecified item.price LT 25.9

proutil sports2000 -C dumpspecified order.ship_date EQ ’12/24/01’
/dev/results

proutil sports2000 -C dumpspecified order_line.backorder EQ yes
/inventory/warehouse1
13–13

Progress Database Administration Guide and Reference
13.3.3 Dumping Table Contents With a Data Tool
When you dump table data, the Data tool creates a contents file that contains data from each
table you specify. This file has a .d extension. The Data tool uses the contents file to load data
into the database. The Data tool creates a separate contents file for every table you dump.

Follow these steps to dump table contents:

1 ♦ Access the appropriate Data tool (Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure you are using the database (the source) where you want to dump the table data.

3 ♦ Choose Admin→ Dump Data and Definitions→ Table Contents (.d files). The Data tool
lists all the tables defined for the database alphabetically.

4 ♦ Mark the table contents you want to copy. You can mark tables with asterisks (*), then use
the Select Some and Deselect Some buttons to select or deselect groups of tables. If you
are using a character interface, use F5 and F6.

When you dump a single table, the Data tool displays a default name for the file that you
can dump the table contents into (hidden tables are not dumped). This default file is always
the dump name of the table definition file, with a .d extension.

If you want to specify a file other than the default file, type the name in the Write output
to file field. You can use filenames longer than eight characters for the data tables if your
operating system allows it, but the Data tool requires a unique eight-character dump name
(which you supply when you create the table).

When you dump table contents for an entire database, the Data tool prompts you for a
directory name to write the contents files to. If you do not specify a directory, the Data tool
dumps the files into the current directory. The Data tool names each contents file with its
corresponding table name.

5 ♦ Accept the default or enter a different name.

6 ♦ If you want to use character mapping, enter the character mapping, then choose OK. See
the Progress Internationalization Guide for information about character mapping,
PROTERMCAP, and national language support.

The Data tool displays each table name as it writes the table contents to the table contents
file. After dumping the table contents, the Data tool displays a status message and prompts
you to continue.
13–14

Dumping and Loading
7 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

NOTE: You must dump the sequence values separately. See the “Dumping Sequence
Values” section for information about dumping sequence values.

13.3.4 Contents File Format
Figure 13–2 shows a sample contents file.

Figure 13–2: Sample Contents File

The trailer information contains information about the source database and certain startup
parameters specified for the session in which the contents file was created. Certain variables are
included for informational purposes only; other variables are used to load the data correctly. If
you edit the contents (.d) file or create one manually, be sure to specify these variables correctly.

1 "USA" "Lift Line Skiing" "276 North Street" "" "Boston"
"MA" "02114" "Gloria Shepley" "(617) 450-0087" "HXM" 66700
42568 "Net30" 35 "This customer is on credit hold. Last
payment received marked ""Insufficient Funds""!"
.
.
.
84 "USA" "Spike's Volleyball" "34 Dudley St" "" "Genoa" "NV"
"89411" "Craig Eleazer" "(702) 272-9264" "KIK" 20400 18267
"Net30" 5 ""
.
PSC
filename=Customer
records=00000083
ldbname=junk
timestamp=2000/06/28-16:20:51
numformat=thousands-,fractional-separator
dateformat=mdy-1900
map=NO-MAP
codepage=ibm850
.
0000012998

Table
contents

Trailer
information

Variables

Indicates end of contents

Indicates end of variables

Always specified

Character count (always the last line)
13–15

Progress Database Administration Guide and Reference
Table 13–3 explains these variables. If the database uses the default values for these variables,
these variables do not appear in the contents file.

Table 13–3: Contents File Trailer Variables

Field Description

filename=table-name Table name.

records=num-records1 Number of records contained in the file.

ldbname=logical-db-name Logical database name of the source database.

time stamp=time stamp Time stamp of the database.

num format=1
thousands-separator,

fractional-separator

The numeric value of the character that represents the
thousands-separator and fractional-separator
identified in the code page. When you attempt to load
the table contents file, the session and file must use the
same numeric format. If not, the Progress 4GL reports
a run-time error.

dateformat=date-format1 The date format used by the database contents.

map={MAP protermcap-entry |
NO-MAP}1

The character mapping to support the MAP option on
the INPUT FROM and OUTPUT TO statements. You
can specify a mapping between a standard set of
ASCII (7-bit) characters and extended (8-bit)
characters in the PROTERMCAP file. Progress uses
the PROTERMCAP entries to build a translation table
for the stream.

MAP specifies an entry that has been defined in the
PROTERMCAP file. NO-MAP directs Progress to
bypass character translation altogether.

codepage=codepage The code page used by the database. For more
information, see the Progress Internationalization
Guide.

Character count The number of characters contained in the contents
file, up to and including the period (.) that indicates the
end of the contents. This number is always a ten-digit
number with leading zeros, if necessary.

1 Information used when loading the file. If the value is specified in the trailer and is specified incorrectly, the data
will not load.
13–16

Dumping and Loading
13.3.5 Dumping Sequence Values
Follow these steps to dump sequence values:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure that the database containing the sequences you want to dump or load is the
current working database.

3 ♦ Choose Admin→ Dump Data and Definitions→ Sequence Values. The Data tool prompts
you for the file you want to write the sequence values to. The default filename is
_seqvals.d.

4 ♦ Specify the filename or use the default value. After dumping the sequence values, the Data
tool displays a status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

13.3.6 Dumping User Table Contents
Follow these steps to dump the user table contents:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure you are using the database from which you want to dump the table data.

3 ♦ Choose Admin→ Dump Data and Definitions→ User Table Contents. The Data tool
prompts you for the file to write the user file contents to. The default filename is _user.d.

4 ♦ Specify the filename or accept the default. After dumping the user file contents to the
specified file, the Data tool displays a status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.
13–17

Progress Database Administration Guide and Reference
13.3.7 Dumping an SQL View File’s Contents
Follow these steps to dump an SQL view file’s contents:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure you are using the database (the source) where you want to dump the table data.

3 ♦ Choose Admin→ Dump Data and Definitions→ Views. The Data tool prompts you for the
file, then for the file that you want to write the user file contents to. The default filename
is _view.d.

4 ♦ Specify the filename or accept the default. After dumping the view file contents to the
specified file, the Data tool displays a status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

NOTE: For a complete description of dumping and loading SQL-92 content, see Chapter 19,
“Database Administration Utilities.”

13.4 Loading Database Definitions
You can load either all the data definitions for a table or only those definitions that have
changed.

13.4.1 Loading Table Definitions
The Data tools use a data definitions file that you specify to load table definitions into the
database. A data definitions file contains definitions for tables, fields, and indexes.

Follow these steps to load table definitions into a database:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure you are using the database (the target) that you want to load the table definitions
into.

3 ♦ Choose Admin→ Load Data and Definitions→ Data Definitions (.df files). The Data tool
prompts you for the name of the file that contains the data definitions you want to load into
the current database. The default filename is the logical name of the current working
database, with a .df extension.

4 ♦ Specify a file or accept the default.
13–18

Dumping and Loading
5 ♦ Specify whether you want to stop the load as soon as the Data tool encounters a bad
definition statement. The Data tool displays each item as it loads the definitions for that
object. The Data tool displays a status message and prompts you to continue. If you choose
not to stop on errors, the load will continue with the next entry.

NOTE: Whatever you choose, if the Data tool encounters any error, it backs out any
loaded definitions.

6 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

The database now contains the table, field, index, or sequence, but none of the data.

13.4.2 Loading Updated 4GL Data Definitions
Follow these steps to update an existing (production) database schema to include schema
changes made in a new (development) database. Note that this procedure can also be used to
merge two databases:

1 ♦ Make a copy of the database you want to update and save the original. The database should
not be empty.

2 ♦ Enter the database that includes the new, modified data definitions.

3 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

4 ♦ Choose Database→ Connect Database. The Database Connect dialog box appears.

5 ♦ Enter the name of the database you want to connect to and choose OK. The Data tool
connects the database and returns you to the Data tool’s main window.

6 ♦ Choose Admin→ Dump Data and Definitions→ Create Incremental .df File. The Create
Incremental .df File dialog box appears.

The Create Incremental .df File option compares the data definitions in the nonempty copy
to the current database schema and creates a new data definitions file. The new DF file
contains a record for each difference between the two schemas. The differences include
any added, renamed, changed, or deleted table, field, or index.
13–19

Progress Database Administration Guide and Reference
If a table, field, or index exists in the old database but not in the new schema, Progress asks
if you renamed the object. If you answer no, a record appears in the new DF file marking
the object as deleted.

If the new schema includes a new, unique, active index, the Data tool prompts you to
deactivate it. If you do not deactivate the index and there are duplicate keys in the old
database, the system aborts your attempt to load new definitions into the old database. If
you deactivate the index, the load procedure defines the new index but does not create the
index file. You must complete Step 8 to build and activate the index after loading the new
data definitions.

7 ♦ Enter the database name or accept the default databases, then choose OK.

8 ♦ Connect to the copy of the old database.

9 ♦ Load the updated data definitions by choosing Admin→ Load Data and Definitions→
Data Definitions (.df files).

10 ♦ If you deactivated any indexes in Step 4, re-create data in the indexed fields as required to
avoid duplicate keys, then reactivate the indexes with PROUTIL IDXBUILD.

11 ♦ The Data tool updates the old database schema to match the modified schema. Compile
and test all your procedures against the updated database.

13.5 Loading Database Contents
These sections describe how to load the following types of contents:

• Table contents

• User table contents

• SQL file view contents

• Sequence values

NOTE: For a complete description of dumping and loading SQL-92 contents, see Chapter
19, “Database Administration Utilities.”

Progress provides three methods of loading table contents. You can use the PROUTIL
command to load the data in binary format, the Data Administration tool’s user interface to load
the data in text format, or the PROUTIL command with the Bulk Loader (BULKLOAD)
qualifier. You can perform a binary load only on database contents that were created with a
binary dump.
13–20

Dumping and Loading
13.5.1 Loading Table Contents With the PROUTIL Command
Use the following PROUTIL command to perform a binary load:

db-name

Specifies the database where you want to load the data. You must completely define the
path.

filename

Specifies the binary dump file that you want to load. You must completely define the path.

To load multiple binary dump files into the target database, specify each file individually. For
example:

When the load procedure finishes, it reports the number of records that were loaded.

NOTE: To update the index entries in the database when performing a binary load, use the
BUILD INDEXES qualifier. For more information on the BUILD INDEXES
qualifier, see the “PROUTIL LOAD Qualifier” section in Chapter 19, “Database
Administration Utilities.”

Recovering From an Aborted Binary Load

The procedure to recover from an aborted binary load depends on how much the binary load
completed before the abort. If the binary load got all the rows loaded and aborted during the sort
phase, then recovery entails running the index rebuild utility on the effected table. If the binary
load aborted during the load of the rows into the database follow these steps:

1 ♦ Truncate the storage area.

2 ♦ Restart the load operation.

proutil db-name -C load filename

proutil db-name -C load customer.bd
proutil db-name -C load customer.bd2
proutil db-name -C load customer.bd3
proutil db-name -C load customer.bd4
13–21

Progress Database Administration Guide and Reference
You can find out what phase the binary load completed by examining the database log (.lg) file.
In this file, you will see messages identifying the major phases of the load operation, such as:

• Binary load session started

• Record load phase started

• Record load phase completed

• Starting index build phase

• Index build phase completed

• Binary load session ended

13.5.2 Loading Table Contents With a Data Tool
Progress uses a contents file that you specify to load table data into the database. A contents file
contains all the data for a table.

NOTE: Table definitions must be in the database before you can load table contents.

There are two ways to load the table contents:

• Use the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

• Use the Bulk Loader (BULKLOAD) qualifier of the PROUTIL utility. For information on
using the Bulk Loader, see the “Bulk Loading” section later in this chapter.

Follow these steps to load table contents into a database:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure that the working database is the target database where you want to load the table
contents.

3 ♦ Choose Admin→ Load Data and Definitions→ Table Contents (.d files). The Data tool
alphabetically lists all the tables defined for the database.
13–22

Dumping and Loading
4 ♦ Mark the tables whose contents you want to copy. Use the Select Some and Deselect Some
buttons to select or deselect groups of tables. For a character interface, use F5 and F6 to
select table names.

The Data tool prompts you for the name of the contents file — or the directory that
contains the contents files — you want to load into the current database.

5 ♦ Specify the directory name, filename, or use the default value.

When you load the contents of an entire database, enter a directory where you want to load
the contents files. If you do not specify a directory, the Data tool loads the files from the
current directory. The Data tool loads each table from the corresponding
table-dumpname.d filename. If you choose a single table to load, the Data tool displays a
default name for the file where you can load the table contents. This default file is always
the name of the table definition file, with a .df extension.

The Data tool also prompts you for an acceptable error rate.

6 ♦ Specify the error rate. As the Data tool loads records from any files you designate, it might
encounter data that cannot be loaded. For example, a record might have data in one of its
fields that is too long for that field’s defined format. The Data tool does not load the record.
If you specify an error rate of 10 percent, the Data tool must successfully load 90 records
from every set of 100 records loaded. If you use the graphical interface to load table
contents, you can choose to output the errors to a file or output the errors to the screen.
After loading the table contents, the Data tool prompts you to continue.

7 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

NOTE: You must load the sequence values separately. See the “Loading Sequence Values”
section for information about loading sequence values.

13.5.3 Loading User Table Contents
Follow these steps to load the user table contents:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface, or the Data Dictionary if you are using a character interface).

2 ♦ Choose Admin→ Load Data and Definitions→ User Table Contents. The Data tool
prompts you for the file from where you want to read the user file contents. The default
filename is _user.d.
13–23

Progress Database Administration Guide and Reference
3 ♦ Specify the filename or accept the default. After loading the user file contents to the
specified file, the Data tool displays a status message and prompts you to continue.

4 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

13.5.4 Loading an SQL View File Contents
Follow these steps to load an SQL view file’s contents:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface.

2 ♦ Choose Admin→ Load Data and Definitions→ SQL Views. The Data tool prompts you
for an input file from which to load the SQL views. The default filename is _view.d.

3 ♦ Specify the filename or accept the default. After loading the view file contents from the
specified file, the Data tool displays a status message and prompts you to continue.

4 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

NOTE: For a complete description of dumping and loading SQL-92 content, see Chapter 19,
“Database Administration Utilities.”

13.5.5 Loading Sequence Values
The Data Administration tool and the Data Dictionary use a contents file that you specify to load
sequence values into the database. Usually, this file is called _seqvals.d file.

Follow these steps to load sequence values into a database:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Make sure that the working database is the target database where you want to load the table
contents.

3 ♦ Choose Admin→ Load Data and Definitions→ Sequence Current Values. The Data tool
prompts you for the filename where you want to write the sequence values. The default
filename is _seqvals.d.

4 ♦ Specify the filename or use the default value. After the sequence values are loaded, the
Data tool displays a status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.
13–24

Dumping and Loading
13.6 Bulk Loading
The Bulk Loader utility loads data at a higher speed than the Load utility provided with the Data
Dictionary or Data Administration tool.

NOTE: The bulk loader works only with Progress databases. Some non-Progress databases
offer a similar bulk loading tool. If you are using a non-Progress database and a bulk
loading tool is not available, you must use the standard load utility in the Data
Administration tool or Data Dictionary.

13.6.1 Creating a Bulk Loader Description File
You must create a bulk loader description file before you can run the Bulk Loader utility. You
use the Data Administration tool or the Data Dictionary to create the description file. The
default filename is table-dumpname.fd. If you choose more than one table, the Data tool adds
the extension .fd to the name of the database. It then places all of the bulk loader information in
that one file.

NOTE: For information on how to dump table data into contents files, see the “Dumping
User Table Contents” section.

Follow these steps to create a bulk loader description file:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Choose Admin→ Create Bulk Loader Description File. The Data tool alphabetically lists
all the tables defined for the database.

3 ♦ Select the tables for which you want to create bulk loader description files. Use the Select
Some and Deselect Some buttons to select or deselect groups of tables. For a character
interface, use F5 and F6. The Data tool prompts you for the bulk load filename. The default
filename is table-dumpname.fd.

4 ♦ Specify the filename or accept the default. After creating the file, the Data tool displays a
status message and prompts you to continue.

5 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.
13–25

Progress Database Administration Guide and Reference
13.6.2 Modifying a Bulk Loader Description File
You can use a text editor to change a Bulk Loader description (FD) file. Table 13–4 lists the
tasks and actions.

Using a text editor, change the description file to appear as follows:

In this example, the Bulk Loader utility loads the Cust-num, Name, City, St, and Phone fields,
since they are the only fields specified in the description file. The carat (^) directs the Bulk
Loader to skip a field. The Bulk Loader does not load any of the fields after Phone because they
do not appear in the description file. The customer table name appears by itself on the top line.

Table 13–4: Modifying the Description File

Task Action

Include comments in the FD file. Place a pound sign (#) at the beginning of each
line.

Include the description of multiple
tables in one description file.

Separate tables with a period on a line by itself.

Skip a field. Replace the field name with a caret (^).

customer
Cust-num
Name
^
^
City
St
^
Phone
13–26

Dumping and Loading
By default, the Bulk Loader adds .d and .e extensions to the table name to produce the two file
names it requires to operate. It assumes that both of the files (the data file and the error file)
begin with the table name. If this assumption is false, you must specify the different filenames.
For example, if you dump the customer table into cust.d instead of customer.d, you must
specify the name cust.d in the bulk loader description file. Otherwise, the Bulk Loader
searches the current directory for customer.d:

13.6.3 Loading Table Contents With the Bulk Loader Qualifier
PROUTIL with the BULKLOAD qualifier allows you to load data tables into a database. Using
contents files and bulk loader description (.fd) files, the Bulk Loader loads large amounts of data
faster than the regular Data Administration or Data Dictionary Load utility.

The Bulk Loader can also load table data in formats other than contents files. For information
about other file formats PROUTIL can load, see the IMPORT Statement in the Progress
Programming Handbook.

The Bulk Loader bypasses any CREATE TRIGGER statements and deactivates all indexes it
encounters.

#This is an example
customer cust.d cust.e

Cust-num
Name
^
^
City
St
^
Phone

.
item

Item-num
Idesc

.
order

Order-num
^
Name
13–27

Progress Database Administration Guide and Reference
Follow these steps to load table contents with the Bulk Loader utility:

1 ♦ Create a Bulk Loader description file using the Data Administration tool, Data Dictionary,
or a text editor. If you use the Data Dictionary or Data Administration tool, it automatically
writes the description file. If you use a text editor, you must create the file.

Using a text editor to modify a description file that the Bulk Loader has created allows you
to customize the file to suit your needs. For more information see the “Creating a Bulk
Loader Description File” section.

2 ♦ Verify that the table definitions are in the database.

3 ♦ Run the Bulk Loader utility using the PROUTIL BULKLOAD command:

db-name

Specifies the database you are using.

-yy n

Indicates the start of a 100-year period iin which any two-digit DATE value is defined; n
specifies a four-digit year (1900, for example) that determines the start of the 100-year
period. The default is 1950, but the -yy n value must match the -yy n value used when the
data was dumped.

fd-file

Identifies the bulk loader description file you are using.

-Bn

Blocks in DataBase Buffers startup parameter; n specifies the number of blocks.

See Chapter 19, “Database Administration Utilities,” for information about the PROUTIL
utility and the BULKLOAD qualifier.

NOTE: On a minimally configured PC, you might encounter memory problems when using
the Bulk Loader utility. To work around these problems, split the description file into
several smaller files.

proutil db-name [-yy n] -C bulkload fd-file [-Bn]
13–28

Dumping and Loading
Figure 13–3 shows a description file created with the Data Administration tool.

Figure 13–3: Dictionary-created Description File Example

In this example, customer is the name of the database table, customer.d is the name of the data
file you want to load, and customer.e is the name of an error file that the Bulk Loader creates
if errors occur during the bulk load. The field names in the customer table are Cust-num, Name,
Address, etc.

The Bulk Loader utility checks the description file to determine which data file contains the
customer table’s dumped records. In this example, it is customer.d.

The order of the fields in the description file must match the order of the fields in the data (.d)
file. If they do not match, the Bulk Loader attempts to load data into the wrong fields.

The Bulk Loader utility automatically deactivates a data table’s indexes, so you must run the
Index Rebuild utility after the Bulk Loader loads the data files. If the Bulk Loader encounters
duplicate key values during a load, it continues to load the data file’s records. You must
manually correct the data before you run the Index Rebuild utility.

customer customer.d customer.e
 Cust-num
 Name
 Address
 Address2
 City
 St
 Zip
 Phone
 Contact
 Sales-rep
 Sales-region
 Max-credit
 Curr-bal
 Terms
 Tax-no
 Discount
 Mnth-sales
 Ytd-sls

Table Name
Data (.d) File

Error file

Field names
13–29

Progress Database Administration Guide and Reference
13.7 Reconstructing Bad Load Records
If the Database Administrator tool or the Data Dictionary encounters errors while loading a data
file, it creates an error file. You can use the error file and the original data file to build a new
data file for all the bad records.

Follow these steps to build this new data file:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Choose Admin→ Load Data and Definitions→ Reconstruct Bad Load Records. The
Reconstruct Bad Load Records dialog box appears.

3 ♦ Specify the original data file, the error file, and the new output file, then choose OK. The
default filename for the new data file is error.d. After writing the new output file, the
Data tool displays a status message and prompts you to continue.

4 ♦ Choose OK to return to the Data Administration or Data Dictionary main window.

5 ♦ Use a text editor to edit the new output file and fix the bad records after the Data tool builds
the file. Once you have fixed the records, you can reload the file.

13.8 Specialized Dump and Load Techniques
The following sections provide step-by-step instructions for dumping and loading data for
specialized purposes.

13.8.1 Creating a Starting Version Of a Database
Suppose you finish writing an application, and your database contains not only the definitions
users require to start running the application, but also the data you used to test the procedures.
Before you put the application to use, you want to create a version of the database that contains
only data definitions and no data. This database becomes a template you can copy for testing
purposes, for your own use, and for distribution. Figure 13–4 illustrates how the Progress
Database Utility (PRODB) copies the starting version of a database.
13–30

Dumping and Loading
Figure 13–4: Copying the Starting Version Of a Database

To create a new database that contains table definitions from another database, use the Dump
facility to dump the table definitions, the PRODB utility to create the new database, and the
Load facility to load the table definitions into the new database.

Follow these steps to create a starting version of a database:

1 ♦ Start a Progress session with the database (the source) you want to copy.

2 ♦ Dump the database table definitions into a data definitions file.

3 ♦ Dump the database table data into a contents file.

4 ♦ Create a new copy of the empty database.

5 ♦ Start a Progress session with the new database (the target) you created in Step 4.

6 ♦ With the data definitions file you created in Step 2, load the database definitions into the
new database.

Starting Version
(No Data)

Test DB

Working DB

Distributed
DB

Copy

Copy

Copy
13–31

Progress Database Administration Guide and Reference
13.8.2 Using a Constant Table In Multiple Databases
You can use the Progress Dump and Load utility to copy an existing table from one database
into another. For example, instead of writing a procedure to input state data into the state table
in a new database, you can dump the table contents from the state table into a copy of the sports
database, and then load those records into the state table in another database.

Follow these steps:

1 ♦ Start a Progress session with the database (the source) that has the table you want to copy.

2 ♦ Dump the contents of the table you want to copy into a contents file.

3 ♦ Return to the Progress Procedure Editor.

4 ♦ Switch from the current working database to the target database.

5 ♦ With the target database as the working database, load the contents of the table.

13.8.3 Economizing Disk Space
A database can inefficiently occupy system disk space over time, especially during
development phases when frequent deletions of database elements occur. One benefit of
dumping and reloading a database is better allocation of disk space.

Dumping and reloading a database involves essentially creating a new starting version of the
database and loading the table contents into this new database. During the loading stage
Progress repartitions the disk, removing any gaps created when database elements were deleted,
thereby more efficiently allocating disk space. Use the PROUTIL utility with the
TABANALYS qualifier to see how fragmented a database is. For information, see the
description of the PROUTIL TABANALYS utility in Chapter 19, “Database Administration
Utilities.”

Follow these steps to dump and reload a database:

1 ♦ Start a Progress session with the database (the source) you want to copy.

2 ♦ Dump the database table definitions into a data definitions file.

3 ♦ Dump the database table data into a contents file.

4 ♦ Dump the sequence values.

5 ♦ Create a new copy of the database.

6 ♦ Designate the new (target) database you created in Step 5 as the working database.
13–32

Dumping and Loading
7 ♦ With the data definitions file you created in Step 2, load the database definitions into the
new database.

8 ♦ Load the table contents files you created in Step 3 into the new database, using either the
Progress Load utility or the Bulk Loader utility.

9 ♦ Load the sequence values.

10 ♦ Delete the old database using the PRODEL utility.

13.8.4 Optimizing Data For Sequential Access
If users repeatedly request data from the same tables in a determined order (for example, to
create a certain report), dump and reload the data to optimize it for sequential access. Loading
tables in order of average record size results in the most efficient organization of records for
sequential access.

Follow these steps:

1 ♦ Use PROUTIL with the TABANALYS qualifier to determine the mean record size of each
table in the database. See Chapter 19, “Database Administration Utilities,” for a deatiled
description of the PROUTIL TABANALYS qualifier.

2 ♦ Dump the definitions and data.

The Data Administration and Data Dictionary tools dump in order of primary index. If you
access the records by another index, dump the data by that index. Use a Progress 4GL
procedure similar to the following to dump the data by the index of your choice:

This procedure creates a contents (.d) file organized by order of access.

OUTPUT TO table-name.D.
FOR EACH table-name BY index
EXPORT table-name.
END
13–33

Progress Database Administration Guide and Reference
3 ♦ Load the tables of less than 1,000 bytes first, in order of average record size. Use the Data
Dictionary or the Data Administration tool to load data one table at a time, or use the Bulk
Loader utility and a description file to control the order.

If you use the Bulk Loader, the order of the fields in the description file must match the
order of the fields in the data file. If they do not match, the Bulk Loader attempts to load
data into the wrong fields.

4 ♦ Load the remaining, larger tables, in order of average record size.

13.8.5 Optimizing Data For Random Access
If your application accesses data in a random order, for example an online
transaction-processing application, you can dump and reload the data to optimize it for random
access. Use a database with small, fixed-length extents spread across the volumes to balance the
I/O across the disks. Use several clients to load data simultaneously, thereby spreading the data
across all disks.

This technique also improves load performance on SMP platforms.

Follow these steps:

1 ♦ Dump the data and definitions.

2 ♦ Load the definitions using the Data Dictionary or the Data Administration tool.
13–34

Dumping and Loading
3 ♦ In multi-user mode, start a server with a before-image writer (BIW) and asynchronous
page writer (APW).

4 ♦ Start a client for each processor on your system. Have each client load certain tables. For
each client, write a Progress 4GL procedure similar to the following:

The clients, loading the data simultaneously, distribute the data across all disks. This
eliminates hot spots (that is, areas where data might be concentrated).

5 ♦ After the data is loaded, perform a full index rebuild. Use the PROUTIL IDXBUILD
utility.

/*Run this procedure after connecting to a database*/

DEFINE VAR RECCOUNT AS INT NO-UNDO.
DEFINE VAR NXT-STOP AS INT NO-UNDO.
DEFINE VAR i as INT NO-UNDO.

INPUT FROM tablename.d

TOP:
REPEAT TRANSACTION:

NXT-STOP=RECCOUNT + 100
REPEAT FOR table-name WHILE RECCOUNT < NXT-STOP
ON ERROR UNDO, NEXT ON ENDKEY UNDO, LEAVE TOP:

CREATE table-name.
IMPORT table-name.
RECCOUNT = RECCOUNT + 1.

END.
END.
13–35

Progress Database Administration Guide and Reference
13.8.6 Using No-integrity Mode Bulk Data Loading
PROUTIL can perform database updates faster when it runs in no-integrity mode rather than in
the default full-integrity mode. However, if there is a system crash during this update activity,
Progress cannot recover the database. The database can only be recovered by restoring a
backup.

To enable no-integrity mode, use the No Crash Protection (-i) parameter. This parameter is
particularly useful for running batch jobs, such as bulk data loading. For more information about
No Crash Protection, see Chapter 18, “Database Startup Parameters.”

CAUTION: Back up databases before you run any process with the -i startup parameter. Any
crash that occurs while you are running processes with the -i parameter damages
the database and makes that database invalid. If this happens, you must restore the
database from the most recent backup copy.

13.8.7 Using 4GL Tools To Save Space By Deactivating Indexes
You can free up disk space for an application by deactivating its indexes. Also, if you are
dumping and loading a large database, you can speed up the operation by deactivating the
indexes in one or more database tables. This technique should be used only in situations where
indexes are used infrequently, such as in an application that generates reports only once or twice
a year. There are two ways to deactivate indexes:

• Deactivate individual indexes or all the indexes with the Data Administration tool if you
are using a graphical interface, or the Data Dictionary if you are using a character
interface.

• Deactivate indexes from a Progress 4GL procedure.

You can deactivate (but not reactivate) a single index from either Data tool. If you create a new
unique index on an existing file, consider deactivating the index. If existing table data yields
duplicate keys, all changes made during the current session are backed out when you try to save
them. Create or reactivate a unique index after you have ensured that all key values are unique.

To activate an index, use the PROUTIL IDXBUILD utility. See Chapter 19, “Database
Administration Utilities,” for more information about activating indexes with the PROUTIL
IDXBUILD utility.
13–36

Dumping and Loading
Once an index is deactivated, you cannot use it to retrieve information from the records it
normally points to. If you attempt to use a FOR, FOR EACH, or CAN-FIND statement in
connection with a deactivated index, the database engine terminates the currently executing
program. However, you can create, delete, or update a record that a deactivated index points to.

The database engine does not examine the active status of an index when it makes a search. Nor
does the active status of an index affect the time stamp on the _Index file. As a result,
precompiled programs do not require compilation if the only change to the schema is index
activation or deactivation.

Deactivating Indexes

Follow these steps to deactivate an individual index or all of the indexes:

1 ♦ Access the appropriate Data tool (the Data Administration tool if you are using a graphical
interface or the Data Dictionary if you are using a character interface).

2 ♦ Choose Utilities→ Deactivate Indexes. The Index Deactivation dialog box appears.

3 ♦ Choose OK. Progress lists the tables in the database.

4 ♦ Type all to deactivate all indexes, or select the indexes you want to deactivate. The Data
tool prompts you to verify that you want to deactivate all the indexes.

5 ♦ Verify that you want to deactivate the specified indexes.

If you are using a graphical interface, follow these steps in the Data Dictionary to deactivate an
individual index:

1 ♦ Access the Data Dictionary.

2 ♦ Choose the Index icon.

3 ♦ Choose the index you want to deactivate.

4 ♦ Choose the Index Properties button. The Index Properties dialog box appears.

5 ♦ Select the table that contains the index you want to deactivate. The Data Dictionary lists
the indexes defined for the selected database.

6 ♦ Activate the Active toggle box.

7 ♦ Choose the Save button. The Data Dictionary prompts you to verify that you want to
deactivate the index.

8 ♦ Verify that you want to deactivate the index. The Data Dictionary deactivates the index.
13–37

Progress Database Administration Guide and Reference
Deactivating Indexes With a Progress 4GL Procedure

You can also deactivate an index from a Progress 4GL procedure. Search through the _Index
file until Progress finds the index you want to deactivate. Then set the _Active field equal to No.
The following example uses this technique:

FIND _Index WHERE _Index-Name = "cust-num".
IF (_Index._Active)
THEN _Index._Active = NO.
ELSE IF NOT(_Index._Active) THEN
MESSAGE "The specified index is Deactivated.".
13–38

14
Managing Performance

The potential for improving performance depends on the type of system you run Progress on.
Some options might not be available on your hardware or operating system platform. This
chapter discusses options for managing database performance.

Specifically, this chapter contains the following sections:

• Introduction To Performance Managing

• Tools For Monitoring Performance

• Server Performance Factors

• CPU Utilization

• Disk I/O

• Memory Utilization

• Operating System Resources

• Database Fragmentation

• Index Use

• Virtual System Tables

Progress Database Administration Guide and Reference
14.1 Introduction To Performance Managing
The Progress Version 9 Database relies on the following system resources to perform its work:

• CPU — Manipulates data and executes programs

• Disks and controllers — Read and write data from database

• Memory — Stores data so it can be accessed quickly while performing operations

• Operating system mechanisms — Allocate and use system resources

• Network — Exchanges data between client and server systems

Performance is diminished if the database cannot use these resources efficiently. Performance
bottlenecks occur when a resource performs inadequately (or is overloaded) and prevents other
resources from accomplishing work. The key to improving performance is determining which
resource is creating a bottleneck. Once you understand your resource limitation, you can take
steps to eliminate bottlenecks.

Performance management is a continual process of measuring and adjusting resource use.
Because system resources depend on each other in complex relationships, you might fix one
problem only to create another. You should measure resource use regularly and adjust as
required.

To effectively manage performance, you must have solid knowledge of your system, users, and
applications. Because system and application performance can vary greatly depending on the
configuration, use the information in this chapter as a guideline and make adjustments as
required for your configuration.

The following additional factors that can affect performance:

• System tuning — Make sure your system is properly tuned and has sufficient capacity to
perform its workload at the proper rate.

• Other applications — Make sure other applications are not competing with the database
for system resources.
14–2

Managing Performance
14.2 Tools For Monitoring Performance
This section describes several tools that you can use to monitor the performance of a Version 9
database. It includes information about:

• PROMON utility

• Virtual System Tables

• NT Performance Monitor

14.2.1 PROMON Utility
The Progress Monitor (PROMON) utility helps you monitor database activity and performance.
Chapter 19, “Database Administration Utilities,” documents the main PROMON options. In
addition, PROMON provides advanced options (called R&D options) for in-depth monitoring
of database activity and performance. The R&D options are described in Appendix A, “Progress
Monitor R&D Options.”

14.2.2 Virtual System Tables
Virtual system tables (VSTs) provide 4GL and SQL-92 applications access to the same database
information that you can collect with the PROMON utility. The virtual system tables, or schema
tables, have no physical records until the database manager generates them at run time. This
enables a 4GL or SQL-92 application to retrieve information as run-time data.

14.2.3 NT Performance Monitor
The NT Performance Monitor is a graphical tool, supplied with Windows NT, that lets you
monitor the performance of a local or remote Windows NT workstation. The Performance
Monitor measures the performance of workstation objects like processes and memory using a
defined set of counters. The Progress Version 9 database provides a comprehensive set of
counters ranging from measurements about the number of clients running to the number of
database records read or written. These counters are derived from the PROMON utility,
Summary of Activity option, and they report on the state and performance of a particular
database. Progress database support for the native NT performance monitor does not replace the
PROMON utility; it simply provides another mechanism that system administrators can use to
monitor performance-related data.
14–3

Progress Database Administration Guide and Reference
The Progress-specific counters are defined in the registry at installation. Each time you want to
monitor database performance, you can specify the type of data that you want to monitor and
how you want to monitor it. Note that your database must be registered through ProControl,
otherwise, the NT Performance Monitor cannot use the Progress-specific counters.

Selecting Progress Counters

Follow these steps to select the counters whose performance you want to measure. Note that the
counters you want to monitor must be active before you access the Performance Monitor:

1 ♦ Access the Performance Monitor by double-clicking its icon in the Administrative Tools
program group.

2 ♦ Choose Edit→ Add to Chart.

3 ♦ From the Object selection list, choose Progress Version 9.

The Counter selection list then displays the Progress-specific counters.

4 ♦ Choose the counters that you want to measure by highlighting the counter name and
choosing Add.

5 ♦ Choose Done when you have selected all of the counters that you want to measure.

To view a definition of the counter, highlight the counter name and choose Explain.

14.3 Server Performance Factors
When managing server performance, be aware of the following key factors:

• CPU utilization

• Disk I/O relating to database, before-image, and after-image I/O

• Record locking

• Memory utilization

• Database and index fragmentation

The following sections describe these factors.
14–4

Managing Performance
14.4 CPU Utilization
To use your system to its full potential, the CPU should be busy most of the time.

Use operating system utilities to monitor CPU usage. When monitoring CPU usage, be aware
of the following potential problems:

• Idle CPU

• Unproductive CPU processing

14.4.1 Idle CPU
If performance is inadequate and your CPU is idle, the CPU might be waiting for another
resource. Identify the bottleneck and eliminate it so that the CPU can process work efficiently.
Use PROMON to monitor database activity.

Disk I/O is a common bottleneck. For more information, see the “Disk I/O” section.

14.4.2 Unproductive CPU Processing
Symmetric multi-processing (SMP) systems use a spin lock mechanism to give processes
exclusive access to data structures in shared memory. Spin locks ensure that only one process
can use the structure at a time, but that all processes can get access to these structures quickly
when they have to. However, if tuned incorrectly, SMP CPUs might spend time processing the
spin locks unnecessarily instead of performing useful work.

The spin lock algorithm works as follows: When a process requires a shared-memory resource,
it attempts to acquire the resource’s latch. When a process acquires the latch, it has exclusive
access to the resource. All other attempts to acquire the latch fail until the holding process gives
up the latch. When another process requires access to the resource, it attempts to acquire the
latch. If it cannot acquire the resource's latch because another process is holding it, the second
process continues the attempt. This iterative process is called spinning. If a process fails to
acquire a latch after a specified number of spins, the process pauses, or takes a nap, before trying
again. If a process repeatedly fails to acquire a latch, the length of its nap is gradually increased.
You can set the Spin Lock Tries (-spin) parameter to specify how many times to test a lock
before napping.

To use a system of semaphores and queues to control locking, set -spin to zero (0).

Use the PROMON R&D “Adjust Latch Options” option under Administrative Functions to
change the spin mechanism after start up.
14–5

Progress Database Administration Guide and Reference
14.5 Disk I/O
Because reading and writing data to disk is a relatively slow operation, disk I/O is a common
database performance bottleneck. The Progress database engine performs three primary types
of I/O operations:

• Database I/O

• Before-image I/O

• After-image I/O (relevant only if after-imaging is enabled)

If performance monitoring indicates that I/O resources are overloaded, try the techniques in the
following sections to better balance disk I/O.

The best way to reduce disk I/O bottlenecks is to spread I/O across several physical disks,
allowing multiple disk accesses to occur concurrently. You can extend files across many disk
volumes or file systems.

NOTE: For a complete description of storage areas, see Chapter 1, “The Progress Database.”

14.5.1 Database I/O
Database I/O occurs when the database engine reads and writes blocks containing records to and
from disk into memory. To minimize database disk I/O, the database engine tries to keep a block
in memory after it reads the block the first time. The next time the engine needs that block, it
can access it from memory rather than reading it from disk.

To eliminate database I/O bottlenecks, you can:

• Increase the number of database buffers

• Change the number and structure of database storage areas

• Use private read-only buffers

• Use asynchronous page writers (APWs)

Storage Areas

Storage areas are the largest physical unit of a database. Storage areas consist of one or more
extents that are either operating system files, operating system device raw partitions, or some
other operating system level device that is addressed randomly. A storage area is a distinct
address space, and any physical address stored inside the area is generally stored relative to the
beginning of the storage area.
14–6

Managing Performance
Storage areas give you physical control over the location of specific database objects. You can
place each database object in its own storage area or place many database objects in a single
storage area. Storage areas can contain database objects of one type or of many types. For
example, to achieve load balancing, you can place a particularly active table in a separate
storage area, then place the most active index for that table in its own storage area. Then, in a
third storage area, place all the remaining tables and indexes. You cannot split a table or index
across storage areas.

However, you can improve performance by moving tables and indexes to an application data
storage area on a faster disk, while the database remains online. For a description of how to
move tables and indexes while the database remains online, see Chapter 9, “Maintaining
Database Structure.”

Database Buffers

A database buffer is a temporary storage area in memory used to hold a copy of a database
block. When the database engine reads a database record, it stores the block that contains that
record in a database buffer. Database buffers are grouped in an area of memory called the buffer
pool. Figure 14–1 illustrates database disk I/O.

Figure 14–1: Database I/O

Progress database I/O works as follows:

1. When a process needs to read a database record, it requests access to the record.

2. The database engine searches the buffer pool for the requested record.

3. If the block that holds the record is already stored in a buffer, the engine reads the record
from the buffer. This is called a buffer hit. When tuned correctly, the engine should
achieve a buffer hit most of the time.

Database

Database
buffer

Manipulate record.

Buffer Pool in Memory

Write record.

Retrieve record.1
3

2

14–7

Progress Database Administration Guide and Reference
4. If the record is not found in any buffer, the engine must read the record from disk into a
buffer. If an empty buffer is available, the engine reads the record into that buffer.

5. If no empty buffer is available, the engine must replace another buffer to make room for it.

If the block that will be evicted has been modified, the engine must write the block to disk
to save the changes. This is known as an eviction. While the eviction takes place, the
process that requested the record in Step 1 must wait. For this reason, performance is
improved if empty buffers are always available. See the “How the Database Engine Writes
Modified Buffers” section for detailed steps.
14–8

Managing Performance
Figure 14–2 illustrates how the engine reads a database record into a buffer.

Figure 14–2: Reads and Writes To Database Buffers

Request
Record Access

Search
Buffer Pool

Buffer Hit

Find Record?
Read Record

No

Yes

1

2

4

5

3

Unmodified Buffer
Available? Read Record

Into Buffer
Yes

No

Read Record Into
Buffer

* Asynchronous page writers, if they are running, continuously perform
 this step in the background.

Save Buffer
Contents To Disk *

Eviction
14–9

Progress Database Administration Guide and Reference
How the Database Engine Writes Modified Buffers

When a process requires access to a database block that is not in the buffer pool, the database
engine must replace another buffer to make room for it. The server searches for a buffer to
replace.

The ideal replacement candidate is a buffer that is unlocked and unmodified. Replacing an
unmodified buffer requires only one step: writing the new contents into the buffer. If a buffer
contains modified data, it must first be evicted before it can be replaced. Evicting the buffer
requires two steps: writing the buffer’s contents to disk, then writing new contents into the
buffer. It is therefore slower and requires more overhead. See Figure 14–3.

Figure 14–3: Evicting Buffers

When searching for a replacement candidate, the server searches a maximum of ten buffers. If
the server fails to find an unlocked, unmodified buffer, the server evicts the first unlocked,
modified buffer that it finds.

Replacing Unmodified Buffers

Replacing Modified Buffers

Database

Database

Buffer

unmodified

Place new data
in buffer.

modified

Buffer

Place new data
in buffer.

Eviction (write modified
buffer to disk).

1

2

1

14–10

Managing Performance
Monitoring Database Buffer Activity

A buffer hit occurs when the database engine locates a record in the buffer pool and does not
have to read the record from disk. See the “Database Buffers” section for an explanation of
buffer hits and how they improve performance by reducing overhead. When tuned correctly, the
engine should achieve a buffer hit most of the time.

To determine the efficiency of database buffer activity, check the Buffer Hits field of the
PROMON Activity option. For best performance, increase the Blocks in Database Buffers (-B)
parameter until the buffer hits percentage exceeds 95 percent, or until your system starts paging.
Figure 14–4 shows the Buffer Hits field in a sample Activity display.

Figure 14–4: Monitoring Buffer Activity

Tuning Database Buffers

If database buffer monitoring indicates that buffer hits are below 85 percent, you can increase
the number of database buffers so Progress can keep more records in memory.

To increase the number of buffer hits, increase the -B startup parameter to allocate more buffers.
Increase the -B parameter until the buffer hits percentage exceeds 95 percent, or until your
system starts paging.

Activity - Sampled at 01/10/00 11:25 for 2:46:37.
Event Total Per Sec Event Total Per Sec
Commits 3900 0.3 Undos 1215 0.1
Record Updates 4717 0.4 Record Reads 353418 35.3
Record Creates 12607 1.2 Record Deletes 10837 1.0
DB Writes 29778 2.9 DB Reads 233257 23.3
BI Writes 27834 2.7 BI Reads 10592 1.0
AI Writes 29443 2.9
Record Locks 113928 11.0 Record Waits 0 0.0
Checkpoints 1591 0.1 Buffers Flushed 21154 2.1
Rec Lock Waits 0 % BI Buf Waits 2 % AI Buf Waits 0 %
Writes by APW 23 % Writes by BIW 85 % Writes by AIW 88 %
Buffer Hits 87 %
DB Size 1520 K BI Size 64 K AI Size 0 K
FR chain 16 blocks RM chain 733 blocks
Shared Memory 184 K Segments 1
0 Servers, 1 Users (1 Local, 0 Remote, 0 Batch),0 Apws

Buffer Hits
Field
14–11

Progress Database Administration Guide and Reference
The database engine uses a hash table to reduce the time it takes to locate a database buffer. The
Hash Table Entries (-hash) startup parameter controls the number of hash table entries in the
buffer pool. The database engine sets this parameter to approximately 25 percent of the number
of database buffers (specified by the -B parameter). In most cases, the default value is adequate.
However, increasing this parameter might slightly reduce the time required to find a block in
the buffer pool.

Using Private Read-only Buffers

The buffer pool is a mechanism that conserves I/O when multiple users are accessing
information from the same disk blocks. The buffer pool has a predefined size. Once the buffer
pool becomes full, buffers are replaced on a least recently used (LRU) basis. Since sequential
readers of the database access so many different buffers, they sometimes monopolize the buffer
pool. That is, sequential readers of the database cause many shared buffers to be replaced by the
buffers most recently used by the sequential reader.

Consequently, you can request some number of buffers in the buffer pool to be private read-only
buffers. Private read-only buffers do not participate in the LRU replacement algorithm of the
general shared buffer pool.

Applications that read many records in a short time, such as applications that generate reports
or lists, should use private read-only buffers. Private read-only buffers prevent applications
from quickly using all the public buffers and depriving buffers from other users. When an
application is using private read-only buffers, updates are performed correctly using the public
buffers. Therefore, an application performing many read operations but only a modest amount
of updates might also benefit from using private read only buffers.

When a sequential reader is using private read-only buffers and needs a buffer to perform a read
operation, and the buffer is already in the private read-only buffer pool, the database engine
marks the buffer as most recently used (MRU) and uses it. If the buffer is not already in the
private read-only buffer pool, the sequential reader takes a buffer from the LRU chain and puts
it in the private read-only buffer pool. If the sequential reader has exhausted its quota of private
read-only buffers, a private read-only buffer is replaced. The sequential reader maintains a list
or chain of all its private buffers and uses a private LRU replacement mechanism identical to
the public-shared buffer pool LRU replacement algorithm.

All users, regular and sequential, have access to all buffers in the buffer pool (public or private).
If a regular user needs a block found in a private buffer pool, the buffer is removed from the
sequential readers list of private buffers and is put back into the LRU chain as the most recently
used buffer. In addition, if a sequential read user needs to update a private read-only buffer, it
is removed from the sequential reader’s private buffer pool and put into the general shared
buffer pool as most recently used.
14–12

Managing Performance
Sequential reads use an index and require that index blocks be available in memory because they
are used repeatedly. Therefore, you want to request enough private read-only buffers to hold all
of the index blocks needed to retrieve a record. To determine how many private read-only
buffers to set, count the number of tables that you read and determine the indexes you use. Then,
determine the number of levels in the B-tree (balance tree) of each index and add 1 (for the
record blocks). For example, request at least five private read-only buffers if you have a report
that reads the Customer table using the Cust-Name index, and the Cust-Name index has four
B-tree levels.

If you do not know the number of levels in your index, you can generally request six private
read-only buffers and get a good result. If you perform a join and are reading from two tables
simultaneously, request 12. If the system is unable to allocate the requested number of private
read-only buffers, a message is written to the database log.

You can request a number of private read-only buffers using the Private Buffers (-Bpn) startup
parameter. When you use the -Bp startup parameter the request remains active for the entire
session unless it is changed or disabled by an application. Each user of private read-only buffers
reduces the number of public buffers (-B).

NOTE: The total number of private read-only buffers for all simultaneous users is limited to
25% of the total blocks in database buffers. This value is set by the -B startup
parameter. The maximum value of -B is 500,000. The single-user default is 10, and
the multi-user default is 8*the number of users (specified by the maximum users (n)
parameter).

You can also request a number of private read-only buffers from within a 4GL or SQL-92
application by setting a value in the _MyConn-NumSeqBuffers field of the _MyConnection
virtual system table (VST). Since _MyConnection is an updatable virtual system table, private
read-only buffers can be dynamically requested and released in the application. For a
description of the _MyConnection VST, see Chapter 20, “Virtual System Tables.”

The following 4GL code example demonstrates how to turn private read-only buffers on and
off:

/*Get 6 private read-only buffers for my application*/
FIND _MyConnection.
_MyConnection._MyConn-NumSeqBuffers = 6.

/**** Report using private read only buffers ***/
/* Turn off private read only buffers of my application */
FIND _MyConnection.
_MyConnection._MyConn-NumSeqBuffers = 0.
14–13

Progress Database Administration Guide and Reference
The following example demonstrates how to turn private read-only buffers on and off using an
SQL-92 statement:

Using APWs To Improve Performance (Shared-memory Systems Only)

On shared-memory systems, you can use APWs to continually write modified database blocks
to disk. APWs are optional, but highly recommended. They improve performance in the
following ways:

• They ensure that a supply of empty buffers is available so the database engine does not
have to wait for database buffers to be written to disk. For more information, see the “How
APWs Provide a Supply Of Empty Buffers” section.

• They reduce the number of buffers that the engine must examine before writing a modified
database buffer to disk. To keep the most active buffers in memory, the engine writes the
least recently used buffers to disk; the engine must search buffers to determine which one
is least recently used. For more information, see the “How APWs Reduce Buffer
Replacement Search Times” section.

• They reduce overhead associated with checkpointing because fewer modified buffers have
to be written to disk when a checkpoint occurs. For more information, see the “How APWs
Reduce Checkpoint Overhead” section

You must manually start APWs. You can start and stop APWs at any time without shutting
down the database. See Chapter 5, “Starting Up and Shutting Down,” for instructions on starting
and stopping an APW.

A database can have zero, one, or more APWs running simultaneously. The optimal number is
highly dependent on your application and environment. To start, use one page writer for each
disk where the database resides. Monitor the buffers flushed at checkpoint to determine if you
need more.

NOTE: If you perform no updates, no page writers are required.

APWs are self-tuning. Once you determine how many APWs to run, you do not have to adjust
any startup parameters specific to APWs. However, you might want to increase the BI cluster
size to allow them to perform at an optimal rate. The PROUTIL TRUNCATE BI qualifier lets
you create a BI cluster of a specific size. For more information, see Chapter 19, “Database
Administration Utilities.”

UPDATE pub."_MyConnection" SET "_MyConn-NumSeqBuffers" = 6.

UPDATE pub."_MyConnection" SET "_MyConn-NumSeqBuffers" = 0.
14–14

Managing Performance
How APWs Provide a Supply Of Empty Buffers

APWs continually write modified buffers to disk, making it more likely the server will find an
unmodified buffer without having to wait. To find modified buffers, an APW scans the Block
Table (BKTBL) chain. The BKTBL chain is a linked list of BKTBL structures, each associated
with a database buffer. Each BKTBL structure contains a flag indicating whether the associated
buffer is modified. When an APW finds a modified buffer, it immediately writes the buffer to
disk. Figure 14–5 illustrates how an APW scans the BLKTBL chain.

Figure 14–5: Block Table (BLKTBL) Chain

The APW scans in cycles. After completing a cycle, the APW goes to sleep. When the APW
begins its next scanning cycle, it picks up where it left off. For example, if the APW scanned
buffers 1 to 10 during its first cycle, it would start at buffer 11 to begin its next cycle.

..
Buffer Write To

Diskmodified 4
.

unmodified n Buffer

APW Scan

unmodified 3 Buffer

Buffermodified 2 Write To
Disk

unmodified 1 Buffer

BKTBL Chain
14–15

Progress Database Administration Guide and Reference
How APWs Reduce Buffer Replacement Search Times

When the database engine writes modified buffers to disk, it replaces the buffers in a
least-to-most-recently-used order. This is beneficial because you are less likely to need older
data.

To find least recently used buffers, an APW scans the least recently used (LRU) chain. The least
recently used chain is a doubly linked list in shared memory that the engine uses to access
database buffers. The LRU chain is anchored by a data structure that points to the head and tail
of the chain. Whenever a process accesses a database buffer, the server must lock and update
the LRU anchor, moving the accessed buffer to the tail of the chain. Figure 14–6 illustrates the
LRU chain.

Figure 14–6: APWs and the Least Recently Used Chain

Since all processes must lock the LRU anchor whenever they have to access a buffer, long
buffer replacement searches create contention for all processes accessing the database buffer
pool. This can have a debilitating effect on performance, especially on heavily loaded systems.
APWs reduce contention for the LRU anchor by periodically clearing out modified buffers.
When buffer replacement is required, the database engine can find an unmodified buffer
quickly.

Buffer

Buffer

Buffer

Head Tail

Buffer

Buffer

.

.

.

LRU Chain

LRU Anchor

Whenever a process
accesses a database
buffer, Progress must
lock and update the LRU
anchor, moving the last
accessed buffer to the
tail of the chain.

Least
Recently
Used
Buffer

Most
Recently
Used
Buffer
14–16

Managing Performance
How APWs Reduce Checkpoint Overhead

A third way that APWs improve performance is by minimizing the overhead associated with
before-image checkpointing.

The before-image (BI) file is divided into clusters. A checkpoint occurs when a BI cluster
becomes full. When a cluster becomes full, the database engine reuses the cluster if the
information stored in it is no longer required. By reusing clusters, the engine minimizes the
amount of disk space required for the BI file.

Checkpoints ensure that clusters can be reused and that the database can be recovered in a
reasonable amount of time. During a checkpoint, the engine writes all modified database buffers
associated with the current cluster to disk. This is a substantial overhead, especially if you have
large BI clusters and a large buffer pool. APWs minimize this overhead by periodically writing
modified buffers to disk. When a checkpoint occurs, fewer buffers must be written.

Monitoring APWs

The PROMON R&D option Page Writers Activity display shows statistics about APWs running
on your system. Figure 14–7 shows a sample display.

Figure 14–7: PROMON Page Writers Activity Display

NOTE: Non-zero numbers in the “Flushed at Checkpoint” row indicates that the APW was
unable to write buffers fast enough to prevent a memory flush. Increase the number
of APWs and/or increase the cluster size to eliminate the flush.

01/25/00 Activity: Page Writers
16:29 from 01/25/00 13:56 to 01/26/00 11:23 (21 hrs 27 min)

Total Per Min Per Sec Per Tx
Total DB writes 3 0 0.00 0.00
APW DB writes 0 0 0.00 0.00

scan writes 0 0 0.00 0.00
APW queue writes 0 0 0.00 0.00
ckp queue writes 0 0 0.00 0.00
scan cycles 0 0 0.00 0.00
buffers scanned 0 0 0.00 0.00
bfs checkpointed 173 0 0.11 0.14

Checkpoints 82110 0 5.22 6.79
Marked at checkpoint 0 0 0.00 0.00
Flushed at checkpoint 0 0 0.00 0.00

Number of APWs: 1
14–17

Progress Database Administration Guide and Reference
14.5.2 Before-image I/O
Before-imaging is always enabled to let the database engine recover transactions if the system
fails. This mechanism is extremely important for database reliability, but it creates a significant
amount of I/O that can affect performance. In addition, before-image I/O is usually the first and
most likely cause of I/O bottlenecks. The engine must always record a change in the BI file
before it can record a change in the database and after-image (AI) files. If BI activity creates an
I/O bottleneck, all other database activities are affected.

You can reduce the I/O impact of before-imaging by:

• Moving the BI file to its own disk

• Running a before-image writer (BIW) (shared-memory systems only)

• Providing more BI buffers

• Increasing the BI cluster size

• Increasing the BI block size

• Delaying BI writes

Monitoring BI Activity

Use operating system utilities to monitor the amount of I/O activity on the disk where the BI
files reside. Use the PROMON utility to monitor specific BI activity. Use the R&D option BI
Log Activity. Figure 14–8 shows a sample display.
14–18

Managing Performance
Figure 14–8: PROMON BI Log Activity Display

Look for the following potential problems:

• Busy buffer waits.

• Empty buffer waits.

• High number of writes per second.

• High number of partial writes. A partial write occurs when the database engine must write
data to the BI file before the BI buffer is full. This might happen if:

– An APW attempts to write a DB block whose changes are recorded in a BI buffer
that has not been written. Because BI notes must be flushed before the AI note is
flushed, the APW writes the data in the BI buffer before the buffer is full so it can
perform the AI write.

01/25/00 Activity: BI Log
11:36:56 04/12/00 13:56 to 04/13/00 11:23 (21 hrs 27 min)

 Total Per Min Per Sec Per Tx

Total BI writes 131 0 0.08 0.10
BIW BI writes 127 0 0.08 0.10
Records written 3630 0 2.31 3.00
Bytes written 129487 0 82.42 107.19
Total BI Reads 13 0 0.00 0.01
Records read 0 0 0.00 0.00
Bytes read 0 0 0.00 0.00
Clusters closed 0 0 0.00 0.00
Busy buffer waits 0 0 0.00 0.00
Empty buffer waits 0 0 0.00 0.00
Log force waits 0 0 0.00 0.00
Partial Writes 4 0 0.00 0.00

Keep busy buffer waits
low; use a BIW.

Eliminate empty buffer
waits by providing more
BI buffers.

Keep the writes per second
low. Reduce this number by
increasing the BI buffer size.
14–19

Progress Database Administration Guide and Reference
– An after-image writer (AIW) runs ahead of the BIW. Because BI notes must be
flushed before the AI notes can be written, the AIW writes the BI buffer before it is
full so it can perform the AI write.

– The Suppress BI File Write (-Mf) parameter’s timer expires before the buffer is filled.

Moving the BI File

The “Disk I/O” section explains the performance benefits of distributing database files across
multiple disks. You help balance the before-image I/O load by placing the BI extents on a
separate disk.

Using a Before-image Writer

The BIW is a background process that continually writes filled BI buffers to disk. Since writes
to the BI file occur in the background, client and server processes rarely have to wait for a filled
buffer to be written to disk. BIWs are optional, but highly recommended for improving I/O
performance.

The server writes current information to the BI file through the current output buffer. When this
buffer fills, the server places the buffer on the filled chain. The server then takes a new buffer
from the empty chain and uses it as the current output buffer. If no empty buffers are available,
the process must wait while a filled buffer is written to disk.

The BIW writes the filled buffers to disk and places them on the empty chain. By clearing out
the filled chain, the BIW ensures that a supply of empty buffers is available to client and server
processes.

You can only run one BIW per database. You must manually start the BIW, but you can start
and stop the BIW process at any time without shutting down the database. See Chapter 5,
“Starting Up and Shutting Down,” for instructions on starting and stopping a BIW.

Providing More BI Buffers

You can increase the number of before-image buffers in the before-image buffer pool with the
Before-image Buffers (-bibufs) startup parameter. Increasing the number of buffers increases
the availability of empty buffers to client and server processes. In general, initially set this
parameter to 20. Increase it if there are any empty buffer waits in the PROMON Activity screen
or in the R&D BI Log Activity screen.
14–20

Managing Performance
Increasing the BI Cluster Size

The BI file is organized into clusters on disk. As the database engine writes data to the BI file,
these clusters fill up. When a cluster fills, the engine must ensure that all modified database
buffer blocks referenced by notes in that cluster are written to disk. This is known as a
checkpoint. Checkpointing reduces recovery time and lets the engine reuse BI disk space.
Raising the BI cluster size increases the interval between checkpoints.

Raising the BI cluster size can reduce the I/O overhead of writing modified database buffers to
disk. It also lets you defer writes and collect more changes before writing a block; this lets you
write multiple changes with the same write.

Larger cluster sizes generally increase performance. However, they also have significant
drawbacks:

• Increased disk space usage for the BI file.

• Longer crash recovery periods.

• Longer checkpoint times. (Run APWs to eliminate this drawback.)

Follow these steps to change the cluster size:

1 ♦ Use the PROSHUT command or the PROMON Shutdown a Database option to shut down
the database.

2 ♦ Enter the following command:

For size, specify the new cluster size in kilobytes. The number must be a multiple of 16
in the range 16 to 262128 (16K–256MB). The default cluster size is 512K. Cluster sizes
from 512 to 16384 are common.

You can also change the BI block size with this command. You might want to do so at this
time. For more information, see the “Increasing the BI Block Size” section.

proutil db-name -C truncate bi -bi size
14–21

Progress Database Administration Guide and Reference
Increasing the Number Of BI Clusters

When you create a new database or truncate an existing database, the database engine, by
default, creates four BI clusters, each of which is 512K. As the engine fills a cluster, the cluster
is checkpointed, and the engine writes to the next cluster on the chain. Figure 14–9 illustrates
the default BI clusters.

Figure 14–9: BI Clusters At Startup

In some cases, the database engine cannot write to the next cluster because the next cluster
contains an active transaction. When the engine cannot use the next cluster on the chain, it
creates a new cluster and begins writing to it. While the engine creates the new cluster, no
database update activity can occur, thus impacting database performance. Figure 14–10
illustrates how BI clusters fill over time.

Figure 14–10: BI Clusters Over Time

Cluster 2

Cluster 1 Cluster 3

Cluster 4

Cluster 2

Cluster 1 Cluster 3

Cluster 4

Cluster 5Available

Active Transactions
14–22

Managing Performance
The BI clusters typically grow to their optimal number over time. You can calculate the current
number of BI clusters for a database by dividing the BI physical file size by the BI cluster size.
For example, a database BI file with a BI cluster size of 128K and a physical size of 91,7504
has 7 BI clusters.

Whenever the BI file is truncated, you should consider growing the number of BI clusters to its
optimal size before restarting the database, thus preventing the database engine from adding
clusters on an as-needed basis. The BI file is truncated:

• Automatically by the database engine when you start after-imaging (RFUTIL AIMAGE
BEGIN)

• Automatically by the database engine when you perform an index rebuild (PROUTIL
IDXBUILD)

• Manually (PROUTIL TRUNCATE BI)

Follow this step to increase the number of BI clusters:

1 ♦ Enter the following command:

For n, specify the number of BI clusters that you want to create for the specified database.
Progress creates four BI clusters by default. If you specify a BIGROW value of 9, Progress
creates an additional 9 BI file clusters for a total of 13 clusters.

Increasing the BI Block Size

The database engine reads and writes information to the BI file in blocks. Increasing the size of
these blocks allows the engine to read and write more data at one time. This can reduce I/O rates
on disks where the BI files are located.

The default BI block size (8K) is sufficient for applications with low transaction rates. However,
if performance monitoring indicates that BI writes are a performance bottleneck and your
platform's I/O subsystem can take advantage of larger writes, increasing the BI block size might
improve performance.

proutil db-name -C bigrow n
14–23

Progress Database Administration Guide and Reference
Follow these steps to change the BI block size:

1 ♦ Use the PROSHUT command or the PROMON Shutdown a Database option to shut down
the database.

2 ♦ Enter the following command to change the BI block size:

For size, specify the new BI block size in kilobytes. Valid values are 0, 1, 2, 4, 8, and 16.
If you have a single AI file and after-imaging is enabled when you enter this command,
you must use the After-image Filename (-a) parameter to specify the AI filename.

You can also change the BI cluster size with this command. You might want to do so at
this time. For more information, see the “Increasing the BI Cluster Size” section.

For detailed information on this command, see the description of the PROUTIL utility in
Chapter 19, “Database Administration Utilities.”

Typically, if you change the BI cluster size and block size, you should also change the AI block
size. For information, see the “Increasing the AI Block Size” section.

Delaying BI Writes

When the Delayed BI File Write (-Mf) startup parameter is set to zero, use the Group Commit
technique to increase performance. This technique assumes that for the benefit of overall
performance, each individual transaction can take slightly longer. For example, when a
transaction begins to commit and spools its end note to the BI buffer, it waits a short time until
one of two things happen: it fills the buffer and is written to disk, or a few other transactions
complete and store their end notes in the BI buffer so that a single synchronous write commits
all the transactions. Use the Group Delay (-groupdelay) startup parameter to set the amount of
time (milliseconds) the transaction waits.

If the Group Commit technique does not provide sufficient improvement, you can improve
performance on a busy system by delaying BI file writes with the Delayed BI File Write (-Mf)
startup parameter.

By default, the database engine writes the last BI block to disk at the end of each transaction.
This write guarantees that the completed transaction is recorded permanently in the database.
On a system with little update activity, this extra BI write is very important and adds no
performance overhead. On a busy system, however, the BI write is less important (the BI block
will be written to disk very soon anyway) and might incur a significant performance penalty.

proutil db-name -C truncate bi -biblocksize size
14–24

Managing Performance
Set the -Mf parameter to delay BI writes at transaction commit time. When -Mf is set to a positive
value, the last BI record is guaranteed to be written to disk within the specified number of
seconds. The record is written sooner if the user logs out or the system shuts down.

NOTE: Suppressing the last BI write does not reduce database integrity. However, if there is
a system failure, the last few completed transactions can be lost (never actually
written to the BI file).

For more detailed information on the -Mf parameter, see Chapter 18, “Database Startup
Parameters.”

Setting a BI Threshold

When an application performs large schema updates or large transactions, the BI clusters can
grow in excess of 2GB. If a crash occurs during such an operation, the recovery process might
require twice the amount of disk space as the BI log was using at the time of the crash. Often
this space is not available, leaving the database in an unusable state.

Using the Recovery Log Threshold (-bithold) startup parameter sets the maximum size to
which BI files can grow. Once the threshold is reached, the database performs an emergency
shutdown. This mechanism ensures that there will be enough disk space to perform database
recovery. All messages associated with the threshold are logged in the database log (.lg) file.
These messages include:

• Value of the threshold

• Warning message if the threshold is set above 1000MB

• Warning message when recovery log files are extended

• Message that a database shutdown is occurring because the threshold has been reached

The recommended range is to set -bithold between 3% and 100% of the largest possible
recovery log file size, rounded to the nearest cluster boundary. If the threshold is set above
1000MB, Progress issues a warning message to the display and the database log (.lg) file. The
system will check the total amount of BI clusters in use each time a new cluster is marked as
used. If the No Crash Protection (-i) is set, the recovery log threshold parameter is set to the
default (none) and cannot be overridden.
14–25

Progress Database Administration Guide and Reference
Enabling Threshold Stall

Often a database administrator does not want the database to perform an emergency shutdown
when the Recovery Log Threshold limit is reached. The Threshold Stall (-bistall) startup
parameter quiets the database when the recovery log threshold is reached. Instead of an
emergency shutdown, the database stalls forward processing until the database administrator
intervenes. This provides the database administrator the options of shutting down the database,
making more disk space available, and increasing the threshold amount. A message is added to
the database log (.lg) file stating that the threshold stall is enabled.

Using PROQUIET To Adjust the BI Threshold

You can adjust the value of the threshold by providing a valid threshold value for the
PROQUIET command. The value can be increased above the current value or reduced to a value
of one cluster larger than the recovery log file size at the time the PROQUIET command is
issued.

Follow these steps to adjust the BI threshold:

1 ♦ Use the PROQUIET command to enable a database quiet point:

db-name is the name of the database for which you want to adjust the BI threshold.

NOTE: For more information on, and complete syntax for, the PROQUIET command,
see Chapter 17, “Startup and Shutdown Commands.”

During a database quiet processing point, all file write activity to the database is stopped.
Any processes that attempt to start a transaction while the quiet point is enabled must wait
until you disable the database quiet processing point.

2 ♦ Adjust the threshold size using the -bithreshold parameter:

db-name

Specifies the name of the database for which you want to adjust the BI threshold.

n

Specifies the new value for the threshold.

proquiet db-name enable

proquiet db-name -bithreshold n
14–26

Managing Performance
3 ♦ Use the PROQUIET command to disable the quiet point:

For more information on, and the complete syntax for, PROQUIET, see Chapter 17,
“Startup and Shutdown Commands.”

14.5.3 After-image I/O
After-imaging is an optional recovery mechanism that lets you recover data and transactions if
a disk fails. AI files must be kept on separate disks from the database and BI files, so
after-imaging I/O activity does not contribute to I/O activity on the disks where BI and database
files are stored. However, after-imaging creates a significant amount of I/O that can affect
performance. You can reduce the I/O impact of after-imaging by:

• Using an after-image writer (shared-memory systems only)

• Raising the AI block size

The following sections describe these options.

Monitoring AI Activity

Use operating system utilities to monitor the amount of I/O activity on the disk where the AI
files reside.

Use the Progress PROMON utility to monitor specific AI activity. Use the R&D option AI Log
Activity. Figure 14–11 shows a sample display.

proquiet db-name disable
14–27

Progress Database Administration Guide and Reference
Figure 14–11: PROMON AI Log Activity Display

Using an After-image Writer (Shared-memory Systems Only)

The AIW is a background process that writes AI buffers to disk soon after they are filled. If the
AIW is working effectively, client and server processes rarely have to wait for a modified buffer
to be written to disk.

The AI buffer pool is a circular chain of buffers. The database engine fills these buffers one at
a time. The buffer that the engine fills at any time is the current output buffer. As each buffer
gets filled, the engine continues around the chain. Each buffer in turn becomes the current
output buffer. If the next buffer to write is already modified, the engine must wait while that
buffer is written to disk.

You can run only one AIW process per database at a time. You must manually start the AIW,
but you can start and stop an AIW at any time without shutting down the database. See Chapter
5, “Starting Up and Shutting Down,” for instructions on starting and stopping an AIW.

Increasing the -aibufs startup parameter increases the number of buffers in the after-image
buffer pool, which increases the availability of empty buffers to client and server processes.
Progress Software recommends you set the -aibufs parameter to 1.5 times the value of the
Before-image Buffers (-bibufs) parameter. (For information on setting the -bibufs parameter,
see the “Providing More BI Buffers” section.) Increasing -aibufs has no effect if the AIW is
not running.

01/25/00 Activity: AI Log
11:36:56 01/12/00 13:56 to 01/13/00 11:23 (21 hrs 27 min)

 Total Per Min Per Sec Per Tx

Total AI writes 131 0 0.08 0.10
AIW AI writes 127 0 0.08 0.10
Records written 3630 0 2.31 3.00
Bytes written 129487 0 82.42 107.19
Busy buffer waits 13 0 0.00 0.01
Buffer not avail 0 0 0.00 0.00
Partial Writes 0 0 0.00 0.00
Log force waits 0 0 0.00 0.00
Keep busy buffer waits
low; use an AIW.

Eliminate empty buffer
waits by providing more
AI buffers.

Keep the writes per second
low. Reduce this number by
increasing the AI buffer size.
14–28

Managing Performance
Increasing the AI Block Size

As with before-imaging, the database engine reads and writes information to the AI file in
blocks. Increasing the size of AI blocks lets the engine read and write more AI data at one time.
This can reduce I/O rates on disks where the AI files are located. In general, the default AI block
size (8K) is sufficient for systems with low transaction rates. However, if performance
monitoring indicates that AI writes are a performance bottleneck and your platform’s I/O
subsystem can take advantage of larger writes, increasing the AI block size might improve
performance. A larger AI block size might also improve performance for roll-forward recovery
processing.

Follow these steps to change the AI block size:

1 ♦ Use the PROSHUT command or the PROMON Shutdown a Database option to shut down
the database.

2 ♦ If after-imaging is enabled, disable it by entering the following command:

For more specific information on this command, see the description of the RFUTIL utility
AIMAGE END qualifier in Chapter 19, “Database Administration Utilities.”

3 ♦ Truncate the BI file to bring the database and BI files up to date and eliminate any need
for database recovery. To do this, enter the following command:

Typically, if you change the AI block size, you should also change the BI block size. If
you have not already, you might want to use this command to do so. For more information
on the BI block size, see the “Increasing the BI Block Size” section.

For more details on this command, see the description of the PROUTIL utility in Chapter
19, “Database Administration Utilities.”

4 ♦ Change the AI block size by entering the following command:

rfutil db-name -C aimage end

rfutil db-name -C truncate bi- [-bi size | -biblocksize size]

rfutil db-name -C aimage truncate -aiblocksize size [-a aifilename]
14–29

Progress Database Administration Guide and Reference
For size, specify the size of the AI read and write block in kilobytes. The minimum value
allowed is the size of the database block. Valid values are 0, 1, 2, 4, 8, and 16. If you
specify 0, Progress uses the default size (8K) for your operating system platform.

5 ♦ Perform a full backup of the database.

NOTE: You must perform this step because backups and AI files created before you
change the AI block size are no longer valid with the new AI block size. For
detailed backup instructions, see Chapter 7, “Backing Up a Database.”

6 ♦ Enable after-imaging by entering the following command:

For more specific information on this command, see Chapter 19, “Database
Administration Utilities.”

7 ♦ Restart the database and continue processing.

14.5.4 Direct I/O
The database engine can use an I/O technique that forces blocks to be written directly from the
buffer pool to disk. This optional technique prevents writes to disk from being deferred by the
operating system’s buffer manager.

In general, use Direct I/O only if you are experiencing memory shortages. In many cases the
normal buffered I/O will provide better performance. Test the performance impact before
implementing Direct I/O on a production database.

To use this feature, specify the Direct I/O (-directio) startup parameter. If you use the
-directio startup parameter, you might need to add additional APWs to compensate for the fact
that with Direct I/O, each database write requires more processing time from the APWs.

rfutil db-name -C aimage begin { buffered | unbuffered } -a ai-name
14–30

Managing Performance
14.6 Memory Utilization
Many of the techniques for improving server performance involve using memory to avoid disk
I/O whenever possible. In general, you spend memory to improve performance. However, if the
amount of memory on your system is limited, you can overload memory resources, causing your
system to page. Paging can affect performance more severely than a reasonable amount of disk
I/O. You must determine the point where memory use and disk I/O is balanced to provide
optimal performance. In other words, you must budget the amount of memory you can afford
to spend to improve performance.

14.6.1 Monitoring Memory Utilization
Use the following PROMON options to monitor memory usage:

• Activity — Shows the amount of shared memory used by the database and the number of
shared-memory segments

• Shared Resources Status (an R&D option) — Shows the amount of shared memory
allocated

• Shared-memory Segments Status (an R&D option) — Shows the ID number, size, and
amount used for each shared-memory segment

For detailed information on these options, see Appendix A, “Progress Monitor R&D Options.”
14–31

Progress Database Administration Guide and Reference
14.6.2 Controlling Memory Use
Table 14–1 lists the startup parameters used to fine-tune memory allocation on the server
system.

Table 14–1: Startup Parameters That Affect Memory Allocation

Startup Parameter Suggested Use

Blocks in Database Buffers (-B) Increasing the buffer size decreases the amount of
database record I/O by increasing the number of
buffers available in memory. This increases
memory usage. Increase the -B parameter to use
more memory to reduce I/O. Decrease the -B
parameter if memory is limited or if database
buffer I/O causes paging.

Maximum Clients per Server (-Ma)1 If some number of remote clients overloads the
server or exhausts the file descriptors on a system,
set this parameter to limit the number of clients.

Maximum Servers (-Mn)1 If a server becomes overloaded with clients, set
this parameter to limit the number of servers. If
you significantly increase this parameter, you
should also increase the Minimum Clients per
Server (-Mi) parameter.

Number of Users (-n) On nonshared-memory systems, use this
parameter to limit the total number of users below
the level that overloads the database server.

On shared-memory systems, set this parameter
large enough to include both local and remote
users.

Pin Shared Memory (-pinshm) Use this parameter to prevent the database engine
from swapping shared memory contents to disk.

1 Relevant only to database accessed using client/server.
14–32

Managing Performance
14.7 Operating System Resources
The database engine relies on operating system resources for its performance. For example, the
engine uses the operating system file system and processes to perform its functions. These
mechanisms are controlled by kernel parameters. The following sections describe these
mechanisms and the kernel parameters associated with them.

14.7.1 Processes
On shared-memory systems, the following functions run as processes:

• Brokers

• Servers

• Clients

• APWs, BIWs, and AIWs

The user table contains one entry per process. Use the Number of Users (-n) parameter to
specify the number of users.

On UNIX, the NPROC parameter limits the total number of active processes on the system and
is commonly set between 50 and 200. The MAXUP parameter limits the number of concurrent
processes that can be started by a single user ID, and it is commonly set between 15 and 25.
Also, if more than one user logs in with the same user ID, MAXUP can be exceeded quickly.
You see the following error message when the process limit is exceeded:

If you see this message repeatedly, you should reconfigure your system kernel.

Unable to fork process.
14–33

Progress Database Administration Guide and Reference
14.7.2 Semaphores
On single-processor systems, Progress uses semaphores to synchronize the activities of server
and self-service client processes that are connected to a database. By default, each database has
an array of semaphores, one for each user or server. Each process uses its semaphore when it
must wait for a shared resource. Semaphores are not used for single-user sessions or for client
sessions connecting to a remote database on a server system.

Figure 14–12 shows how semaphores control access to shared resources.

Figure 14–12: How a Semaphore Coordinates Concurrent Access

When process 5 needs access to a record, index, or other shared resource already locked by
process 8, process 5 decrements its semaphore. When the process holding the lock (process 8)
releases the resource, it notifies the waiting process (process 5) by incrementing the semaphore.

Semaphores are grouped into semaphore sets. Each semaphore set has a unique identifying
number called a semid. Within a semaphore set, individual semaphores are identified by an
integer ranging from 0 to one less than the size of the semaphore set.

The Progress broker preallocates semaphores when you start the database with PROSERVE.
Each process requires one semaphore. The broker uses two additional semaphores internally.
The database engine uses the following formula to determine the number of semaphores
(#SEM) to allocate:

#SEM = Max-possible-users (-n) + Max-possible-servers (-Mn) + 4

CLIENT/
SERVER

Process 5
SEMAPHORE 5

CLIENT/
SERVER

Process 8

SHARED MEMORY
Wait

Decrement

Lock

Notify (increment)
when lock released

1

3

2

14–34

Managing Performance
Table 14–2 lists the UNIX kernel parameters that control the number and size of the semaphore
sets.

When you install Progress, you might have to increase the values of these parameters. If you are
running other software that uses semaphores, take into account the combined requirements. See
your system documentation for information on how to change these parameters.

The amount of kernel memory required for semaphores is relatively small, so setting the limits
higher than your current needs probably will not affect performance.

The PROMON Shared Resources option (an R&D option) displays the number of semaphores
used. When you start the broker process, a message specifies the number of semaphores still
available. If the number of database users grows large, the database engine might exceed the
maximum number of semaphores allowed, specified by the SEMMNS parameter. If this
happens, you must reconfigure the system’s kernel to increase the semaphore limit. You can
reduce semaphore use only by lowering the values of the Number of Users (-n) and/or
Maximum Servers (-Mn) startup parameters.

Table 14–2: UNIX Kernel Parameters That Affect Semaphores

Parameter Description Recommended Setting

SEMMNI The maximum number of
semaphore identifiers
allowed for the system.

One per active multi-user database.

If you set this value too low, the data-
base engine might generate error 1131.

SEMMSL The maximum number of
semaphores allowed per
semaphore identifier
(semaphore set).

(Max-local-users-on-any-databases +
Max-#servers-on-any-databases + 4)

If you set this value too low, the
database engine might generate error
1093 or 1130.

SEMMNS Total number of
semaphores allowed for
the system.

SEMMSL * number of active
databases.

If you set this value too low, the data-
base engine might generate error 1093,
1131, or 1195.

SEMMNU Maximum number of
semaphore undo structures
allowed for the system.

Same value as SEMMNS.

If you set this value too low, the
database engine might generate error
1081.
14–35

Progress Database Administration Guide and Reference
Allocating Semaphores

By default, the database engine uses one semaphore set for all the semaphores needed by the
database. When greater than 1000 users connect to a single database, there might be high
contention for the semaphore set. Using multiple semaphore sets helps alleviate this contention
and improve performance with high user counts. The broker startup parameter, Semaphore Sets
(-semsets), allows you to change the number of semaphore sets available to the Progress
broker.

The broker uses two groups of semaphores, Login and User. The Login semaphore is used
during connection to the database. The system allocates one User semaphore for every user
specified by the Number of Users (-n) startup parameter. User semaphores are allocated using
a round robin mechanism. If you specify the number of Semaphore Sets, Progress allocates one
set for the Login semaphore and the remaining sets are used for User semaphores.

In this example, the broker uses two semaphore sets, one for the Login semaphore and one for
the ten User semaphores:

In this example, the broker uses three semaphore sets, one for the Login semaphore, one for five
of the User semaphores, and one for the remaining five User semaphores:

 proserve <db-name> -semsets 2 -n 10

proserve <db-name> -semsets 3 -n 10
14–36

Managing Performance
14.7.3 Spin Locks
On multi-processor shared-memory systems, the database engine uses a spin lock algorithm to
control access to shared-memory structures. The spin lock algorithm works as follows: When a
process needs a shared-memory resource, it attempts to acquire the resource’s latch. If it cannot
acquire the resource’s latch it repeats the attempt. This iterative process is called spinning. If a
process fails to acquire a latch after a specified number of spins, the process pauses, or takes a
nap, before trying again. If a process repeatedly fails to acquire a latch, the length of its nap is
gradually increased. You can set the Spin Lock Tries (-spin) parameter to specify how many
times to test a lock before napping.

14.7.4 File Descriptors
A file descriptor is an identifier assigned to a file when it is opened. There is a system limit on
the number of file descriptors. Each database process (clients, remote client servers, and the
broker) might use 15 or more file descriptors. Therefore, set the system’s file descriptor limit at
approximately 15 times the maximum number of processes, or higher. Allow approximately10
file descriptors for the operating system as well.

14.8 Database Fragmentation
Over time, as records are deleted from a database and new records are added, gaps can occur on
the disk where the data is stored. This fragmentation can cause inefficient disk space usage and
poor performance with sequential reads. You can eliminate fragmentation by dumping and
reloading the database.

14.8.1 Analyzing Database Fragmentation
To determine the degree of fragmentation for tables in a database, use PROUTIL with the
TABANALYS qualifier:

You can run PROUTIL with the TABANALYS qualifier while the database is in use; however,
PROUTIL generates only approximate information.

proutil db-name -C tabanalys
14–37

Progress Database Administration Guide and Reference
In the TABANALYS display, check the following fields:

• Count — The total number of record fragments found for each table in the database.

• Fragments Factor — The degree of record fragmentation for each table. If the value is
2.0 or greater, dumping and reloading will improve disk space usage and performance. If
the value is less than 1.5, dumping and reloading is unnecessary.

• Scatter Factor — The degree of distance between records in the table. The optimal value
for this field varies from database to database. To determine the optimal value for your
database, run the TABANALYS qualifier on a freshly loaded database.

The following shows a sample excerpt from a PROUTIL TABANALYS display.

RECORD BLOCK SUMMARY FOR AREA "Info Area" : 7

-Record Size (B)- ---Fragments--- Scatter
Table Records Size Min Max Mean Count Factor Factor
Customer 83 12.1K 118 222 149 83 1.0 1.5
Invoice 147 5613B 32 45 38 147 1.0 1.2
Item 55 5092B 39 229 92 55 1.0 1.3
Local-Default 10 704B 55 82 70 10 1.0 1.2
Ref-Call 13 2480B 81 328 190 13 1.0 1.4
Salesrep 9 746B 79 87 82 9 1.0 1.2
State 51 1755B 29 40 34 51 1.0 1.0

RECORD BLOCK SUMMARY FOR AREA "Order Area" : 8

-Record Size (B)- ---Fragments--- Scatter
Table Records Size Min Max Mean Count Factor Factor
Order 207 11.5K 53 61 56 207 1.0 1.3
Order-Line 873 30.3K 33 38 35 873 1.0 1.2

 --
Totals: 4190 431.1K 6 1156 105 4263 1.0 2.5
14–38

Managing Performance
14.8.2 Eliminating Database Fragmentation
You can eliminate database fragmentation two ways:

1. Dump and reload the database.

Dumping and reloading the database creates a new starting version of the database and
loads the table contents into this new database. During the loading stage the Data tool
(either the Data Dictionary or the Data Administration tool) or the 4GL procedure
repartitions the disk, removing any gaps created when database elements were deleted,
thereby more efficiently allocating disk space. For instructions, see Chapter 13, “Dumping
and Loading.”

2. Move individual tables and indexes.

You can use the PROUTIL utility with the TABLEMOVE and IDXMOVE qualifiers to
move tables and indexes from one storage area to another while the database remains
online. As a result, disk space is efficiently allocated and gaps are removed. For more
information about moving tables and indexes, see Chapter 9, “Maintaining Database
Structure.”

14.9 Index Use
As database blocks can become fragmented, index blocks can become under-utilized over time.
The optimal degree of index block utilization depends on the type of database access performed.
Retrieval-intensive applications generally perform better when the index blocks are close to full
since the database engine has to access fewer blocks to retrieve a record. The larger the index,
the greater the potential for improving performance by compacting the index. Update-intensive
applications, on the other hand, perform better with loosely packed indexes because there is
room to insert new keys without having to allocate more blocks. Index analysis provides the
utilization information you require to make decisions. Choose a balance between tightly packed
indexes and under-utilized indexes, depending on your data and applications, and use the Index
Rebuild (IDXBUILD) qualifier, described later in this chapter, to compact indexes.
14–39

Progress Database Administration Guide and Reference
14.9.1 Analyzing Index Use
Use PROUTIL’s IDXANALYS qualifier to get information about index blocks and utilization.

To execute the IDXANALYS qualifier, enter the following command:

db-name

Specifies the name of the database.

The IDXANALYS qualifier provides:

• The number of fields and levels in each index

• The size of each index, in blocks and in bytes

• The percent utilization within the index (that is, the degree of disk space efficiency)

• A factor value that indicates whether to rebuild each index

• A summary of indexes for the current database and the percentage of total index space
used by each index

NOTE: You can run PROUTIL with the IDXANALYS qualifier while the database is in use;
however, PROUTIL generates only approximate information.

The most important field in the IXANALYS display is the % Util field. This field shows the
degree of consolidation of each index. If an index is several hundred blocks and your application
most frequently retrieves data, an index utilization of 85 percent or higher is optimal. There are
two ways to increase an index’s utilization rate:

• Compress the index with the database online or offline with the PROUTIL
IDXCOMPACT utility.

• Rebuild and compress the index offline with the PROUTIL IDXBUILD utility.

proutil db-name -C idxanalys
14–40

Managing Performance
The Levels field shows the number of reads PROUTIL performs in each index per entry. The
Blocks and Bytes fields show you the size of each index. The Factor field is based on the
utilization and size of the index; it is an indicator of when you should rebuild indexes. Table
14–3 provides a description of the different ranges of values for the Factor field. When you use
the Factor field to decide whether to rebuild an index, consider the context of how the particular
index is used. For example, if an index is highly active, with continuous insertions and deletions,
its utilization rate varies greatly, and a rebuild is inadvisable. However, a static index with a high
factor value benefits from a rebuild.

14.9.2 Compacting Indexes
When space utilization of an index is reduced to 60% or less as indicated by the PROUTIL
IDXANALYS utility, use the PROUTIL IDXCOMPACT utility to perform index compaction
online. Performing index compaction increases space utilization of the index block to the
compacting percentage specified. For example:

NOTE: For the complete syntax description see Chapter 19, “Database Administration
Utilities.”

Table 14–3: Factor Values

Factor Range Description

1 to 2 The index is well-utilized and balanced. You do not have to
rebuild it.

2 to 2.5 The index is less than 50 percent utilized and/or the index is
unbalanced. You should consider a rebuild.

2.5 to 3 The index is less than 25 percent utilized and/or the index is very
unbalanced. You should rebuild this index.

proutil db-name -C idxcompact [owner-name.]table-name.index-name [n]
14–41

Progress Database Administration Guide and Reference
Performing index compaction reduces the number of blocks in the B-tree and possibly the
number of B-tree levels, which improves query performance.

The index compacting utility operates in phases:

• Phase 1: If the index is a unique index, the delete chain is scanned and the index blocks
are cleaned up by removing deleted entries.

• Phase 2: The nonleaf levels of the B-tree are compacted starting at the root working toward
the leaf level.

• Phase 3: The leaf level is compacted.

The _UserStatus virtual system table displays the utility's progress. For more information see
Chapter 9, “Maintaining Database Structure.”

NOTE: Because index compacting is performed online, other users can use the index
simultaneously for read or write operation with no restrictions. Index compacting
only locks 1 to 3 index blocks at a time, for a short time. This allows full concurrency.

14.9.3 Rebuilding Indexes
Use the IDXBUILD (Index Rebuild) qualifier of the PROUTIL utility to:

• Compress index blocks to minimize space usage.

• Activate all deactivated indexes in the database.

• Repair corrupted indexes in the database. (Index corruption is normally signaled by error
messages.)

NOTE: When you run the Index Rebuild qualifier, the database must not be in use.

To run the IDXBUILD qualifier with PROUTIL, enter the following command:

db-name

Specifies the name of the database whose indexes you want to build.

To improve performance, use the Merge Number (-TM) and Speed Sort (-TB) startup parameters.
For details, see the “Maximizing Index Rebuild Performance” section.

proutil db-name -C idxbuild [all] [-TB] [-TM]
14–42

Managing Performance
When you enter this command without the all qualifier, the following menu appears:

Use the Some option to rebuild only specific indexes. Use the All option to rebuild all indexes.
After you enter a selection and you name those indexes you want to rebuild, the utility prompts
if you have enough disk space for index sorting. If you enter yes, the utility sorts the indexes
you are rebuilding, generating the indexes in order by their keys. This sorting results in a faster
index rebuild and better space use in the index blocks.

To estimate whether you have enough free space to sort the indexes or not, use the following
formulas:

• If you rebuild all the indexes in your database, sorting the indexes requires up to 75 percent
of the total database size in free space.

• If you rebuild an individual index, sorting that index requires as much as the following
amount of free space:

(size of one index entry) * (number of records in file) * 3

The Index Rebuild qualifier with PROUTIL rebuilds an index or set of indexes in a series of
three phases:

1. The utility scans the database file, clearing all index blocks that belong to the indexes you
are rebuilding and adding those blocks to the free block list.

2. The utility scans the database file and rebuilds all the index entries for every data record.
If you chose to sort the index, the utility writes the index entries to the sort file. Otherwise,
the utility writes the index entries to the appropriate index at this point.

3. This phase only occurs if you chose to sort the indexes. In this phase, the utility sorts the
index entries in the sort file into groups and enters those entries into their respective entries
in order, one index at a time.

The Index Rebuild qualifier accomplishes most of its work without displaying messages, unless
it encounters an error condition.

Index Rebuild Utility
========================
Select one of the following:
All - Rebuild all the indexes
Some - Rebuild only some of the indexes
Quit - Quit, do not rebuild

Enter your selection:
14–43

Progress Database Administration Guide and Reference
If the index rebuild is interrupted while rebuilding selected indexes, the list of selected indexes
is retained in a file named dbname.xb. This XB file is used when the utility is restarted. You do
not have to enter the list of indexes manually if the XB file exists.

Overcoming SRT Size Limitations

When you perform the Index Rebuild utility and choose the Sort option, you might encounter
space limitations that can cause the utility to terminate. These are some of the reasons that you
might reach the limit:

• The temporary sort file allocated to do the sort reaches the operating system limit for file
size (2GB on most systems).

To overcome this limitation, simply create a file that contains specifications for the
directories and the amount of space per directory that you want the SRT file to have access
to during the Index Rebuild. The file that contains the specifications must be a text file,
must have the same name as the database with an extension of .srt (dbname.srt), and must
reside in the same directory as the .db file. In addition, the contents of the file must follow
these conventions:

• List the directory and the amount of space that you want to allocate to the index rebuild
sort on separate lines.

The size that you specify in the dbname.srt directory specification is the maximum (in
1024 byte units) that the file can grow. Specifying 0 for any directory indicates that you
want to allow unlimited growth.

When you provide a file size that is larger than the maximum allowed by your operating
system, Index Rebuild ignores the value you specified in the file and uses the maximum
size allowed by the operating system. When you specify a nonzero file size that is less then
the temporary block size (-TB), Index Rebuild ignores the value you specified in the file
and uses the temporary block size (-TB) value.

• Separate the directories from the size by at least one blank.

• Terminate the line with a slash (/) followed by end of line.
14–44

Managing Performance
For example, if you want to rebuild the index for the sports database and you want the speed
sort to have access to 300K of space available in the /user2/db1/first directory, 400K in the
user3/junk directory, and unlimited space in the /user4/last directory, then the sports.srt
looks like this on UNIX:

and looks like this for Windows:

The Index Rebuild utility accesses the files in the order in which they are listed in the
dbname.srt file. So, if you specify an amount of space that is not available, when the disk is
filled, then Index Rebuild terminates and the next directory specification is not used. Thus, if a
disk has only 200K of space and the dbname.srt specifies 300K, when the 200K is exhausted
the Index Rebuild terminates. For example, if /user2/db1/first above does not get 300K of
data, Index Rebuild never processes /user3/junk. In addition, if you specify a directory size of
0, any directories specified after it in the dbname.srt are not processed. For these reasons, you
should verify that the space you specify in the dbname.srt file is available before running index
rebuild.

The Index Rebuild utility opens the files for each of the directories before it actually starts the
sort process. As a result, one of the following messages is displayed for each file:

or:

The previous message occurs even if the .srt file was not found.

When the sort completes, the following message is displayed for each file:

300 /user2/db1/first/
400 /user3/junk/
0 /user4/last/

300 \user2\db1\first\
400 \user3\junk\
0 \user4\last\

Temporary sort file at pathname used up to nK of disk space.

Temporary sort file at:pathname will use the available disk space.

Temporary sort file at pathname used nK of disk space.
14–45

Progress Database Administration Guide and Reference
In some cases the message displays OK. This simply means that the sort took place completely
in memory.

If Index Rebuild does not find a dbname.srt file, then by default, it uses the directory supplied
by either the -T parameter or the current working directory.

Maximizing Index Rebuild Performance

To speed up index rebuild operations, do the following:

• Answer yes when prompted whether you have enough disk space for sorting.

• Increase the Speed Sort (-TB) startup parameter to 24K. (If you are very short of memory,
use 16K or 8K.) This improves sort performance; however, it also uses more memory and
disk space. See the Progress Startup Command and Parameter Reference for more
information about the -TB startup parameter.

• Increase the Merge Number (-TM) startup parameter to 32 (unless memory is scarce). The
-TM parameter is described in the Progress Startup Command and Parameter Reference.

• Change the Temporary Directory (-T) startup parameter to store the temporary files on
another disk. See the Progress Startup Command and Parameter Reference for more
information on the -T parameter.

The database engine uses the following algorithm to rebuild indexes. For each record, read the
index key fields and store in the first available SRT file block. Allocate additional SRT file
blocks of the specified block size as required to hold all index keys. Sort the keys in each block
then merge the keys to produce a sorted file. A similar technique is used to sort records when
there is no index to satisfy a BY clause.

A larger block size can improve index rebuild performance considerably. A larger block size
means less SRT block allocation overhead and fewer quicksort operations on individual blocks.

You might have to run the application several times using different block size values to
determine the optimal value. If you experience extreme memory shortages when running
Progress, try setting the block size to 1 to reduce memory consumption.

During index rebuild, try setting -TB to 31, if memory and disk space are available. If the index
rebuild fails, try successively smaller values. Remember, a larger value for -TB improves sort
performance but uses more memory. The -TB setting has a significant impact on the size of the
SRT temporary file. The SRT file size depends on the number of session compile files, and the
number and size of sort operations. (See the description of the Directory Size (-D) startup
parameter in Chapter 18, “Database Startup Parameters.”
14–46

Managing Performance
Memory usage depends on the number of nested FOR EACH statements doing sorts (number
of simultaneous sorts occurring). You can estimate memory usage as follows, where M is the
estimated memory usage:

M=(sort-block-size)*(number-of-nested-sorts+Merge-Number(-TM)parameter)

Index rebuild always requires eight simultaneous sorts, so during index rebuild:

M=(sort-block-size)*(8+(-TM) parameter)

Therefore, in the default case:

M=(2*(8+5))=26K

Reactivating Unique Indexes

When reactivating a unique index, IDXBUILD displays the following error message each time
it encounters a duplicate index key:

You must change the record data to eliminate duplicate keys. Use another index on the table (if
one exists):

14.10 Virtual System Tables
Virtual system tables (VSTs) provide 4GL and SQL-92 access to system statistics. You can use
this information to help analyze database and application design, as well as to determine what
factors are impacting database performance. The virtual system tables, or schema tables, have
no physical records until the database manager generates them at run time. For a detailed
description of each table, see Chapter 20, “Virtual System Tables.”

Fix RECID recid, table-name already exists with field-name value.

FOR EACH table-name USE-NDEX index-without-duplicate-keys:
UPDATE table-name.
14–47

Progress Database Administration Guide and Reference
14–48

15
Replicating Data

Data replication is the distribution of copies of information to one or more sites. In a single
enterprise, sites spanning organizational and regional boundaries often require the timely
sharing of transaction data across databases in a consistent manner. Developing and deploying
a successful replication process involves careful planning and input from business experts,
application developers, and administrators.

This chapter contains the following sections:

• Replication Schemes

• Implementing Log-based Site Replication

Progress Database Administration Guide and Reference
15.1 Replication Schemes
A replication scheme is a system of definable tasks and operations that are used to perform data
replication. An enterprise’s replication scheme addresses it’s specific business requirements
This section summarizes different replication models, data ownership models, and
implementation strategies that are available. A replication scheme can be implemented through
event triggers or through log-based capture.

15.1.1 Trigger-based Replication
To implement trigger-based replication, use event triggers stored in the database. When an event
to be replicated occurs (that is, a record is created, modified, or deleted) the database uses the
event to record the change in a replication change log. Progress 4GL provides full support for
trigger-based replication. See the Progress Programming Handbook for more information
about trigger-based replication.

15.1.2 Log-based Site Replication
Log-based site implementation (or site replication) is based on a monitor that watches a log of
transactions and propagates these changes to other sites. Generated by the database, this log
comprises a stream of database transactions. This is a very efficient way of replicating data from
server to server. It also allows you to maintain a remote backup of a primary database. Progress
supports site replication using after-imaging (AI) files. For more information on log-based site
replication see “Implementing Log-based Site Replication.”

15.2 Replication Models
At the highest level, there are two major models of replication: synchronous and asynchronous.

15.2.1 Synchronous Model
In a synchronous replication model, all replication of data occurs within the scope of the original
transaction. In other words, replication occurs transaction by transaction. Typically, this model
is implemented using a two-phase commit protocol. Two-phase commit ensures that distributed
transactions occur consistently across databases. For more information, see Chapter 12, “Using
Two-phase Commit.”

Because the data modifications are replicated as part of the original transaction, synchronous
replication ensures high data availability and consistency. The entire transaction is either
committed to both systems or backed out completely.
15–2

Replicating Data
15.2.2 Asynchronous Model
Asynchronous replication (also known as store and forward replication) allows the replication
to occur outside the scope of the original transaction. The replication might take place seconds,
minutes, hours, or days from the time of the transaction, depending on your business
requirements. Although the replication executes record by record, replication can occur by
transaction. That is, if an order is placed in the system with order lines containing multiple data
changes and these changes are made within the scope of a single transaction, the changes can
be replicated as a single transaction.

15.2.3 Database Ownership Models
Data ownership models determine how changes to a database (or site) affect other databases in
the network. This section describes three models, data distribution, data consolidation, and the
peer-to-peer model, and how they relate to replication.

Distribution Model

In the distribution ownership model, a single master database owns the data. The master
database is the read/write area, and all changes are made to this database only. All changes are
then propagated to the remote sites in a read-only state. The remote sites cannot change the data,
only view it. In terms of replication, the chief advantage to this model is that it greatly reduces
data collision (conflicts between updates to the same record). This is because data changes are
made at one site only.

Figure 15–1 illustrates the data distribution model.

Figure 15–1: Data Distribution Model

Site 1 Central DB Site 3

Site 2

Read Only Read/Write

Read Only

Read Only
15–3

Progress Database Administration Guide and Reference
Consolidation Model

In the consolidation model, data changes are made at the remote sites and then propagated to
the central database. The central database is read-only and is used for reporting purposes. For
replication, this model increases the frequency of data collision over the distribution model. If
there is a collision of changes by two or more users, the changes are applied on a
first-come-first-served basis.

To avoid data collision, the consolidation model often uses table partitioning. Table partitioning
(also called data ownership) requires that all data be owned by each site. Changes to data at each
remote site are made exclusively by respective remote site users. A data ownership model might
not be appropriate for your business organization. Although data collisions are avoided, the
ability to update the same record from any site is lost.
15–4

Replicating Data
Figure 15–2 illustrates two data consolidation models, one with no data ownership, and the
other with table partitioning.

Figure 15–2: Data Consolidation Models

Site 1 Central DB Site 3

Site 2

Read/Write

Read Only

Read/Write

Read/Write

With No Data Ownership

Site 1

Site 2

Site 3

Site 1 Site 3

Read/Write Read/Write

Site 2

Read All

With Table Partitioning

Read/Write
15–5

Progress Database Administration Guide and Reference
Peer-to-peer Model

In a peer-to-peer model (or “update anywhere”) any user at any site can update data. This is the
most flexible replication model. However, in a peer-to-peer scheme, data collision is a side
effect that must be addressed. Data collision must be resolved based on business requirements.
An approach to data collision resolution is discussed later in this chapter.

Figure 15–3 illustrates the peer-to-peer model.

Figure 15–3: Peer-to-peer Model

Read/Write

Central DB

Site 1 Site 3

Site 2

Read/Write

Read/Write

Read/Write
15–6

Replicating Data
15.3 Implementing Log-based Site Replication
With log-based site replication, a central database is replicated in its entirety to one or more
secondary sites. Log-based site replication allows the following:

• The creation of “hot” standby sites in case the primary site fails

• Flexible snapshot capability to control the timeliness of replication

• A transparent method of maintaining a remote backup of a primary database

15.3.1 Log-based Replication Procedure
Site replication with Progress databases is implemented through the use of after-imaging and
database backup procedures. For complete information about these procedures, see Chapter 7,
“Backing Up a Database” and Chapter 12, “Using Two-phase Commit.”

Follow these steps to implement log-based site replication:

1 ♦ Add after-imaging extents and then enable after-imaging in the primary database. For
information about after-imaging extents and enabling after imaging, see Chapter 11,
“After-Imaging.”

2 ♦ Use the PROSTRCT utility with the LIST option to create a structure description file
containing the central database’s data structure. For information about the structure
description file and the PROSTRCT utility, see Chapter 9, “Maintaining Database
Structure.”

3 ♦ With the structure description file produced from the central database, use PROSTRCT
with the CREATE option to create an additional database on the remote system.

4 ♦ Perform a backup of the primary database to initialize the secondary database. This step
creates a basis for subsequent roll-forward operations. For information about performing
a backup, see Chapter 7, “Backing Up a Database.”

5 ♦ Restore the backup copy of the primary database to the secondary database.
15–7

Progress Database Administration Guide and Reference
6 ♦ Use the RFUTIL command with the option EXTENT FULL to monitor the after-image
extents. This will automatically determine which image extent is ready for replication (or
transfer) to the secondary site. You can transfer the after-image extent file to the secondary
site using an OS command to remote copy.

For more information about RFUTIL, see Chapter 19, “Database Administration
Utilities.”

7 ♦ Once the after-image extent has been transferred to the secondary site, use RFUTIL with
the EMPTY option to mark the extent “empty” and ready for use on the primary database.

8 ♦ Implement a process to monitor and transfer full after-image extents (AI extents). You can
copy AI extents to an AI log, then transfer the log contents to the secondary site on a
continuous basis.

9 ♦ If it becomes necessary to shift operations to the secondary site, transfer the last “full” and
“busy” after-image extents and roll-forward to completion. Start up of the secondary site
database causes the database to undergo crash recovery, resulting in the shift to the
secondary site.

For more information about performing roll-forward recovery, see Chapter 8, “Recovering
a Database.”
15–8

Replicating Data
Figure 15–4 shows after-image extent files replicated from the primary to a secondary database.

Figure 15–4: Example Of Site Replication

Primary Site

Al Log

Secondary
Site

sales.a1

sales.a2

sales.a3

Al extent 1

Al extent 2

Al extent 3
15–9

Progress Database Administration Guide and Reference
15–10

16
Using the Event Log

The Progress Version 9 database engine logs significant database events such as startup
parameter settings, startup, shutdown, and system error messages, and application-related
events. This chapter details the messages written to the event log.

Specifically, this chapter contains the following sections:

• Progress Version 9 Event Log File

• Managing the Event Log File Size

• Event Logging On Windows

Progress Database Administration Guide and Reference
16.1 Progress Version 9 Event Log File
The Progress event log is a text file that contains a history of significant database events, such
as Progress startup parameter settings and startup, shutdown, and system error messages. This
file has a .lg extension. Entries in the event log can help you trace events preceding database
crashes.

16.2 Managing the Event Log File Size
The event log (LG) file expands as you use the database. If it becomes too large, you can reduce
its size by removing old log entries. To remove log entries from an LG file, use the Progress
Log Maintenance (PROLOG) utility or a text editor. Do not remove entries from the log file
while the database is in use.

Enter the following command to remove entries from an event log file:

The PROLOG utility removes all but the most recent entries from the log file. For more details,
see the description of the PROLOG utility in Chapter 19, “Database Administration Utilities.”

16.3 Event Logging On Windows
In addition to the Progress event log, the Progress Server writes events to the Windows Event
Log. The Event Log is the object that enables Windows users to view the status of application,
security, and system processes, and to view their associated events. The Progress database is an
application process that writes events to the Application Event Log. You use the Event Viewer
to see the Event Log’s contents. You can customize the Event Viewer so that it displays only
the event types that you want to view. You access the Event Viewer through the Administrative
Tools program group. For a list of Windows operating systems currently supported by Progress,
see the Progress Installation and Configuration Guide Version 9 for Windows.

The components that enable the Progress service to log messages to the Application event log
database are described in Table 16–1.

prolog database-name
16–2

Using the Event Log
16.3.1 Managing Progress Events On Windows
You can define the level of event logging that you want your Progress application to support by
using the Event Level Environment Variable (EVTLEVEL), or the Event Level startup
parameter (-evtlevel). Use the Progress Control (PROCONTROL) utility to supply the Event
Level as a startup parameter or environment variable. See Chapter 19, “Database
Administration Utilities,” for information about the PROCONTROL utility.

Table 16–2 lists valid event level values.

Table 16–1: The Progress Event Logging Components

This component . . . performs this function . . .

The Event Viewer Enables users to view the Event Log.

The Event Log Records event information.

PROMSGS.DLL Contains Progress database messages for the event log.

CATEGORY.DLL Contains the 14 categories into which Progress database
messages might fall.

PROMSGS file Contains the full set of the Progress database messages
including translated versions. The PROMSGS file is
installed to the directory with the Progress executable.

Table 16–2: Event Level Values

Value Description

 None No Progress events are written to the event log.

Brief Progress messages defined as Error and Warning messages are
written to the event log.

Normal Progress messages defined as Error and Warning messages are
written to the event log. In addition, any Progress message that is
normally written to the log file (.lg) is also written to the Event Log.
This is the default.

Full Every message generated by Progress is written to the Event Log.
Any Progress messages generated using the Message Statement are
also written to the log file.
16–3

Progress Database Administration Guide and Reference
16.3.2 Understanding the Event Log Components
The components of the Event Log are standards defined by Windows. Figure 16–1 illustrates
the Event Log components when shown through the Event Viewer.

Figure 16–1: NT Event Log Components

Table 16–3 describes how Progress uses the Event Log columns.

Table 16–3: How Progress Uses Event Log Components (1 of 2)

This column . . . includes this information . . .

Date Date the event occurred.

Time Time the event occurred.
16–4

Using the Event Log
Source Source of the event. This is the name of the connected Progress
database, if a database is connected. If no database is connected, then
“Progress” is listed.

If you are using the Progress AppServer, “Progress” is also the
default source for Progress AppServer messages; however, you can
override the default source name by specifying the -logname
application broker startup parameter.

Category To help you isolate the cause of the message displayed in the Event
Log, Progress supports 16 event categories. The event categories are:
AIW, APPBROKER, APPSERVER, APW, BACKUP, BIW,
DATASERVER, MON, OIBRKR, OIDRVR, Progress, RFUTIL,
SERVER, SHUT, USER, and WDOG. When no database is
connected, Progress is specified as the category.

The APPBROKER and APPSERVER categories appear in the Event
Log only when messages are logged by the Progress AppServer
application broker and application server, respectively.

All categories reside in a file called category.dll. These categories
correspond to the existing categories of events that are displayed in
the progress.lg file (application broker and application server
events are displayed in the AppServer log file, proapsv.lg).

(Note that DATASERVER is not included as a category in the
standard progress.lg file.)

Event Associates to the Progress message that was generated. These are the
same message numbers that are displayed in the standard database .lg
file.

User Identifies the user logged in to the Windows workstation where the
event occurred.

Computer Identifies the name of the Windows workstation where the event
occurred. The Event Viewer enables you to get more information
about events by double-clicking on any event.

Table 16–3: How Progress Uses Event Log Components (2 of 2)

This column . . . includes this information . . .
16–5

Progress Database Administration Guide and Reference
You can view additional information about an event by double-clicking on it. Windows displays
the Event Detail screen, as shown in Figure 16–2.

Figure 16–2: NT Event Detail Dialog Box
16–6

Using the Event Log
16.3.3 The Event Log and the Registry
Windows requires that applications using the Event Log be bound to all of the necessary
components. This means that the PROMSGS.DLL and the CATEGORY.DLL must be bound to any
Progress database. The database engine stores this information in the registry. The engine makes
the registry entries and performs any binding operations that are necessary when you initially
access a database. When the engine binds the .DLL files to the database, it writes the fully
qualified pathname to the registry. If you delete the database, you must manually remove the
associated data from the registry. Or, if you move the location of the .DLLs after you access the
database, you must manually edit the registry data. The Progress components can be found in
the following location in the registry:

See the Microsoft Windows documentation for more information about editing registry files.

When the database engine tries to find the .DLLs before this information is included in the
registry, it performs the search according to these rules:

1. Search the current directory.

2. If the .DLL is not in the current directory, the engine searches the directory where the
Progress executable is located.

3. If the .DLL is not in the same directory as the Progress executable, the engine searches the
user’s path.

If the .DLL is not in the user’s path, the engine generates a message stating that the .DLL cannot
be found, and it writes a message to the Progress event log file.

HKEY_LOCAL_MACHINE
SYSTEM
CurrentControlSet
Services
EventLog
Security
System
Application
PROGRESS
<Database Name>
16–7

Progress Database Administration Guide and Reference
16–8

PART III
Reference

Startup and Shutdown Commands

Database Startup Parameters

Database Administration Utilities

Virtual System Tables

17
Startup and Shutdown Commands

This chapter describes the Progress database startup and shutdown commands in alphabetical
order. It describes the purpose, syntax, and primary parameters for each command. For a
complete list and description of all parameters you can specify with these commands, see
Chapter 18, “Database Startup Parameters.”

This chapter contains the following sections:

• Startup Command Syntax

• Database Startup and Shutdown Commands

Startup and Shutdown Commands
17.1 Startup Command Syntax
Figure 17–1 shows the conventions used in command syntax descriptions.

Figure 17–1: Syntax Conventions

For example, the following command allows 100 users to access the sports database and then
set values for the database connection, performance, and network parameters.

Table 17–1 describes each of the command components.

NOTE: On both UNIX and Windows, enter parameters exactly as shown in the syntax
descriptions.

command [db-name] [parameter] [value] . . .

proserve sports -n 100 -B 30000 -L 1000 -S sprtsv -H sys27

Table 17–1: Progress Command Components

Component Description

command On UNIX, the command runs a script that executes a
Progress executable with appropriate parameters. On
Windows, some commands run a batch file that
executes a Progress executable with appropriate
parameters. Other commands run a Progress executable
directory.

db-name Name of the database you want to connect to.

parameter, qualifier Operating criteria for the command.

value Numeric value or file specification for the parameter.
17–2

Startup and Shutdown Commands
17.2 Database Startup and Shutdown Commands
Database startup commands start Progress database processes. Table 17–2 summarizes the tasks
performed by each command.

Table 17–2: Database Startup and Shutdown Commands

Task Command

Start a Progress server-group. proserve

-servergroup servergroup-name

Start a server or broker for a multi-user
Progress database.

proserve db-name

-S service-name

-H host-name

-N network-type

Shut down a multi-user server or broker for a
Progress database.

proshut db-name

Start an asynchronous page writer (APW) for a
database.1

proapw db-name

Start a before-image writer (BIW)1. probiw db-name

Start an after-image writer (AIW)1. proaiw db-name

Stop all writes to database files by enabling a
“quiet” processing point.

proquiet db-name parameter

Start the Progress Watchdog utility1. prowdog db-name

Shut down a remote Progress DataServer. proshut db-name

-S service-name

-H host-name

-N network-type

Shut down an APW, AIW, BIW, or Watchdog
process1.

proshut db-name

Choose option 1 (Disconnect a User) to
disconnect the process.

1 Option available only on Enterprise Database product.
17–3

PROAIW Command
PROAIW Command

Starts the after-image writer (AIW) process. The AIW improves performance by writing notes
to the after-imaging file. For more information on the AIW, see Chapter 14, “Managing
Performance.”

SYNTAX

db-name

Specifies the database where you want to start the AIW process.

NOTES

• To stop the AIW, disconnect it by using the PROSHUT command. You can start and stop
the AIW at any time without shutting down the database.

• The AIW counts as one user. You might have to increment the value of the Number of
Users (-n) parameter to allow for the AIW. However, the AIW does not count as a licensed
user.

• You can increase the number of buffers in the after-image buffer pool by using the
After-image Buffers (-aibufs) parameter. Increasing the number of buffers when running
an AIW increases the availability of empty buffers to client and server processes.
Increasing the After-image Buffers parameter has no effect if the AIW is not running.

• After-image writers are only available on Enterprise systems.

Operating
System

Syntax

UNIX
Windows

proaiw db-name
17–4

PROAPW Command
PROAPW Command

Starts an asynchronous page writer (APW). APWs improve database performance by
performing overhead operations in the background. For more information on APWs, see
Chapter 14, “Managing Performance.”

SYNTAX

db-name

Specifies the database where you want to start an APW.

NOTES

• To stop an APW, disconnect it by using the PROSHUT command. You can start and stop
APWs at any time without shutting down the database.

• Each APW counts as a user. You might have to increase the value of the Number of Users
(-n) parameter to allow for APWs. However, APWs do not count as licensed users.

• The optimal number depends on your application and environment. To start, use one page
writer for each disk where the database resides. If data gathered from PROMON indicates
that this is insufficient, add more. For more information on PROMON see the “PROMON
Utility” section in Chapter 19, “Database Administration Utilities.”

• For an application that performs many updates, start one APW for each disk containing
your database, plus one additional APW. Applications that perform fewer changes to a
database require fewer APWs.

• Asynchronous page writers are only available on Enterprise systems.

Operating
System

Syntax

UNIX
Windows

proapw db-name
17–5

PROBIW Command
PROBIW Command

Starts a before-image writer (BIW) process. The BIW improves database performance by
performing before-image overhead operations in the background. For more information on the
BIW, see Chapter 14, “Managing Performance.”

SYNTAX

db-name

Specifies the database where you want to start a BIW.

NOTES

• To stop the BIW process, disconnect it by using the PROSHUT command. You can start
and stop the BIW at any time without shutting down the database.

• The BIW process counts as one user. You might have to increment the value of the
Number of Users (-n) parameter to allow for the BIW. However, the BIW does not count
as a licensed user.

• You can increase the number of before-image buffers with the Before-image Buffers
(-bibufs) parameter. Increasing the number of buffers increases the availability of empty
buffers to client and server processes.

Operating
System

Syntax

UNIX
Windows

probiw db-name
17–6

PROQUIET Command
PROQUIET Command

Stops all writes to database files by enabling a “quiet” processing point (useful for advanced
backup strategies). You can also use the PROQUIET command with the bithreshold parameter
to adjust the size of the recovery log threshold online. Use the PROSERVE command with the
-bithold startup parameter to set the size of the primary recovery log threshold on startup.

For more information on using database quiet points, see Chapter 7, “Backing Up a Database,”
and Chapter 14, “Managing Performance.”

SYNTAX

 dbname

Specifies the name of the database where you are enabling or disabling a quiet processing
point.

enable | disable

Enables or disables a quiet processing point. Any processes that attempt transactions while
a quiet point is enabled must wait until the quiet point is disabled.

bithreshold n

Specifies the maximum size to which BI recovery files can grow, where n is an integer
specifying the size of the threshold in MB. You can increase the size of the threshold above
the current value or reduce the size to one cluster larger than the size of the recovery log
file at the time the PROQUIET command is issued.

NOTE: Though the above table lists the -C parameter to show the complete syntax, you do
not need to use the -C parameter in the PROQUIET syntax as PROQUIET calls -C
for you.

Operating
System

Syntax

UNIX
Windows proquiet dbname -C { { enable | disable } | bithreshold n }
17–7

PROQUIET Command
EXAMPLES

• Use the PROQUIET command to manage the primary recovery area (BI) threshold before
your database stalls.

For example, to start a server and set a 500MB BI threshold, allowing the system to stall
if that threshold is reached, use the PROSERVE command as follows:

Assume a long running transaction causes the expansion of the BI, but before the threshold
is reached you receive the following message:

After receiving message 6559, you decide to increase the BI threshold to 1GB while the
database remains online and investigate the cause of the unexpected BI growth before the
system stalls. Use the PROQUIET command, as follows:

The above command establishes a quiet point and increase the threshold. The database
does not stall.

NOTE: In practice, invoke PROQUIET commands by using a script so that they occur as
quickly as possible, and with the least amount of impact to the online system.

• When a database stalls because the BI threshold is reached, the stall causes an implicit
quiet point and the database engine writes a message to the log file. To expand the BI
threshold and continue forward processing, use the PROQUIET command with the
bithreshold parameter only:

proserve mydemo -bithold 500 -bistall

BI file size has grown to within 90% of the threshold value 523763712.
(6559)

proquiet mydemo bithreshold 1000

proquiet mydemo bithreshold 1000
17–8

PROSERVE Command
PROSERVE Command

Starts the broker, which in turn spawns the server. The server process coordinates all access to
the specified Progress database.

SYNTAX

-servergroup servergroup-name

Specifies the logical collection of server processes to start. The servergroup-name you
specify must match the name of a servergroup in the conmgr.properties file. You create
servergroups using the Progress Explorer Database Configuration Tools, which saves
them in the conmgr.properties file.

db-name

Specifies the specific database you want to start.

parameters

Specifies the startup parameters for the broker/server. See Chapter 19, “Database
Administration Utilities,” for a list of broker/server startup parameters.

NOTES

• You can specify only one database name when using PROSERVE to start a broker or
servergroup.

• Servergroups manage network connections four separate ways:

– Accept no network connections

– Accept SQL-92 and 4GL network connections

– Accept only SQL-92 network connections

– Accept only 4GL network connections

Operating
System

Syntax

UNIX
Windows

proserve { db-name | -servergroup [servergroup-name]}
[parameters]
17–9

PROSERVE Command
• Typically, servergroups share common attributes such as connection port, number of
servers, and how connected clients are distributed among the severs.

• You create servergroups using the Progress Explorer Database Configuration Tool, which
saves them in the conmgr.properties file. The servergroup-name you specify with the

PROSERVE -servergroup parameter must match the name of a servergroup in the
conmgr.properties file. Do not edit the conmgr.properties file directly. Instead, use
Progress Explorer. For more information on the Progress Explorer, click the help icon
within the Progress Explorer application.

• The behavior of the -servergroup parameter is similar to the behavior of the -pf
(parameter file) parameter. In effect, -servergroup causes a server to load the parameters
associated with the servergroup, including the database name.

It is possible to override the parameter values associated with a servergroup by adding
additional parameters to the PROSERVE command. For example, if the database buffer
pool is set to 10,000 within the configuration associated with a servergroup, you can
specify a larger value by adding an additional parameter:

Conversely, if you specify a startup parameter before the -servergroup parameter, the
startup parameter can be overridden when the same parameter is set in the servergroup
configuration file. For example, if you place the additional parameter before the
-servergroup parameter, the database buffer pool remains 10,000:

proserve -servergroup sports2000.myconfig.4GLdefault -B 20000

proserve -B 20000 -servergroup sports2000.myconfig.4GLdefault
17–10

PROSHUT Command
PROSHUT Command

Shuts down the Progress database server and individual processes. Before you shut down the
broker, have all application users quit their Progress sessions. If necessary, you can disconnect
users by using the PROSHUT command’s Disconnect a User or Unconditional Shutdown
parameters.

SYNTAX

db-name

Specifies the database the server is running against.

-b

Directs PROSHUT to perform a batch shutdown. When no client is connected, the
database automatically shuts down. When one or more clients are connected, PROSHUT
prompts the user to enter “yes” to perform an unconditional batch shutdown and to
disconnect all active users; or “no” to perform a batch shutdown only if there are no active
users. The -b parameter combines the functionality of the -by or -bn parameters.

Operating
System Syntax

UNIX
Windows

proshut db-name[-b
| -by

| -bn

| -C list

| -C disconnect usernum

| -F

| -Gw

| -H host-name

| -S service-name

| -cpinternal codepage

| -cpstream codepage

]...
17–11

PROSHUT Command
-by

Directs PROSHUT to perform an unconditional batch shutdown and to disconnect all
active users. Note that PROSHUT does not give users any notice before disconnecting
them.

-bn

Directs PROSHUT to perform a batch shutdown only if there are no active users.

-C list

Lists all of the users connected to the database. The list is printed out to the screen without
any page breaks.

-C disconnect usernum

Allows you to initiate a disconnect for the specified user. This is similar to option 1 of the
PROSHUT menu.

-F

Starts an emergency shutdown. To use this parameter, you must run PROSHUT on the
machine where the server resides. This parameter is not applicable for remote shutdowns
or DataServer shutdowns.

-Gw

For DataServers, specifies the DataServer broker to shut down.

-H host-name

Specifies the machine where the database server runs. If issuing the shutdown command
from a remote machine, specify the host name.

-S service-name

Specifies the database server or broker process. If issuing the shutdown command from a
remote machine, specify the service name.

-cpinternal codepage

An internationalization startup parameter that identifies the code page used in memory.

-cpstream codepage

An internationalization startup parameter that identifies the code page used for stream I/O.
17–12

PROSHUT Command
When you enter the PROSHUT command without the -by, -bn, or -F parameters, the following
menu appears:

The following table lists the menu options and their actions:

1 Disconnect a User
2 Unconditional Shutdown
3 Emergency Shutdown (Kill All)
x Exit

Option Action

1 Prompts you for the number of the user you want to disconnect.

2 Disconnects all users and shuts down the database.

3 Prompts you to confirm your choice. If you cancel the choice, you cancel the
shutdown. If you confirm the choice, PROSHUT displays the following
message:

Emergency shutdown initiated...
PROSHUT marks the database for abnormal shutdown, kills all remaining
processes connected to the database, and deletes shared-memory segments and
semaphores. The database is in a crashed state. PROSHUT performs normal
crash recovery when you restart the database and backs out any active
transactions.

x Cancels the shutdown without taking any action.
17–13

PROSHUT Command
EXAMPLES

• You can shut down using PROMON’s “Shut Down Database” menu option.

• The user who shuts down the server must have started it, or be root (on UNIX).

• When you initiate PROSHUT over a network, the amount of time that it takes to actually
shut down all of the Progress processes and to free any ports varies depending on the
number of clients, brokers, and servers that must be shut down. The PROSHUT command
might return control to the terminal before all of the processes are stopped and resources
are freed.

• If you specified a unique value for -cpinternal or -cpstream when you opened the
database, you must specify that same value for -cpinternal or -cpstream when you
close the database with the PROSHUT command. If you do not, PROSHUT uses the
values for -cpinternal and -cpstream found in the main startup parameter file created
during installation (such as DLC/startup.pf). If the values of -cpinternal or -cpstream
specified for your database do not match the values specified in the main startup parameter
file, you receive the following error message:

Code page conversion table for table-name to table-name was not found.
(6063)
17–14

PROWDOG Command
PROWDOG Command

Starts the Progress Watchdog process. The Watchdog cleans up after improperly terminated
processes. For example, it releases any locks or shared-memory structures that those processes
might hold.

SYNTAX

db-name

Specifies the database to clean up after.

NOTES

• If the Watchdog finds a process that is no longer active, it releases all the appropriate
record locks, backs out any live transactions, releases any shared-memory locks, and
closes the connection. If the lost process is a server, it disconnects and cleans up all
appropriate remote clients.

• If the process was changing shared memory when it terminated, shared memory is in an
inconsistent state; the Watchdog forces a shutdown to protect the database.

• The Watchdog cannot detect lost remote clients because remote clients are not associated
with a process. Instead, a network protocol timeout mechanism notifies the server that the
network connection was lost.

Operating
System

Syntax

UNIX
Windows

prowdog db-name
17–15

PROWDOG Command
17–16

18
Database Startup Parameters

This chapter describes Progress database server startup parameters. They are presented in quick
reference tables in the beginning of this chapter. Then, each startup parameter is described in
detail and listed alphabetically by syntax. The syntax of the parameters is the same for UNIX
and Windows unless otherwise noted.

Specifically, this chapter contains the following sections:

• Issuing Startup Parameters

• Database Server Performance Parameters

• Database Server-type Parameters

• Database Server Internationalization Parameters

• Database Server Statistics Parameters

• Database Server Network Parameters

• Alphabetical Listing Of Database Startup Parameters

For a description of all the Progress startup parameters, including those not database related, see
the Progress Startup Command and Parameter Reference.

Progress Database Administration Guide and Reference
18.1 Issuing Startup Parameters
You can change the default startup parameters by using startup parameters on a command line,
or by incorporating them into a script. You can also use a Progress parameter file.

A parameter file can include any number of startup parameters. This is especially useful if you
regularly use the same parameters, or if more parameters are required than can easily fit on the
command line. To identify a parameter file, you use the Parameter File (-pf) parameter, which
has the following syntax:

You can also include the -pf parameter in the parameter file to reference another parameter file.

NOTE: If duplicate startup parameters are read from the startup line or .pf file, the last
duplicate parameter read takes precedence.

18.2 Database Server Performance Parameters
Use the parameters listed in Table 18–1 to optimize server performance.

SYNTAX

-pf filename

Table 18–1: Server Performance Parameters (1 of 3)

Parameter Syntax Purpose

After-image Buffers -aibufs n Specifies the number of after-image buffers
when running AIW.

After-image Stall -aistall Suspends database activity when an empty
after-image (AI) file is unavailable.

Blocks in Database
Buffers

-B n Specifies the number of blocks in the
database buffers.

Before-image Buffers -bibufs n Specifies the number of before-image buffers
when running BIW.

Threshold Stall -bistall Quiets a database and sends a message to the
log file when the recovery log threshold is
reached. Use with -bithold.

Recovery Log
Threshold

-bithold n Specifies the maximum size of the recovery
log files in MB.
18–2

Database Startup Parameters
Direct I/O -directio Opens all files in unbuffered mode.

Event Level -evtlevel Specifies the level of information written to
the NT Application Event Log.

Before-image Cluster
Age

-G n Specifies the number of seconds before
Progress reuses a before-image cluster.

Group Delay -groupdelay n Specifies the number of milliseconds a
transaction waits before committing.

Hash Table Entries -hash Specifies the number of hash table entries for
the buffer pool.

No Crash Protection -i Runs Progress without using database
integrity or recovery.

Lock Table Entries -L n Specifies the number of entries in the record
locking table.

Delayed BI File Write -Mf n Delays writing the last before-image (BI) file
records.

VLM Page Table
Entry Optimization1

-Mpte Allocates shared memory in multiples of
8 MB for VLM64 support.

Shared-memory
Overflow Size

-Mxs n Replaces the default value of the
shared-memory overflow area.

Number of Users -n n Specifies the maximum number of users
connected to the database.

Pin Shared Memory -pinshm Prevents the database engine from swapping
shared memory contents to disk.

Semaphore Sets2 -semsets n Changes the number of semaphore sets
available to a broker.

Table 18–1: Server Performance Parameters (2 of 3)

Parameter Syntax Purpose
18–3

Progress Database Administration Guide and Reference
18.3 Database Server-type Parameters
Use the parameters listed in Table 18–2 to start a particular type of server.

18.4 Database Server Internationalization Parameters
Use the parameters listed in Table 18–3 to control the format in which data appears.

Spin Lock Retries -spin n Specifies the number of times a process tries
to acquire a latch before pausing.

1 Compaq Tru64 only.
2 UNIX only.

Table 18–1: Server Performance Parameters (3 of 3)

Parameter Syntax Purpose

Table 18–2: Server-type Parameters

Parameter Syntax Purpose

Auto Server -m1 Starts an auto server. Used internally by
the Database broker.

Manual Server -m2 Manually starts a server after you start
a broker.

Secondary Login
Broker

-m3 Starts a secondary broker.

Table 18–3: Server Internationalization Parameters (1 of 2)

Parameter Syntax Purpose

Conversion Map -convmap filename Identifies the conversion map file.

Case Table -cpcase tablename Identifies the case table that
establishes case rules for the code
page.
18–4

Database Startup Parameters
18.5 Database Server Statistics Parameters
Use the parameters listed in Table 18–4 to collect statistics for table and index access.

Collation Table -cpcoll tablename Identifies a collation table to use
with the code page.

Internal Code Page -cpinternal codepage Identifies the code page that
Progress uses in memory.

Log File Code Page -cplog codepage Identifies the code page used for
writing messages to the log file.

Print Code Page -cpprint codepage Identifies the code page used for
printer output.

R-code in Code Page -cprcodein codepage Identifies the code page used for
reading r-code text segments.

Stream Code Page -cpstream codepage Identifies the code page used for
stream I/O.

Terminal Code Page -cpterm codepage Identifies the code page for
character terminals.

Table 18–3: Server Internationalization Parameters (2 of 2)

Parameter Syntax Purpose

Table 18–4: Server Statistics Collection Parameters (1 of 2)

Parameter Syntax Purpose

Base Index -baseindex n Specifies a range of indexes for which you
want to collect statistics. Use with
-indexrangesize.

Base Table -basetable n Specifies a starting table number in a range of
tables for which you want to track access
statistics. Use with -tablerangesize.
18–5

Progress Database Administration Guide and Reference
18.6 Database Server Network Parameters
Use the parameters listed in Table 18–5 to supply the broker with necessary network
information.

Index Range Size -indexrangesize n Specifies the number of indexes to track for
access statistics.

Table Range Size -tablerangesize n Specifies the number of tables for which you
want to collect statistics.

Table 18–4: Server Statistics Collection Parameters (2 of 2)

Parameter Syntax Purpose

Table 18–5: Server Network Parameters (1 of 2)

Parameter Syntax Purpose

AdminServer
Port

-adminport { service-name | port } Connects a servergroup
and an AdminServer.

SQL-92 Server
Java Classpath

-classpath pathname Identifies the Java
classpath to use when
starting an SQL server.

Host Name -H host-name Specifies a remote host.

Maximum
Clients Per
Server

-Ma n Specifies the maximum
number of remote users per
database server.

Maximum
Dynamic Server

-maxport n Specifies the highest
accessible port number in a
specified range.

Minimum
Clients Per
Server

-Mi n Specifies the number of
remote users on a server
before a broker starts
another server.

Minimum
Dynamic Server

-minport n Specifies the lowest
accessible port number in a
specified range.
18–6

Database Startup Parameters
Maximum
Servers

-Mn n Specifies the maximum
number of remote client
servers that a broker can
start.

Servers Per
Protocol

-Mp n Specifies the maximum
number of servers to serve
remote users for a protocol.

Maximum
Servers Per
Broker

-Mpb n Specifies the maximum
number of servers that
multiple brokers can start
to serve remote users for a
protocol.

Network Type -N network-type Identifies the network
communications protocol.

Configuration
Properties File

-properties filename Identifies the properties
file an AdminServer uses
when starting a database
server or servergroup.

Service Name -S { service-name | port-number } Specifies the service or
port number to be used by a
broker process.

Server Group -servergroup name Identifies a logical
collection of server
processes to start.

Table 18–5: Server Network Parameters (2 of 2)

Parameter Syntax Purpose
18–7

Progress Database Administration Guide and Reference
18.7 Startup Parameter Usage Categories
Startup parameters are organized into usage categories. Table 18–6 describes each usage
category.

NOTE: Some parameters fall into more than one category.

The following sections focus on Client Connection (CC) and Database Server (DBS)
parameters. For a description of all CS, CC, DBS, DS, and OID parameters, see the Progress
Startup Command and Parameter Reference.

18.8 Alphabetical Listing Of Database Startup Parameters
This section describes the Progress database server startup parameters in detail, in alphabetical
order by syntax. Each description begins with a table that shows the syntax of the parameter,
then provides other information about it.

18.8.1 AdminServer Port (-adminport)

Table 18–6: Startup Parameter Categories

Usage Type Used to. . .

Client Session (CS) Start a client session.

Client Connections (CC) Connect to a specific database.

Progress Database Server (DBS) Start a server or broker.

DataServer (DS) Start non-Progress DataServers.

Open Interface Driver (OID) Start the Open Interface Driver.

Operating
System

and Syntax

UNIX
Windows

-adminport service-name port

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–8

Database Startup Parameters
service-name

The name of the service to be used by the AdminServer.

port

The port number the AdminServer uses to communicate with servergroups. The default
port is 7832.

Use AdminServer Port (-adminport) to establish communication between a servergroup and an
AdminServer. The AdminServer uses this parameter internally. The -adminport setting must
match the -admin setting specified when the AdminServer was started.

18.8.2 After-image Buffers (-aibufs)

n

The number of after-image buffers.

Use After-image buffer (-aibufs) to specify the number of after-image buffers. This parameter
is useful only when running the after-image writer (AIW) because the AIW writes the filled
after-image buffers to disk, making the buffers available to other client and server processes.
Progress Software recommends setting -aibufs to a value of 1.5 times the value of the
Before-image Buffers (-bibufs) parameter, or a minimum of 5.

Without the AIW writing the buffers, any gain from increasing the number of buffers is
negligible.

Operating
System

and Syntax

UNIX
Windows

-aibufs n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – 1 – 5
18–9

Progress Database Administration Guide and Reference
18.8.3 After-image Stall (-aistall)

Use After-image Stall (-aistall) to suspend database activity if all AI files are filled. -aistall
ceases all database activity and continues to send the following message to the log file until the
AI extent is emptied:

When using after-image (AI) files, monitor the status of the files to ensure that the AI extents
do not run out of space and cause the database to hang. Without the use of -aistall, the
database shuts down when the AI files are filled.

18.8.4 Blocks In Database Buffers (-B)

n

The number of blocks in the database buffers.

Use Database Buffers (-B) to specify the number of blocks in the database buffers. The optimum
value depends on your application.

Operating
System

and Syntax

UNIX
Windows

-aistall

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Can’t switch to after-image extent filename it is full. (3775)
Backup ai extent and mark it as empty (3776)

Operating
System

and Syntax

UNIX
Windows

-B n

Use
With

Maximum
Value1

Minimum
Value

Single-user
Default

Multi-user
Default

CC, DBS System
dependent1

10 20 (8 * users) 2

1 Limited by available memory.
2 The users value is specified by the Number of Users (-n) parameter..
18–10

Database Startup Parameters
18.8.5 Base Index (-baseindex)

n

The starting index number in the range of indexes for which you want to track access
statistics.

Use Base Index (-baseindex) with Index Range Size (-indexrangesize) to specify the range
of indexes for which you want to collect statistics. Access to the statistics is handled through the
Virtual System Tables (VSTs). Index statistics are stored in the _IndexStat VST. To obtain
index numbers, use the following 4GL code:

This results in the following output:

Operating
System

and Syntax

UNIX
Windows

-baseindex n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

FOR EACH _file:
DISPLAY _file._file-name.
FOR EACH _index WHERE _index._file-recid = RECID(_file):

DISPLAY _idx-num _index-name.
END.

END.

File-Name
filename

_idx-num Index-Name
n1 index name1
n2 index name2
n3 index name3
18–11

Progress Database Administration Guide and Reference
18.8.6 Base Table (-basetable)

n

The starting table number in the range of tables for which you want to track access
statistics.

Use Base Table (-basetable) with Table Range Size (-tablerangesize) to specify the range
of tables for which you want to collect statistics. Access to the statistics is handled through the
Virtual System Tables (VSTs). Table statistics are stored in the _TableStat VST. To obtain table
numbers, use the following 4GL code:

This results in the following output:

Operating
System

and Syntax

UNIX
Windows

-basetable n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

FOR EACH _file:
DISPLAY _file-num _file.

END.

_File-Number File-Name
n1 table name1
n2 table name2
n3 table name3
18–12

Database Startup Parameters
18.8.7 Before-image Buffers (-bibufs)

n

The number of before-image buffers.

Use Before-image Buffers (-bibufs) to specify the number of before-image buffers. This
parameter is useful only when running the before-image writer (BIW). The BIW continually
writes the filled before-image buffers to disk, making the buffers available to other client and
server processes. Without a BIW writing the buffers, any gain from increasing the number of
buffers is negligible.

18.8.8 Threshold Stall (-bistall)

Use Threshold Stall (-bistall) with Recovery Log Threshold (-bithold) to quiet the database
when the recovery log threshold is reached, without performing an emergency shutdown. When
you use -bistall, a message is added to the database log (.lg) file stating that the threshold
stall is enabled.

Operating
System

and Syntax

UNIX
Windows

-bibufs n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – 3 – 5

Operating
System

and Syntax

UNIX
Windows

-bistall

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–13

Progress Database Administration Guide and Reference
18.8.9 Recovery Log Threshold (-bithold)

n

An integer specifying the threshold, in MB.

Use Recovery Log Threshold (-bithold) to set the maximum size to which recovery log files
can grow. The recommended threshold is between 3% and 100% of the largest possible
recovery log file size, rounded to the nearest cluster boundary. Once the threshold is reached,
the database performs an emergency shutdown. Using the -bistall parameter with -bithold
prevents the emergency shutdown; instead, the database ceases activity until the BI extent is
emptied.

18.8.10 SQL-92 Server Java Classpath (-classpath)

pathname

Specifies the pathname of the classpath.

Use SQL-92 Classpath (-classpath) to identify the Java classpath to use when starting an SQL
server. SQL-92 database brokers use this parameter when launching the Java Virtual Machine
(JVM) to execute stored procedures. The default is to use the current environment variable
CLASSPATH setting. You do not use this parameter directly.

Operating
System

and Syntax

UNIX
Windows

-bithold n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS System
dependent1

System
dependent1

– –

1 Limited by available disk space.

Operating
System

and Syntax

UNIX
Windows

-classpath pathname

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–14

Database Startup Parameters
18.8.11 Conversion Map (-convmap)

filename

The pathname of your CONVMAP file.

Use Conversion Map (-convmap) to identify the CONVMAP file to use for code page
conversions, collation orders, and case conversions. By default, Progress uses the convmap.cp
file in the DLC directory. You can create a CONVMAP file by using the PROUTIL utility with
the CODEPAGE-COMPILER qualifier. See the Progress Internationalization Guide for more
information on CONVMAP files.

18.8.12 Case Table (-cpcase)

tablename

The name of a case table in the convmap.cp file.

Use Case Table (-cpcase) to specify the case table. This table establishes case rules for the code
page that Progress uses in memory. The code page is specified by the Internal Code Page
(-cpinternal) parameter. The case rules are used by the CAPS and LC functions. Also, in a
character field format you can use an exclamation point (!) to tell Progress to convert all
characters to uppercase during input.

To retrieve the value of this startup parameter at run time, use the SESSION System handle.

Operating
System

and Syntax

UNIX
Windows

-convmap filename

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS – – – –

Operating
System

and Syntax

UNIX
Windows

-cpcase tablename

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, OID – – Basic Basic
18–15

Progress Database Administration Guide and Reference
18.8.13 Collation Table (-cpcoll)

tablename

The name of a collation table within the convmap.cp file.

Use Collation Table (-cpcoll) to identify a collation table that Progress uses with the code page
in memory. The code page is specified by the Internal Code Page (-cpinternal) parameter.

Progress uses the collation rules that you specify to compare characters and sort records if a BY
clause cannot be satisfied by an index. The collation rules specified with the -cpcoll parameter
take precedence over the collation specified for any database Progress accesses during the
session, except when Progress uses or modifies pre-existing indexes. When you update or
rebuild a database’s indexes, Progress uses the collation rules originally defined for that
database.

If you do not use -cpcoll, Progress uses the language collation rules defined for the first
database on the command line. If you do not specify a database on the command line, Progress
uses the collation rules with the name “basic.”

To retrieve the value of this startup parameter at run time, use the SESSION System handle.

See the Progress Internationalization Guide for more information on collation tables.

Operating
System

and Syntax

UNIX
Windows

-cpcoll tablename

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, OID – – Basic Basic
18–16

Database Startup Parameters
18.8.14 Internal Code Page (-cpinternal)

codepage

The name of the code page that Progress uses in memory.

Use Internal Code Page (-cpinternal) to identify the code page that Progress uses in memory
and for graphical clients. For graphical clients, the -cpinternal code page should be the same
code page that the operating system uses. If you do not use -cpinternal, the iso8859-1 code
page is used by default.

NOTE: Do not use a 7-bit table with -cpinternal. Use 7-bit tables for converting data from
a 7-bit terminal to another code page only. Do not use them for character conversion
in memory or for the database.

To retrieve the value of this startup parameter at run time, use the CPINTERNAL attribute of
the SESSION System handle.

Operating
System

and Syntax

UNIX
Windows

-cpinternal codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – iso8859-11 iso8859-11

1 If you are using Progress/400, the default code page is ibm037.
18–17

Progress Database Administration Guide and Reference
18.8.15 Log File Code Page (-cplog)

codepage

The name of the code page for messages written to the log file.

Use Log File Code Page (-cplog) to identify the code page that Progress uses to write messages
to the log (.lg) file. If you do not specify a value, the default is the code page specified by
Stream Code Page (-cpstream).

To retrieve value of this startup parameter at run time, use the CPLOG attribute of the SESSION
System handle.

18.8.16 Print Code Page (-cpprint)

codepage

The name of the code page used for printer output.

Use Print Code Page (-cpprint) to identify the code page Progress uses when it prints. When
you print a file, the code page specified by -cpprint overrides the code page specified by
Stream Code Page (-cpstream).

To retrieve the value of this startup parameter at runtime, use the SESSION System handle.

Operating
System

and Syntax

UNIX
Windows

-cplog codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – -cpstream -cpstream

Operating
System

and Syntax

UNIX
Windows

-cpprint codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – -cpstream -cpstream
18–18

Database Startup Parameters
18.8.17 R-code In Code Page (-cprcodein)

codepage

The name of the code page for reading r-code text segments.

Use R-code In Code Page (-cprcodein) to read the r-code text segments, as if they were written
in the code page specified by -cprcodein, and convert them to the Internal Code Page
(-cpinternal) code page. Usually when Progress reads r-code, it converts text segments to the
code page specified by Internal Code Page (-cpinternal).

CAUTION: This parameter is for use during very rare situations and in general should not be
used. Progress reads text segments as if they are written in the code page specified
by -cprcodein, even if the text segments were written with a different code page.
For example, if you use the following startup parameters and run a .r file written
with code page IBM850, Progress converts the text segments from ISO8859-1 to
ibm861. This can produce incorrect results if the .r file was correctly labeled
internally as IBM850:

To retrieve the value of this startup parameter at run time, use the SESSION System handle. To
determine the code page of an r-code file, use the RCODE-INFO handle.

Operating
System

and Syntax

UNIX
Windows

-cprcodein codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – -cpinternal -cpinternal

-cprcodein ISO8859-1 -cpinternal ibm861
18–19

Progress Database Administration Guide and Reference
18.8.18 Stream Code Page (-cpstream)

codepage

The name of the code page for stream I/O.

Use Stream Code Page (-cpstream) to identify the code page Progress uses for stream I/O.
Character terminals use the code page you specify for -cpstream unless you also specify a value
for Terminal Code Page (-cpterm), Print Code Page (-cpprint), or Log File Code Page
(-cplog).

Stream I/O consists of the following elements:

• Terminals (includes character terminals and DOS Protected mode, but does not include
graphical interfaces or the Windows character interface)

• Data (.d) files

• READ-FILE, WRITE-FILE, and INSERT-FILE methods for the EDITOR widget

• INPUT FROM and OUTPUT TO statements

• All compilable files (.p, .w, .i, etc.)

• Compiler-generated LISTING, XREF, and PREPROCESS files

NOTE: Do not use a 7-bit table with -cpstream. Use 7-bit tables for converting data from a
7-bit terminal to another code page only. Do not use them for character conversion
in memory or for the database.

To retrieve the value of this startup parameter at run time, use the SESSION System handle. To
determine the code page of an r-code file, use the RCODE-INFO handle.

Operating
System

and Syntax

UNIX
Windows

-cpstream codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – ibm850 ibm850
18–20

Database Startup Parameters
18.8.19 Terminal Code Page (-cpterm)

codepage

The name of the code page for character terminals.

Use Terminal Code Page (-cpterm) to identify the code page of your character terminals. This
parameter allows you to specify a different code page for character terminals than used by the
rest of stream I/O, which is set by Stream Code Page (-cpstream).

NOTE: You can use a 7-bit table with -cpterm.

To retrieve the value of this startup parameter at run time, use the SESSION System handle. To
determine the code page of an r-code file, use the RCODE-INFO handle.

18.8.20 Direct I/O (-directio)

Use Direct I/O (-directio) to open all files in unbuffered mode, which enables Progress to use
an I/O technique that bypasses the operating system buffer pool and transfers data directly from
a buffer to disk. This technique has several advantages over buffered reads and writes such as
avoiding the overhead of maintaining the operating system buffer pool and eliminating
competition for operating system buffers between Progress programs and other programs. The
operating system buffer-pool algorithms are designed for efficient sequential file access; the
Progress buffer-pool algorithms are more efficient for access to a Progress database.

Operating
System

and Syntax

UNIX
Windows

-cpterm codepage

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CS, DBS, DS,
OID

– – -cpstream -cpstream

Operating
System

and Syntax

UNIX
Windows

-directio

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC, DBS – – Not enabled Not enabled
18–21

Progress Database Administration Guide and Reference
You might improve performance by using the direct I/O feature. To use direct I/O, use Blocks
in Database Buffers (-B) to increase the size of the Progress buffer pool, since Progress I/O does
not pass through the operating system buffer pool. Also, decrease the size of the operating
system buffer pool to compensate for the additional memory allocated to the database.

NOTE: Use asynchronous page writers (APWs). They improve database performance by
performing overhead operations in the background.

18.8.21 Event Level (-evtlevel)

value

Use Event Level (-evtlevel) to specify the level of information that Progress writes to the
NT Application Event Log. Valid values include:

• None: No Progress events are written to the NT Event Log.

• Brief: Progress Error and Warning messages are written to the NT Event Log.

• Normal: Progress Error and Warning messages are written to the NT Event Log
along with any Progress message that is normally written to the log file (.lg). This is
the default.

• Full: Progress Error, Warning, and Informational messages are written to the NT
Event Log along with any messages generated by the Message Statement.

For more information about Progress and the NT Event Log, see the Progress Installation
and Configuration Guide Version 9 for UNIX and Progress Installation and
Configuration Guide Version 9 for Windows.

Operating
System

and
Syntax

NT -evtlevel value

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS, CS – – Normal Normal
18–22

Database Startup Parameters
18.8.22 Before-image Cluster Age (-G)

n

The number of seconds the database engine waits.

Use Before-image Cluster Age (-G) to specify the number of seconds before the database engine
reuses a before-image cluster.

18.8.23 Group Delay (-groupdelay)

n

The number of milliseconds a transaction waits before committing.

Use Group Delay (-groupdelay) to increase performance when Delayed BI File Write (-Mf) is
set to zero. When the Group Delay is set greater than zero (0), Progress uses a technique known
as Group Commit. When using Group Commit, a transaction spools its end note to the BI buffer
and waits a short time until the buffer becomes full and is written to disk, or waits for other
transactions to end and store their end notes in the BI buffer so that several transactions are
committed by the same synchronous write. In this manner, Group Commit benefits overall
performance, although each individual transaction might take slightly longer.

Operating
System

and Syntax

UNIX
Windows

-G n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 32 0 60 60

Operating
System

and Syntax

UNIX
Windows

-groupdelay n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 1,000 0 0 1
18–23

Progress Database Administration Guide and Reference
18.8.24 Host Name (-H)

plu-name

On Windows systems running the Progress/400 DataServer, specifies the Partner LU
name. The default for Windows 95 is the AS/400 host name from the CONFIG.PCS file.

host-name

The name (address) of the database server machine. This name is assigned to the machine
in your TCP/IP hosts file.

localhost

A reserved word that specifies that the Database server communicates only with clients on
the database server machine.

Use Host Name (-H) to identify the host name.

NOTE: This parameter has a special purpose when used with the Progress/400 DataServer
and SNA. If you are connecting to multiple AS/400 machines, you must supply this
parameter for each AS/400.

18.8.25 Hash Table Entries (-hash)

Operating
System

and
Syntax

Windows
(SNA)

-H PLU=plu-name

UNIX
Windows

(TCP)

-H { host-name | localhost1 }

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC, DBS, DS – – – –

1 localhost does not apply to DataServers.

Operating
System

and Syntax

UNIX
Windows

-hash n

Use
With

Maximum
Value

Minimum
Value

Default

CC, DBS – 13 Approximately 1/4 of the -B value
18–24

Database Startup Parameters
n

The number of hash table entries to use for the buffer pool.

CAUTION: Do not use this parameter unless directed to do so by Progress Software Technical
Support.

18.8.26 No Crash Protection (-i)

Use No Crash Protection (-i) to run the database without integrity or database recovery. When
running without database integrity, the database engine writes fewer data and before-image
blocks to the disk. In this mode, some procedures (such as those that create and delete large
numbers of records) may run significantly faster than if they are running with database integrity.

When running with the -i parameter, transaction undo is supported. Therefore, there will still
be a before-image file, which might grow quite large during very long transactions.

Use this parameter to do bulk data loading or for large batch runs. It reduces the number of disk
input or output operations. Loading a database for the first time is a good example of a use for
this parameter.

CAUTION: If you run your database with the -i parameter and the database fails for any
reason, you cannot recover the database.

Do not use the -i parameter unless you have a complete backup of the database and can rerun
procedures in case of a system failure. If the system fails during a Progress session that started
without crash protection, restore the backup copy and rerun the necessary procedures. For
information on restoring a database, see Chapter 8, “Recovering a Database.”

Operating
System

and Syntax

UNIX
Windows

-i

Use
With

Maximum
Value

Minimum
Value

Default

CC, DBS – - -
18–25

Progress Database Administration Guide and Reference
18.8.27 Index Range Size (-indexrangesize)

n

The number of indexes for which you want to track access statistics.

Use Index Range Size (-indexrangesize) to specify the number of indexes for which you want
to collect statistics from virtual system tables (VSTs). See Chapter 20, “Virtual System
Tables,”for more information on VSTs.

18.8.28 Lock Table Entries (-L)

n

The number of entries in the record locking table. If you specify a value that is not a
multiple of 32, Progress rounds the value you specify to the next highest multiple of 32.

Use Lock Table Entries (-L) to change the limits of the record locking table. Each record that is
accessed and locked by a user takes one entry. This is true whether the record is accessed with
SHARE-LOCK or EXCLUSIVE-LOCK. Increase the size of the lock table if the following
message appears:

Operating
System

and Syntax

UNIX
Windows

-indexrangesize n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Operating
System

and Syntax

UNIX
Windows

-L n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS System
dependent1

32 – 8192

1 Limited by available memory.

SYSTEM ERROR: Record lock table too small. Increase -L parameter.
18–26

Database Startup Parameters
This message might also indicate that a particular procedure should be restructured into smaller
transactions or should be run in single-user rather than multi-user mode. When lock table limits
are exceeded, check to make sure transactions are not too large before increasing the lock table
size.

If a user process tries to acquire a lock and the lock table overflows, the user’s program is
aborted, but the server continues to operate. Any partial transactions are undone.

Note that two record locks are acquired when records are accessed with the BREAK BY option
(in DO, FOR EACH, or REPEAT statements).

Each lock table entry takes 18 bytes on typical systems.

18.8.29 Auto Server (-m1)

Use Auto Server (-m1) to start an auto server. The Progress broker uses the auto server internally
to start a remote user server. This is the default. You will never have to use this parameter
directly.

Operating
System

and Syntax

UNIX
Windows

-m1

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–27

Progress Database Administration Guide and Reference
18.8.30 Manual Server (-m2)

Use Manual Server (-m2) to manually start a remote user server after you start a broker (servers
are generally started automatically by the broker process). Use this parameter in the following
cases:

• For debugging purposes, to start servers directly and observe their behavior

• On systems where automatic server generation is not possible

18.8.31 Secondary Login Broker (-m3)

In a network environment where more than one broker is using the same protocol, use
Secondary Login Broker (-m3) to start each secondary broker. The secondary broker logs in
clients and starts remote user servers.

Operating
System

and Syntax

UNIX
Windows

-m2

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Operating
System

and Syntax

UNIX
Windows

-m3

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–28

Database Startup Parameters
18.8.32 Maximum Clients Per Server (-Ma)

n

The maximum number of remote users per database server. The default is the Maximum
Number of Users (-n) parameter value, divided by the Maximum Number of Servers (-Mn)
parameter value.

Use Maximum Clients per Server (-Ma) to specify the maximum number of remote users per
database server. The Maximum Clients per Server (-Ma), Minimum Clients per Server (-Mi), and
Maximum Servers (-Mn) startup parameters apply only to databases that are accessed from
remote network nodes.

In most cases, the default behavior is desirable. Note that the default calculation is usually high
because it assumes that all users are remote users, while the number specified with -n includes
local users. If servers become overloaded with clients, reset the -Mn parameter to increase the
number of servers.

NOTE: For SQL-92 database brokers, there is a limit of one client per server. The maximum
value does not apply.

18.8.33 Maximum Dynamic Server (-maxport)

n

The port number that is the highest in a specified range.

Operating
System

and Syntax

UNIX
Windows

-Ma n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 2048 1 – 5 users/server

Operating
System

and Syntax

UNIX
Windows

-maxport n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS System
dependent

System
dependent

– 2000
18–29

Progress Database Administration Guide and Reference
Use Maximum Dynamic Server (-maxport) to specify the highest port number in a specified
range of port numbers accessible to a client. You specify the lowest port number with the
-minport parameter. The range of port numbers defined by the -maxport and -minport
parameters provides client access to a Progress server that is behind a firewall. Some operating
systems choose transient client ports in the 32,768-to-65,535 range. Choosing a port in this
range might produce unwanted results.

18.8.34 Delayed BI File Write (-Mf)

n

Value in seconds of the delay before the database engine synchronously writes to disk the
last before-image (BI) file records at the end of each transactions. It also specifies the
interval that the broker process wakes up to make sure all BI file changes have been written
to disk. The default is 3 for single-user batch jobs and for multi-user databases using
shared memory. Otherwise, the default is 0.

Use Delayed BI File Write (-Mf) to improve performance on a heavily loaded system. Using -Mf
does not reduce database integrity. However, if there is a system failure, it is possible the last
few completed transactions will be lost (never actually written to the BI file).

When running with full integrity, at the end of each transaction the database engine does a
synchronous write to disk of the last BI file block. This write guarantees that the completed
transaction is recorded permanently in the database. If the user is notified that the transaction
has completed and the system or database manager crashes shortly afterwards, the transaction
is not lost.

Do not set -Mf on a lightly loaded system with little database update activity. Under these
conditions, the extra BI write is very important and does not impact performance. On a heavily
loaded system, however, the BI write is less important (the BI block will be written to disk very
soon anyway), and has a significant performance penalty. Setting -Mf to delay this extra BI write
saves one write operation per transaction, which can significantly improve performance. The
extra BI file write is delayed by default for batch jobs.

Operating
System

and Syntax

UNIX
NT

-Mf n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 32,768 0 01 3

1 Default is 3 for batch jobs.
18–30

Database Startup Parameters
The last BI file record is only guaranteed to be written out to disk when a user logs out, or when
the server or broker process terminates normally. On multi-user systems, the n argument
determines the oldest completed transaction that can be lost.

18.8.35 Minimum Clients Per Server (-Mi)

n

The number of remote users on a server before the broker starts another server. See the
“Maximum Servers (-Mn)” section.

Use Minimum Clients per Server (-Mi) to specify the number of remote users on a server before
the broker starts another server (up to the maximum number of servers). In addition, -Mi and -Mn
apply only to databases that are accessed from remote network nodes.

As remote users enter the database, the broker process starts just one server process for each n
remote users, until the maximum number of servers (specified by the -Mn parameter) is started.
If you specify a value of 1, the broker starts a new server for each of the first -Mn remote users.
Subsequent remote users are distributed evenly among the servers until the maximum number
of users (-n) or maximum clients per server (-Ma) limits are reached.

NOTE: If you are using SQL-92, you do not need to use -Mi because the limit is always one
client per server.

Typically, you can leave -Mi and -Mn at their default values. If you significantly increase -Mn,
you should also increase -Mi. For example, if you set -Mn to 10 to accommodate up to 40 or more
remote users, increase -Mi to 3 or 4 to prevent a situation where 10 servers were started for just
10 remote users.

Operating
System

and Syntax

UNIX
NT

-Mi n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – 1 – 1
18–31

Progress Database Administration Guide and Reference
18.8.36 Minimum Dynamic Server (-minport)

n

The port number that is the lower in a specified range.

Use Minimum Dynamic Server (-minport) to specify the lowest port number in a specified
range of port numbers accessible to a client. You specify the higher port number with the
-maxport parameter. Ports below 1025 are usually reserved for system TCP and UDP. The
range of port numbers defined by the -maxport and -minport parameters provides client access
to a Progress server that is behind a firewall. This communication is possible only when the
access to the server can be limited.

18.8.37 Maximum Servers (-Mn)

n

The maximum number of remote client servers that can be started on the system.

Use Maximum Servers (-Mn) to limit the number of remote user servers that can be started by
the broker process. The performance tradeoff to consider is swapping overhead for many
servers versus overloading (slowing down) a server with too many clients.

This parameter applies only to databases that are accessed from remote network nodes.

Also, use Minimum Clients per Server (-Mi) to adjust the actual number of servers in use. See
the Maximum Clients Per Server (-Ma) and Minimum Clients per Server (-Mi) startup parameters
for more information.

Operating
System

and Syntax

UNIX
NT

-minport n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – 1,025 – 1,025

Operating
System

and Syntax

UNIX
NT

-Mn n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 512 1 – 4
18–32

Database Startup Parameters
18.8.38 Servers Per Protocol (-Mp)

n

The number of servers a broker can start.

Use Servers Per Protocol (-Mp) with Secondary Login Broker (-m3) in database networks that use
more than one network protocol. This parameter limits the number of servers that the broker can
start to serve remote users for any one protocol. The total number of servers for all protocols is
still limited by the Maximum Servers (-Mn) parameter.

18.8.39 Maximum Servers Per Broker (-Mpb)

n

The number of servers each broker can start.

Use Maximum Server Per Broker (-Mpb) to specify the maximum number of servers that
multiple brokers can start to serve remote users for any one protocol.

Operating
System

and Syntax

UNIX
NT

-Mp n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS Value of -Mn 1 – value of -Mn

Operating
System

and Syntax

UNIX
NT

-Mpb n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–33

Progress Database Administration Guide and Reference
18.8.40 VLM Page Table Entry Optimization (-Mpte)

Use VLM Page Table Entry Optimization (-Mpte) to allocate shared memory in multiples of
8 MB at server startup for VLM64 support. This function is a binary switch that is off by default.
The -Mpte startup parameter turns the function on.

18.8.41 Shared-memory Overflow Size (-Mxs)

n

The size of the shared-memory overflow area in kilobytes.

Use Shared-memory Overflow (-Mxs) to replace the default value of the shared-memory
overflow area; it does not increase it. The overflow area is appended to the shared-memory area.
If the overflow area is too small, the database engine exits with the following message:

Depending on the operating system, the database engine rounds the shared-memory area size to
the next 512-byte or 4K boundary.

Operating
System

and Syntax

Digital UNIX -Mpte

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Operating
System

and Syntax

UNIX
NT

-Mxs n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS Varies1 1 – 4KB + (n *
300)

1 The maximum is limited only by the size of the signed integer data type on the system.

SYSTEM ERROR: Out of free shared memory. Use -Mxs to increase.
18–34

Database Startup Parameters
18.8.42 Network Type (-N)

network-type

The network communications protocol.

Use Network Type (-N) to specify the network communications protocol supported by Progress:
TCP or SNA (Progress/400). SNA allows Windows and certain UNIX clients to access
Progress/400 servers. For more information, see the Progress/400 Product Guide.

18.8.43 Number Of Users (-n)

n

The maximum number of Progress users on the system. After n users have connected to
the Progress database, additional user startup attempts are rejected.

-n must be high enough to include local and remote users as well as background writers (APWs,
BIWs, and AIWs), PROWDOG processes, and PROMON sessions. For more information, see
the Maximum Clients Per Server (-Ma) and Maximum Servers (-Mn) startup parameters.

Operating
System

and Syntax

UNIX
Windows

-N network-type

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC, DBS – – – System
dependent

Operating
System

and Syntax

UNIX
Windows

-n n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS 10,000 – – 20
18–35

Progress Database Administration Guide and Reference
18.8.44 Parameter File (-pf)

filename

The name of a parameter file that contains startup parameters to run Progress.

Use Parameter File (-pf) to name a parameter file that includes any number of startup
parameters to run Progress. This parameter is especially useful if you regularly use the same
parameters to start Progress, or if more parameters are specified than can fit on the command
line. This parameter can be included within the parameter file itself to reference another
parameter file.

Use multiple instances of -pf to name multiple parameter files. This allows you to specify
application-specific parameters in one parameter file, database-specific parameters in a second
parameter file, and user-specific parameters in yet another file.

18.8.45 Pin Shared Memory (-pinshm)

The Pin Shared Memory (-pinshm) parameter does not have any arguments.

Using -pinshm will prevent the database engine from swapping shared memory contents to
disk, which can help improve performance.

Operating
System

and Syntax

UNIX
Windows

-pf filename

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC, CS, DBS,
DS, OID

– – – –

Operating
System

and Syntax

UNIX
Windows

-pinshm

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–36

Database Startup Parameters
18.8.46 Configuration Properties File (-properties)

filename

The name of the properties file.

Use Configuration Properties File (-properties) to identify the properties file that the
AdminServer uses internally to specify startup parameters when starting a database server or
servergroup. The default is $DLC/properties/conmgr.properties. You do not use this
parameter directly.

18.8.47 Buffered I/O (-r)

Use Buffered I/O (-r) to enable buffered I/O to the before-image file. In most cases, avoid using
this parameter because it might put database integrity at risk.

CAUTION: A database running with the -r parameter cannot be recovered after a system
failure. If the system fails, you must restore the database from a backup and restart
processing from the beginning.

Operating
System

and Syntax

UNIX
Windows

-properties filename

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Operating
System

and Syntax

UNIX
Windows

-r

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC – – Unbuffered I/O Unbuffered I/O
18–37

Progress Database Administration Guide and Reference
18.8.48 Service Name (-S)

service-name

The name of the service to be used by the broker process

port-number

The port number of the host; if using Progress Explorer, the port number of the
NameServer

Use Service Name (-S) to specify the service or port number to be used when connecting to a
broker process or used by a broker process on the host machine. You must use this parameter
when you are starting:

• A broker or server on a machine that will serve remote users

• A multi-user session as a remote user

The system administrator must make an entry in the services file that specifies the server or
broker name and port number.

When the broker spawns a server, the server inherits all of the network parameters (except the
Service Name parameter) from the broker. Because there is no restriction on the number of
brokers you can start, you can have multiple brokers running with different network parameters.
See also the Server Group (-servergroup) startup parameter description.

Operating
System

and Syntax

UNIX
Windows -S { service-name | port-number }

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

CC, DBS – – – –
18–38

Database Startup Parameters
Table 18–7 shows how the broker, server, and remote client interpret each of their parameters
when you use the -S parameter.

To run multi-user Progress from a remote network node, use both the Host Name (-H) and
Service Name (-S) parameters.

18.8.49 Semaphore Sets (-semsets)

n

An integer specifying the number of semaphore sets available to the broker.

Use Semaphore Sets (-semsets) to change the number of semaphore sets available to the broker.
When more than 1,000 users connect to a single database, there might be high contention for the
semaphore set. If there is a lot of semaphore contention on a system, using multiple semaphore
sets helps improve performance on high user counts.

Table 18–7: Parameter Interpretation With Service Name (-S)

Module Interpretation

Broker Parameters apply to the connections on which the broker is
listening for connection requests from remote clients.

Server Parameters apply to the connection between the server and the
remote client.

Remote Client Parameters identify the connection parameters to the broker or
the server.

Operating
System

and Syntax

UNIX
ONLY

-semsets n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS Maximum
Number of
Users + 1

1 – 1
18–39

Progress Database Administration Guide and Reference
18.8.50 Server Group (-servergroup)

name

Specifies the name of the logical collection of server processes.

Use Server Group (-servergroup) to identify the logical collection of server processes to start.
The name you specify must match the name of a servergroup in the conmgr.properties file.
Use the Progress Explorer tool to create servergroups and save them in the conmgr.properties
file. Do not edit the conmgr.properties file directly. To start a database configuration use
Progress Explorer or the DBMAN utility.

18.8.51 Spin Lock Retries (-spin)

n

The number of times a process tries to acquire a latch before pausing.

Use Spin Lock Retries (-spin) to set a value to use the spin lock mechanism or a system of
semaphores and queues. If the value of n is greater than 0, a spin lock algorithm is used for
shared-memory data structures. When a process has to lock a shared-memory structure, the
process tries up to n times to acquire the latch for that structure. If it has not acquired the latch
in n tries, then the process pauses, or naps. The length of the pause increases gradually if the
process repeatedly fails to acquire a latch. After the allotted nap time, the process wakes up and
tries to acquire the lock again. If it fails to acquire the lock, it will retry up to the number of tries
specified by n.

Operating
System

and Syntax

UNIX
Windows

-servergroup name

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –

Operating
System

and Syntax

UNIX
NT

-spin n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – 0 – 0
18–40

Database Startup Parameters
If the value of n is 0, a system of semaphores and queues is used instead of spin locks. The spin
lock algorithm is much more efficient than using semaphores when you have multiple
processors.

In some cases, if the value of n is 1, it might improve performance even on a single-processor
machine because Progress uses the spin lock mechanism. Do not set this parameter to a value
larger than 1 if your machine has only one processor.

On multi-processor machines, try a value of 2,000. If this causes too much CPU usage, reduce
the value. If you have many fast processors, a value as high as 10,000 might be effective.

You can evaluate the -spin values through the Progress Monitor (PROMON utility) R&D
options. See Appendix A, “Progress Monitor R&D Options,” of this manual. The -spin
parameter controls the performance indicator called resource waits. By setting the -spin value
higher, you can reduce the resource waits. Note that when setting the -spin value higher ceases
to reduce the resource waits, continuing to set it higher can adversely effect CPU utilization. To
view the resource waits value:

• Access PROMON and enter R&D at the main menu.

• Choose option 3, Other Displays, then choose option 1, Performance Indicators, to view
the resource waits. Resource waits is the last item reported in the listing.

18.8.52 Table Range Size (-tablerangesize)

n

The number of tables for which you want to track access statistics.

Use Table Range Size (-tablerangesize) to specify the number of tables for which you want
to collect statistics.

Operating
System

and Syntax

UNIX
Windows

-tablerangesize n

Use
With

Maximum
Value

Minimum
Value

Single-user
Default

Multi-user
Default

DBS – – – –
18–41

Progress Database Administration Guide and Reference
18–42

19
Database Administration Utilities

This chapter describes the Progress database administration utilities, in alphabetical order. It
discusses the purpose, syntax, and primary parameters for each operating system.

Database Administration Utilities
Figure 19–1 shows the conventions used in utility command syntax.

Figure 19–1: Utility Syntax Conventions

Table 19–1 describes each of the command components.

NOTE: Enter parameters on UNIX and Windows exactly as shown in the syntax
descriptions.

Table 19–1: Progress Command Components

Component Description

command Progress executable

qualifier Additional command specification

parameter Operating criteria for the command

value Numeric value or file specification

command db-name [qualifier] [parameter value]
UNIX and Windows

pr obkup spor t s i ncr ement al - vs 708
19–2

DBMAN Utility
DBMAN Utility

Starts, stops, or queries a database. Before you can use the DBMAN command-line utility, you
must use the Progress Explorer Database Configuration Tool to create the database
configuration and store it in the conmgr.properties file.

SYNTAX

-database db-name

Specifies the name of the database you want to start. It must match the name of a database
in the conmgr.properties file.

-config config-name

Specifies the name of the configuration with which you want to start the database.

-start

Starts the database db-name as defined by the configuration config-name.

-stop

Stops the database db-name.

-query

Queries the Connection Manager for the status of the database db-name.

-host host-name

Identifies the host machine where the AdminServer is running. The default is the local
host. If your AdminServer is running on a remote host, you must use the -host host-name
parameter to identify the host where the remote AdminServer is running.

Operating
System Syntax

UNIX
Windows

dbman [-host host-name -port port-number | service-name
-user user-name]
-database db-name
[-config config-name -start|-stop|-query]
19–3

DBMAN Utility
-port port-number|service-name

Identifies the port that the AdminServer is listening on. If your AdminServer is running on
a remote host, you must use the -port port-number parameter to identify the port on
which the remote AdminServer is listening. The default port number is 20931.

-user user-name

If your AdminServer is running on a remote host, you must use the -user user-name
parameter to supply a valid user name for that host. You will be prompted for the
password.

NOTES

• When you specify a user name with the -user parameter, Windows supports three
different formats:

– A user name as a simple text string, such as “mary,” implies a local user whose user
account is defined on the local server machine, which is the same machine that runs
the AdminServer.

– A user name as an explicit local user name, in which the user account is defined on
the same machine that runs the AdminServer, except the user name explicitly
references the local machine domain, for example “\mary”.

– A user name as a user account on a specific NT domain. The general format is
Domain\User, in which the User is a valid user account defined within the domain
and the Domain is any valid NT server, including the one where the AdminServer is
running.

• Do not edit the conmgr.properies file directly. Instead, use the Progress Explorer
Database Configuration Tool.

• DBMAN supports the use of internationalization startup parameters such as, -cpinternal
codepage and -cpstream codepage. See Chapter 18, “Database Startup Parameters,” for
a description of each database-related internationalization startup parameter.
19–4

DBMAN Utility
• The conmgr.properties file stores the database, configuration, and servergroup
properties. For example:

(1 of 2)

Connection Manager Properties File
#
%% version 1.0
#
The following are optional configuration properties and their default
values. The legacy option, if applicable, is listed after the second
comment. Property values set at this level become the default values for
all configuration subgroups.
#
[configuration]
afterimagebuffers=5 # -aibufs
afterimagestall=true # -aistall
beforeimagebufferedwrites=false # -r
beforeimagebuffers=5 # -bibufs
beforeimageclusterage=60 # -G
beforeimagedelaywrites=3 # -Mf
blocksindatabasebuffers=0 # -B (calculated s 8*(-n))
logcharacterset=iso8859-1
collationtable=basic # -cpcoll
crashprotection=true # -i
databasecodepage=basic # -cpdb
directio=false # -directio
hashtableentries=0 # -hash (calculated as (-B)/4)
locktableentries=10000 # -L
maxservers=4 # -Mn
maxusers=20 # -n
nap=1 # -nap
napmax=1 # -napmax
pagewritermaxbuffers=25 # -pwwmax
pagewriterqueuedelay=100 # -pwqdelay
pagewriterqueuemin=1 # -pwqmin
pagewriterscan=1 # -pwscan
pagewriterscandelay=1 # -pwsdelay
semaphoresets=1 # -semsets
sharedmemoryoverflowsize=0 # -Mxs
spinlockretries=0 # -spin
sqlyearoffset=1950 # -yy

[configuration.sports2000.default]
database=sports2000
displayname=default
servergroups=sports2000.default.default4gl,

sports2000.default.defaultsql
19–5

DBMAN Utility
The following are optional database properties and their default
values. Property values set at this level become the default values for
all database subgroups.
#
[database]
autostart=false # autostart the defaultconfiguration
databasename=mydemo # absolute or relative path + database name
#defaultconfiguration=defaultdb.defaultconfig

[database.sports2000]
autostart=true
configurations=sports2000.default
databasename=[[work-dir]]\sports2000
defaultconfiguration=sports2000.default
displayname=Sports2000

[environment]
The following are optional server group properties and their default
values. The legacy option, if applicable, is listed after the second
comment. Property values set at this level become the default values for
all servergroup subgroups.
#
[servergroup]
host=localhost # -H
initialserver=0
maxclientsperserver=0 # -Ma (calculated value)
maxdynamicport=0 # -maxport (5000 for NT;2000 for UNIX)
messagebuffersize=350 # -Mm (4gl only)
minclientperserver=1 # -Mi
mindynamicport=3000 # -miniport (3000 - NT; 2000 - UNIX)
networkclientsupport=true # false for self-service
port=0 # -S ; Must be non-zero
when networkclientsupport=true
#reportinginterval=1 # -rpint (4gl only)
#serverexe=<4gl server location> # -mprosrv (4gl only)
#servicename= # -
#type=4gl # -

[servergroup.sports2000.default.default4gl]
configuration=sports2000.default
displayname=default4gl
port=2500
type=4gl

[servergroup.sports2000.default.defaultsql]
configuration=sports2000.default
displayname=defaultsql
port=2500
type=sql

(2 of 2)
19–6

_DBUTIL CMPDB Qualifier
_DBUTIL CMPDB Qualifier

Allows you to compare two databases.

SYNTAX

db-name1

Name of the first database to be compared.

db-name2

Name of the second database to be compared.

-t

Tight compare. Checks all fields including backup counters and master block fields.

-l

Loose compare. Does not report differences in the master block last modification date or
the back up update counter.

-l2

Second loose compare. Does not report differences in the incremental backup field of the
database block headers.

NOTE

• Note that in Version 9, CMPDB is no longer an executable. It must be run as a qualifier to
_DBUTIL.

Operating
System

Syntax

UNIX
Windows

_dbutil cmpdb db-name1 db-name2 [-t|-l|-l2]
19–7

PROADSV Utility
PROADSV Utility

Starts, stops, or queries the current installation of an AdminServer on UNIX.

SYNTAX

-start

Starts the AdminServer.

-stop

Stops the AdminServer.

-query

Displays AdminServer status.

-port port-number

Specifies the listening port number for online command utilities, such as DBMAN. If a
port number is not specified, it defaults to 20931.

-adminport port-number

Specifies the listening port number for communication between a servergroup and an
AdminServer. The default port-number is 7832.

-help

Displays command-line help.

Operating
System Syntax

UNIX proadsv { -start | -stop | -query }
[-port port-number]
[-adminport port-number]
[-help]
19–8

PROADSV Utility
NOTES

• On Windows, the AdminServer runs as a service. The AdminServer is configured to
automatically start. You can change the listening port for the AdminServer by adding
-port port-number or -adminport port-number (either one or both) to the following
registry keys:

To change the default port, add -port or -adminport and the port number to the end of the
value. If you add both -port and -adminport, be sure not to use the same port number. Be
sure to leave a space between -port or -adminport and the port number. For example:

• To run more than one AdminServer on a single system, specify a unique -adminport
port-number and -port port-number for each AdminServer. Failure to do so can result
in communication errors between AdminServer and servergroups.

• The -adminport parameter was not available until Version 9.0B. To run both a Version
9.0A and Version 9.0B AdminServer on a single system, specify an -adminport port
number to establish communication with the Version 9.0B AdminServer.

• On Windows 98, you can use the PROADSV utility with the -query parameter only.

• An AdminServer is installed on every system where you install a Progress database,
ODBC DataServer or ORACLE DataServer, AppServer, NameServer, WebSpeed
Transaction Server, or WebSpeed Messenger. The AdminServer must be running in order
to use any of the Progress Explorer configuration tools or command-line configuration
utilities, such as DBMAN.

• See Chapter 5, “Starting Up and Shutting Down,” for additional information describing
the Progress Explorer Framework, including an AdminServer.

• PROADSV supports the use of internationalization startup parameters such as
-cpinternal codepage and -cpstream codepage. See Chapter 18, “Database Startup
Parameters,” for a description of each database-related internationalization startup
parameter.

HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\version\StartupCmd

or

HKEY_LOCAL_MACHINE\SOFTWARE\PSC\AdminService\version\ShutdownCmd

....AdminServer -port 9999 -adminport 7832
19–9

PROBKUP Utility
PROBKUP Utility

Backs up a Progress database, including the database, before-image files, and transaction log
(TL) extents.

SYNTAX

online

Indicates the backup is an online backup.

db-name

Specifies the database you want to back up.

incremental

Indicates the backup is an incremental backup.

device-name

Identifies a special device (for example, a tape drive) or a standard file. If device-name
identifies a special device, Progress assumes the device has removable media, such as a
tape or a floppy diskette. For Windows NT, use \\.\tape0 for the device name if you are
backing up to a tape drive.

Operating
System Syntax

UNIX
Windows

probkup [online] db-name [incremental] device-name

[-estimate

| -vs n

| -bf n

| -verbose

| -scan

| -io i

| -com

| -red i

| -no recover

] ...
19–10

PROBKUP Utility
-estimate

Indicates that the backup will give a media estimate only. Use the Scan parameter when
using the Incremental or Compression parameters to get an accurate estimate.

Use -estimate for offline backups only.

-vs n

Indicates the volume size in database blocks that can be written to each removable volume.
Before PROBKUP writes each volume, it displays a message that tells you to prepare the
next volume. After writing each volume, a message tells you to remove the volume.

If you use the Volume Size parameter, the value must be greater than the value of the
Blocking Factor parameter.

If you do not use the Volume Size parameter, PROBKUP assumes there is no limit and
writes the backup until completion or until the volume is full. When the volume is full,
PROBKUP prompts you for the next volume.

-bf n

Indicates the blocking factor for blocking data output to the backup device. The blocking
factor specifies how many blocks of data are buffered before being transferred to the
backup device. NT uses a variable block size up to 4K. For all other operating systems,
each block is the size of one disk block (1K on UNIX). The primary use for this parameter
is to improve the transfer speed to tape-backup devices by specifying that the data is
transferred in amounts optimal for the particular backup device. The default for the
blocking factor parameter is 34.

-verbose

Directs the PROBKUP utility to display information during the backup. If you specify the
Verbose parameter, PROBKUP displays “Backed up n blocks in hh:mm:ss” every 10
seconds. If you do not specify the Verbose parameter, the message appears only once
when the backup is complete.
19–11

PROBKUP Utility
-scan

Directs PROBKUP to perform an initial scan of the database and to display the number of
blocks that will be backed up and the amount of media the backup requires. You cannot
use the Scan parameter for online backups.

For full backups, if you specify the Scan parameter as well as the Compression parameter,
PROBKUP scans the database and computes the backup media requirements after the data
is compressed.

-io i

Specifies an incremental overlap factor. The incremental overlap factor determines the
redundancy among incremental backups. An incremental overlap factor of 1 on every
backup allows for the loss of one incremental backup in a backup series, as long as the
immediate predecessor of that backup is not also lost. An overlap factor of 2 allows for
losing the two immediate predecessors. The default overlap factor is 0.

-com

Indicates that the data should be compressed prior to writing it on the backup media. The
unused portion of index and record blocks is compressed to a 3-byte compression string.
Free blocks are compressed to the length of their header, 16 bytes.

-red i

Sets the amount of redundancy to add to the backup for error correction. The value i is a
positive integer that indicates the number of blocks for every error correction block.
Progress creates an error correction block for every i blocks and writes it to the backup
media. You can use error correction blocks to recover corrupted backup blocks. See
Chapter 7, “Backing Up a Database,” for more information about error correction blocks
and data recovery.

The lower the redundancy factor, the more error correction blocks Progress creates. If you
specify a redundancy of 1, you completely duplicate the backup, block for block. Because
of the amount of time and media required to create the error correction blocks, use this
parameter only if your backup media is unreliable. The default for the redundancy
parameter is 0 (no redundancy).

-no recover

Do not perform crash recovery before backing up the database, but back up the BI files.
19–12

PROBKUP Utility
NOTES

• The PROBKUP utility has been enhanced to use only Version 9 databases. There is no
ability to read or write backup tapes from previous versions of the Progress database.
When restoring a backup, the target database must contain the same physical structure as
the backup version. For example, it must have the same number of storage areas, records,
blocks, and blocksize.

• The minimum backup volume size is 34K.

• You cannot perform an online backup on:

– A system running in single-user mode

– A system without shared memory

– A database that was started with the No Shared Memory (-noshm) parameter

• If you run the PROBKUP utility at the same time another process is accessing the same
backup device, you might receive a sharing violation error.

• Before performing an online backup, Progress automatically switches to a new
after-image (AI) file and establishes a reference point from which to start your
roll-forward recovery. Before you perform an online backup, verify that the next AI file is
empty. If the next file is not empty, Progress aborts the backup. See Chapter 11,
“After-Imaging,” for more information about AI files.

• If you use the Compression parameter, you reduce the size of your backup by 10 percent
to 40 percent, depending on your database.

• If the BI file is not truncated before you perform a backup, Progress performs database
recovery.

• See Chapter 7, “Backing Up a Database,” for more information about performing backups.

• PROBKUP supports the use of internationalization startup parameters such as
-cpinternal codepage and -cpstream codepage. See Chapter 18, “Database Startup
Parameters,” for a description of each database-related internationalization startup
parameter.
19–13

ProControl Utility
ProControl Utility

A tool with a graphical user interface supplied with the Progress NT Server. The Progress NT
Server permits Progress processes to run as registered NT services.

ProControl lets you perform the following tasks on a local or remote NT host:

• Start and stop ProService

• Start and stop Progress databases

• Start and stop Progress DataServer processes

• Set Progress environment variables

• Start Progress batch processes

NOTE: Using ProControl to perform these tasks ensures that Progress processes run as
registered NT services. All of these tasks result in changes to the registry.

SYNTAX

Operating
System

Syntax

Windows proctrl
19–14

ProControl Utility
From the Control Panel or the Progress Program Group, double-click the ProControl icon. The
ProControl icon looks like this:

When you start the utility the main ProControl window appears, as shown in Figure 19–2.

Figure 19–2: ProControl Main Window
19–15

ProControl Utility
NOTES

• The Progress NT Server stores server-specific environment information in the NT registry.
Each time you use ProControl to perform an Insert, Copy, or Remove operation within one
of the ProControl folders, it updates the appropriate subkey of the PSC subkey of the
registry key HKEY_LOCAL_MACHINE. Note that when you use ProControl to perform
a remove operation, ProControl removes the registry entries, but does not delete the files
from the system:

• When you insert a database entry using the Databases folder, ProControl adds the name of
the database (and other information) to the Databases subkey of the PSC subkey of the
HKEY_LOCAL_MACHINE key. If you then set an environment variable using the
Databases Environment folder, ProControl adds that environment variable to the
Databases subkey.

• If you do not use ProControl to insert Databases, DataServers, Environment variables, and
Other Tasks, the registry is never updated and these processes do not run as NT services.
Similarly, if you use some other means to update the registry, Progress cannot guarantee
that the product will function properly.

• You manage access to the ProControl utility through the ProControl Access Group field
(available through the ProControl Options folder). By default at installation, the
ProControl Access Group field is set to the NT group called Everyone.

• You can specify access rights to shared memory for specific databases, DataServers, and
tasks by setting the ACCESS environment variable within the Environment folder for that
specific object, or globally for the ProService environment through the ProControl
Environment folder.

HKEY_LOCAL_MACHINE
SOFTWARE
PSC
ProService
Version-Number
Databases
DataServers
Environment
OtherTasks
ProControl
19–16

PROCOPY Utility
PROCOPY Utility

Copies an existing database.

PROCOPY supports storage areas. Therefore, if a target database exists, it must contain at a
minimum the same type and number of storage areas and same extent types as the source
database. However, the number of extents in the storage areas of the target database do not need
to match the number of extents in the source database. Progress will extend the existing extents
in the target database to accommodate the possible increase in size.

If a target database does not exist, PROCOPY creates one using an existing ST file in the target
database directory. If an ST file does not exist, PROCOPY creates the target database using the
structure of the source database and places all of the extents in the same directory as the target
database DB file, even when the source database resides in multiple directories.

SYNTAX

source-db-name

Specifies the Progress database you want to copy. You cannot copy the database if you
have a server running on it.

target-db-name

Specifies the structure file or the new database. If you specify a directory without a
filename, Progress returns an error.

The value you specify can be any combination of letters and numbers, starting with a letter.
Do not use Progress 4GL keywords or special characters, such as commas or semicolons.
The maximum length of target-db-name varies depending on the underlying operating
system. For specific limits, see Chapter 3, “Progress Database Limits.”

-silent

Suppresses the output of work-in-progress messages.

Operating
System

Syntax

UNIX
Windows

procopy source-db-name target-db-name -silent
19–17

PROCOPY Utility
NOTES

• If you do not supply the .db extension for databases, Progress automatically appends it.

• A target database must contain the same physical structure as the source. For example, it
must have the same number of storage areas, records, blocks, and blocksize.

• PROCOPY supports the use of internationalization startup parameters such as
-cpinternal codepage and -cpstream codepage. See Chapter 18, “Database Startup
Parameters,” for a description of each database-related internationalization startup
parameter.
19–18

PRODB Utility
PRODB Utility

Creates a new Progress database.

PRODB creates a new database from a specified source database. PRODB creates a new
database using the structure of the source database and places all of the extents in the current
working directory. You can use PRODB to make a copy of any of the demonstration or empty
Progress databases.

SYNTAX

new-db-name

Specifies the name of the database you are creating. If you specify a directory without a
filename, Progress returns an error.

The value you specify can be any combination of letters and numbers, starting with a letter.
Do not use Progress 4GL keywords or special characters, such as commas or semicolons.
The maximum length of new-db-name varies, depending on the underlying operating
system. For specific limits, see Chapter 3, “Progress Database Limits.”

Operating
System Syntax

UNIX
Windows

prodb [new-db-name]
[empty

| sports

| isports

| sports2000

| old-db-name

| demo

]

19–19

PRODB Utility
empty

Specifies that the new database is a copy of the empty database located in the Progress
install directory. PRODB knows where to locate the empty database, so you do not need
to provide a pathname to it.

In addition to the default empty database, PRODB allows you to create other empty
database structures with different block sizes:

• empty (default)

• empty1 (1K block size)

• empty2 (2K block size)

• empty4 (4K block size)

• empty8 (8K block size)

To create these empty database structures, however, you must specify the pathname to
where Progress is installed, or use the DLC environment variable. For example:

sports

Specifies that the new database is a copy of the Progress Sports database.

isports

Specifies that the new database is a copy of the Progress international Sports database.

UNIX

prodb new-db-name $DLC/empty2

Windows

prodb new-db-name %DLC%\empty2
19–20

PRODB Utility
sports2000

Specifies that the new database is a copy of the Progress Sports2000 database.

old-db-name

Specifies the name of the database you are copying.

demo

Specifies that the new database is a copy of the Progress demo database.

NOTES

• You can also create a new database from the Progress Data Dictionary.

• When you use the PRODB utility and give the copy a new name, you cannot run the
original r-code against the new database. This is because Progress saves the database with
the r-code. To run the r-code against the new database, use the Logical Database Name
(-ld) startup parameter and use the original database name.

• A new database must contain the same physical structure as the source. For example, it
must have the same number of storage areas, records, blocks and blocksize.

• PRODB supports the use of internationalization startup parameters such as -cpinternal
codepage and -cpstream codepage. See Chapter 18, “Database Startup Parameters,” for
a description of each database-related internationalization startup parameter.

• When issuing the PRODB command, specify the target and source database names (they
are positional) before specifying an internationalization startup parameter such as
-cpinternal.

• PRODB also supports the parameter file (-pf) startup parameter that contains a list of
valid startup parameters.
19–21

PRODEL Utility
PRODEL Utility

Deletes a Progress database.

SYNTAX

db-name

Specifies the database you are deleting.

NOTES

• When you delete a database, Progress displays a message to notify you that it is deleting
the database, log, BI, and AI areas for that database.

• When you delete a database, Progress deletes all associated areas (database, log, and
before-image (BI) and after-image (AI) files) that were created using the structure
description file.

• If an AI area exists in a database, a warning appears. Back up any AI areas you need before
deleting them.

• PRODEL supports the use of internationalization startup parameters such as -cpinternal
codepage and -cpstream codepage. See Chapter 18, “Database Startup Parameters,” for
a description of each database-related internationalization startup parameter.

Operating
System

Syntax

UNIX
Windows

prodel db-name
19–22

Progress Explorer Utility
Progress Explorer Utility

Part of a system administration framework that provides a consistent interface for managing all
Progress products installed on your network. Within this context, Progress Explorer provides
configuration tools by means of a graphical user interface (GUI) for the administration of your
Progress database servers. For example, you can use Progress Explorer to perform the following
tasks on a local or remote host:

• Connect to an AdminServer

• Start and stop Progress databases

• Configure database properties through a Property Editor window.

For instructions on using Progress Explorer to complete these tasks, see the Progress Explorer
online help.

To launch Progress Explorer from the Start menu, choose Programs→ Progress→ Progress
Explorer Tool.

NOTES

• An AdminServer is installed on every system where you install a Progress database. The
AdminServer grants access to each instance of an installed Progress product. The
AdminServer must be running in order to use the Progress Explorer configuration tools,
or command-line configuration utilities to manage your Progress database. On Windows
NT-based systems, the AdminServer starts automatically and runs as an NT service. For
UNIX-based systems, a command-line utility (PROADSV) is used to start and stop the
AdminServer. For more information about the AdminServer, see the Progress Installation
and Configuration Guide Version 9 for UNIX or the Progress Installation and
Configuration Guide Version 9 for Windows.

• The database configurations you create with Progress Explorer are saved in the
conmgr.properties file. Do not edit the conmgr.properties file directly.

• Progress Explorer is a snap-in to the Microsoft Management Console (MMC), the system
and network administration tools framework. For more information about MMC, see the
MMC online help.
19–23

PROLOG Utility
PROLOG Utility

Truncates the log file.

SYNTAX

db-name

Specifies the database log you want to truncate. Do not include the .db suffix.

utility-option

Specify print to display the contents of the log file. Specify trim to shorten the log file and
save only the last 3,000 bytes.

service-name

Specifies the name of the server. You must specify this parameter only if you specified a
server name when you started the server.

printer/filename

Specifies the name of the printer or file to which you want to redirect output when you
specify print as the utility option.

NOTES

• If you want to save the log file, use operating system utilities to back it up before using
PROLOG.

• See Chapter 5, “Starting Up and Shutting Down,” for more information about log files.

• PROLOG supports the use of internationalization startup parameters such as -cpinternal
codepage and -cpstream codepage. See Chapter 18, “Database Startup Parameters,” for
a description of each database-related internationalization startup parameter.

Operating
System

Syntax

UNIX
Windows

prolog db-name
19–24

PROMON Utility
PROMON Utility

Starts the Progress database monitor that displays database information.

SYNTAX

db-name

Specifies the database you want to monitor.

When you enter the PROMON utility, the main menu appears, as shown in Figure 19–3.

Figure 19–3: PROMON Utility Main Menu

Operating
System Syntax

UNIX
Windows

promon db-name

PROGRESS MONITOR Version 9

Database: /usr/wrk/sports2000

1. User Control
2. Locking and Waiting Statistics
3. Block Access
4. Record Locking Table
5. Activity
6. Shared Resources
7. Database Status
8. Shut Down Database

T. Transactions Control
L. Resolve Limbo Transactions
C. Coordinator Information

M. Modify Defaults
Q. Quit

Enter your selection:
19–25

PROMON Utility
The following PROMON entries describe each of these options.

If you choose options 1–4 or option T, the following menu appears:

After the first screen of output from any option, press U to monitor the same parameters
continuously. The default interval is eight seconds, but you can change it on the Modify
Defaults screen (option M on the main menu).

NOTES

• To collect output data, the monitor bars all users from shared memory for an instant and
takes a snapshot of its contents. Therefore, do not use the monitor when system
performance is being measured.

• Certain monitor output data is not generally useful, but it might be helpful to Progress
Software representatives working to debug unusual system problems.

1. Display all entries
2. Match a user number
3. Match a range of user numbers

Q. Return to main menu

Enter your selection:
19–26

PROMON User Control Option
PROMON User Control Option

Displays information for each database process. Figure 19–4 shows an example of this option’s
output.

Figure 19–4: Sample Output For PROMON User Control Option

DISPLAY FIELDS

Usr

User numbers are assigned sequentially to database processes as they are started. The
broker process is always user (0).

Name

The user name for end-user (client) processes.

Type

Table 19–2 lists the distinct types of database processes that can appear in the Type field.

User Control
Usr Name Type Wait Trans PID Sem Srv Login Time
0 BROK 0 0 3989 3 0 12/20/92 15:38
1 sue SELF 0 3145 6356 4 0 12/21/92 16:00
2 dave SELF DB 0 0 6943 5 0 12/22/92 14:45
3 SERV 0 0 6968 6 0 12/22/92 15:00
4 mary REMC REC 87 3267 7007 7 3 12/22/92 15:28
5 bill REMC 0 0 7034 9 3 12/22/92 16:01
6 MON 0 0 7123 9 0 12/22/92 16:36
The DB holder is user -1. The MT holder is user -1.

RETUN - repeat, U - continue uninterrupted, Q - quit

Table 19–2: Type Column Values (1 of 2)

Value Process Type

BROK Broker process

MON Monitor process

REMC Remote client
19–27

PROMON User Control Option
Wait

If a process is waiting, there are 10 possible values for the Wait column. Table 19–3 lists
the values and resource or event the process is waiting for. (Wait is actually two
columns – one textual, the other numeric.)

SELF Self-service client

SERV Remote-user server

AIW After-image writer (AIW) process

SHUT Database shutdown process

Table 19–2: Type Column Values (2 of 2)

Value Process Type

Table 19–3: Wait Column Values (1 of 2)

Value Name Resource/Event

REC Record lock The process is waiting for a locked record to be
freed. The numeric column shows the record ID
number of the record the process is waiting for.1

SCHM Schema lock The process is waiting for the schema lock.
There is one schema lock; only one user at a
time can update any part of the schema.1

TSK Another task
(transaction to
end)

The process is waiting to access (or skip) a
record that has been marked for deletion, or
whose key field value has been changed, by a
task (transaction) that has not yet terminated.
When the task terminates, this process can
resume executing.1

DEAD Process
termination

The process has actually terminated, although it
still appears in the process list. This can happen
if a process is killed with the UNIX kill-9
command.

BUFF Database buffer The process is waiting for a database buffer.2
19–28

PROMON User Control Option
Trans

Transaction (task) number, if one is active. After the broker starts, numbers are assigned
sequentially to each transaction that accesses the database.

PID

The process ID as assigned by the operating system. The PID column typically displays
(0) for remote clients.

Sem

The number of the semaphore the process is using. Each process uses exactly one
semaphore. Progress uses two semaphores (numbers 1 and 2) internally and assigns the
remaining semaphores one at a time (starting with the broker) as database processes log in.

Srv

For remote clients (REMC), the user number of the server the client runs against.

Login

The date the process started.

Time

The time the process started.

DB Database service The process is waiting for the database server.2

IX Index lock The process is waiting for an index lock.2

MT Microtransaction The process is waiting for a microtransaction.2

READ Block read The process is waiting to read a block.2

WRT Block write The process is waiting to write a block.2

1 These are application waits. There is no time limit on how long one of these locks can be held.
2 These are for short-duration (micro- to milliseconds) locks used internally by Progress.

Table 19–3: Wait Column Values (2 of 2)

Value Name Resource/Event
19–29

PROMON Locking and Waiting Statistics Option
PROMON Locking and Waiting Statistics Option

Displays lock and wait information for each database process. The first two lines display
cumulative statistics (since the broker started) for all users. Figure 19–5 shows an example of
this option’s output.

Figure 19–5: Sample Output For PROMON Locking and Waiting Statistics
Option

DISPLAY FIELDS

Type

Lock or Wait. The output display includes two lines for each process. The first shows the
number of record, transaction, and schema locks obtained, and the second shows the
number of times the process waited to obtain one of these locks.

Usr

The user number of the process. User number 999 represents all users.

Name

For client processes, the user name.

Locking and Waiting:
Type Usr Name Record Trans Schema
Lock 999 TOTAL... 2345 567 145
Wait 999 TOTAL... 89 12 9
Lock 0 654 32 33
Wait 0 0 0 0
Lock 1 sue 54 6 3
Wait 1 sue 0 0 0
Lock 2 dave 43 7 2
Wait 2 dave 21 3 2
Lock 3 1123 302 54
Wait 3 12 1 0
Lock 4 mary 345 89 30
Wait 4 mary 20 6 0
Lock 5 bill 101 20 15
Wait 5 bill 10 2 0
Lock 6 175 34 0
Wait 6 15 3 0

RETURN - repeat, U - continue uninterrupted, Q - quit:
19–30

PROMON Locking and Waiting Statistics Option
Record

For the Lock type, the total number of record locks obtained. For the Wait type, the
number of times the user had to wait to obtain a record lock. Numbers are cumulative for
the life of the process.

Trans

For the Lock type, the number of times a transaction lock was issued. A transaction lock
is issued for the duration of a transaction when a record is deleted. If the transaction is
ultimately undone or backed out, the record is not deleted.

For the Wait type, the number of times the user had to wait before accessing or skipping a
record marked for deletion by an unfinished transaction. This transaction wait corresponds
exactly to the TSK wait described under User Control (option 1).

Schema

For the Lock type, the total number of times the schema lock was obtained. For the Wait
type, the number of times the user had to wait to obtain the schema lock. (There is one
schema lock; only one user at a time can update any part of the schema.)
19–31

PROMON Block Access Option
PROMON Block Access Option

Displays database buffer pool access statistics. Figure 19–6 shows an example of this option’s
output.

Figure 19–6: Sample Output For PROMON Block Access Option

The first line displays cumulative information for all users. The six read and write columns refer
to disk I/O. Reads and writes are always one block. Block size varies among systems, but is
usually 512 bytes, 1,024 bytes, or 2,048 bytes.

DISPLAY FIELDS

Type

This column always has the value Acc.

Usr

The user number of the process.

Name

For client processes, the user name.

Block Access:
DB DB DB BI BI AI AI

Type Usr Name Reqst Read Write Read Write Read Write
Acc 999 TOTAL... 17393 1866 424 321 989 204 444
Acc 0 102 102 34 23 75 12 48
Acc 1 sue 6060 876 144 165 304 75 128
Acc 2 dave 4023 654 185 78 406 34 156
Acc 3 86 84 8 12 22 9 18
Acc 4 mary 3454 6 13 7 46 3 6
Acc 5 bill 3726 235 58 43 128 28 71
Acc 6 0 0 0 0 0 0 0

RETURN - repeat, U - continue uninterrupted, Q - quit:
19–32

PROMON Block Access Option
DB Reqst

The number of times the database buffer system was searched to find a block. The buffer
system is searched every time a process attempts to access a record. If the block that holds
the desired record is already in memory, a disk read is not required. If the ratio of DB Reqst
to DB Read is not high (10 to 1 or greater), consider raising the value of the Blocks in
Database Buffers (-B) startup parameter. Regardless of the number of available buffers,
random record access causes a lower database request to disk read ratio than sequential
record access.

DB Read

The number of database disk block reads. A database block must be read from disk when
a process accesses a record whose containing block is not already in the database buffers.
Recall that for read-only database requests, Progress uses private database buffers if they
are available, rather than the shared buffer pool (allocated with the Blocks in Database
Buffers (-B) parameter).

DB Write

The number of database block writes to disk. Once the database buffers are full, every disk
read overwrites an existing block; if the overwritten block has been modified since it was
read in, it must be written to disk. This accounts for the majority of block writes.

BI Read

The number of before-image (BI) file block reads. For example, the BI file is read when a
transaction is undone. The BI file has its own one-block input buffer and does not use the
database buffer pool.

BI Write

The number of BI file block writes. When a record is updated, a pretransaction copy of the
record is written to the BI file. When the transaction completes, the database engine writes
the last BI file block out to disk (assuming you are running the database with full integrity).
This post-transaction disk write accounts for the relatively high number of BI file writes,
but it can be delayed with the Delay BI File Write (-Mf) startup parameter.

In addition to record images, the database engine writes to the BI file various notes and
data required to reconstruct a damaged database. The BI file has its own one-block output
buffer and does not use the shared database buffer pool.
19–33

PROMON Block Access Option
AI Read

The number of after-image (AI) file block reads. The AI file is read during crash recovery.
The AI file has a one-block input/output buffer and does not use the database buffer pool.

AI Write

The number of AI file block writes. When you run the database with after-imaging
enabled, a copy of each note written to the BI file is written to the AI file.
19–34

PROMON Record Locking Table Option
PROMON Record Locking Table Option

Displays the contents of the record locking table. Each line corresponds to an entry in the
locking table. The lock table contains entries for all record locks currently granted or requested
by users of the database. Figure 19–7 shows an example of this option’s output.

Figure 19–7: Sample Output For PROMON Record Locking Table Option

The size of the record locking table is set with the Locking Table Entries (-L) startup parameter.
See the chapter on locks in the Progress Programming Handbook for more information on locks
and locking.

DISPLAY FIELDS

Usr

The user number.

Name

For client processes, the user name.

Chain

The chain type should always be REC, the record lock chain.

Record Locking Table:
Usr Name Chain # Rec-id Lock Flags

1 sue REC 1 5439 SHR
1 sue REC 3 5874 EXCL Q
2 dave REC 0 5568 EXCL
2 dave REC 2 6002 SHR L
2 dave REC 3 5939 SHR
2 dave REC 8 5736 SHR P
3 REC 2 4873 EXCL
3 REC 3 5238 SHR U
4 mary REC 0 5293 SHR
4 mary REC 3 4247 SHR
4 mary REC 6 3984 SHR
5 bill REC 1 6324 EXCL
5 bill REC 2 3746 SHR P
5 bill REC 4 5233 NOLK
5 bill REC 6 5683 EXCL
5 bill REC 9 4832 SHR
5 bill REC 11 5293 SHR

RETURN - repeat, U - continue uninterrupted, Q - quit
19–35

PROMON Record Locking Table Option
#

The record lock chain number. The locking table is divided into chains anchored in a hash
table. These chains provide for fast lookup of record locks by Rec-id.

Rec-id

The record ID for the lock table entry. The Rec-id column identifies the records locked by
each database process.

Table

The ID of the locked table.

Lock

One of five lock types: X (exclusive lock), S (share lock), IX (intent exclusive lock), IS
(intent sharelock), or SIX (shared lock on table with intent to set exclusive locks on
records).

Flags

There are five possible types of flags: L, P, Q, or U. Table 19–4 lists the flags and their
meanings.

Table 19–4: Flag Values

Flag Name Description

L Limbo lock The client has released the record, but the
transaction has not completed. The record lock
is not released until the transaction ends.

P Purged lock entry The lock is no longer held.

Q Queued lock
request

Represents a queued request for a lock already
held by another process.

U Upgrade request The user has requested a lock upgrade from
SHARE to EXCLUSIVE but is waiting for
another process that holds a conflicting lock.

H No hold The “nohold” flag is set.
19–36

PROMON Activity Option
PROMON Activity Option

Displays an overview of your system activity. Figure 19–8 shows an example of this option’s
output.

Figure 19–8: Sample Output For PROMON Activity Option

DISPLAY FIELDS

Event

The events that have occurred on the system and the cumulative total number of events
and the number of events per second. Table 19–5 defines the event types listed in the Event
field. For each event type, PROMON lists the cumulative total number of events and the
number of events per second.

Activity - Sampled at 03/10/02 11:25 for 2:46:37.

Event Total Per Sec Event Total Per Sec
Commits 3900 0.3 Undos 1215 0.1
Record Updates 4717 0.4 Record Reads 353418 35.3
Record Creates 12307 1.2 Record Deletes 10837 1.0
DB Writes 29778 2.9 DB Reads 233257 23.3
BI Writes 27834 2.7 BI Reads 10592 1.0
AI Writes 29443 2.9
Record Locks 113928 11.0 Record Waits 0 0.0
Checkpoints 1591 0.1 Buffers Flushed 21154 2.1

Rec Lock Waits 0 % BI Buf Waits 2 % AI Buf Waits 0 %
Writes by APW 23 % Writes by BIW 85 % Writes by AIW 88 %
Buffer Hits 87 %
DB Size 1520 K BI Size 64 K AI Size 0 K
FR chain 16 blocks RM chain 733 blocks
Shared Memory 184 K Segments 1

0 Servers, 1 Users (1 Local, 0 Remote, 0 Batch), 0 Apws

RETURN - repeat, U - continue uninterrupted, Q - quit:
19–37

PROMON Activity Option
Rec Lock Waits

Percentage of record accesses that result in record lock waits. A record lock wait occurs
when the database engine must wait to access a locked record.

BI Buf Waits

Percentage of before-image (BI) buffer waits. A BI buffer wait occurs when the database
engine must wait to access a BI buffer.

Table 19–5: Event Types

Event Type Description

Commits Number of transactions committed.

Undos Number of transactions rolled back.

Record Updates Number of records updated.

Record Reads Number of records read.

Record Creates Number of records created.

Record Deletes Number of records deleted.

DB Writes Number of database blocks written to disk.

DB Reads Number of database blocks read from disk.

BI Writes Number of BI blocks written to disk.

BI Reads Number of BI blocks read.

AI Writes Number of AI blocks written to disk.

Record Locks Number of record locks used.

Record Waits Number of times the database engine waited to access a locked
record.

Checkpoints Number of checkpoints performed.

Buffers Flushed Number of database buffers flushed during checkpoints.
19–38

PROMON Activity Option
AI Buf Waits

Percentage of after-image (AI) buffer waits. An AI buffer wait occurs when the database
engine must wait to access an AI buffer.

Writes by APW

Percentage of database blocks written to disk by the APW; this is a percentage of the total
number of database blocks written by the database engine.

Writes by BIW

Percentage of BI blocks written to disk by the BIW; this is a percentage of the total number
of BI blocks written to disk by the database engine.

Writes by AIW

Percentage of AI blocks written to disk by the AIW; this is a percentage of the total number
of AI blocks written by Progress.

Buffer Hits

Percentage of buffer hits. A buffer hit occurs when Progress locates a database record in
the buffer pool and does not have to read the record from disk.

DB Size

Size of your database in kilobytes.

BI Size

Size of your BI file in kilobytes.

AI Size

Size of your AI file in kilobytes.

FR chain

Number of blocks on your database’s free chain. The free chain is a chain of empty
database blocks.

RM chain

Number of blocks on your database’s record-management chain. The record-management
chain is a chain of partially filled database blocks.
19–39

PROMON Activity Option
Shared Memory

Amount of shared memory used by the database, in kilobytes.

Segments

Number of shared-memory segments allocated by the database engine. The size of a
shared-memory segment is determined by your kernel configuration.

The last line of the PROMON Activity output summarizes the current number of each type of
process running against the database at the time you ran the Activity option, not a cumulative
total. Table 19–6 defines the process types.

Table 19–6: Process Types

Field Description

Servers Number of servers running against your database. This is the
current value at the time you ran the Activity option, not a
cumulative total.

Users Number of users running Progress. This field is further divided
into the type of user: Local, Remote, or Batch. This is the current
value at the time you ran the Activity option, not a cumulative
total.

Apws Number of APWs running against your database. This is the
current value at the time you ran the Activity option, not a
cumulative total.
19–40

PROMON Shared Resources Option
PROMON Shared Resources Option

Displays a variety of system resource usage statistics and startup parameter settings. Broker
status information appears only when a broker process is active. Figure 19–9 shows this option’s
output. See Chapter 18, “Database Startup Parameters,” for more information on these startup
parameters.

Figure 19–9: Sample Output For PROMON Shared Resources Option

 After-image file name (-a): -
 Number of database buffers (-B): 88
 Number of before-image buffers (-bibufs): 5
 Number of after-image buffers (-aibufs): 1
 Before-image file name (-g): -
 Before-image truncate interval (-G): 60
 No crash protection (-i): Not enabled
 Maximum total of all private buffers (-I): 32
 Current size of locking table (-L): 512
 Locking table entries in use: 0
 Locking table high water mark: 0
Maximum number of clients per server (-Ma): 3
 Delay of before-image flush (-Mf): 4
 Maximum number of servers (-Mn): 4
 Maximum number of users (-n): 11
 Before-image file I/O (-r 0R): Buffered
 Shared memory version number: 7015
 Number of semaphores used: 19

 Broker status: Executing
 BI Writer status: Not executing
 AI Writer status: Not executing
 Watchdog status: Not executing
 Number of page writers: 0
Number of self-service users: 0
 Number of remote users: 0
 Number of servers: 0
 Number of shut-downs: 0
 Number of monitors: 1

RETURN - show remaining, U - continue uninterrupted, Q - quit

This information
appears only if a
broker process is

active.

RETURN - show remaining, U - continue uninterrupted, Q - quit
19–41

PROMON Shared Resources Option
DISPLAY FIELDS

Because most of the Shared Resources options output is self-explanatory, this list describes only
two items:

Shared memory version number

The version number of the shared-memory data structure. This structure varies slightly
between some versions of Progress. Since broker, server, and client processes all access
the same shared-memory pool, their shared-memory version numbers must agree. If an
error message states that shared-memory version numbers do not match, make sure that
the broker and clients are running the same version of Progress.

Number of semaphores used (UNIX only)

On UNIX systems, shows the number of semaphores preallocated for this database.
Because each process requires one semaphore, semaphores are preallocated based on the
number of processes expected to access the database. For a particular database, the number
of semaphores used (#SEM) is as follows:

The maximum number of semaphores you can use on your system is set with a kernel
configuration parameter (SEMMNS). If the number of database users grows large, you can
exceed this value. You must reconfigure the system’s kernel to increase the semaphore
limit. (See Chapter 14, “Managing Performance.”) You can only reduce semaphore use
by lowering the values of the Number of Users (-n) or Maximum Servers (-Mn) startup
parameters. (When you start the broker process, a message specifies the number of
semaphores still available.)

#SEM = Max-possible-users (-n) + Max-possible-servers (-Mn) + 4
19–42

PROMON Database Status Option
PROMON Database Status Option

Displays database block usage statistics and general status information. Figure 19–10 shows an
example of this option’s output.

Figure 19–10: Sample Output For PROMON Database Status Option

Database version number: 1085
Database state: Open (1)

Database damaged flags: None (0)
Integrity flags: Executing with -r (4)

Database block size (bytes): 1024
Total number of database blocks: 208
Database blocks high water mark: 208

Free blocks below high water mark: 0
Record blocks with free space: 0

Before image block size (bytes): 1024
Before-image cluster size (kb): 128
After image block size (bytes): 1024

Last transaction number: 17923
Highest file number defined: 10

Database Character Set: ISO 8859-1
Database Collation Name: Basic

Database create (multi-volume): - -
Most recent database open: 6/12/01 15:38

Previous database open: 6/10/01 8:31

RETURN - show remaining, U - continue uninterrupted, Q - quit:

Local Schema cache time stamp: 02/15/02 21:41
Most recent .bi file open: 02/17/02 17:01

Previous .bi file open: - -
Time since last truncate bi: 0 (seconds)

Most recent full backup: 02/15/02 21:43
Database changed since backup: No
Most recent incremental backup: - -
Sequence of last incremental: 0

RETURN - repeat, U - continue uninterrupted, Q - quit
19–43

PROMON Database Status Option
DISPLAY FIELDS

Because most of the Database Status option output is self-explanatory, this list describes only
five items:

Database state

One of the following values, set in the database master block:

Total number of database blocks

The actual database size in disk blocks.

Number of empty blocks

The number of empty blocks in the database. Empty blocks are created when the database
outgrows its existing block allocation, and also by record and index deletion. Progress
expands the database by multiple blocks at a time—usually 8 or 16—and most of these are
empty at first. Typically, the number of empty blocks increases and decreases as the
database grows.

Record blocks with free space

Free space is created when records are deleted and when the database grows into a new
block, but does not use the entire block. Progress reuses empty space with new records
when possible, but does not return empty space to the operating system. This space does
not affect Progress performance. However, if you must reclaim this disk space for your
system, you can dump and reload the database.

Time since last truncate bi

The time in seconds since the before-image (BI) file was truncated. When the BI file is
truncated, all modified database blocks are written to disk.

Database State Description

1 The database is open.

2 The database is closed, used on disk.

3 The database is being recovered.
19–44

PROMON Shut Down Database Option
PROMON Shut Down Database Option

Lets you disconnect a user or shut down a database. When you choose this option, PROMON
displays the menu shown in Figure 19–11.

Figure 19–11: Sample Output For PROMON Shut Down Database Option

MENU CHOICES

Disconnect a User

Disconnects a single user from the database specified when PROMON was invoked.
PROMON prompts you to enter the user number of the user you want to disconnect.
(PROMON displays the user number of active users above this submenu.) Enter the user
number, then press RETURN.

Unconditional Shutdown

Shuts down the database in an orderly fashion. When you choose Unconditional
Shutdown, PROMON begins the shutdown when you press RETURN; PROMON does not
prompt you to confirm the shutdown.

Emergency Shutdown (Kill All)

Shuts down the database without performing cleanup and kills all processes connected to
the database. Before performing the shutdown, PROMON displays the following message
prompting you to confirm the shutdown:

If you enter anything other than y or yes, PROMON cancels the shutdown and returns to
the PROMON utility main menu.

Enter your selection:

1 Disconnect a User
2 Unconditional Shutdown
3 Emergency Shutdown (Kill All)
x Exit

Enter choice>

This is rather extreme. All the processes connected to
the database will be destroyed. Do you really want to?
Please confirm by entering y for yes:
19–45

PROMON Transactions Control Option
PROMON Transactions Control Option

Displays information about distributed transactions in a database. Figure 19–12 shows an
example of this option’s output.

Figure 19–12: Sample Output For PROMON Transaction Control Option

NOTE: If you run PROMON against a database where no limbo transaction has occurred,
Progress does not display any field information on the Transaction Control screen.

DISPLAY FIELDS

Usr

The number of the user running the distributed transaction.

Name

The name of the user running the distributed transaction.

Trans

The transaction number on the machine where you are running PROMON.

Login

The date the user running the distributed transaction began the Progress session.

Time

The time the user running the distributed transaction began the Progress session.

R-comm?

The state of the transaction. If this field is yes, the transaction is in a ready-to-commit state.
This means that the first phase of two-phase commit is complete.

Transaction Control:
Usr Name Trans Login Time R-comm? Limbo? Crd? Coord Crd-task

2 paul 757 07/25/01 10:15 yes yes no sports1 760
.
.
.

RETURN - repeat, U - continue uninterrupted, Q - quit
19–46

PROMON Transactions Control Option
Limbo?

Whether a transaction is a limbo transaction. If one or more limbo transactions occur, the
Limbo field displays a yes for each transaction listed. A yes in this field means that you
must resolve transactions.

Crd?

Whether the database you are running PROMON against is the coordinator.

Coord

The name of the coordinator database.

Crd-task

The transaction number of the coordinator database.
19–47

PROMON Resolve Limbo Transactions Option
PROMON Resolve Limbo Transactions Option

Lets you resolve a limbo transaction by either committing or aborting the transaction. When you
choose this option, PROMON displays the menu shown in Figure 19–13.

Figure 19–13: Sample Output For PROMON Resolve Limbo Transactions
Option

MENU CHOICES

Abort a Limbo Transaction

When you choose Abort a Limbo Transaction, Progress prompts you to enter the user
number of the transaction you want to abort. (PROMON displays the user’s number in the
User column of the Transaction Control option screen.) Enter the user’s number, then
press RETURN.

Commit a Limbo Transaction

When you choose Commit a Limbo Transaction, PROMON prompts you to enter the user
number of the transaction you want to commit. (PROMON displays the user number in the
Usr column of the Transaction Control option screen.) Enter the user number, then press
RETURN. PROMON displays a message similar to the following:

NOTE: To commit transactions on a database that is shut down, you must use the
2PHASE RECOVER qualifier of PROUTIL.

1 Abort a Limbo Transaction
2 Commit a Limbo Transaction
Q Quit

Enter choice>

User 1: commit transaction and disconnect.
19–48

PROMON Coordinator Information Option
PROMON Coordinator Information Option

Lets you determine whether a limbo transaction was committed. You need this information
before resolving a limbo transaction.

To get this information, run PROMON against the transaction’s coordinator database.
PROMON displays the name of a transaction’s coordinator database in the Coord column of the
Transaction Control option screen.

NOTE: If the coordinator database is shut down and you cannot run PROMON against it, you
must use the 2PHASE COMMIT option of PROUTIL to determine whether it
committed the transaction.

Figure 19–14 shows an example of this option’s output.

Figure 19–14: Sample Output For PROMON Coordinator Information Option

PROMON displays the transaction number in the Crd-task column of the Transaction Control
option screen. Enter the transaction number and press RETURN. Progress displays a message that
tells you whether the transaction committed.

PROGRESS MONITOR Version 9.0

Database: /users/sports1

Q. QUIT

Enter the transaction number you want to find out if committed:
19–49

PROMON Modify Defaults Option
PROMON Modify Defaults Option

Displays terminal behavior parameters and lets you change them when running the monitor. It
also displays and lets you change the value of startup parameters used for tuning the
asynchronous page writer.

Figure 19–15 shows the menu that appears when you choose the Modify Defaults option.

Figure 19–15: PROMON Modify Defaults Menu

DISPLAY FIELDS

Page size

The number of lines on the terminal screen.

Clear screen for first page

If Yes, the system clears the screen before the main menu and before every list.

Short pause after each page

The delay in seconds between pages of output when in continuous monitoring mode.
(Enter u for the Continue Uninterrupted option.)

Enter your selection: m

1. Page size: 24
2. Clear screen for first page: Yes
3. Short pause after each page: 4
4. Long pause after last page: 8
5. Monitor Sampling Interval: 30 sec.
6. APW queue delay: 500 ms.
7. APW queue start: 1
8. APW scan delay: 3 sec.
9. APW scan count: 9
a. APW write limit: 5

Q. Return to main menu

Enter your selection:
19–50

PROMON Modify Defaults Option
Long pause after last page

The delay after the last page of output when in continuous monitoring mode.

For example, if you choose option 7 (Database Status), wait for first page of output, and
enter u, then by default:

• There is a four-second delay before each remaining page of output appears.

• There is an eight-second delay before database statistics reappear.

Monitor Sampling Interval

The interval at which PROMON samples data, in seconds.

APW queue delay

The value of the Page Writer Queue Delay (-pwqdelay) startup parameter. -pwqdelay is a
self-tuning parameter. When the database encounters heavy loads, -pwqdelay decreases
its value so that the APW writes more often. When the demand on the database lessens,
-pwqdelay increases its value so that the APW writes less often. The default value, in
milliseconds, for -pwqdelay is 100.

APW queue start

The value of the Page Writer Queue Minimum (-pwqmin) startup parameter. Do not change
this value unless directed to do so by Progress Software Technical Support.

APW scan delay

The value of the Page Writer Scan Delay (-pwsdelay) startup parameter. The default
value, in seconds, of -pwsdelay is 1.

APW scan count

The value of the Page Writer Scan (-pwscan) parameter. Do not change this value unless
directed to do so by Progress Software Technical Support.

APW write limit

The value of the Page Writer Maximum Buffers (-pwwmax) parameter. Do not change this
value unless directed to do so by Progress Software Technical Support.
19–51

PROREST Utility
PROREST Utility

Verifies the integrity of a database backup or restores a full or incremental backup of a database.

SYNTAX

db-name

Specifies the database where you want to restore the backups.

device-name

Identifies the directory pathname of the input device (for example, a tape drive) or a
standard file from which you are restoring the data. If device-name identifies a block or
character special device, Progress assumes the device has removable media, such as a tape
or a floppy diskette.

-vp

Specifies that the restore utility reads the backup volumes and computes and compares the
backup block cyclic redundancy checks (CRCs) with those in the block headers. To
recover any data from a bad block, you must have specified a redundancy factor when you
performed the database backup. See Chapter 7, “Backing Up a Database,” for more
information about error correction blocks and data recovery.

-vf

Specifies that the restore utility only compares the backup to the database block for block.

-list

Provides a description of all application data storage areas contained within a database
backup. Use the information to create a new structure description file and database so you
can restore the backup.

NOTES

• The PROREST utility has been enhanced to use only Version 9 databases. There is no
ability to read or write backup tapes from previous versions of the Progress database.

Operating
System

Syntax

UNIX
Windows

prorest db-name device-name {-vp | -vf | -list}
19–52

PROREST Utility
When restoring a backup, the target database must contain the same physical structure as
the backup version. For example, it must have the same number of storage areas, records
per block, and blocksize.

• PROREST restores transaction log (TL) extents.

• Before you restore a database, you might want to verify that your backup does not contain
any corrupted blocks. You can use the PROREST utility to verify the integrity of a full or
incremental backup of a database by using the Partial Verify or Full Verify parameters.

• The Partial Verify or Full Verify parameters do not restore or alter the database. You must
use the PROREST utility separately to restore the database.

• You can use the Partial Verify parameter with both online and offline backups.

• Use the Full Verify parameter immediately after performing an offline backup to verify
that the backup is correct.

• PROREST supports the use of internationalization startup parameters such as
-cpinternal codepage and -cpstream codepage. See Chapter 18, “Database Startup
Parameters,” for a description of each database-related internationalization startup
parameter.
19–53

PROSTRCT Utility
PROSTRCT Utility

Creates and maintains a Progress database. For example, you can use PROSTRCT and its
qualifiers to perform the following tasks:

• Create a new database from an existing structure description (ST) file.

• Display storage usage statistics including information about storage areas in a database.

• Add areas and extents to a database.

• Remove areas and extents from a database.

SYNTAX

qualifier

Specifies the qualifier that you want to use. You can supply the following qualifiers:

• ADD

• BUILDDB

• CREATE

• LIST

• REMOVE

• REPAIR

• STATISTICS

• UNLOCK

Details of the above qualifiers are found in the PROSTRCT subsections listed in the
following pages.

Operating
System Syntax

UNIX
Windows

prostrct qualifier db-name [structure-description-file]
19–54

PROSTRCT Utility
db-name

Specifies the database you are using.

structure-description-file

Specifies the new structure description (ST) file. Do not use dbname.st.

NOTES

• You must define your database structure in a structure description (ST) file before you
create a database. PROSTRCT CREATE creates a database control (DB) area from the
information in the ST file.

• See Chapter 4, “Creating and Deleting Databases,” for a complete description of structure
description (ST) files and storage areas.

• PROSTRCT supports the use of internationalization startup parameters such as
-cpinternal codepage and -cpstream codepage. See Chapter 18, “Database Startup
Parameters,” for a description of each database-related internationalization startup
parameter.
19–55

PROSTRCT ADD Qualifier
PROSTRCT ADD Qualifier

Appends the files from a new structure description (ST) file to a Progress database. For
example, you can use PROSTRCT ADD to add new storage areas and extents to new or existing
storage areas.

SYNTAX

db-name

Specifies the database you are using.

structure-description-file

Specifies the new structure description (ST) file. Do not use db-name.st.

NOTES

• You can use PROSTRCT ADD to add areas and extents only when the database is offline.

• The new structure description file cannot identify existing extent files. It can only contain
the definitions for new extent files. See Chapter 4, “Creating and Deleting Databases,” for
a complete description of structure description (ST) files and storage areas.

Operating
System Syntax

UNIX
Windows prostrct add db-name [structure-description-file]
19–56

PROSTRCT BUILDDB Qualifier
PROSTRCT BUILDDB Qualifier

Re-creates a control area from the structure description (ST) of an existing database. Use to
recover when an existing database control (DB) area is lost or damaged.

SYNTAX

db-name

Specifies the database you are using.

structure-description-file

Specifies the existing structure description (ST) file.

NOTES

• BUILDDB does only minimal validation of the resulting control area.

Operating
System Syntax

UNIX
Windows prostrct builddb db-name [structure-description-file]
19–57

PROSTRCT CREATE Qualifier
PROSTRCT CREATE Qualifier

Creates a void Progress database from a previously defined structure description (ST) file. The
newly created database does not contain any Progress metaschema information. Rather, it
consists of the database control (DB) area and whatever primary recovery (BI), after-image
(AI), two-phase commit transaction log (TL), and application data (Dn) areas you defined in the
ST file.

After you create a void database, you must add metaschema information. Therefore, Progress
provides empty databases each the size of a supported database block size. The empty database
and the database you want to copy it to must have the same block size.

NOTE: Never use operating system file commands to copy a Progress Version 9 database.
Instead, use the PROCOPY or PRODB utilities.

SYNTAX

db-name

Specifies the Progress database you want to create.

structure-description-file

Specifies the structure description (ST) file you want Progress to access for file
information.

-blocksize

Specifies the Progress database block size in bytes (for example -blocksize 1024). The
maximum number of indexes allowed in a database is based on the database blocksize. For
more information of database limits, see Chapter 3, “Progress Database Limits.”

Operating
System

Syntax

UNIX
Windows

prostrct create db-name [structure-description-file]
[-blocksize blocksize]
19–58

PROSTRCT CREATE Qualifier
NOTES

• The default structure description (ST) file is db-name.st. If you have a structure
description file that has the same name as the database you are creating, you do not have
to specify the structure-description-file. Progress automatically creates the database
from the structure description file that has the same name as your database with the
extension .st.

• You cannot create a Progress database if one already exists with the same name.

• If you use the -blocksize parameter, you must place it as the last parameter on the
command line.

• The PROSTRCT CREATE utility allows you to specify the minimum amount of
information necessary to create a database. You must specify the area type and extent
location. If the extent is fixed length, you must also specify the size. You need not provide
specific filename or file extensions. The utility will generate filename and file extensions
for all database files according to the following naming convention:

– If the pathname is for a raw device, the name is taken as-is, with no changes.

– If a relative pathname is provided, including using common “.” (dot) notation, the
relative pathname will be expanded to an absolute pathname.

– For BI extents, the filename is the database name with a .bn extension, where n
represents the number of extents created.

– For AI extents, the filename is the database name with a .an extension, where n
represents the logical order in which the AI areas will be accessed during normal
processing.

– For TL extents, the filename is the database name, with a .tl extension.

– For Schema area extents, the filename is the database name with a .dn extension,
where n represents the order extents were created and will be used.

– For application data extents, the filename is the database name and an area number.
The area number is a unique identifier set by Progress to differentiate between
different areas. User extent filenames also have a .dn extension, where n represents
the order extents were created and will be used.

• See Chapter 9, “Maintaining Database Structure,” for more information about the
CREATE qualifier with the PROSTRCT utility.
19–59

PROSTRCT LIST Qualifier
PROSTRCT LIST Qualifier

Creates a structure description (ST) file for a Progress database. It provides storage area,
transaction log, and records per block information in the structure description (ST) file it
produces. Also, PROSTRCT LIST displays storage area names and extent information
including the extent type, size, number, and name.

SYNTAX

db-name

Specifies the multi-volume database whose structure description file you want to update.

structure-description-file

Specifies the structure description file Progress creates. If you do not specify the structure
description file, Progress uses the base name of the database and appends a .st extension.
It replaces an existing file of the same name.

NOTES

• You can use this utility with an online database.

• Use PROSTRCT LIST any time you make changes to the structure of the database to
verify that the change was successful.

• See Chapter 9, “Maintaining Database Structure,” for more information about the LIST
qualifier with the PROSTRCT utility.

Operating
System Syntax

UNIX
Windows prostrct list db-name [structure-description-file]
19–60

PROSTRCT REMOVE Qualifier
PROSTRCT REMOVE Qualifier

Removes storage areas or extents within storage areas.

SYNTAX

db-name

Specifies the database where you want to remove a storage area or extent.

extent-token

Indicates the type of extent to remove. Specify one of the following:

• d, to remove a data extent

• bi, to remove a BI extent

• ai, to remove an AI extent

• tl, to remove a TL extent

storage-area

Specifies the storage area to remove.

Operating
System Syntax

UNIX
Windows prostrct remove db-name extent-token storage-area
19–61

PROSTRCT REMOVE Qualifier
NOTES

• You cannot remove an extent if it is in use or contains any data.

• Before you remove extents from the transaction log (TL) area, you must disable two-phase
commit.

• You must disable after-imaging to remove variable, or fixed-length AI extents.

• You can verify that the deletion occurred and update the structure description file using
the LIST qualifier with the PROSTRCT utility.

• See Chapter 9, “Maintaining Database Structure,” for more information about the
REMOTE qualifier with the PROSTRCT utility.
19–62

PROSTRCT REPAIR Qualifier
PROSTRCT REPAIR Qualifier

Updates a database’s control information after an extent is moved or renamed.

SYNTAX

db-name

Specifies the database you are using.

structure-description-file

Specifies the structure description (ST) file containing the updated extent information. If
you omit the structure-description-file, PROSTRCT REPAIR uses the db-name.st
file to update the control information.

NOTES

• Start with a current copy of the database ST file.

• The .st extension on the new structure description file is optional.

• You cannot use the REPAIR qualifier to add or remove extents. You can only use it to
change the location of existing extents.

• You must manually move the .db file or the data extent. PROSTRCT REPAIR simply
updates the file list of the .db file to reflect the new locations of database extents.

Operating
System Syntax

UNIX
Windows prostrct repair db-name [structure-description-file]
19–63

PROSTRCT STATISTICS Qualifier
PROSTRCT STATISTICS Qualifier

Displays the following information:

• Database name

• Primary database block size and the before-image and after-image block sizes

• Storage area and each extent within it

• Total number of active blocks allocated for each data area

• Total number of blocks for each data area

• Total number of empty blocks in each data area

• Total number of extent blocks for each data area

• Total records per block for each data area

• Total number of all blocks (active blocks, active free blocks, and empty blocks)

• Date and time of the last full database backup

SYNTAX

db-name

Specifies the database whose storage information you want.

Operating
System Syntax

UNIX
Windows prostrct statistics db-name
19–64

PROSTRCT STATISTICS Qualifier
NOTES

• Do not use PROSTRCT STATISTICS when a database is in use.

• Do not run this utility against a database that has crashed. You must recover the database
first.

• A void database cannot be accessed by this command.

• See Chapter 9, “Maintaining Database Structure,” for more information about the
STATISTICS qualifier with the PROSTRCT utility.
19–65

PROSTRCT UNLOCK Qualifier
PROSTRCT UNLOCK Qualifier

Allows you to access a damaged database structure and correct inconsistencies between the
creation date and the open date in the database file header block and the master block. This is
especially useful when trying to force open a database or when recovering a lost database file.

CAUTION: Use this utility as a last resort. Call Progress Software Technical Support for
further direction.

SYNTAX

db-name

Specifies the database where you want to force access.

-extents

Replaces missing extents with empty extents if any database files are missing.

NOTES

• When Progress finds an inconsistency among the data and recovery log, it generates an
error message and stops any attempt to open the database. Typically, inconsistencies
between files are a result of accidental misuse of operating system copy utilities, deletion
mistakes, or incorrectly administered backup and restore procedures.

• If the first data file (.d1) is missing, the database cannot open because of the missing
master block. PROSTRCT UNLOCK with the -extents parameter, however, creates an
empty file with the same name and location as the missing file that allows the database to
open. This function helps enable access to a severely damaged database.

• PROSTRCT UNLOCK does not repair damaged databases. It opens databases with
inconsistencies in dates and missing extents, but these databases still need to be repaired
before they can be used. For information on repairing databases, see the “Restoring a
Database” section in Chapter 7, “Backing Up a Database.”

Operating
System Syntax

UNIX
Windows prostrct unlock db-name [-extents]
19–66

PROUTIL Utility
PROUTIL Utility

Performs various database operations, depending on the parameters and qualifiers you supply.

SYNTAX

db-name

Specifies the database you are using.

-C

Specifies a particular utility or function when you use PROUTIL.

qualifier

Specifies the qualifier that you want to use. You can supply the qualifiers described in
Table 19–7.

NOTE: PROUTIL and its qualifiers support the use of internationalization startup
parameters such as -cpinternal codepage and -cpstream codepage. See Chapter
18, “Database Startup Parameters,” for a description of each database-related
internationalization startup parameter.

Operating System Syntax

UNIX
Windows proutil db-name -C qualifier

Table 19–7: PROUTIL Utility Qualifiers (1 of 4)

Qualifier Description

2PHASE BEGIN Enables two-phase commit for a Progress database.

2PHASE COMMIT Determines whether the coordinator database committed a
transaction.

2PHASE END Disables two-phase commit for a Progress database.

2PHASE MODIFY Changes the nickname or priority of a Progress database for
two-phase commit.

2PHASE RECOVER Commits or aborts limbo transactions for a database.
19–67

PROUTIL Utility
BIGROW Specifies the number of BI clusters available to a database.

BULKLOAD Loads data files into a database.

BUSY Determines whether the database is currently in use.

CHANALYS Displays information about free chain blocks.

CODEPAGE-
COMPILER

Compiles a conversion map file from text format to binary
format.

CONV89 Converts a Version 8 database to a Version 9 database.

CONVCHAR Converts a database’s character set or identifies a database’s
character set (for undefined databases).

CONVFILE Converts a text file from one character set to any other
character set.

DBANALYS Displays statistical information about index, record, and free
chain blocks.

DBAUTHKEY Sets an authorization key for a database.

DBIPCS Displays status information for shared-memory segments
attached by all Progress databases on the system.

DUMP Performs a binary dump, which is generally faster that an
ASCII dump.

DUMPSPECIFIED Performs a selective binary dump and allows you to dump by
field value.

ENABLELARGEFILES Enables large file processing for a database.

ENABLEPDR Enables database replication with Peer Direct.

HOLDER Determines whether the database is currently in use in
single-user mode, multi-user mode, or by a Progress utility.

IDXANALYS Displays information on index blocks.

Table 19–7: PROUTIL Utility Qualifiers (2 of 4)

Qualifier Description
19–68

PROUTIL Utility
IDXCOMPACT Performs index compaction online and increases space
utilization of the index block to a specified compacting
percentage.

IDXMOVE Moves an index from one application data area to another
while the database remains online.

IDXBUILD Consolidates index records to use disk space as efficiently as
possible. Activates deactivated indexes in the database.
Repairs corrupted indexes in the database.

IDXCHECK Checks Progress database indexes to determine whether an
index is corrupt, and if it is, diagnoses the problem.

IDXFIX Checks the Progress database records and indexes to
determine whether an index is corrupt or a record has a
missing or incorrect index. You can scan the database, the
indexes, or both.

IOSTATS Provides current statistics for active databases. The statistics
include buffered, unbuffered, and logical I/O database
operations. The statistics are cumulative from database
startup.

LOAD Performs a binary load.

MVSCH Moves schema after a database conversion.

RCODEKEY Inserts the authorization key into existing CRC-based r-code.

TABANALYS Displays information about the degree of fragmentation for
each table in a database.

TABLEMOVE Moves a table and optionally its associated indexes from one
storage area to another while the database remains online.

TRUNCATE AREA Truncates application data storage areas in the specified
database. Use this qualifier before you remove storage areas
and extents.

Table 19–7: PROUTIL Utility Qualifiers (3 of 4)

Qualifier Description
19–69

PROUTIL Utility
The following PROUTIL entries describe each of these qualifiers. See the appropriate section
for more detailed information.

TRUNCATE BI Performs three functions: Uses the information in the
before-image (BI) files to bring the database up to date, waits
to verify that the information has been successfully written to
the disk, then truncates the before-image file to its original
length. Sets the BI cluster size using the Before-image
Filename (-bi) parameter. Sets the BI block size using the
Before-image Block Size (-biblocksize) parameter.

UPDATEVST Loads the specified database with the most recent virtual
system tables.

WBREAK- COMPILER Compiles the word-break table.

WORD-RULES Compiles a word-rules file that tells Progress that the rules in
the specified files apply to a database.

Table 19–7: PROUTIL Utility Qualifiers (4 of 4)

Qualifier Description
19–70

PROUTIL 2PHASE BEGIN Qualifier
PROUTIL 2PHASE BEGIN Qualifier

Enables two-phase commit for a Progress database.

SYNTAX

db-name

Specifies the database you are using.

-crd

Specifies that the database receive top priority when Progress assigns a coordinator
database. If you do not specify a database, Progress randomly assigns a coordinator
database from the available databases.

Specifying a single coordinator database can greatly simplify the process of resolving
limbo transactions because Progress does not have to consult several different
coordinating databases.

-tp nickname

Identifies a unique nickname or alternate name that Progress uses to identify the
coordinator database. If you do not specify a nickname, Progress automatically assigns the
name of the database without the .db extension as the nickname.

Specifying a nickname simplifies resolving limbo transactions when two databases have
the same pathname but are on different machines.

Operating
System Syntax

UNIX
Windows

proutil db-name -C 2phase begin [-crd | -tp nickname] ...
19–71

PROUTIL 2PHASE BEGIN Qualifier
NOTES

• You cannot use the PROUTIL 2PHASE BEGIN qualifier against a database that is online.

• A TL (Transaction Log) area is required to hold the transaction log data generated when
two-phase commit is in use. You must create and maintain a TL (Transaction Log) area
for your database in order to use two-phase commit.
19–72

PROUTIL 2PHASE COMMIT Qualifier
PROUTIL 2PHASE COMMIT Qualifier

Determines whether the coordinator database committed a transaction.

SYNTAX

db-name

Specifies the coordinator database.

tr-number

Specifies the number of the transaction where you want to check the commit status.

If the coordinator committed the transaction, Progress displays a message similar to the
following:

Once you determine that the coordinator database committed the transaction, you must also
commit the transaction on the database where the limbo transaction occurred. If the coordinator
did not commit the transaction, you must terminate the transaction on the database where the
limbo transaction occurred.

Operating
System Syntax

UNIX
Windows

proutil db-name -C 2phase commit tr-number

Transaction 768 has committed. (2048)
19–73

PROUTIL 2PHASE END Qualifier
PROUTIL 2PHASE END Qualifier

Disables two-phase commit for a Progress database.

SYNTAX

db-name

Specifies the database where you want to disable two-phase commit.

Operating
System Syntax

UNIX
Windows

proutil db-name -C 2phase end
19–74

PROUTIL 2PHASE MODIFY Qualifier
PROUTIL 2PHASE MODIFY Qualifier

Changes the nickname or priority of a Progress database for two-phase commit.

SYNTAX

db-name

Specifies the database you are using.

-crd

Switches whether or not the database can serve as a coordinator database. If you specify
-crd against a database that is a candidate for coordinator database, it is no longer a
candidate. If you specify -crd against a database that is not a candidate, it becomes a
candidate.

-tp nickname

Identifies a new nickname for the coordinator database.

Specifying a nickname simplifies resolving limbo transactions when two databases have
the same pathname but are on different machines.

Operating
System

Syntax

UNIX
Windows

proutil db-name -C 2phase modify [-crd | -tp nickname] ...
19–75

PROUTIL 2PHASE RECOVER Qualifier
PROUTIL 2PHASE RECOVER Qualifier

Commits or aborts limbo transactions for a database.

SYNTAX

db-name

Specifies the database with the limbo transaction.

When you run this command against a database with limbo transactions, Progress displays a
message similar to the following:

If you type y, Progress commits the transaction. If you type n, Progress aborts the transaction.

Operating
System Syntax

UNIX
Windows

proutil db-name -C 2phase recover

Commit transaction 760, on coordinator sports1 #768 (y to commit/n to
abort)? (2039)
19–76

PROUTIL BIGROW Qualifier
PROUTIL BIGROW Qualifier

Specifies the number of BI clusters to preformat for a database.

SYNTAX

db-name

Specifies the database where you want to create BI clusters.

n

Specifies the number of BI clusters to create for the specified database. Note that Progress
creates 4 BI clusters at startup. If you specify a BIGROW value of 5, then you will have a
total of 9 BI clusters.

-r

Nonreliable I/O startup parameter; turns off reliability.

NOTES

• You can calculate the number of BI clusters for a database by dividing the BI file physical
size by the BI cluster size. For example, a database BI file with a BI cluster size of 128K
and a physical size of 917,504 has 7 BI clusters.

• By default, Progress creates 4 BI clusters at startup.

• The database must be offline to use the BIGROW qualifier.

• Use the BIGROW qualifier immediately after truncating the BI file.

• See Chapter 14, “Managing Performance,” for information about using the BIGROW
qualifier.

Operating
System Syntax

UNIX
Windows

proutil db-name -C bigrow n [-r]
19–77

PROUTIL BULKLOAD Qualifier
PROUTIL BULKLOAD Qualifier

Loads data files into a database.

NOTE: The bulk loader works only with Progress databases. Some non-Progress databases
offer a similar bulk-loading tool. If such a tool is not available, use the standard load
option in the Progress Data Administration tool or Data Dictionary.

SYNTAX

db-name

Specifies the database you are using.

-yy n

Century Year Offsett startup parameter; n specifies a four-digit year (1900, for example)
that determines the start of a 100-year period in which any two-digit DATE value is
defined. The default is 1950, but the -yy n value must match the -yy n value used when
the data was dumped.

fd-file

Identifies the bulk loader description file you are using.

-Bn

Blocks in DataBase Buffers startup parameter; n specifies the number of blocks.

NOTE

You must create the bulk loader description file and load the data definitions (.df) files for the
database before you can run the Bulk Loader utility. See Chapter 13, “Dumping and Loading,”
for information about creating the bulk loader description file and loading data definitions files.

Operating
System Syntax

UNIX
Windows

proutil db-name [-yy n] -C BULKLOAD fd-file [-Bn]
19–78

PROUTIL BUSY Qualifier
PROUTIL BUSY Qualifier

Determines whether the database is currently in use. This information is useful before
performing a database backup or shutting down a database. A database is in use if it is being
used in single-user mode, multi-user mode, or by a Progress utility program.

To get the information, you must run PROUTIL with the BUSY qualifier and test the command
return code in a UNIX script or Windows batch file.

SYNTAX

db-name

Specifies the database you are using.

NOTE

• When the PROUTIL command completes, it returns a code you can test in a UNIX script
or Windows batch file. The return codes for the BUSY qualifier are shown in the following
table:

SYNTAX

Operating
System Syntax

UNIX
Windows

proutil db-name -C busy

Operating
System

Return
Code Description

UNIX
Windows

0 Database is not in use.

6 Database is in use.

64 Database is in process of
starting up.
19–79

PROUTIL BUSY Qualifier
EXAMPLE

• This example shows how you might use the BUSY qualifier on UNIX in a script that tests
whether the database is busy:

proutil mydb -C busy

if [$? != 0]
then

echo
echo "Do you want to use ‘proshut’ to force users off\
the system?"

read ans
if ["$ans" = y]
then
proshut -by mydb

else
echo "Backup will not be performed."
exit

fi
fi
echo "Beginning backup."

Backup procedure
19–80

PROUTIL CHANALYS Qualifier
PROUTIL CHANALYS Qualifier

Displays information about free and RM chains. It calculates the number of blocks found both
in the free chain and the RM chain.

SYNTAX

db-name

Specifies the database you are using.

Operating
System Syntax

UNIX
Windows

proutil db-name -C chanalys
19–81

PROUTIL CODEPAGE-COMPILER Qualifier
PROUTIL CODEPAGE-COMPILER Qualifier

Compiles a conversion map file from text format to binary format. A conversion map file is a
code page description file that contains various tables of information and uses a specific format.
For more information about conversion map files, see the Progress Internationalization Guide.

SYNTAX

inputfile

Specifies the name of the text conversion map file. This file must follow a specific format.

outputfile

Specifies the name of the binary conversion map file.

Operating
System Syntax

UNIX
Windows

proutil -C codepage-compiler inputfile outputfile
19–82

PROUTIL CONV89 Qualifier
PROUTIL CONV89 Qualifier

Converts a multi-volume Version 8 database to a Version 9 database. To convert a database use
the following command:

SYNTAX

db-name

Specifies the source database name.

NOTES

• You can only use the CONV89 qualifier to convert a multi-volume Version 8 database to
Version 9. If you want to convert a single-volume Version 8 database to Version 9, you
must first convert it to a multi-volume Version 8 database. For more information, see
Chapter 4, “Creating and Deleting Databases.”

• You must truncate the BI file before using PROUTIL CONV89.

• You should disable after-imaging and two-phase commit before starting the conversion;
however, if you forget to do so, PROUTIL will disable after-imaging and two-phase
commit for you. PROUTIL issues an informational message when after-imaging and/or
two-phase commit is disabled.

• If you intend to enable two-phase commit, add a transaction log area to your Version 9
database. For a description of how to add storage areas to your database, see the “Progress
Structure Add Utility” section in Chapter 9, “Maintaining Database Structure.”

Operating
System Syntax

UNIX
Windows

proutil db-name -C conv89
19–83

PROUTIL CONVCHAR Qualifier
PROUTIL CONVCHAR Qualifier

Converts a database’s character set or identifies a database’s character set (for undefined
databases). When converting a database’s character set, PROUTIL CONVCHAR converts all
of the textual data in the database.

SYNTAX

db-name

Specifies the database you are converting.

analyze

Scans the database and displays the fields that would be converted using the convert
function.

charscan

Searches every character field for the occurrence of any character from the provided
character list and reports the table name, field name, record ID of a match, and the total
number of occurrences. In addition, PROUTIL CONVCHAR CHARSCAN performs the
same analysis that PROUTIL CONVCHAR ANALYSIS performs.

If invalid data are entered with the charscan option, PROUTIL CONVCHAR generates
an error message and continues with the scan.

convert

Converts a database’s character data to the target code page and labels the database.

Operating
System

Syntax

UNIX
Windows

proutil db-name -C convchar [analyze|charscan|convert]
[codepage] [character-list]
19–84

PROUTIL CONVCHAR Qualifier
codepage

Specifies the value of any single-byte, double-byte, or Unicode codepage. Possible values
are undefined or any (target) code page name for a conversion table in your conversion
map file (by default, DLC/convmap.cp). If you specify a code page name, the PROUTIL
CONVCHAR utility must find the appropriate conversion table in the conversion map file.
If you specify undefined, no conversions take place and the database’s code page name is
changed to undefined.

If you specify a code page name against a database with a code page name of undefined,
no conversions take place and the database’s code page name is changed to the value you
specify.

NOTE: When you change the code page of a database from “undefined” using proutil
dbname -C convchar convert codepage PROUTIL CONVCHAR generates
warning messages. After you receive these messages, you might need to load the
collation table for the code page. The collation table data definition files have a
.df extension and are located in $DLC/prolang/<language>.

When you specify a codepage value with analyze, it scans the database and identifies the
database’s current code page encoding and the fields that require translation if you were
to use the convert function with that code page specification.

When you use the codepage parameter with convert, it specifies the code page to which
you want to convert the database and specifies the code page name for the database.

character-list

Specifies a quoted string of comma-separated numbers in either hex or decimal. These
numbers represent character values in the codepage. Specify ranges with a minus sign
(“128 - 144”).

NOTE: Quotes are not needed if there are no blanks within the list (128-144,122).

Hex values must begin with 0x. For example, the syntax to run PROUTIL CONVCHAR
with the decimal list “128, 129, 130” provided in hex is:

Note also that hex and decimal values may be mixed. For example:

proutil sports2000 -C convchar charscan ibm850 “0x80, 0x81, 0x82”

proutil sports2000 -C convchar charscan 1253 “128, 0xC2, 0x7f, 122”
19–85

PROUTIL CONVCHAR Qualifier
If a range contains valid and invalid characters, PROUTIL CONVCHAR ignores the
invalid character. For example, this syntax

searches and returns the following:

If charscan is selected but no character list is specified, the analyze function performs.

For more information about character set processing, see the Progress Internationalization
Guide.

proutil sports2000 -C convchar charscan 1253 "49854 - 50050"

Charscan searching for utf-8 character: 49854 0xc2be. (6570)

Charscan searching for utf-8 character: 49855 0xc2bf. (6570)

Charscan searching for utf-8 character: 50048 0xc380. (6570)

Charscan searching for utf-8 character: 50049 0xc381. (6570)

Charscan searching for utf-8 character: 50050 0xc382. (6570)
19–86

PROUTIL CONVFILE Qualifier
PROUTIL CONVFILE Qualifier

Converts a text file from one character set to any other character set.

SYNTAX

file-name

Specifies the name of the file you are converting or analyzing.

convert using table-name

Specifies the name of the file containing the conversion table. This file requires the
following format:

where source-codepage-name is the name of the character set of file-name, and
target-codepage-name is the name of the desired character set for file-name.

Operating
System

Syntax

UNIX
Windows

proutil -C convfile

{ file-name convert using table-name | file-name [analyze]}

optional comment lines begin with the # character
SOURCE source-codepage-name
TARGET target-codepage-name
/*000-015*/000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
/*016-031*/016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031
/*032-047*/032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047

.

.

.
/*240-255*/240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
19–87

PROUTIL CONVFILE Qualifier
The conversion table is composed of 256 cells, numbering from 0 to 255. You can build
your own conversion table, or you can use default tables stored in the DLC/prolang
directory if appropriate. The tables in DLC/prolang are as follows:

• 1250-852.dat — Converts from code page 1250 to IBM code page 852.

• 1250-il2.dat — Converts from code page 1250 to iso8859-2.

• 1254-857.dat —Converts from IBM code page 1254 to code page 857.

• 852-1250.dat — Converts from IBM code page 852 to code page 1250.

• 852-il2.dat — Converts from IBM code page 852 to iso8859-2.

• 857-1254.dat — Converts from IBM code page 857 to code page 1254.

• cn850.dat — Converts iso8859-1 to IBM code page 850.

• cn8859-1.dat — Converts IBM code page 850 to iso8859-1.

• cnnull.dat — Performs no conversion; you might want to use this file as a template
file for creating new conversion tables.

• il2-1250.dat — Converts from iso8859-2 to code page 1250.

• il2-852.dat — Converts from iso8859-2 to IBM code page 852.

If you create your own conversion table, you must understand how PROUTIL
CONVFILE uses the table. For each character in file-name, PROUTIL CONVFILE uses
the character’s numeric value to index it against the table. When it locates the
corresponding cell, PROUTIL CONVFILE replaces the character in the text file with the
character value in that cell. Therefore, you must make a copy of the text file before you
run the PROUTIL CONVFILE utility, because if the utility does not completely convert
the file, the data in it is corrupted.

analyze

Displays the number of occurrences of each character in file-name. You might be able to
determine the character set of file-name by comparing the output of this option against
different code pages.
19–88

PROUTIL DBANALYS Qualifier
PROUTIL DBANALYS Qualifier

Displays statistical information about index, record, and free chain blocks.

SYNTAX

db-name

Specifies the database you are using.

EXAMPLE

The following is a sample display of PROUTIL DBANALYS output:

Operating
System Syntax

UNIX
Windows

proutil db-name -C dbanalys

SUMMARY FOR AREA "Inventory" : 8
--

Records Indexes Combined
NAME Size Tot % Size Tot % Size Tot %
PUB.Bin 26.3K 1.1 16.4K 0.7 42.8K 1.8
PUB.InventoryTrans 3661B 0.1 0B 0.0 3661B 0.1
PUB.Item 7662B 0.3 8117B 0.3 15779B 0.6
PUB.POLine 217.5K 9.1 51.9K 2.2 269.4K 11.3
PUB.PurchaseOrder 68.6K 2.9 19.0K 0.8 87.6K 3.7
PUB.Supplier 1177B 0.0 97B 0.0 1274B 0.1
PUB.SupplierItemXr 1118B 0.0 1166B 0.0 2284B 0.1
PUB.Warehouse 1288B 0.1 440B 0.0 1728B 0.1

Size key:
B = bytes
K = kilobytes
M = megabytes
G = gigabytes
19–89

PROUTIL DBAUTHKEY Qualifier
PROUTIL DBAUTHKEY Qualifier

Sets an authorization key for a database. When you compile source code, Progress includes the
value of this key in your r-code. CRC-based r-code that does not include the correct
authorization key will not run against your database.

SYNTAX

db-name

Specifies the database you are using.

old-key

Specifies the old authorization key.

new-key

Specifies the new authorization key.

Operating
System Syntax

UNIX
Windows

proutil db-name -C dbauthkey old-key new-key
19–90

PROUTIL DBAUTHKEY Qualifier
NOTES

• You use the DBAUTHKEY qualifier to set, change, and remove authorization keys. The
following table lists the values you must enter for each task:

• Once you set the authorization key, do not forget it. You cannot change or remove the
authorization key without knowing its current value.

• After you set, change, or remove the authorization key for a database, you can use the
RCODEKEY qualifier to update your r-code without recompiling it.

Task old-key Value new-key Value

Set the authorization key Plus sign (+) Authorization key

Change the authorization key Current authorization key New authorization key

Remove the authorization key Current authorization key Plus sign (+)
19–91

PROUTIL DBIPCS Qualifier
PROUTIL DBIPCS Qualifier

Displays status information for shared-memory segments attached by all Progress databases on
the system. This qualifier is valid only on UNIX shared-memory systems.

SYNTAX

EXAMPLE

The following is a sample display of PROUTIL DBIPCS output:

DISPLAY FIELDS

ID

Indicates the shared-memory ID.

ShMemVer

Specifies the shared-memory version.

Seg#

Indicates the shared-memory segment number. One database can own more than one
segment.

InUse

Specifies whether the segment is in use. Yes or No values are displayed only if the segment
is number 0. All other segments show a hyphen (-). To determine whether a set of
segments is in use, check the InUse value of segment 0 for the relevant database.

Operating
System Syntax

UNIX
Windows

proutil -C dbipcs

PROGRESS SHARED MEMORY STATUS
ID ShMemVer Seg# InUse Database
68 - - - (not PROGRESS)

100 3 0 Yes /db/work5/sports
101 3 1 - /db/work5/sports
120 3 0 No /db/work5/test
19–92

PROUTIL DBIPCS Qualifier
Database

Represents the full pathname of the database.

NOTES

• The PROMON Activity screen shows the amount of shared memory used by Progress and
the number of shared-memory segments.

• On UNIX, if the broker dies or is killed by means other than the database shutdown
command, it does not release shared-memory segments. Use PROUTIL DBIPICS to
verify whether shared memory is frozen. Use the UNIX command ipcrm -m to free it.

• On UNIX, use some ipcs -m to determine the size and number of shared-memory
segments in use. Subtract from SHMALL to see how many shared-memory segments are
left. If the broker dies or is killed by means other than the database shutdown command,
it does not release attached shared-memory segments. Use PROUTIL -C DBIPCS to
verify shared memory is frozen; use the UNIX command ipcrm -m to free it.
19–93

PROUTIL DUMP Qualifier
PROUTIL DUMP Qualifier

Performs a binary dump of a database table to a file. PROUTIL DUMP writes data from a table
to a dump file. When the procedure finishes, it reports the number of records written to the dump
file.

SYNTAX

db-name

Specifies the database where the dump will occur. If the database is not within the current
working directory, you need to define the complete path.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the name of the table containing the data you want to dump.

directory

Specifies the name of the target directory where the data will be dumped.

-index num

Specifies the index to use to dump the table’s contents. If you choose not to use this option,
the command uses the primary index to dump the table.

Operating
System Syntax

UNIX
Windows

proutil db-name -C dump [owner-name.]table-name directory
[-index num]
19–94

PROUTIL DUMP Qualifier
NOTES

• See Chapter 13, “Dumping and Loading,” for more information about the DUMP
qualifier.

• The PROUTIL DUMP and LOAD utilities use cyclic redundancy check (CRC) values to
establish the criteria for loading.

The Progress database provides a flexible storage architecture and the ability to relocate
objects, such as tables and indexes, while the database remains online. As a result, when
you perform a binary load operation, the table numbers in a binary dump file might not
match the table numbers in the target database. Therefore, when you perform a binary load
operation, the criteria for loading tables is based solely on cyclic redundancy check (CRC)
values, and not table numbers.

For example, when you dump a table, the PROUTIL utility calculates a CRC value for the
table and stores it in the header of the binary dump file. When you load the table,
PROUTIL matches the CRC value stored in the header with the CRC value of the target
table. The values must match or the load is rejected.

You can load a binary dump file created with a previous version of the PROUTIL DUMP
utility, because the current version of PROUTIL LOAD uses the CRC value established
when the file was originally dumped. Consequently, the Progress database maintains
backwards compatibility.

However, you cannot use a previous version (Version 8.3 or earlier) of the PROUTIL
LOAD utility to load a binary dump file created using the current version (version 9.0 or
later) of the PROUTIL DUMP utility. The previous versions of PROUTIL DUMP and
LOAD did not use CRC values to establish the criteria for loading, but instead used other
mechanisms, such as:

– Looking up table RecIDs in a target database using the table number stored in the
header of the binary dump file.

– Matching table numbers in the header of the binary dump file with table numbers in
a target database.

– Comparing the number of fields in the binary dump file with the number of fields in
the target database.
19–95

PROUTIL DUMP Qualifier
• PROUTIL DUMP writes data from a table to a dump file. The name of the resulting dump
file depends on the owner of the table. By default, Progress 4GL tables are owned by
“PUB.” When tables owned by PUB are dumped to a file, the filename is the table name
with .bd appended. For example, tablename.bd.

However, when tables owned by anyone other than PUB are dumped to a file, the resulting
filename contains the owner name and table name. For example,
ownername_tablename.bd

• On UNIX systems that have a 2GB-file-size limitation (Alpha OSF does not), PROUTIL
DUMP creates multiple files when you dump a table larger than 2GB. For example, when
you dump data from a table with the name “customer” that is 6.4GB, PROUTIL DUMP
creates four binary dump files: customer.bd, customer.bd2, and customer.bd3, each
of which is approximately 2GB, and customer.bd4, which is approximately 0.4GB. The
PROUTIL DUMP procedure adds header blocks to the binary dump files. As a result, the
total size of the binary dump files is slightly larger than the table itself.

On Windows NT and Alpha OSF, however, there is no 2GB-file-size limitation. On
Windows NT and Alpha OSF, PROUTIL DUMP creates only one binary dump file
regardless of the size of the table.

• PROUTIL DUMP supports dumping binary large objects (BLOBS).
19–96

PROUTIL DUMPSPECIFIED
PROUTIL DUMPSPECIFIED

Performs a binary dump of a database field to a file.

SYNTAX

db-name

Specifies the database where the dump will occur. You must completely define the path.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the name of the table containing the data you want to dump.

field-name

Specifies the name of the field containing the data you want to dump.

operator

Specifies the operator to be used: EQ (equals to), GT (greater than), LT (less than), GE
(greater than or equal to), or LE (less than or equal to).

field-value

Specifies the value against which the filed contents will be compared.

directory

Specifies the name of the target directory where the data will be dumped. A directory must
be specified.

Operating
System Syntax

UNIX
Windows

proutil db-name -C dumpspecified

[owner-name.]table-name.field-name operator field-value
directory
19–97

PROUTIL DUMPSPECIFIED
NOTES

• If a field needs to be compared to a string containing other than alpha characters (including
spaces or numbers), single quote the string. For example: ‘John Smith’, ‘11/14/01’, or
‘25 Main St’.

• If specifying a monetary value, do not include the money unit. For example, instead of
$5.50, enter 5.5.
19–98

PROUTIL ENABLELARGEFILES Qualifier
PROUTIL ENABLELARGEFILES Qualifier

Enables large file processing for a database.

SYNTAX

db-name

Name of the database to be enabled for large files.

NOTES

• The database must be offline when enabling large file processing.

• There is no corresponding command to disable large file processing for a database.

• Once large file processing is enabled for a database, the database cannot be accessed by
Progress Versions prior to 9.1C.

Operating
System Syntax

UNIX
Windows

proutil db-name -C EnableLargeFiles
19–99

PROUTIL ENABLEPDR Qualifier
PROUTIL ENABLEPDR Qualifier

Enables the database to work with Peer Direct for database replication.

SYNTAX

db-name

Specifies the name of database to be replicated.

NOTES

• Before enabling Peer Direct, you must grant Progress SQL-92 resource access to your Peer
Direct administrator.

• Tables to be replicated must have a unique primary key.

Operating
System Syntax

UNIX
Windows

proutil db-name -C enablepdr
19–100

PROUTIL HOLDER Qualifier
PROUTIL HOLDER Qualifier

Determines whether the database currently in use is in single-user mode, multi-user mode, or in
use by a Progress utility. This information is useful before performing a database backup or
shutting down a database.

When you execute this command, PROUTIL returns a different return code depending on how
you are running Progress. To get the information, you must run PROUTIL with the HOLDER
qualifier and test the command return code in a UNIX script or Windows batch file.

SYNTAX

db-name

Specifies the database you are using.

NOTES

• When the HOLDER qualifier completes, it sets a return code that you can test in a UNIX
script or Windows batch file. The return codes for the HOLDER qualifier on UNIX are
shown in the following table:

Any other nonzero return code indicates that an error has occurred.

Operating
System Syntax

UNIX
Windows

proutil db-name -C holder

SYNTAX

Operating System Return Code Description

UNIX
Windows

0 Database not in use.

14 Database locked by single user,
PROUTIL, or RFUTIL.

16 Database open in multi-user mode.
19–101

PROUTIL HOLDER Qualifier
• Return codes can be added or changed from one release to the next. Use scripts that depend
on a specific return code with caution.

• This example shows how you might use the HOLDER qualifier on UNIX in a script that
performs a database backup:

proutil mydb -C holder
retcode=$? # this saves the return code
case $retcode in
0) echo "The database is not busy, ok to backup"

;;
14) echo "The database is locked, no backup done"

exit $retcode
;;

16) echo "The database is busy in multi-user mode, no backup done"
exit $retcode
;;

*) proutil failed, no backup done
echo error code = $retcode
exit $retcode
;;

esac
proutil mydb -C truncate bi
<<test the return value from proutil here>>
<<put the backup command here>>
rfutil mydb -C mark backedup
19–102

PROUTIL IDXANALYS Qualifier
PROUTIL IDXANALYS Qualifier

Displays information on index blocks. It calculates the number of index blocks and the
percentage of the database used by the index blocks.

NOTE: The _UserStatus virtual system table displays the utility’s progress. For more
information see Chapter 14, “Managing Performance.”

SYNTAX

db-name

Specifies the database to analyze.

EXAMPLE

The following is a sample display of PROUTIL IDXANALYS output:

Operating
System Syntax

UNIX
Windows

proutil db-name -C idxanalys

INDEX BLOCK SUMMARY FOR AREA "Order" : 11

Table Index Fields Levels Blocks Size % Util Factor
PUB.BillTo

custnumbillto 46 2 1 1 27B 2.7 1.0
PUB.Order

CustOrder 48 2 2 44 39.1K 91.4 1.5
OrderDate 49 1 2 33 18.5K 57.7 2.1
OrderNum 47 1 2 38 35.3K 95.5 1.5
OrderStatus 50 1 2 7 3808B 54.6 2.1
SalesRep 51 1 2 9 6226B 69.5 1.9

PUB.OrderLine
itemnum 23 1 2 56 36.6K 67.2 1.9
orderline 22 2 3 139 132.7K 98.2 1.0
OrderLineStatus 24 1 2 10 7354B 73.8 1.8

PUB.ShipTo
custnumshipto 45 2 1 1 36B 3.6 1.0
19–103

PROUTIL IDXBUILD Qualifier
PROUTIL IDXBUILD Qualifier

Packs or consolidates index records to use disk space as efficiently as possible. It also:

• Compresses index blocks to minimize space usage.

• Activates deactivated indexes in the database.

• Repairs corrupted indexes in the database. (Index corruption is typically signaled by error
messages.)

SYNTAX

db-name

Specifies the database you are using.

all

Specifies that you want to rebuild all your indexes. PROUTIL automatically rebuilds all
your indexes without asking about disk space requirements.

If you do not specify all, the following menu appears:

Operating
System Syntax

UNIX
Windows

proutil db-name -C idxbuild [all]
[-T dir-name] [-TB blocksize]
[-TM n] [-B n]

Index Rebuild Utility

Select one of the following
All - Rebuild all of the indexes
Some - Rebuild only some of the indexes
Quit - Quit, do not rebuild

Enter your selection:
19–104

PROUTIL IDXBUILD Qualifier
The following table describes the options:

NOTES

• Use IDXFIX to repair and IDXCOMPACT to compress online.

• Use the Temporary Directory (-T) startup parameter to identify or redirect temporary files
created by the PROUTIL utility to a specified directory when sorting and handling space
issues.

• Use the Speed Sort (-TB), Merge Number (-TM), and Blocks in Database Buffers (-B)
startup parameters to improve index rebuild performance. For more information on these
parameters, see the Progress Startup Command and Parameter Reference.

• IDXBUILD does not repair corrupted data.

• Use the following formulas to determine whether you have enough free space to sort the
indexes:

– If you rebuild all the indexes in your database, sorting the indexes requires free space
that can be as much as 75 percent of the total database size.

– If you rebuild an individual index, sorting that index requires free space that can be
the size of one index entry * the number of records in the file * 2.

Option Action

All Prompts you to verify whether you have enough disk space for index sorting.

Some Prompts you for the indexes you want to rebuild, then prompts you to verify
whether you have enough disk space for index sorting.

Quit Quits without rebuilding any indexes.
19–105

PROUTIL IDXBUILD Qualifier
• The Index Rebuild utility rebuilds an index or set of indexes in three phases:

– The utility scans the database, clearing all index blocks that belong to the indexes and
rebuilds and adds those blocks to the free-block list.

– The utility scans the database file and rebuilds all the index entries for every data
record. If you chose to sort the index, the utility writes the index entries to the sort
file. Otherwise, the utility writes the index entries to the appropriate index at this
point.

– If you indicated that you have enough space to sort the indexes, the utility sorts the
index entries in the sort file into groups and enters those entries in one index at a time.

• For more information about using the IDXBUILD qualifier, see Chapter 14, “Managing
Performance.”
19–106

PROUTIL IDXCHECK Qualifier
PROUTIL IDXCHECK Qualifier

Checks Progress database indexes to determine whether an index is corrupt, and if it is,
diagnoses the problem. This lets you know whether you have to perform an index rebuild before
actually running PROUTIL IDXBUILD.

SYNTAX

db-name

Specifies the database whose index you are checking.

all

Specifies that you want to check all your indexes.

If you do not specify all, the following menu appears:

The following table describes the options:

Operating
System Syntax

UNIX
Windows

proutil db-name -C idxcheck [all]

Index Check Utility

Select one of the following:
All - Check all the indexes
Some - Check only some of the indexes
Quit - Quit, do not check

Enter your selection:

Option Action

All Checks all the indexes.

Some Prompts you for the indexes you want to check.

Quit Quits without checking any indexes.
19–107

PROUTIL IDXCHECK Qualifier
PROUTIL IDXCHECK performs the following operations for each index it checks:

• Reads the contents of the index and the contents of the file, verifies that all the values in
the records are indexed, and verifies that each value in the index is in the associated record.

• Performs various checks on the data structures in the index to verify that there is no
corruption.

IF PROUTIL IDXCHECK completes successfully, it ensures that all FIND, CAN-FIND, GET,
FOR EACH, and PRESELECT statements that use those indexes work correctly. If errors
result, the problem index might produce unexpected results with those statements.

NOTES

• When PROUTIL IDXCHECK finds any corruption, it displays error messages. If error
messages appear, save the database and the output messages for analysis by Progress
Software Corporation, then run PROUTIL IDXBUILD.

• IDXCHECK displays error and warning messages on the screen and logs them in the log
file. It also displays and logs a success or failure indication, along with the number of
errors and warnings issued.

• IDXCHECK might also display warning messages. Although these messages indicate that
some condition is a problem, the index is still valid. Check the log file for details.
19–108

PROUTIL IDXCOMPACT Qualifier
PROUTIL IDXCOMPACT Qualifier

Performs index compaction online. This is recommended when the PROUTIL IDXANALYS
utility indicates that space utilization of an index is reduced to 60% or less. Index compaction
increases space utilization of the index block to the compacting percentage specified by n.

SYNTAX

db-name

Specifies the source database name.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the source table containing the source index to be compacted.

index-name

Specifies the source index to be compacted.

n

Specifies the degree of index compaction. You can specify an integer >=50 and <=100.
The default value is 80. If you do not specify n, 80 is used.

Operating
System Syntax

UNIX
Windows

proutil db-name -C idxcompact

[owner-name.]table-name.index-name [n]
19–109

PROUTIL IDXCOMPACT Qualifier
NOTES

• Performing index compaction reduces the number of blocks in the B-tree and possibly the
number of B-tree levels, which improves query performance.

• The index compacting utility operates in phases:

– Phase 1: If the index is a unique index, the delete chain is scanned and the index
blocks are cleaned up by removing deleted entries.

– Phase 2: The nonleaf levels of the B-tree are compacted starting at the root working
toward the leaf level.

– Phase 3: The leaf level is compacted.

• PROUTIL IDXCOMPACT may be run either online or offline.

• In addition to compacting an index, this utility clears dead entries left after entries have
been deleted from unique indexes.

• Because index compacting is performed online, other users can use the index
simultaneously for read or write operation with no restrictions. Index compacting only
locks 1 to 3 index blocks at a time, for a short time. This allows full concurrency.

• The IDXCOMPACT utility does not lock any record or table.

• No other administrative operation on the index is allowed during the compacting process.

• In rare cases where the required percentage of compaction is very high, the compacting
percentage might not be reached. Repeating the compacting process a second time might
obtain better results.

• See Chapter 9, “Maintaining Database Structure,” for a description of how to monitor the
progress of this utility using the _UserStatus Virtual System Table (VST).
19–110

PROUTIL IDXFIX Qualifier
PROUTIL IDXFIX Qualifier

Checks the Progress database records and indexes to determine whether an index is corrupt or
a record has a missing or incorrect index. You can specify whether to scan the database, the
indexes, or both. You can run IDXFIX online or offline.

NOTE: The _UserStatus virtual system table displays the utility’s progress. For more
information, see Chapter 9, “Maintaining Database Structure.”

SYNTAX

db-name

Specifies the database whose index you are checking.

silent

Indicates that repetitive messages are not sent to the screen or the log file.

The Index Fix utility displays the following menu:

Operating
System Syntax

UNIX
Windows

proutil db-name -silent -C idxfix

Index Fix Utility

Select one of the following:
1. Scan records for missing index entries.
2. Scan indexes for invalid index entries.
3. Both 1 and 2 above.
4. Cross-reference check of multiple indexes for a table.
5. Build indexes from existing indexes.
6. Delete one record and its index entries.
7. Quit

Enter your selection:
19–111

PROUTIL IDXFIX Qualifier
The following table describes the options:

NOTES

• PROUTIL IDXFIX performs the following operations for each index it checks:

– Reads the contents of the index and the contents of the file, verifies that all the values
in the records are indexed, and verifies that each value in the index is in the
associated record.

– Performs various checks on the data structures in the index to verify that there is no
corruption.

• IDXFIX displays error messages on the screen and logs them in the log file. It also displays
and logs a success or failure indication, along with the number of errors and warnings
issued. IDXFIX might also display warning messages. Although these messages indicate
that some condition is a problem, the index is still valid. Check the log file for details.

Option Action

1 Scans the database records for missing or incorrect indexes.

2 Scans the index for corrupt index entries. You can specify whether to scan all
indexes or a specific set of indexes.

3 Checks the index entries, then checks the database entries.

4 Prompts you for the table and indexes for which you want to run a
cross-reference check.

Allows you to choose two or more indexes from one table. It first scans them
for invalid keys, then scans them for invalid records.

5 Prompts you to specify the table and the index that you want to use as the
source from which to build the index.

6 Prompts you to specify the recid of the record you want to delete.

Deletes one record and all its indexes from the database. Use this option when
a record has damaged indexes.

7 Ends the PROUTIL Index Fix utility.
19–112

PROUTIL IDXFIX Qualifier
• Index Fix does not provide a comparison of the index scan and the database scan when you
run them online because the database can change during operation.

• Index Fix is designed to wait if a record is in the process of being updated, thus ensuring
that it does not incorrectly change a user action in process. However, because changes can
occur during the scans, the reported data might not exactly match the database at
completion. Index Fix displays this warning when you run it online.

• To run Index Fix online, it must be run as a self-service session.

• Index Fix does not delete or disable indexes, but when you run a full database scan with
fix offline and it is successful, it enables a disabled index if no errors are found.

• Enabling indexes online is not advisable because it is not possible to detect changes that
are being made to indexes while the process is running.

• While IDXFIX can ensure that an index is complete and correct, it cannot make any
improvement to the index’s utilization level.

• See Chapter 9, “Maintaining Database Structure,” for a description of how to monitor the
progress of this utility using the _UserStatus Virtual System Table (VST).
19–113

PROUTIL IDXMOVE Qualifier
PROUTIL IDXMOVE Qualifier

Moves an index from one application data area to another while the database remains online.
You might be able to improve performance by moving indexes that are heavily used to an
application data area on a faster disk.

The PROUTIL IDXMOVE utility operates in two phases:

• Phase 1: The new index is being constructed in the new area. The old index remains in the
old area, and all users can continue to use the index for read operations.

• Phase 2: The old index is being killed, and all the blocks of the old index are being
removed to the free block chain. For a large index, this phase might take a significant
amount of time. During this phase all operations on the index are blocked until the new
index is available; users accessing the index might experience a freeze in their
applications.

NOTE: The _UserStatus virtual system table displays the utility’s progress. For more
information see Chapter 9, “Maintaining Database Structure.”

SYNTAX

db-name

Specifies the name of the database containing the table.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the source table containing the index to be moved.

Operating
System Syntax

UNIX
Windows

proutil db-name -C idxmove

[owner-name.]table-name.index-name area-name
19–114

PROUTIL IDXMOVE Qualifier
index-name

Specifies the name of an index to move.

area-name

Specifies the area name of the target application data area into which the index is to be
moved. Area names that contain spaces must be quoted. For example, “Area Name.”

NOTES

• While you can move indexes online, no writes to the table or its indexes are allowed during
the move. The IDXMOVE utility acquires a SHARE lock on the table, which blocks all
attempts to modify records in the table. Progress Software recommends that you run the
utility during a period when the system is relatively idle or when users are doing work that
does not access the table.

• No other administrative operation on the moved index will be allowed during the move of
the index. It will be blocked. For example, you cannot run an index move utility and at the
same time run the index fix or the index compacting utilities on the same index.

• Because the index move utility needs to acquire a share lock on the table, there is a
possibility that it will have to wait before it can acquire the lock and start operating.
19–115

PROUTIL IOSTATS Qualifier
PROUTIL IOSTATS Qualifier

Provides current statistics for active databases. The statistics include buffered, unbuffered, and
logical I/O database operations. The statistics are cumulative from database startup.

SYNTAX

db-name

Specifies the active database where you are running database I/O statistics.

EXAMPLE

The following is a sample display of PROUTIL IOSTATS output:

DISPLAY FIELDS

Operating
System Syntax

UNIX
Windows

proutil db-name -C iostats

Database name is sports (2524)
FILE BUFFERED UNBUFFERED LOGICAL (2556)

Writes Reads Writes Reads Reads Writes Extends (2557)
==
sports.b1 0 0 317 389 388 252 2
sports.d1 1 173 11 0 171 11 0
sports_7.d1 773 6792 0 0 6790 772 0
sports_7.d2 270 1702 10 0 1701 269 4
sports_8.d1 649 715 0 0 713 648 0
sports_8.d2 1 1 0 0 0 0 0
sports_9.d1 1 2 0 0 0 0 0
sports_9.d2 1 1 0 0 0 0 0
sports_10.d1 1 2 0 0 0 0 0
sports_10.d2 1 1 0 0 0 0 0
19–116

PROUTIL IOSTATS Qualifier
FILE

Displays the name of the file where the statistics are displayed. The file types can include:
database files (.db extensions), Before-image files (.bi extensions), After-image files (.ai
extensions), and application data extents (.dn extensions).

BUFFERED

Displays the number of buffered reads and writes to the database file for the associated
row.

UNBUFFERED

Displays the number of unbuffered reads and writes to the database file for the associated
row.

LOGICAL

Displays the number of client requests for database read and write operations for the
associated row.

NOTES

• The statistics are cumulative and are reset at database open.

• IOSTATS is available only on multi-user databases.

• IOSTATS provides a useful alternative to PROMON when you are only interested in
statistics on your database extents.

• You can use IOSTATS to determine if your files are opened in buffered or unbuffered
mode.
19–117

PROUTIL LOAD Qualifier
PROUTIL LOAD Qualifier

Performs a binary load of database contents.

SYNTAX

db-name

Specifies the database where you want to load the data. You must completely define the
path.

filename

Specifies the binary dump file that you want to load. You must completely define the path.

build indexes

Indicates that PROUITL LOAD will simultaneously build the indexes and perform the
load.

-TB n

Specifies that the index rebuild will be performed using Speed Sort. n indicates the
allocated block size, in kilobytes. For more information on the Speed Sort (-TB) parameter,
see the Progress Startup Command and Parameter Reference.

-TM n

Specifies the merge number. n indicates the number of blocks or streams to be merged
during the sort process. For more information on the Merge Number (-TM) parameter, see
the Progress Startup Command and Parameter Reference.

-T dir-name

Specifies the name of the directory in which the temporary files are stored. If you do not
use this parameter, PROUTIL places temporary files in the current working directory. For
more information about the Temporary Directory (-T) parameter, see the Progress Startup
Command and Parameter Reference.

Operating
System Syntax

UNIX
Windows

proutil db-name -C load filename [build indexes [-TB
blocksize] [-TM n] [-T dir-name] | [-SS
sort-file-directory-specification]]
19–118

PROUTIL LOAD Qualifier
-SS sort-file-directory-specification

Identifies the location of a multi-volume sort file specification. If you use the Sort
Directory Specification (-SS) parameter, PROUTIL does not use the Temporary Directory
(-T) parameter.

NOTES

• See Chapter 13, “Dumping and Loading,” for more information about the LOAD qualifier.

• The PROUTIL DUMP and LOAD utilities use cyclic redundancy check (CRC) values to
establish the criteria for loading.

The Progress database provides a flexible storage architecture and the ability to relocate
objects, such as tables and indexes, while the database remains online. As a result, when
you perform a binary load operation, the table numbers in a binary dump file might not
match the table numbers in the target database. Therefore, when you perform a binary load
operation, the criteria for loading tables is based solely on cyclic redundancy check (CRC)
values, and not table numbers.

For example, when you dump a table, the PROUTIL utility calculates a CRC value for the
table and stores it in the header of the binary dump file. When you load the table,
PROUTIL matches the CRC value stored in the header with the CRC value of the target
table. The values must match or the load is rejected.

You can load a binary dump file created with a previous version of the PROUTIL DUMP
utility, because the current version of PROUTIL LOAD uses the CRC value established
when the file was originally dumped. Consequently, the Progress database maintains
backwards compatibility.

However, you cannot use a previous version (Version 8.3 or earlier) of the PROUTIL
LOAD utility to load a binary dump file created using the current version (Version 9.0 or
later) of the PROUTIL DUMP utility. The previous versions of PROUTIL DUMP and
LOAD did not use CRC values to establish the criteria for loading, but instead used other
mechanisms, such as:

– Looking up table RecIDs in a target database using the table number stored in the
header of the binary dump file.

– Matching table numbers in the header of the binary dump file with table numbers in
a target database.

– Comparing the number of fields in the binary dump file with the number of fields in
the target database.
19–119

PROUTIL LOAD Qualifier
• On UNIX systems that have a 2GB file size limitation (Alpha OSF does not), PROUTIL
DUMP creates multiple files when you dump a table larger than 2GB. For example, when
you dump data from a table with the name “customer” that is 6.4GB, PROUTIL DUMP
creates four binary dump files: customer.bd, customer.bd2, and customer.bd3, each of
which is approximately 2GB, and customer.bd4, which is approximately 0.4GB. The
PROUTIL DUMP procedure adds header blocks to the binary dump files. As a result, the
total size of the binary dump files is slightly larger than the table itself.

On Windows NT and Alpha OSF, however, there is no 2GB file size limitation. On
Windows NT and Alpha OSF, PROUTIL DUMP creates only one binary dump file
regardless of the size of the table.

To load multiple binary dump files into the target database, specify each file individually.
For example:

• PROUTIL LOAD supports loading binary large objects (BLOBS).

• When using PROUTIL LOAD with the BUILD INDEXES qualifier, PROUTIL marks the
existing indexes as inactive. Once PROUTIL successfully creates the indexes, it marks the
indexes active. This means that if the binary load is aborted for any reason, PROUTIL
leaves the table with no active indexes.

• Tables loaded with the build indexes qualifier must be empty.

proutil db-name -C load customer.bd
proutil db-name -C load customer.bd2
proutil db-name -C load customer.bd3
proutil db-name -C load customer.bd4
19–120

PROUTIL MVSCH Qualifier
PROUTIL MVSCH Qualifier

Frees disk space by moving schema after converting a database from Version 8 to Version 9.

SYNTAX

db-name

Specifies the name of the converted database.

NOTES

• After a database is converted from Version 8 to Version 9, the database’s schema and data
are located within the Schema Area (Area 6). After conversion, it is possible to move data
into new areas by using PROUTIL dump and load or bulkload qualifiers, the Database
Administration Tool, the Database Dictionary, or 4GL code. However, Area 6 continues
to hold disk space, even after the removal of data, because the schema remains. Once the
area’s schema is removed by using PROUTIL MVSCH, Area 6 can be truncated.

• You must truncate the database’s BI file before using PROUTIL MVSCH.

• Always backup the database before using PROUTIL MVSCH.

CAUTION: PROUTIL with the mvsch qualifier is a non-recoverable utility. If the
execution fails, you cannot connect to the database.

Operating
System Syntax

UNIX
Windows

proutil db-name -C mvsch
19–121

PROUTIL RCODEKEY Qualifier
PROUTIL RCODEKEY Qualifier

Inserts the authorization key into existing CRC-based r-code.

SYNTAX

db-name

Specifies the database you are using.

old-key

Specifies the old authorization key.

new-key

Specifies the new authorization key.

files

Specifies the r-code files.

Operating
System Syntax

UNIX
Windows

proutil db-name -C rcodekey old-key new-key files ...
19–122

PROUTIL RCODEKEY Qualifier
NOTES

• When you use the DBAUTHKEY qualifier to set, change, and remove authorization keys,
you can use the RCODEKEY qualifier to update your r-code without compiling it. The
following table lists the values you must enter for each task:

• Once you set the authorization key, do not forget it. You cannot change or remove the
authorization key without knowing its current value.

Task old-key Value new-key Value Files

Set the authorization
key

Plus sign (+) Authorization key R-code files

Change the
authorization key

Current
authorization key

New
authorization key

R-code files

Remove the
authorization key

Current
authorization key

Plus sign (+) R-code files
19–123

PROUTIL TABANALYS Qualifier
PROUTIL TABANALYS Qualifier

Displays information about the degree of fragmentation for each table in a database. Also
displays summary information about record sizes for each table.

SYNTAX

db-name

Specifies the database to display information.

EXAMPLE

The following is a sample display of PROUTIL TABANALYS output:

DISPLAY FIELDS

Table

Table owner and table name.

Records

Total number of records in the database for the table.

Bytes

Total number of bytes used in the database for the table.

Operating
System Syntax

UNIX
Windows

proutil db-name -C tabanalys

RECORD BLOCK SUMMARY FOR AREA "Employee" : 7

-Record Size (B)- ---Fragments--- Scatter
Table Records Size Min Max Mean Count Factor Factor
PUB.Benefits 21 848B 39 41 40 21 1.0 2.0
PUB.Department 7 211B 26 35 30 7 1.0 1.0
PUB.Employee 55 6434B 99 135 115 55 1.0 1.0
PUB.Family 72 3195B 38 51 44 72 1.0 1.4
PUB.Timesheet 25 1081B 42 45 43 25 1.0 1.0
PUB.Vacation 12 288B 24 24 24 12 1.0 1.5
19–124

PROUTIL TABANALYS Qualifier
Min

Minimum number of bytes used by any record for the table.

Max

Maximum number of bytes used by any record for the table.

Mean

Mean number of bytes used by any record for the table.

Count

Total number of record fragments found in the database for the table.

Factor

Degree of record fragmentation for the table. This value is determined by the number of
fragments divided by the ideal number of fragments (for example, if the data were freshly
loaded). A value of 1.0 is ideal. A value of 2.0 indicates that there are twice as many
fragments as there would be if the data were freshly loaded.

Use the Index value to determine whether to dump and reload your data to improve
fragmentation. If the value is 2.0 or greater, dumping and reloading will improve
performance. If the value is less than 1.5, dumping and reloading is not warranted.

Scatter Factor

Degree of distance between records in the table.

The best achievable Scatter Index value is that of a freshly loaded database. This is the
baseline number against which you should compare future Scatter Index measurements. A
value of 1 indicates that the records occupy completely contiguous database blocks. A
value of 2 indicates that the records are scattered 10 times wider than the ideal.

Use this value to determine the performance impact caused by fragmentation. If the value
is 1.5 or greater, performance will be poor for sequential record access, and dumping and
loading the data might be warranted. A value of 1.5 or greater might also reduce
performance for random access; however, this depends on the system type and the
application.
19–125

PROUTIL TABANALYS Qualifier
NOTES

• The PROUTIL DBANALYS display includes the information displayed by PROUTIL
TABANALYS.

• See Chapter 14, “Managing Performance,” for more information about database
fragmentation.
19–126

PROUTIL TABLEMOVE Qualifier
PROUTIL TABLEMOVE Qualifier

Moves a table and optionally its associated indexes from one storage area to another while the
database remains online.

NOTE: The _UserStatus virtual system table displays the utility’s progress. For more
information see Chapter 9, “Maintaining Database Structure.”

SYNTAX

db-name

Specifies the name of the database containing the table.

owner-name

Specifies the owner of the table containing the data you want to dump. You must specify
an owner name unless the table’s name is unique within the database, or the table is owned
by “PUB.” By default, Progress 4GL tables are owned by PUB.

table-name

Specifies the name of the table to be moved.

table-area

Specifies the area name of the target application data area into which the table is to be
moved. Area names with spaces in the name must be quoted, for example, “Area Name.”

index-area

Optionally, specifies the name of the target index area. If the target index area is supplied,
the indexes will be moved to that area. Otherwise they will be left in their existing location.
You can move indexes to an area other than the area to which the table is being moved.
Area names with spaces in the name must be quoted, for example, “Area Name”.

Operating
System Syntax

UNIX
Windows

proutil db-name -C tablemove

[owner-name.]table-name table-area [index-area]
19–127

PROUTIL TABLEMOVE Qualifier
NOTES

• If you omit the index-area parameter the indexes associated with the table will not be
moved.

• Moving the records of a table from one area to another invalidates all the ROWIDs and
indexes of the table. Therefore, the indexes are rebuilt automatically by the utility whether
you move them or not. You can move the indexes to an application data area other than
the one to which you are moving the table. If you want to move only the indexes of a table
to a separate application data area, use the PROUTIL IDXMOVE utility.

Moving a table’s indexes with the TABLEMOVE qualifier is more efficient than moving
a table separately and then moving the indexes with the IDXMOVE utility. Moving a table
separately from its indexes wastes more disk space and causes the indexes to be rebuilt
twice, which also takes longer.

The PROUTIL TABLEMOVE utility operates in phases:

– Phase 1: The records are moved to the new area and a new primary key is built.

– Phase 2: All the secondary indexes are built:

If you did not specify the index-area parameter, then the indexes are rebuilt in their
original area. If you did specify the index-area parameter, then all the indexes are
moved to the new area where they are rebuilt.

– Phase 3: All the records in the old area are removed.

– Phase 4: All the old indexes are killed and the _StorageObject records of the indexes
and the table are updated.

– The _UserStatus virtual system table displays the utility’s progress. For more
information, see Chapter 20, “Virtual System Tables.”

• Although PROUTIL TABLEMOVE operates in phases, it moves a table and its indexes
in a single transaction. To allow a full recovery to occur when a transaction is interrupted,
every move and delete of each individual record is logged. As a result, moving a table
requires the BI Recovery Area to be several times larger than the combined size of the
table and its indexes. Therefore, before moving your table, determine if your available disk
capacity is sufficient to support a variable BI extent that might grow to more than three
times the size of the table and its indexes.
19–128

PROUTIL TABLEMOVE Qualifier
• While you can move tables online, no access to the table or its indexes is recommended
during the move. The utility acquires an EXCLUSIVE lock on the table while it is moving.
An application that reads the table with an explicit NO-LOCK might be able to read
records, but in some cases might get the wrong results, since the table move operation
makes many changes to the indexes. Progress Software recommends that you run the
utility during a period when the system is relatively idle, or when users are doing work that
does not access the table.

• No other administrative operation on any index of the moved table is allowed during the
table move.

• There is a possibility that the utility will have to wait for all the necessary locks to be
available before it can start. This might take some time.
19–129

PROUTIL TRUNCATE AREA Qualifier
PROUTIL TRUNCATE AREA Qualifier

Deletes all the tables and indexes in the specified storage area.

SYNTAX

db-name

Specifies the database that contains the application data storage areas that you want to
truncate.

area-name

Specifies the name of the storage area you want to truncate. When you specify the area
name, PROUTIL truncates the area even if it contains storage objects. If no area name is
specified, PROUTIL truncates all areas not containing objects.

NOTES

• Use of this qualifier is an important step in removing application data storage areas and
extents from a database.

• Deleting the contents of storage areas with this feature also allows for rapid dumping and
loading. Use PROUTIL with the TRUNCATE AREA qualifier after dumping data, but
before initiating the load.

• Before using PROUTIL with the TRUNCATE AREA qualifier, remove all tables and
indexes from the application data storage areas you want to truncate.

• PROUTIL with the TRUNCATE AREA qualifier works by resetting the hi-water mark in
the storage area back to the beginning of the storage area. This hi-water mark reset frees
all of the space in the storage area for re-use. Any tables and indexes in the storage areas
are initialized to the state they were in before they contained any rows or index entries.
Before resetting the hi-water mark, the before image (.bi) file is truncated.

• To use this command, the database must be off-line and after imaging must be disabled.

Operating
System Syntax

UNIX
Windows

proutil db-name -C truncate area area-name
19–130

PROUTIL TRUNCATE AREA Qualifier
• If the storage area does not contain any storage objects, then the command simply resets
the hi-water mark. If the storage area does contain tables and or indexes, their names are
listed and you must confirm to truncate the storage area.

• Indexes in other storage areas that are on tables in the storage area being truncated are
marked as inactive.

• Empty index root blocks for indexes in the area being truncated are recreated.

• PROUTIL with the TRUNCATE AREA qualifier re-creates any template records in the
new area.

NOTE: The schema area cannot be truncated.

For more information, see the “Progress Structure Remove Utility” section in Chapter 9,
“Maintaining Database Structure.”
19–131

PROUTIL TRUNCATE BI Qualifier
PROUTIL TRUNCATE BI Qualifier

Performs three functions:

• Uses the information in the before-image (BI) files to bring the database and after-image
(AI) files up to date, waits to verify that the information has been successfully written to
the disk, then truncates the before-image file to its original length.

• Sets the BI cluster size using the Before-image Cluster Size (-bi) parameter.

• Sets the BI block size using the Before-image Block Size (-biblocksize) parameter.

SYNTAX

db-name

Specifies the database you are using.

-G n

Specifies the number of seconds the TRUNCATE BI qualifier waits after bringing the
database and AI files up to date and before truncating the BI file. The default wait period
is 60 seconds. You might specify a shorter period for practice or test purposes. However,
do not do so for any significant database, because a system crash could damage the
database if the BI file is truncated before the writes to the database and AI files are flushed
from the operating system buffer cache.

-bi size

Specifies the size of the cluster in kilobytes. The number must be a multiple of 16 ranging
from 16 to 262,128 (16K to 256MB). The default cluster size is 524K. If you use a value
that is not a multiple of 16, PROUTIL rounds the value up to the next multiple of 16.

-biblocksize size

Specifies the size of the BI blocks in each buffer in kilobytes. The valid values are 1, 2, 4,
8, and 16. The default -biblocksize is 8K. A value of 0 tells Progress to use the default
block size. The block size cannot be smaller than the database block size.

Operating
System Syntax

UNIX
Windows

proutil db-name -C truncate bi

{ [-G n] | -bi size | -biblocksize size }
19–132

PROUTIL TRUNCATE BI Qualifier
NOTES

• The Before-image Block Size (-biblocksize) parameter changes the BI block size so that
Progress reads and writes the blocks as one block.

• Use the PROSTRCT STATISTICS qualifier to display the block size for a database.

• If you change the BI block size or cluster size before backing up a database, when you
restore the database, the blocks and clusters will be the size you specified before the
backup.

• Progress reads all the BI blocks according to the size of the first block it reads. For
example, if the first BI block is 8K, Progress reads and writes each block on an 8K
boundary.

• For performance reasons, you might want to run PROUTIL with the -C bigrow qualifier to
increase the number of BI clusters available to your database before starting your server.
19–133

PROUTIL UPDATEVST Qualifier
PROUTIL UPDATEVST Qualifier

Loads the specified database with updated or new virtual system tables (VSTs). For a reference
of the virtual system tables that Progress provides, see Chapter 20, “Virtual System Tables.”

SYNTAX

db-name

Specifies the database you are using.

NOTES

• The PROUTIL utility with UPDATEVST qualifier deletes all existing VST schema
information, then re-creates all the VSTs from the most current information.

Operating
System Syntax

UNIX
Windows

proutil db-name -C updatevst
19–134

PROUTIL WBREAK-COMPILER Qualifier
PROUTIL WBREAK-COMPILER Qualifier

Compiles a word-break table. For PROUTIL WBREAK-COMPILER to succeed, the
word-break table source file must define a data structure named word_attr.

SYNTAX

src-file

Identifies the word-break table source file to compile.

rule-num

Specifies an integer between 1 and 255 (inclusive) that will uniquely identify the compiled
word-break table. PROUTIL WORD-BREAK COMPILER names the compiled version
of the word-break table proword.rule-num. For example, if rule-num is 34, the name of
the compiled word-break table file is proword.34.

NOTES

• See the Progress Programming Handbook for more information about word indexes and
word-break table syntax.

• To reference your compiled word-break table (proword.rule-num), move it to the $DLC
directory or set the PROWD environment variable to point to the location of the file. When
you set the PROWD environment variable, append the value of rule-num to PROWD. For
example:

• To apply the word-break rules to a database, use the WORD-RULES qualifier with the
PROUTIL utility.

Operating
System Syntax

UNIX
Windows

proutil -C wbreak-compiler src-file rule-num

PROWD34=proword.34; export PROWD34
19–135

PROUTIL WORD-RULES Qualifier
PROUTIL WORD-RULES Qualifier

Compiles a word rules file that tells Progress that the rules in the specified files apply to a
database.

SYNTAX

db-name

Specifies the database you are using.

rule-numb

Specifies an integer between 1 and 255 that uniquely identifies this set of rules on your
system that you created with the WBREAK-COMPILER qualifier.

NOTES

• If you change the word-break rules when word indexes are active, the indexes might not
work properly because the rules used to create the index differ from those used when
searching the index. Therefore, when you change the break rules for a database, you are
warned if any word indexes are active. You should rebuild any such indexes. You can
make old indexes consistent with the new rules by rebuilding them with the PROUTIL
IDXBUILD qualifier. See Chapter 14, “Managing Performance,” for more information
about using the IDXBUILD qualifier.

• Progress maintains a CRC code to ensure that the word-break rule file does not change
between sessions. If it has changed, Progress displays a message when you attempt to
connect to the database. The connect attempt fails. You can fix this by restoring the
original file or resetting the break rules to the default. Note that resetting to the default
break rules might invalidate your word indexes.

Operating
System Syntax

UNIX
Windows

proutil db-name -C word-rules rule-numb
19–136

RFUTIL Utility
RFUTIL Utility

Performs various roll-forward recovery activities, depending on the qualifier you supply.

SYNTAX

db-name

Specifies the database you are using.

-C

Specifies a particular utility or function when you use the rfutil command.

qualifier

Specifies the qualifier that you want to use. You can supply the qualifiers listed in Table
19–8.

NOTE: RFUTIL and its qualifiers support the use of internationalization startup parameters
such as -cpinternal codepage and -cpstream codepage. See Chapter 18,
“Database Startup Parameters,” for a description of each database-related
internationalization startup parameter.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C qualifier

Table 19–8: RFUTIL Utility Qualifiers (1 of 2)

Qualifier Description

AIMAGE AIOFF Disables after-imaging for a database during
maintenance.

AIMAGE BEGIN Enables after-imaging for a database.

AIMAGE END Disables after-imaging for a database.
19–137

RFUTIL Utility
The following RFUTIL entries describe each of these qualifiers.

AIMAGE EXTENT EMPTY Marks an AI extent as empty and informs the Progress
database manager that the indicated AI extent has been
manually backed up and is now free for reuse.

AIMAGE EXTENT FULL Displays the pathname of the oldest filled file.

AIMAGE EXTENT LIST Displays information about extents.

AIMAGE NEW Switches after-imaging to the next AI extent.

AIMAGE SCAN Scans any after-image (AI) file and displays information
from that file.

AIMAGE TRUNCATE Truncates all of the variable-length after-image (AI)
extents and optionally sets the AI block size with the
After-image Block Size (-aiblocksize) parameter.

MARK BACKEDUP Marks the database file, indicating that you have just
completed a backup of the database.

ROLL FORWARD Reconstructs a database by applying to that database all
notes stored in the after-image (AI) file.

ROLL FORWARD RETRY Restarts the roll-forward operation on the after-image
extent that was in the process of rolling forward. The
retry operation finds the transaction in process at the
time of failure and resumes rolling forward.

Table 19–8: RFUTIL Utility Qualifiers (2 of 2)

Qualifier Description
19–138

RFUTIL AIMAGE AIOFF
RFUTIL AIMAGE AIOFF

Disables after-imaging for a database in multi-user mode. You do not have to shut down the
database to use AIMAGE AIOFF. Use AIMAGE AIOFF to:

• Perform scheduled maintenance on a database.Disabling after-imaging during a table
move or index rebuild saves time and disk space.

• Prevent database crashes caused by a pending lack of disk space. Instead of switching AI
extents, you can disable after-imagine.

CAUTION: If you disable after-imaging and the database crashes, you cannot roll forward.

SYNTAX

db-name

Specifies the database you are using.

NOTE

• To enable after-imaging after disabling it with the RFUTIL qualifier AIMAGE AIOFF,
use the RFUTIL qualifier AIMAGE BEGIN.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage aioff
19–139

RFUTIL AIMAGE BEGIN Qualifier
RFUTIL AIMAGE BEGIN Qualifier

Enables after-imaging for a database. The AIMAGE BEGIN qualifier:

• Creates the after-image (AI area) that will hold after-image notes

• Labels the database as having after-imaging enabled

SYNTAX

db-name

Specifies the database you are using.

NOTE

• The AIMAGE BEGIN qualifier fails if:

– It cannot truncate an existing AI area

– You have not marked the database as backed up since the last time the database was
modified

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage begin
19–140

RFUTIL AIMAGE END Qualifier
RFUTIL AIMAGE END Qualifier

Disables after-imaging for a database.

SYNTAX

db-name

Specifies the database you are using

NOTES

• The AIMAGE END qualifier fails if after-imaging is not enabled.

• When you use the RFUTIL AIMAGE END qualifier on a database with AI areas, RFUTIL
marks all of the AI areas as empty. This means that you cannot access any information that
you did not back up for roll-forward recovery.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage end
19–141

RFUTIL AIMAGE EXTENT EMPTY Qualifier
RFUTIL AIMAGE EXTENT EMPTY Qualifier

Marks an AI extent as empty and informs the Progress database manager that the indicated AI
extent has been manually backed up and is now free for reuse.

SYNTAX

db-name

Specifies the database you are using.

extent-number

Specifies the number of the extent you want to mark as empty.

extent-path

Specifies the pathname of the extent you want to mark as empty.

NOTES

• Use RFUTIL AIMAGE EXTENT LIST or RFUTIL AIMAGE EXTENT FULL to
determine the extent-number or extent-pathname.

• If you do not specify either an extent number or an extent path, RFUTIL marks the oldest
full extent as empty.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage extent empty

[extent-number | extent-path]
19–142

RFUTIL AIMAGE EXTENT FULL Qualifier
RFUTIL AIMAGE EXTENT FULL Qualifier

Displays the pathname of the oldest filled file. This is the next file to be backed up.

SYNTAX

db-name

Specifies the database you are using.

NOTE

• Use RFUTIL AIMAGE EXTENT FULL in a script similar to the following:

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage extent full

UNIX

last_full=’_rfutil mydb -C aimage extent full’
tar -cvf /dev/ai_archive $last_full
rfutil mydb -C aimage extent full $last_full
19–143

RFUTIL AIMAGE EXTENT LIST Qualifier
RFUTIL AIMAGE EXTENT LIST Qualifier

Displays the following information:

• Extent Number — Number of each file.

• Extent Type — Type of each file. This is either fixed length or variable length.

• Extent Path — Pathname of each file.

• Extent Size — Size of each file in 1K blocks.

• Space Used — Number of blocks of space used in each file.

• Extent Status — Status of each file. This is either empty, full, or busy.

• Start/Date Time — Time each file began logging AI notes. This is not applicable to
empty files.

SYNTAX

db-name

Specifies the database you are using.

NOTE

The status of a file might be full even though there is space left over in the file. This can happen
after an online backup because file switch-over occurs at the time of the backup, whether or not
the current file is full. Progress still marks the file as full because, like a full file, it must be
archived and marked empty before Progress can reuse it.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage extent list
19–144

RFUTIL AIMAGE NEW Qualifier
RFUTIL AIMAGE NEW Qualifier

Changes the status of the current AI extent to full and changes the status of the next AI extent
to busy. Use this qualifier only when after-imaging is enabled and you have just backed up the
AI area.

SYNTAX

db-name

Specifies the database you are using.

NOTES

• The AIMAGE NEW qualifier fails if:

– The next extent is not empty

– The database has no AI extents

• You can use this qualifier whether the database is offline or online.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage new
19–145

RFUTIL AIMAGE SCAN Qualifier
RFUTIL AIMAGE SCAN Qualifier

Scans any after-image (AI) file and displays information from that file.

SYNTAX

db-name

Specifies the database you are using.

verbose

Provides more information from the AI area, including the transaction number, the date
and time the transaction began or ended, and the user ID of the user who initiated the
transaction. You might want to try this on a small test AI area before running it on the
after-image file associated with your database.

-a ai-name

Identifies the AI area of the specified database.

NOTES

• The AIMAGE SCAN qualifier fails if:

– You omit the After-image area (-a) parameter

– It cannot open the AI area

• The specified database does not have to be the database that corresponds to the AI area.
You can use a dummy database to use this command with an AI area for an online
database.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage scan [verbose]
-a ai-name
19–146

RFUTIL AIMAGE TRUNCATE Qualifier
RFUTIL AIMAGE TRUNCATE Qualifier

Truncates all of the variable-length after-image (AI) extents and optionally sets the AI block
size with the After-image Block Size (-aiblocksize) parameter.

SYNTAX

db-name

Specifies the database you are using.

-aiblocksize size

Specifies the size of the AI blocks in each buffer, in kilobytes. The valid values are 1, 2,
4, 8, and 16. The block size cannot be smaller than the database block size.

NOTES

• After executing this command to change the AI block size, you must perform a full backup
of the database before you can re-enable after-imaging. If you change the BI block size or
cluster size before backing up the database, the block size of the backup will overwrite the
changed block size when the backup is restored.

• Increasing the AI block size allows larger AI reads and writes. This can reduce I/O rates
on disks where the AI areas are located. If your operating system can benefit from larger
writes, this option can improve performance. Larger AI block size might also improve
performance for roll-forward recovery processing.

• When you execute this command, after-imaging and two-phase commit must be disabled,
and the database must be offline; otherwise, Progress returns an error message.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C aimage truncate -aiblocksize size
19–147

RFUTIL AIMAGE TRUNCATE Qualifier
• After you change the AI block size, Progress uses the new block size in all database
operations.

• Use the PROSTRCT STATISTICS qualifier to display the block sizes for a database.

• Typically, if you change the AI block size, you should also change the before-image (BI)
block and cluster size; otherwise, the increased AI performance will cause a BI bottleneck.

• See Chapter 14, “Managing Performance,” for more information about using the RFUTIL
AIMAGE TRUNCATE utility.
19–148

RFUTIL MARK BACKEDUP Qualifier
RFUTIL MARK BACKEDUP Qualifier

Marks the database file, indicating that you have just completed a backup of the database.

Use the MARK BACKEDUP qualifier if you are using an operating system backup utility
instead of PROBKUP. The Progress Backup/Restore utility automatically marks the database
as backed up.

SYNTAX

db-name

Specifies the database you want to mark as backed up.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C mark backedup
19–149

RFUTIL ROLL FORWARD Qualifier
RFUTIL ROLL FORWARD Qualifier

Reconstructs a database by applying to that database all notes stored in the after-image (AI) file.
The ROLL FORWARD qualifier displays the following information:

• The start and end dates of the AI area being applied to the database

• The number of completed transactions reapplied to the database

• The number of transactions that were active after all AI notes were applied.

SYNTAX

db-name

Specifies the database you are using.

verbose

Produces information for every note in the AI area.

-a ai-name

Identifies the AI area of the specified database.

endtime

Specifies to roll forward to a certain time. You must specify the ending time as a string of
digits and separate the date and time components with a colon. Transactions are included
in the partial roll forward only if they end before the specified time. For example, to roll
forward to 5:10 PM on July 18, 2002, type 2002:07:18:17:10:00. For Progress to include
a transaction in this partial roll forward, the transaction must have ended on or before
2002:07:18:17:09:59.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C roll forward [verbose]
[endtime yyyy:mm:dd:hh:mm:ss

| endtrans transaction-number
]
[-B n] [-r] -a ai-name
19–150

RFUTIL ROLL FORWARD Qualifier
endtrans

Specifies to roll forward up to but not including the transaction beginning that contains the
transaction-number. For example, if you specify endtrans 1000, Progress rolls forward
the AI area to transaction 999. If you want to include transaction 1000, you must specify
endtrans 1001.

-B n

Specifies the number of database buffers. The single-user default value is 20.

-r

Directs Progress to use buffered I/O.

If the system crashes while you are running the ROLL FORWARD operation, restore your
database files again and rerun the ROLL FORWARD operation.

The ROLL FORWARD qualifier fails if:

• You omit the After-image Filename (-a) parameter

• It cannot open the AI area

• You name the wrong AI area

• The database was opened before all AI extents were applied

NOTES

• The ROLL FORWARD qualifier always disables after-imaging for the database before
beginning the roll-forward operation. After the roll-forward has completed, you must
re-enable it with the AIMAGE BEGIN qualifier if you want continued AI protection.

• You must apply all AI extents associated with the database in the same sequence they were
generated before you can use the database.
19–151

RFUTIL ROLL FORWARD RETRY Qualifier
RFUTIL ROLL FORWARD RETRY Qualifier

Enhances the support of 24 X 7 database operations. The use of this qualifier is limited to
RFUTIL roll-forward operations that fail because of power outages or system failures. The
ROLL FORWARD RETRY qualifier restarts the roll-forward operation on the after-image
extent that was in the process of rolling forward. The retry operation finds the transaction in
process at the time of failure and resumes rolling forward. It recovers the (transaction log) TL
extents. Entries noting the use of the retry operation appear in the LG file of the database. If
subsequent failures occur during the retry operation, the retry operation can be restarted.

SYNTAX

db-name

Specifies the database you are using.

endtime

Specifies to roll forward to a certain point in time. You must specify the ending time as a
string of digits and separate the date and time components with a colon. Transactions are
included in the partial roll forward only if they end before the specified time. For example,
to roll forward to 5:10 PM on July 18, 2002, type 2002:07:18:17:10:00. For Progress to
include a transaction in this partial roll forward, the transaction must have ended on or
before 2002:07:18:17:09:59.

endtrans

Specifies to roll forward up to but not including the transaction beginning that contains the
transaction-number. For example, if you specify endtrans 1000, Progress rolls forward
the AI area to transaction 999. If you want to include transaction 1000, you must specify
endtrans 1001.

Operating
System Syntax

UNIX
Windows

rfutil db-name -C roll forward retry
[endtime yyyy:mm:dd:hh:mm:ss
| endtrans transaction-number
]
[-B n] [-r] [verbose]
-a ai-area
19–152

RFUTIL ROLL FORWARD RETRY Qualifier
-B n

Specifies the number of database buffers. The single-user default value is 20.

-r

Directs Progress to use buffered I/O.

verbose

Produces one line of information for every note in the AI area.

-a ai-area

Identifies the AI area of the specified database.

NOTE

• Roll forward might encounter a 2phase begin note in a BI area that will signal roll forward
to enable transaction commit logging to the transaction log. If the database does not
contain a transaction log (TL) area, roll forward will abort. To recover from this situation,
you should first add a TL area to your database and then run ROLL FORWARD RETRY.
19–153

SQLDUMP Utility
SQLDUMP Utility

A command-line utility that dumps application data from SQL-92 tables into one or more files.
You can load the data from the files into another database with the SQLLOAD utility. The
SQLDUMP utility does not dump data from Progress 4GL tables.

Before you can execute SQLDUMP against a database server, the server must be configured to
accept SQL connections and must be running. See Chapter 4, “Creating and Deleting
Databases,” for instructions on creating a database and Chapter 5, “Starting Up and Shutting
Down,” for information about starting a Progress database or database server.

SYNTAX

-u user_name

Specifies the user id SQLDUMP used to connect to the database. If you omit the
user_name and password parameter values, SQLDUMP prompts you for the values. If you
omit user_name and supply a password, SQLDUMP uses the value defined in the USER
environment variable as the user_name value.

-a password

Specifies the password used by the database for authentication.

Operating
System Syntax

UNIX
Windows

sqldump -u user_name [-a password] [-C code-page-name]
-t [owner_name.]table_name1
[[,owner_name.]table_name2, ...]

database_name
19–154

SQLDUMP Utility
-C code-page-name

A case-insensitive character string that specifies the name of the dump file’s code page. If
the -C parameter specifies a code page name that is not valid, Progress reports a run-time
error. If the -C parameter does not appear at all, the code page name defaults to the client’s
internal code page, which is:

• The value of the client’s SQL_CLIENT_CHARSET environment variable, if set

• Otherwise, the name of the code page of the client’s locale.

For example, you might use the -C parameter to have a Windows client using the MS1250
code page produce a dump file using the ISO8859-2 code page (to read later on a UNIX
machine, perhaps). Although you can accomplish this by setting the client’s
SQL_CLIENT_CHARSET environment variable, using the -C parameter might be easier.

-t owner_name.table_name

Specifies a list of one or more tables to dump to a file. This parameter is required. Pattern
matching is supported in both owner_name and table_name, using a percent sign (%) for
one or more characters and an underscore (_) for a single character. The pattern matching
follows the standard defined by the LIKE predicate in SQL-92.

You can dump a single table, a set of tables, or all tables. If you omit the optional
owner_name qualifier, SQLDUMP uses the name specified by the -u parameter.

database_name

Specifies the database where you are dumping tables. You can dump tables from one
database each time you invoke SQLDUMP. There is no option flag preceding the
database_name. This parameter is required and must be the last parameter specified. The
database name is specified like a JDBC-style URL: db_type:T:host:portnum:dbname.

The SQLDUMP utility writes user data in row order into ASCII records with variable-length
format. The column order in the files is identical to the column order in the tables. The utility
writes both format and content header records to the dump file. You can dump multiple tables
in a single execution by specifying multiple table names, separated by commas. Make sure there
are no spaces before or after commas in the table list.

Data for one table always goes to a single dump file. Each dump file corresponds to one database
table. For example, if you specify 200 tables in the SQLDUMP command, you will create 200
dump files. The SQLDUMP utility assigns the filenames that correspond to the owner_name and
table_name in the database, with the file extension .dsql. If a dump file for a specified table
already exists, it will be overwritten and replaced. Dump files are created in the current working
directory.
19–155

SQLDUMP Utility
The format of the records in a dump file is similar to the Progress 4GL .d file format:

• Converts all values to character representation

• Delimits CHARACTER values with double quotes

• Can contain any embedded characters except for NULL values, allowing commas,
newlines, and other control characters

• Uses two sets of double quotes to escape embedded double quotes

• Delimits NUMERIC and other noncharacter datatypes using a space

• Processes TIMESTAMP data as if it were CHARACTER data

• Has a size limit of 2K for a single column value

• Has a maximum record length of 32K for dump file records

Any error is a fatal error, and SQLDUMP halts the dumping process so that data integrity will
not be compromised. SQLDUMP reports errors to standard output.

After successful processing, SQLDUMP writes a summary report to standard output. For each
table SQLDUMP processes, the report shows:

• Table name

• Dump filename

• Number of records dumped

• Number of bytes dumped

• Number of seconds required for processing
19–156

SQLDUMP Utility
EXAMPLES

This example directs the SQLDUMP utility to write the data from two tables to two dump files.
The user_name and password for connecting to the database are tucker and sulky. The tucker
account must have the authority to access the customers and products tables in database salesdb
with owner_name martin:

This example directs the SQLDUMP utility to write the data from all tables in the salesdb
database that begin with any of these strings: cust, invent, and sales, and having any owner name
that the user tucker has authority to access. The user_name and password for connecting to the
database are tucker and sulky:

This example directs the SQLDUMP utility to write the data from all tables for all owner names
in the salesdb database:

NOTES

• The database_name must be the last parameter given.

• Each dump file records character set information in the identifier section of each file. For
example:

The character set recorded in the dump file is the client character set. The default character
set for all non-JDBC clients is taken from the local operating system through the operating
system apis. JDBC clients use the Unicode UTF-8 character set.

sqldump -u tucker -a sulky -t martin.customers,martin.products
progress:T:thunder:4077:salesdb

sqldump -u tucker -a sulky -t%.cust%,%.invent%,%.sales%
progress:T:thunder:4077:salesdb

sqldump -u tucker -a sulky -t %.% progress:T:thunder:4077:salesdb

A^B^CProgress sqlschema v1.0 Quote fmt
A^B^CTimestamp 1999-10-19 19:06:49:0000
A^B^CDatabase dumpdb.db
A^B^CProgress Character Set: iso8859-1
A^B^CJava Charcter Set: Unicode UTF-8
A^B^CDate Format: MM/DD/YYYY
19–157

SQLDUMP Utility
To use a character set different than that used by the operating system, set the
SQL_CLIENT_CHARSET environment variable to the name of the preferred character
set. You can define any Progress supported character set name. The name is not case
sensitive.

• SQLDUMP does not support the following characters in schema names:

– Double quote (")

– Forward slash (/)

– Backslash (\)

• SQLDUMP, however, does support schema names that contain special characters such as,
a blank space, a hyphen (-), or pound sign (#). These names must be used as delimited
identifiers. Therefore, when specifying names with special characters on a UNIX
command line, follow these three rules:

– Use double quotes to delimit identifiers.

– So that the command line does not strip the quotes, use a backslash (\) to escape the
double quotes used for delimited identifiers.

– Use double quotes to enclose any names with embedded spaces, commas, or
characters special to a command shell (such as the Bourne shell). This use of quotes
is in addition to quoting delimited identifiers.

For example, to dump the table Yearly Profits, use the following UNIX command-line
syntax:

• On Windows, the command interpreter rules for the use of double quotation marks varies
from UNIX.

• By default, SQLDUMP displays promsgs messages using the code page corresponding to
code-page-name. That is, if you are dumping a Russian database, and code-page-name
specifies the name of a Russian code page, the client displays promsgs messages using the
Russian code-page, (unless you specify a different code page by setting the client’s
SQL_CLIENT_CHARSET_PROMSGS environment variable).

sqldump -t "\"Yearly Profits\"" -u xxx -a yyy database_name
19–158

SQLLOAD Utility
SQLLOAD Utility

A command-line utility that loads user data from a formatted file into an SQL-92 database.
Typically, the source file for the load is created by executing the SQLDUMP utility. The
SQLLOAD utility can process a source file created by another application or utility, if the
format of the file conforms to SQLLOAD requirements. The file extension made available to
SQLLOAD for processing must be .dsql. See the entry on SQLDUMP for a description of the
required file format.

Before you can execute SQLLOAD against a database server, the server must be configured to
accept SQL connections and must be running. See Chapter 4, “Creating and Deleting
Databases,” for instructions on creating a database and Chapter 5, “Starting Up and Shutting
Down,” for information about starting a Progress database or database server.

SYNTAX

-u user_name

Specifies the user SQLLOAD uses to connect to the database. If you omit the user_name
and password, SQLLOAD prompts you for these parameter values. If you omit the
user_name and supply a password, SQLLOAD uses the value defined in the USER
environment variable.

-a password

Specifies the password used by the database for authentication.

Operating
System Syntax

UNIX
Windows

sqlload -u user_name [-a password]
-t [owner_name.]table_name1
[[,owner_name.]table_name2, ...]
[-l log_file_name]
[-b badfile_name]
[-e max_errors]
[-s skipcount]
[-m maxrows]
[-F comma | quote]
database_name
19–159

SQLLOAD Utility
-C code-page-name

A case-insensitive character string that specifies the name of the dump file’s code page. If
the -C parameter specifies a code page name that is not valid, Progress reports a run-time
error. If the -C parameter does not appear at all, the code page name defaults to the client’s
internal code page, which is:

• The value of the client’s SQL_CLIENT_CHARSET environment variable, if set

• Otherwise, the name of the code page of the client’s locale

For example, you might use the -C parameter to load a dump file whose code page is
ISO8859-2, using a Windows client whose code page is MS1250. Although you can
accomplish this by setting the client’s SQL_CLIENT_CHARSET environment variable,
using the -C parameter might be easier.

-t owner_name.table_name

Specifies a list of one or more tables to load into a database. This parameter is required.
Pattern matching is supported, using a percent sign (%) for multiple characters and an
underscore (_) for a single character. The pattern matching follows the standard for the
LIKE predicate in SQL-92. You can load a single table, a set of tables, or all tables. If you
omit the optional owner_name table qualifier, SQLLOAD uses the name specified by the
-u parameter. The files from which SQLLOAD loads data are not specified in the
SQLLOAD syntax. The utility requires that the filename follow the naming convention
owner_name.table_name.dsql.

-l log_file_name

Specifies the file to which SQLLOAD writes errors and statistics. The default is standard
output.

-b badfile_name

Specifies the file where SQLLOAD writes rows that were not loaded.

-e max_errors

Specifies the maximum number of errors that SQLLOAD allows before term processing.
The default is 50.

-m maxrows

Directs SQLLOAD to stop loading rows at the specified number.
19–160

SQLLOAD Utility
-n

Directs SQLLOAD to check for syntax errors without loading any rows.

-F comma | quote

Directs SQLLOAD to load data in comma-delimited format or quote-delimited format.
The default is quote.

database_name

Identifies the database where you are loading tables. You can load tables into a single
database each time you invoke SQLLOAD. There is no option flag preceding the
database_name. This parameter is required, and must be the last parameter specified. The
database name is specified like a JDBC-style URL: db_type:T:host:portnum:dbname.

The SQLLOAD utility reads application data from variable-length text-formatted files and
writes the data into the specified database. The column order is identical to the table column
order. SQLLOAD reads format and content header records from the dump file. You can load
multiple tables in a single execution by specifying multiple table names, separated by commas.
Data for one table is from a single dump file. Every source file corresponds to one database
table. For example, if you specify 200 tables in the SQLLOAD command, you will load 200
database tables.

The format of the records in the input files is similar to the Progress 4GL .d file dump format.
See the “SQLDUMP Utility” section in this chapter for a description of the record format. The
maximum record length SQLLOAD can process is 32K.

Each database record read is share-locked, for consistency. You must ensure that the SQL
Server has a lock table large enough to contain one lock for every record in the table. The default
lock table size is 10,000 locks.

SQLLOAD writes any errors to standard output and halts the loading process for any error so
that data integrity is not compromised.
19–161

SQLLOAD Utility
EXAMPLES

This example directs the SQLLOAD utility to load the data from two dump files into the salesdb
database. The input files to SQLLOAD must be tucker.customers.dsql and tucker.products.dsql:

This example directs SQLLOAD to load the data from all appropriately named dump files into
the specified tables in the salesdb database:

NOTES

• The database_name must be the last parameter given.

• The character set used by SQLLOAD must match the character set information recorded
in each dump file. If the character sets do not match, the load is rejected. You can use the
SQL_CLIENT_CHARSET environment variable to specify a character set.

Each dump file you create with SQLDUMP contains character set information about that
file. The character set recorded in the dump file is the client character set. The default
character set for all non-JDBC clients is taken from the local operating system through the
operating system apis. JDBC clients use the Unicode UTF-8 character set.

To use a character set different than that used by the operating system, set the
SQL_CLIENT_CHARSET environment variable to the name of the preferred character
set. You can define any Progress-supported character set name. The name is not case
sensitive.

• At run time, SQLLOAD reports an error if it detects a mismatch between the code page of
the dump file being loaded and the code page of the client running SQLLOAD.

• By default, SQLLOAD displays promsgs messages using the code page corresponding to
code-page-name. That is, if you are restoring a Russian database and code-page-name
specifies the name of a Russian code page, the client displays promsgs messages using the
Russian code-page (unless you specify a different code page by setting the client’s
SQL_CLIENT_CHARSET_PROMSGS environment variable).

sqlload -u tucker -a sulky -t tucker.customers,tucker.products
progress:T:thunder:4077:salesdb

sqlload -u tucker -a sulky -t %.cust%,%.invent%,%.sales%
progress:T:thunder:4077:salesdb
19–162

SQLLOAD Utility
• SQLLOAD does not support the following characters in schema names:

– Double quote (")

– Forward slash (/)

– Backslash (\)

• SQLLOAD, however, does support schema names that contain special characters, such as
a blank space, a hyphen (-), or pound sign (#). These names must be used as delimited
identifiers. Therefore, when specifying names with special characters on a UNIX
command line, follow these rules:

– Use double quotes to delimit identifiers.

– So that the command line does not strip the quotes, use a backslash (\) to escape the
double quotes used for delimited identifiers.

– Use double quotes to enclose any names with embedded spaces, commas, or
characters special to a command shell (such as the Bourne shell). This use of quotes
is in addition to quoting delimited identifiers.

For example, to load the table Yearly Profits use the following UNIX command-line
syntax:

• On Windows NT, the command interpreter rules for the use of double quotation marks
varies from UNIX.

sqlload -u xxx -a yyy -t "\"Yearly Profits\"" database_name
19–163

SQLSCHEMA Utility
SQLSCHEMA Utility

A command-line utility that writes SQL-92 database schema components to an output file
selectively. You can capture table definitions including table constraints, views, stored
procedures including related privileges, and triggers. At the command line you specify which
components to dump. To load database schema information into a database, use the SQL
Explorer tool. See the Progress SQL-92 Guide and Reference for information about SQL
Explorer.

Before you can execute SQLSCHEMA against a database server, the server must be configured
to accept SQL connections and must be running. See Chapter 4, “Creating and Deleting
Databases,” for instructions on creating a database and Chapter 5, “Starting Up and Shutting
Down,” for information about starting a Progress database or database server.

SYNTAX

-u user_name

Specifies the user id that SQLSCHEMA employs to connect to the database. If you omit
the user_name and password, SQLSCHEMA prompts you for these values. If you omit
the user_name and supply a password, SQLSCHEMA uses the value defined by the USER
environment variable.

-a password

Specifies the password used by the database for authentication.

Operating
System Syntax

UNIX
Windows

sqlschema -u user_name [-a password]
[-t [owner_name.]table_name1

[,owner_name.]table_name2, ...]
[-p [owner_name.] procedure_name, ...]
[-T [owner_name.] trigger_name, ...]
[-g [owner_name.]table_name, ...]
[-s [owner_name.]table_name, ...]
[-o output_file_name]
database_name
19–164

SQLSCHEMA Utility
-t owner_name.table_name

A list of one or more tables you want to capture definitions for. Pattern matching is
supported, using a percent sign (%) for multiple characters and an underscore (_) for a
single character. The pattern matching follows the standard for the LIKE predicate in
SQL-92. You can write the definition for a single table, a set of tables, or all tables. If you
omit the optional owner_name table qualifier, SQLSCHEMA uses the name specified by
the -u parameter.

-p owner_name.procedure_name

A list of one or more procedures you want to capture definitions for. The SQLSCHEMA
utility supports pattern matching for multiple and single characters. See the
owner_name.table_name parameter for an explanation of pattern matching. You can
capture the definitions for a single procedure, a set of procedures, or all procedures. If you
omit the optional owner_name table qualifier, SQLSCHEMA uses the name specified by
the -u parameter.

-T owner_name.trigger_name

A list of one or more triggers you want to capture definitions for. The SQLSCHEMA
utility supports pattern matching for multiple and single characters. See the
owner_name.table_name parameter for an explanation of pattern matching. You can
capture the definition for a single trigger, a set of triggers, or all triggers. If you omit the
optional owner_name table qualifier, SQLSCHEMA uses the name specified by the -u
parameter.

-g owner_name.table_name

A list of one or more tables whose related privileges are captured as grant statements. You
can write grant statements for both column and table privileges. The utility supports
pattern matching for this parameter.

-s owner_name.table_name

Specifies a list of one or more tables whose related synonyms are captured as create
synonym statements. The utility supports pattern matching for this parameter.

-o output_file_name.dfsql

Specifies the output file where SQLSCHEMA writes the definitions. When specified, the
file extension name must be .dfsql. If output_file_name is omitted, SQLSCHEMA writes
the definitions to the screen.
19–165

SQLSCHEMA Utility
database_name

Identifies the database from which SQLSCHEMA captures component definitions. You
can process a single database each time you invoke SQLSCHEMA. There is no option flag
preceding the database_name. This parameter is required and must be the last parameter
specified. The database name is specified in a connection string, such as
db-type:T:host:portnum:dbname.

The SQLSCHEMA utility cannot write definitions for Progress 4GL tables. Table definitions
include the database area name for the table, derived from a scan of the area and objects. When
SQLSCHEMA writes a table definition, it does not automatically write associated triggers,
synonyms, or privileges. These must be explicitly specified on the command line. Capturing
database schema requires privileges to access the requested components.

EXAMPLES

This example directs the SQLSCHEMA utility to write table definitions and trigger
information. The output goes to the screen since no output_file_name is specified. Since the
user_name and password are not specified, SQLSCHEMA will prompt the user for these values:

This example directs the SQLSCHEMA utility to write table definitions to an output file named
salesdbschema.dfsql:

NOTE

Each output file created by the SQLSCHEMA utility records character set information about
the contents of the file. When you use SQLSCHEMA to dump schema information from a
database the schema is written-out in Unicode UTF-8.

sqlschema -t tucker.customers,tucker.products -T
tucker.customers,tucker.products progress:T:thunder:4077:salesdb

sqlschema -u tucker -a sulky -t %.cust%,%.invent%,%.sales% -o
salesdbschema.dfsql progress:T:thunder:4077:salesdb
19–166

20
Virtual System Tables

Virtual system tables give 4GL and SQL-92 applications access to the same type of database
information that you collect with the Progress monitor (PROMON) utility. Virtual system tables
(VSTs) enable an application to examine the status of a database and monitor its performance.
With the database broker running, 4GL and SQL-92 applications can call a VST and retrieve
the specified information as run-time data.

This chapter contains the following sections:

• Update Access To Virtual System Tables

• Virtual System Table Summaries

• Progress Virtual System Table Schema Descriptions

Progress Database Administration Guide and Reference
20.1 Update Access To Virtual System Tables
Progress provides the empty, demo, and sports2000 databases with the virtual system table
schemas already loaded. As new virtual system tables are made available, you can update the
schemas in a database. To update the schemas, run the following PROUTIL command before
you start the database server:

db-name

Specifies the database you are using.

20.2 Virtual System Table Summaries
This section summarizes the virtual system tables that Progress provides. Table 20–1 briefly
describes each table and refers you to a more detailed schema description for each table.

proutil db-name -C updatevst

Table 20–1: Progress Virtual System Tables (1 of 6)

Virtual System
Table Description Where To Find

In this Chapter

After-image Log
Activity File
(_ActAILog)

Displays after-image log activity, such as the
number of after-image writes, records and
bytes written, busy buffer waits, and log
force waits.

Table 20–2

Before-image Log
Activity File
(_ActBILog)

Displays before-image log activity, such as
the number of before-image reads and writes,
records and bytes written, number of records
and bytes read and the number of busy and
empty buffer and log force waits.

Table 20–3

Buffer Activity File
(_ActBuffer)

Displays the activity of the database buffer
cache, such as the number of logical reads
and writes, OS reads and writes, checkpoints,
deferred writes, LRU skips and writes, and
APW enqueues.

Table 20–4

Index Activity File
(_ActIndex)

Displays index activity, such as the number
of entry finds, creates, and deletes, the
number of locked entries removed, and the
numbers of split and free blocks.

Table 20–5
20–2

Virtual System Tables
Input/Output
Activity File
(_ActIOFile)

Displays information about input/output
activity, including the number of reads,
writes, and extends for each file.

Table 20–6

Input/Output Type
Activity File
(_ActIOType)

Displays information about types of
input/output activity, such as database reads
and writes, before-image and after-image
reads, total reads, before-image and
after-image writes, committed transactions,
and database up time.

Table 20–7

Lock Table Activity
File (_ActLock)

Displays Lock Table activity, including the
number of share, exclusive, upgrade, Rec
Get, and redundant requests; the number of
exclusive, Rec Get, share, and upgrade
grants; the number of exclusive, Rec Get,
share, and upgrade waits; the number of
downgrades, transactions committed,
cancelled requests, and database up time.

Table 20–8

Other Activity File
(_ActOther)

Displays information about miscellaneous
activity, including the number of commits,
undo operations, semaphore waits, master
block flushes, and database up time.

Table 20–9

Page Writer Activity
File (_ActPWs)

Displays information about asynchronous
page writer (APW) activity, including the
number of APW queue and database writes,
checkpoint and scan writes, total database
writes; the number of buffers scanned and
checkpointed; the number of checkpoints,
checkpoint flushes, and marks; the number of
scan cycles, committed transactions, and
database up time.

Table 20–10

Table 20–1: Progress Virtual System Tables (2 of 6)

Virtual System
Table Description Where To Find

In this Chapter
20–3

Progress Database Administration Guide and Reference
Record Activity File
(_ActRecord)

Displays record activity information,
including the number of bytes created,
deleted, read, and updated; the number of
fragments created, deleted, read, and
updated; the number of records created,
deleted, read, and updated; the number of
transactions committed; and database up
time.

Table 20–11

Server Activity File
(_ActServer)

Displays server activity information,
including the number of bytes sent and
received, the number of messages sent and
received, the number of queries received, the
number of records sent and received, the
number of query time slice switches, the
number of transactions committed, and
database up time.

Table 20–12

Space Allocation
Activity File
(_ActSpace)

Displays space allocation information,
including the number of database extends,
the number of times a block was used from
and returned to the free chain, the number of
times space was allocated for a record (from
the rm chain or from the free chain) the
number of bytes allocated for record
fragments, the number of rm blocks
examined or removed, the number of blocks
added to the front or back of the rm chain, the
number of moved blocks, the number of
locked chain entries, the number of
transactions committed, and database up
time.

Table 20–13

Summary Activity
File (_ActSummary)

Displays general information about database
activity, including the number of transactions
committed and rolled back; the number of
records read, updated, created, and deleted;
the number of record locks and waits; the
number of database reads and writes;
before-image and after-image information;
and buffer information.

Table 20–14

Table 20–1: Progress Virtual System Tables (3 of 6)

Virtual System
Table Description Where To Find

In this Chapter
20–4

Virtual System Tables
Area Status File
(_AreaStatus)

Displays a variety of data about that status of
areas.

Table 20–15

Block File
(_Block)

Displays information about a specific block. Table 20–16

Buffer Status File
(_BuffStatus)

Displays status of Progress buffers, such as
the number of buffers that are in the buffer
cache, that are currently in use, that are
empty, or that are on the LRU chain, page
writer queue, or checkpoint queue.

Table 20–17

Checkpoint File
(_Checkpoint)

Displays information about each checkpoint,
including the checkpoint number and
beginning time, the time required to
complete the checkpoint, and the number of
modified blocks scheduled to be written. The
file also describes APW-written blocks.

Table 20–18

Database Connection
File (_Connect)

Displays information about two-phase
commit, batch user, and device connections.

Table 20–19

Database Status File
(_DbStatus)

Displays a wide variety of status data. Table 20–20

Database File Status
File (_Filelist)

Displays the file name, file size, and the size
of every database file and extent.

Table 20–21

Index Statistics File
(_IndexStat)

Displays statistics on the number of accesses
to a specific range of indexes.

Table 20–22

Latch Statistics File
(_Latch)

Displays statistics on latch and latch queue
activity.

Table 20–23

License Management
(_License)

Provides information about the number of
users and connections.

Table 20–24

Lock Table Status
File (_Lock)

Displays the status of the lock table,
including the user number, the user name,
lock type, RECID number, flags, and chain.

Table 20–25

Table 20–1: Progress Virtual System Tables (4 of 6)

Virtual System
Table Description Where To Find

In this Chapter
20–5

Progress Database Administration Guide and Reference
Lock Request File
(_LockReq)

Displays information about lock requests,
including user name and number, record
locks and waits, schema locks and waits, and
transaction locks and waits.

Table 20–26

Logging File
(_Logging)

Includes before-image and after-image
logging information and two-phase commit
status.

Table 20–27

Master Block File
(_MstrBlk)

Displays before-image and after-image
information about the master block and other
master block status.

Table 20–28

User Connection
(_MyConnection)

Provides information about a user and the
number of private read-only buffers allowed
and in use.

Table 20–29

Resource Queue
Statistics File
(_Resrc)

Displays statistics on resource queue
utilization.

Table 20–30

Segments File
(_Segments)

Reports the segment number, segment size,
and the number of free and used segments.

Table 20–31

Servers File
(_Servers)

Displays status of Progress servers running
on the system, such as the server number,
process ID, and type; the protocol used; the
number of logins and current users; the
maximum number of users; and the server’s
port number.

Table 20–32

Startup File
(_Startup)

Displays the values of the database startup
parameters that were used.

Table 20–33

Index and Table
Statistics Range
(_StatBase)

Displays basic table and index statistics. Table 20–34

Table Statistics File
(_TableStat)

Displays statistics on the number of accesses
to a specific range of tables.

Table 20–35

Table 20–1: Progress Virtual System Tables (5 of 6)

Virtual System
Table Description Where To Find

In this Chapter
20–6

Virtual System Tables
Transaction File
(_Trans)

Includes information such as transaction
number, state, start time, duration, user
number, coordinator name, and transaction.

Table 20–36

Transaction End
Lock Statistics
(_TxeLock)

Includes statistics about Transaction End
Locks.

Table 20–37

Database
Input/Output File
(_UserIO)

Displays information about the database
input/output operations, including user
number and name and the number of
accesses, reads, and writes.

Table 20–38

Record Locking
Table File
(_UserLock)

Displays the contents of the record locking
table, such as user name, chain, number,
record ID, lock type, and flags.

Table 20–39

User Status
(_UserStatus)

Displays the progress of the IDXMOVE,
TABLEMOVE, and INDEXCOMPACT
utilities, such as the phase the utility is in, the
user number, the tables and indexes worked
on, the current position in the record chain,
and the number of blocks accessed, records
moved, and tables and indexes compacted.

Table 20–40

Table 20–1: Progress Virtual System Tables (6 of 6)

Virtual System
Table Description Where To Find

In this Chapter
20–7

Progress Database Administration Guide and Reference
20.3 Progress Virtual System Table Schema Descriptions
Table 20–2 through Table 20–40 describe the schema for each virtual system table.

Table 20–2: After-image Log Activity File (_ActAILog)

Record Description

_AiLog-AIWWrites Number of after-image (AI) writes performed
by the after-image writer (AIW). This is a
subset of the total number of AI writes.

_AiLog-BBuffWaits Number of busy buffer waits.

_AiLog-BytesWritn Amount of AI data written to the AI file, in
bytes.

_AiLog-ForceWaits Number of waiting-for-commit records to be
written to disk.

_AiLog-NoBufAvail Total number of times a process had to wait
because a buffer was not available.

_AiLog-PartialWrt Number of writes to the AI file made before the
AI buffer is full.

_AiLog-RecWriten Number of records written to the AI file.

_AiLog-TotWrites Total number of writes to the AI file.

_AiLog-Trans Number of transactions committed to the AI
file.

_AiLog-UpTime Number of seconds the AI file was open.
20–8

Virtual System Tables
Table 20–3: Before-image Log Activity File (_ActBILog) (1 of 2)

Record Description

_BiLog-BBuffWaits Number of times a process had to wait for a
buffer that was busy.

_BiLog-BIWWrites Number of writes to the BI file performed by
the before-image writer (BIW). For good
performance, this number should be high in
relation to the total number of BI writes.

_BiLog-BytesRead Number of bytes of data read from the BI
file.

_BiLog-BytesWrtn Number of bytes of data written to the BI
file.

_BiLog-ClstrClose Number of BI clusters filled and closed in
preparation for reuse.

_BiLog-EBuffWaits Number of times a process had to wait
because all buffers were full.

_BiLog-ForceWaits Number of waiting-for-commit records to be
written to disk.

_BiLog-ForceWrts Number of waiting-for-commit records
written to disk.

_BiLog-PartialWrts Number of writes to the BI file made before
the BI buffer is full.

_BiLog-RecRead Number of BI records (notes) read from the
BI file.

_BiLog-RecWriten Number of BI records (notes) written to the
BI file.

_BiLog-TotalWrts Number of total writes to the BI file.

_BiLog-TotReads Number of BI blocks read from the BI file to
undo transactions.
20–9

Progress Database Administration Guide and Reference
_BiLog-Trans Number of transactions committed to the BI
file.

_BiLog-UpTime Number of seconds the BI file was open.

Table 20–4: Buffer Activity File (_ActBuffer) (1 of 2)

Record Description

_Buffer-APWEnq Number of modified buffers placed on the
APW queue for writing.

_Buffer-Chkpts Number of checkpoint operations.

_Buffer-Deferred Total number of changes to blocks that
occurred before the blocks were written.
Each deferred write is potentially an I/O
operation saved.

_Buffer-Flushed Number of blocks that were not written
during the checkpoint and that had to be
written all at once at the end of the
checkpoint.

_Buffer-LogicRds Number of client requests for database block
read operations.

_Buffer-LogicWrts Number of client requests for database block
write operations.

_Buffer-LRUSkips Number of times a buffer on the LRU chain
was skipped because it was locked or
modified.

_Buffer-LRUwrts Number of blocks written to free a buffer for
a read operation.

_Buffer-Marked Number of blocks scheduled to be written
before the end of a checkpoint.

_Buffer-OSRds Number of database blocks read from disk.

Table 20–3: Before-image Log Activity File (_ActBILog) (2 of 2)

Record Description
20–10

Virtual System Tables
_Buffer-OSWrts Number of database block writes to disk.

_Buffer-Trans Number of transactions committed.

_Buffer-Uptime Number of seconds the database was
opened.

Table 20–5: Index Activity File (_ActIndex)

Record Description

_Index-Create Number of new index entries generated.

_Index-Delete Number of index entries deleted.

_Index-Find Number of times an index entry was looked
up.

_Index-Free Number of index blocks freed during
deletes.

_Index-Remove Number of locks released at transaction end.

_Index-Splits Number of block splits resulting from index
additions.

_Index-Trans Number of transactions committed.

_Index-UpTime Number of seconds the database was up.

Table 20–6: Input/Output Activity File (_ActIOFile) (1 of 2)

Record Description

_IOFile-BufReads Number of buffered read operations
performed on the file.

_IOFile-BufWrites Number of buffered write operations
performed on the file.

Table 20–4: Buffer Activity File (_ActBuffer) (2 of 2)

Record Description
20–11

Progress Database Administration Guide and Reference
_IOFile-Extends Number of extend operations performed on
the file.

_IOFile-FileName Name of the file upon which operations are
performed.

_IOFile-Reads Number of read operations performed on the
file.

_IOFile-Trans Number of transactions committed.

_IOFile-UbufReads Number of unbuffered read operations
performed on the file.

_IOFile-UbufWrites Number of unbuffered write operations
performed on the file.

_IOFile-UpTime Number of seconds the database was up.

_IOFile-Writes Number of write operations performed on
the file.

Table 20–7: Input/Output Type Activity File (_ActIOType) (1 of 2)

Record Description

_IOType-AiRds Number of AI read operations.

_IOType-AiWrts Number of AI write operations.

_IOType-BiRds Number of BI read operations.

_IOType-BiWrts Number of BI write operations.

_IOType-DataReads Number of reads of data blocks.

_IOType-DataWrts Number of writes to data blocks.

_IOType-IdxRds Number of reads of index blocks.

_IOType-IdxWrts Number of writes to index blocks.

Table 20–6: Input/Output Activity File (_ActIOFile) (2 of 2)

Record Description
20–12

Virtual System Tables
_IOType-Trans Number of transactions committed.

_IOType-UpTime Number of seconds the database was up.

Table 20–8: Lock Table Activity File (_ActLock) (1 of 2)

Record Description

_Lock-CanclReq Number of lock requests that were cancelled.

_Lock-Downgrade Number of locks that were downgraded.

_Lock-ExclFind Number of exclusive find requests granted.

_Lock-ExclLock Number of exclusive lock requests.

_Lock-ExclReq Number of requests for exclusive locks
granted.

_Lock-ExclWait Number of times processes waited for an
exclusive lock.

_Lock-RecGetLock Number of requests for record get locks
granted.

_Lock-RecGetReq Number of record get locks granted.

_Lock-RecGetWait Number of times processes waited for record
gets.

_Lock-RedReq Number of duplicate requests granted.

_Lock-ShrFind Number of share find requests granted.

_Lock-ShrLock Number of share lock requests granted.

_Lock-ShrReq Number of requests for share locks.

_Lock-ShrWait Number of times processes waited for share
lock.

Table 20–7: Input/Output Type Activity File (_ActIOType) (2 of 2)

Record Description
20–13

Progress Database Administration Guide and Reference
_Lock-Trans Number of transactions committed.

_Lock-UpgLock Number of requests for lock upgrades
granted.

_Lock-UpgReq Number of requests to upgrade a lock from
shared lock to exclusive lock.

_Lock-UpgWait Number of times processes waited for
upgrades.

_Lock-UpTime Number of seconds the database was up.

Table 20–9: Other Activity File (_ActOther)

Record Description

_Other-Commit Number of transactions committed.

_Other-FlushMblk Number of times the database master block
was written to disk.

_Other-Trans Transactions committed.

_Other-Undo Number of transactions rolled back.

_Other-UpTime Number of seconds the database was up.

_Other-Wait Number of times a process had to wait for a
resource.

Table 20–8: Lock Table Activity File (_ActLock) (2 of 2)

Record Description
20–14

Virtual System Tables
Table 20–10: Page Writer Activity File (_ActPWs)

Record Description

_PW-ApwQWrites Number of buffers written to clear the APW
queue.

_PW-BuffsScaned Number of buffers scanned during each
cycle.

_PW-BufsCkp Number of buffers checkpointed.

_PW-Checkpoints Number of checkpoints that have occurred.

_PW-CkpQWrites Number of buffers written from the
checkpoint queue.

_PW-DBWrites Number of database write operations
performed by the APW.

_PW-Flushed Number of blocks that were not written
during the checkpoint and had to be written
all at once at the end of the checkpoint.

_PW-Marked Number of buffers that were scheduled to be
written before the end of the checkpoint.

_PW-ScanCycles Number of scan cycles. During a scan cycle,
the APW scans a portion of the buffer pool
to look for modified buffers.

_PW-ScanWrites Number of buffers written during the scan
cycle.

_PW-TotDBWrites Total number of database write operations
performed by all processes.

_PW-Trans Number of transactions committed.

_PW-UpTime Number of seconds the database was up.
20–15

Progress Database Administration Guide and Reference
Table 20–11: Record Activity File (_ActRecord)

Record Description

_Record-BytesCreat Number of bytes created.

_Record-BytesDel Number of bytes deleted.

_Record-BytesRead Number of bytes read.

_Record-BytesUpd Number of bytes updated.

_Record-FragCreat Number of fragments created.

_Record-FragDel Number of fragments deleted.

_Record-FragRead Number of fragments read.

_Record-FragUpd Number of fragments updated.

_Record-RecCreat Number of records created.

_Record-RecDel Number of records deleted.

_Record-RecRead Number of records read.

_Record-RecUpd Number of records updated.

_Record-Trans Number of transactions committed.

_Record-UpTime Number of seconds the database was up.

Table 20–12: Server Activity File (_ActServer) (1 of 2)

Record Description

_Server-ByteRec Number of bytes received by the server.

_Server-ByteSent Number of bytes sent by the server.

_Server-MsgRec Number of network packets received by the
server.
20–16

Virtual System Tables
_Server-MsgSent Number of network packets sent by the
server.

_Server-QryRec Number of query requests received.

_Server-RecRec Number of records received.

_Server-RecSent Number of records sent.

_Server-TimeSlice Number of query time slice switches.

_Server-Trans Number of transactions committed.

_Server-UpTime Number of seconds the database was up.

Table 20–13: Space Allocation Activity File (_ActSpace) (1 of 2)

Record Description

_Space-AllocNewRm Number of times space was allocated for a
record or record fragment.

_Space-BackAdd Number of blocks added to the back of the
rm chain.

_Space-BytesAlloc Number of bytes allocated for record
fragments.

_Space-DbExd Number of times the database was extended.

_Space-Examined Number of blocks examined in the rm chain
while looking for space for a record
fragment.

_Space-FromFree Number of times space was allocated from
the free chain.

_Space-FromRm Number of times space was allocated from
the rm chain.

Table 20–12: Server Activity File (_ActServer) (2 of 2)

Record Description
20–17

Progress Database Administration Guide and Reference
_Space-Front2Back Number of blocks moved from the front to
the back of the rm chain.

_Space-FrontAdd Number of blocks added to the front of the
rm chain.

_Space-Locked Number of locked rm entries removed.

_Space-Removed Number of blocks removed from the rm
chain.

_Space-RetFree Number of times a block was returned to the
free chain.

_Space-TakeFree Number of times a block was used from the
free chain.

_Space-Trans Number of transactions committed.

_Space-UpTime Number of seconds the database was up.

Table 20–14: Summary Activity File (_ActSummary) (1 of 2)

Record Description

_Summary-AiWrites Number of AI blocks written to disk.

_Summary-BiReads Number of BI blocks read.

_Summary-BiWrites Number of BI blocks written to disk.

_Summary-Chkpts Number of checkpoints that have been
performed.

_Summary-Commits Number of transactions all users have
committed.

_Summary-DbAccesses Number of times users have waited for
shared and exclusive locks on a database
buffer.

Table 20–13: Space Allocation Activity File (_ActSpace) (2 of 2)

Record Description
20–18

Virtual System Tables
_Summary-DbReads Number of database blocks read.

_Summary-DbWrites Number of database blocks written to disk.

_Summary-Flushed Number of database buffers that have been
flushed to disk because they were not written
by the time the checkpoint ended.

_Summary-RecCreat Number of records created.

_Summary-RecDel Number of records deleted.

_Summary-RecLock Number of record locks used.

_Summary-RecReads Number of records read.

_Summary-RecUpd Number of records updated.

_Summary-RecWait Number of times users have waited to access
a locked record.

_Summary-TransComm Number of transactions committed.

_Summary-Undos Number of transactions rolled back.

_Summary-Uptime Number of seconds the database was up.

Table 20–15: Area Status File (_AreaStatus) (1 of 2)

Record Description

_AreaStatus-Areanum Area number.

_AreaStatus-Areaname Area name.

_AreaStatus-Totblocks Total number of blocks in an area.

_AreaStatus-Highwater Highest block used.

_AreaStatus-Extents Number of extents in an area.

Table 20–14: Summary Activity File (_ActSummary) (2 of 2)

Record Description
20–19

Progress Database Administration Guide and Reference
_AreaStatus-Lastextent Name of extent where high-water mark
resides.

_AreaStatus-Freenum Number of blocks on the free chain.

_AreaStatus-Rmnum Number of blocks on the rm chain.

Table 20–16: Block File (_Block)

Record Description

_Block-Area Block area number.

_Block-BkupCtr Backup counter.

_Block-Block Data section of the block.

_Block-ChainType Chain type.

_Block-Dbkey Dbkey.

_Block-NextDbkey Next Dbkey in the appropriate chain.

_Block-Type Type of block.

_Block-Update Number of times the block has been updated.

Table 20–17: Buffer Status File (_BuffStatus) (1 of 2)

Record Description

_BfStatus-APWQ Number of buffers on the page writer queue.

_BfStatus-CKPMarked Number of buffers currently marked for
checkpoint.

_BfStatus-CKPQ Number of buffers on the checkpoint queue.

_BfStatus-HashSize Size of the buffer hash table.

Table 20–15: Area Status File (_AreaStatus) (2 of 2)

Record Description
20–20

Virtual System Tables
_BfStatus-LastCkpNum Most recent checkpoint number. As
checkpoints begin, they are assigned a
sequential number from the start of the
session. The number is also the number of
checkpoints that have occurred.

_BfStatus-LRU Number of buffers on the least recently used
(LRU) chain.

_BfStatus-ModBuffs Number of dirty (modified) buffers.

_BfStatus-TotBufs Number of buffers in the buffer cache.

_BfStatus-UsedBuffs Number of buffers used.

Table 20–18: Checkpoint File (_Checkpoint)

Record Description

_Checkpoint-ApwQ Number of blocks written by the APW queue
and replaced on the least recently used
(LRU) chain by APWs.

_Checkpoint-CptQ Number of blocks written from the
checkpoint queue by the APWs.

_Checkpoint-Dirty Number of modified blocks scheduled to be
written.

_Checkpoint-Flush Total number of blocks not written during
the checkpoint that had to be written all at
once at the end of the checkpoint.

_Checkpoint-Len Length of time required to complete the
checkpoint.

_Checkpoint-Scan Number of blocks written by the APWs
during the scan cycle.

_Checkpoint-Time Time the checkpoint began.

Table 20–17: Buffer Status File (_BuffStatus) (2 of 2)

Record Description
20–21

Progress Database Administration Guide and Reference
Table 20–19: Database Connection File (_Connect)

Record Description

_Connect-2phase Displays a two-phase commit flag, either
“yes” or “no.”

_Connect-Batch Displays batch users status.

_Connect-Device Device from which the user has connected to
the database.

_Connect-Disconnect Displays a disconnect flag.

_Connect-Interrupt Displays an interrupt flag.

_Connect-Name Displays the user name used for the
connection.

_Connect-Pid Displays the process ID of the user session.

_Connect-Resync Displays a flag that indicates the database is
resyncing.

_Connect-SemId Displays the semaphore ID.

_Connect-SemNum Displays the semaphore number.

_Connect-Server Identifies the server if the connection is
remote.

_Connect-Time Time the user connected to the database.

_Connect-transId Displays the current transaction ID.

_Connect-Type Displays the connection type: SELF,
REMC, BROK, SERV, or BTCH.

_Connect-Usr Displays the user number.

_Connect-Wait Displays the shared memory resource the
user is waiting on.

_Connect-Wait1 Displays additional wait flags.
20–22

Virtual System Tables
Table 20–20: Database Status File (_DbStatus) (1 of 2)

Record Description

_DbStatus-AiBlkSize Number of bytes in an after-image block.

_DbStatus-BiBlkSize Number of bytes in a before-image block.

_DbStatus-BiClSize Number of kilobytes in the before-image
cluster.

_DbStatus-BiOpen Most recent before-image (.bi) file open.

_DbStatus-BiSize Logical size of the BI file. You can use this
in conjunction with the _DbStatus-BiClSize
value to determine the number of clusters in
the BI file.

_DbStatus-BiTrunc Time since the last truncate.

_DbStatus-CacheStamp Schema cache file time stamp.

_DbStatus-Changed Flag indicating if database has changed since
last backup.

_DbStatus-ClVersMinor Client minor version number.

_DbStatus-Codepage Database character set.

_DbStatus-Collation Database collation name.

_DbStatus-CreateDate Date and time of database creation.

_DbStatus-DbBlkSize Database block size.

_DbStatus-DbVers Database version number.

_DbStatus-DbVersMinor Database minor version number.

_DbStatus-EmptyBlks Number of empty blocks in the database.

_DbStatus-FbDate Most recent full backup.

_DbStatus-FreeBlks Number of free blocks in the database.

_DbStatus-HiWater Database blocks high-water mark.
20–23

Progress Database Administration Guide and Reference
_DbStatus-IbDate Most recent incremental backup.

_DbStatus-IbSeq Sequence of last incremental backup.

_DbStatus-Integrity DbStatus-Integrity enabled flag (-i).

_DbStatus-IntFlags Integrity flags.

_DbStatus-LastOpen Most recent database open.

_DbStatus-LastTable Highest table number defined.

_DbStatus-LastTran Last transaction ID.

_DbStatus-MostLocks Lock table high-water mark.

_DbStatus-NumAreas Number of areas.

_DbStatus-NumLocks Lock table entries in use.

_DbStatus-NumSems Number of semaphores.

_DbStatus-PrevOpen Previous database open.

_DbStatus-RMFreeBlks Number of rm blocks with free space.

_DbStatus-SharedMemVer Shared memory version number.

_DbStatus-ShmVers Shared memory version number.

_DbStatus-Starttime Time when the database was started.

_DbStatus-State State of the database.

_DbStatus-Tainted Damaged database flags.

_DbStatus-TotalBlks Number of blocks allocated to the database.

Table 20–20: Database Status File (_DbStatus) (2 of 2)

Record Description
20–24

Virtual System Tables
Table 20–21: Database File Status File (_Filelist)

Record Description

_FileList-BlkSize Block size of the file.

_FileList-Extend Amount of most recent extend in blocks.

_FileList-LogicalSz Logical file size, in blocks.

_FileList-Name Name of the file.

_FileList-Openmode Displays the mode in which the file is
opened.

_FileList-Size Size of the file.

Table 20–22: Index Statistics File (_IndexStat)

Record Description

_IndexStat-Blockdelete Number of block deletes that have occurred
to the index.

_IndexStat-Delete Number of times delete access has occurred
to the index.

_IndexStat-Create Number of times create access has occurred
to the index.

_IndexStat-Read Number of times read access has occurred to
the index.

_IndexStat-Split Number of split operations that have
occurred to the index.
20–25

Progress Database Administration Guide and Reference
Table 20–23: Latch Statistics File (_Latch)

Record Description

_Latch-Busy Latch busy Count.

_Latch-Hold User number of the last latch holder.

_Latch-Lock Latch lock count.

_Latch-LockedT Used for calculation of duration of lock.

_Latch-LockT Number, in microseconds, the latch was
locked.

_Latch-Name Latch name.

_Latch-Qhold User number of the last queue holder.

_Latch-Spin Latch spin count.

_Latch-Type Latch type.

_Latch-Wait Latch wait (nap) count.

_Latch-WaitT Number, in microseconds, of wait or spin
time.

Table 20–24: License Management (_License) (1 of 2)

Record Description

_Lic-ActiveConns Number of active connections.

_Lic-BatchConns Number of current batch connections.

_Lic-CurrConns Number of current connections.

_Lic-MaxActive Maximum number of active connections.

_Lic-MaxBatch Maximum number of batch connections.

_Lic-MaxCurrent Maximum number of current connections.
20–26

Virtual System Tables
_Lic-MinActive Minimum number of active users.

_Lic-MinBatch Minimum number of batch connections.

_Lic-MinCurrent Minimum number of current connections.

_Lic-ValidUsers Number of valid license users.

Table 20–25: Lock Table Status File (_Lock)

Record Description

_Lock-Chain Chain number.

_Lock-Flags Flags for the lock. The flags specify a share
lock (S), exclusive lock (X), a lock upgraded
from share to exclusive (U), a lock in limbo
(L), or a queued lock (Q).

_Lock-Name User name.

_Lock-RecId RECID of the record and lock table entry.

_Lock-Table Table name.

_Lock-Type Type of lock (for example, REC, RGET).

_Lock-Usr User number of the user who owns the lock
entry.

Table 20–26: Lock Request File (_LockReq) (1 of 2)

Record Description

_LockReq-ExclFind Number of exclusive lock finds acquired by
the user.

_LockReq-Name User name.

Table 20–24: License Management (_License) (2 of 2)

Record Description
20–27

Progress Database Administration Guide and Reference
_LockReq-Num User number.

_LockReq-RecLock Number of record locks acquired by the user.

_LockReq-RecWait Number of times the user had to wait for a
record lock.

_LockReq-SchLock Number of schema locks acquired by the
user.

_LockReq-SchWait Number of times the user had to wait for a
schema lock.

_LockReq-ShrFind Number of share lock finds acquired by the
user.

_LockReq-TrnLock Number of transaction locks acquired by the
user.

_LockReq-TrnWait Number of times the user had to wait for a
transaction lock.

Table 20–27: Logging File (_Logging) (1 of 3)

Record Description

_Logging-2PC “Yes” indicates that two-phase commit is
enabled; “No” indicates that two-phase
commit is disabled.

_Logging-2PCNickName Nickname that Progress uses to identify the
coordinator database. You specify a
nickname when you enable two-phase
commit.

_Logging-2PCPriority Priority for the coordinator database. You
specify the priority when you enable
two-phase commit.

_Logging-AiBegin Date of the last AIMAGE BEGIN command.

Table 20–26: Lock Request File (_LockReq) (2 of 2)

Record Description
20–28

Virtual System Tables
_Logging-AiBlkSize Size of the after-image block. You can
change the AI block size. This reduces I/O
rates on disks that have AI files.

_Logging-AiBuffs Number of buffers in the AI buffer pool. You
can change the number of AI buffers with
the After-image Buffers (-aibufs) startup
parameter. The default value is 1.

_Logging-AiCurrExt Current after-image extent.

_Logging-AiExtents Number of AI files or extents.

_Logging-AiGenNum Generation number of the current AI extent.

_Logging-AiIO After-image I/O. “Reliable” indicates that
synchronous or direct I/O is being used for
AI writes. “Buffered” indicates that buffered
I/O is being used for AI writes.

_Logging-AiJournal “YES” indicates that after-imaging is
enabled; “NO” indicates that after-imaging
is disabled. Progress Software recommends
that you use after-imaging if you use
two-phase commit.

_Logging-AiLogSize Number of kilobytes in the AI log file, if the
AI extent in use is variable length. If the AI
extent in use is fixed length, the value is 0.

_Logging-AiNew Date of the last AIMAGE NEW command.

_Logging-AiOpen Date when the AI log was last opened.

_Logging-BiBlkSize BI block size.

_Logging-BiBuffs Number of BI buffers.

_Logging-BiBytesFree Number of free bytes remaining in the
current BI cluster.

Table 20–27: Logging File (_Logging) (2 of 3)

Record Description
20–29

Progress Database Administration Guide and Reference
_Logging-BiClAge Period of time that must pass before Progress
reuses a BI cluster. This period ensures that
database blocks flushed at checkpoint are
moved from the UNIX buffers on disk.
When this occurs, the transaction is durably
recorded on disk.

_Logging-BiClSize BI cluster size.

_Logging-BiExtents Number of BI extents.

_Logging-BiFullBuffs Number of full BI buffers.

_Logging-BiIO One of the following: “Reliable” indicates
that synchronous or direct I/O is being used
for BI writes; “BUFFERED” indicates that
buffered I/O is being used for BI writes.
Progress Software does not recommend
buffered I/O.

_Logging-BiLogSize Number of kilobytes in the BI file.

_Logging-CommitDelay Current value of the Delayed BI File Write
(-Mf) parameter.

_Logging-CrashProt “Yes” indicates that crash protection is
enabled; “No” indicates that crash protection
is disabled.

_Logging-LastCkp Time of the last checkpoint.

Table 20–28: Master Block File (_MstrBlk) (1 of 2)

Record Description

_MstrBlk-AiBlksize Number of bytes in an AI block.

_MstrBlk-BiBlksize Number of bytes in a BI block.

_MstrBlk-BiOpen Date and time the BI file was last opened.

Table 20–27: Logging File (_Logging) (3 of 3)

Record Description
20–30

Virtual System Tables
_MstrBlk-BiPrev Previous value of _MstrBlk-biopen.

_MstrBlk-BiState Current state of Bi file.

_MstrBlk-Cfilnum Highest file number currently defined in the
database.

_MstrBlk-Crdate Date and time of database creation.

_MstrBlk-Dbstate Current state of the database.

_MstrBlk-Dbvers Database version number.

_MstrBlk-Fbdate Date and time of the last full backup.

_MstrBlk-Hiwater Database blocks highwater mark.

_MstrBlk-Ibdate Date and time of most recent incremental
backup.

_MstrBlk-Ibseq Sequence of last incremental backup.

_MstrBlk-Integrity Database integrity enabled flag.

_MstrBlk-Lasttask Last transaction ID.

_MstrBlk-Oppdate Date and time of previous database open.

_MstrBlk-Oprdate Date and time of most recent database open.

_MstrBlk-Rlclsize Current BI cluster size.

_MstrBlk-Rltime Time since last before image file truncate.

_MstrBlk-Tainted Database damaged flags.

_MstrBlk-Timestamp Schema cache file time stamp.

_MstrBlk-Totblks Number of blocks allocated to the database.

Table 20–28: Master Block File (_MstrBlk) (2 of 2)

Record Description
20–31

Progress Database Administration Guide and Reference
Table 20–29: User Connection (_MyConnection)

Record Description

_MyConn-NumSeqBuffers Number of private read-only buffers
currently allowed.

_MyConn-Pid This user’s process ID.

_MyConn-UsedSeqBuffers Number of private read-only buffers
currently in use.

_MyConn-UserId The user’s user ID.

Table 20–30: Resource Queue Statistics File (_Resrc)

Record Description

_Resrc-Name Resource queue name.

_Resrc-Lock Resource queue lock count.

_Resrc-Wait Resource queue wait count.

_Resrc-Time Resource queue wait time.

Table 20–31: Segments File (_Segments)

Record Description

_Segment-ByteFree Number of free bytes in this shared memory
segment.

_Segment-BytesUsed Number of bytes used in this shared memory
segment.

_Segments-Segld Segment ID.

_Segments-SegSize Segment size.
20–32

Virtual System Tables
Table 20–32: Servers File (_Servers)

Record Description

_Server-CurrUsers Number of current users connected to this
server.

_Server-Logins Number of established logins.

_Server-MaxUsers Maximum number of logins available on the
server.

_Server-Num Server number.

_Server-Pid Process ID of the server.

_Server-PortNum TCP/IP port number of the server.

_Server-Protocol Protocol supported by the server.

_Server-Type Server type.

Table 20–33: Startup File (_Startup) (1 of 2)

Record Description

_Startup-AiBuffs Number of after-image buffers.

_Startup-AiName Value of the After-image Filename (-a)
startup parameter.

_Startup-APWBuffs Value of the Page Writer Scan (-pwscan)
parameter.

_Startup-APWMaxWrites Value of the Page Writer Maximum Buffers
(-pwwmax) startup parameter.

_Startup-APWQTime Value of the Page Writer Queue Delay
(-pwqdelay) startup parameter.

_Startup-APWSTime Value of the Page Writer Scan Delay
(-pwsdelay) parameter.

_Startup-BiBuffs Number of before-image buffers.
20–33

Progress Database Administration Guide and Reference
_Startup-BiDelay Delay of before-image flush (-mf).

_Startup-BiIO Before-image file I/O (-r, -R).

_Startup-BiName Before-image filename (-g).

_Startup-BiTrunc Before-image truncate interval (-G).

_Startup-Buffs Number of database buffers (-B).

_Startup-CrashProt No crash protection (-i).

_Startup-Directio Direct I/O data transfer (-directio). Field is
set to 1 when -directio is specified.

_Startup-LockTable Maximum size of the locking table.

_Startup-MaxClients Value of the Maximum Clients per Server
(-Ma) startup parameter.

_Startup-MaxServers Value of the Maximum Servers (-Mn) startup
parameter.

_Startup-MaxUsers Value of the Maximum Users (-n) startup
parameter.

_Startup-Spin Number of spinlock tries before time-out
occurs.

Table 20–34: Index and Table Statistics Range (_StatBase)

Record Description

_IndexBase Index statistics base.

_TableBase Table statistics base.

Table 20–33: Startup File (_Startup) (2 of 2)

Record Description
20–34

Virtual System Tables
Table 20–35: Table Statistics File (_TableStat)

Record Description

_TableStat-Create Number of times create access has occurred
to the table.

_TableStat-Delete Number of times delete access has occurred
to the table.

_TableStat-Read Number of times read access has occurred to
the table.

_TableStat-Update Number of times update access has occurred
to the table.

Table 20–36: Transaction File (_Trans)

Record Description

_Trans-Coord Name of the coordinator database.

_Trans-CoordTx Current coordinator transaction number.

_Trans-Counter Transaction count.

_Trans-Duration Number of seconds the transaction required
to complete.

_Trans-Flags Transaction flags.

_Trans-Misc Miscellaneous information.

_Trans-Num Transaction number.

_Trans-State Transaction state.

_Trans-Txtime Transaction start time.

_Trans-Usrnum User number of the user running the
distributed transaction.
20–35

Progress Database Administration Guide and Reference
Table 20–37: Transaction End Lock Statistics (_TxeLock)

Record Description

_Txe-Locks Total number of times that transaction end
lock is requested.

_Txe-Lockss Number of concurrently held locks. (Only
valid for update and commit locks.)

_Txe-Time Not yet implemented; always 0.

_Txe-Type Type of transaction end lock, such as update
or commit.

_Txe-Waits Number of times a transaction end lock
request has been queued; how many times
you had to wait.

_Txe-Waitss Number of concurrently queued locks. (Only
valid for update and commit locks.)

Table 20–38: Database Input/Output File (_UserIO) (1 of 2)

Record Description

_UserIO-AiRead Number of AI read operations performed by
the process.

_UserIO-AiWrite Number of AI write operations performed by
the process.

_UserIO-BiRead Number of BI read operations performed by
the process.

_UserIO-BiWrite Number of BI write operations performed by
the process.

_UserIO-DbAccess Number of database access operations
performed by the process.

_UserIO-DbRead Number of database read operations
performed by the process.
20–36

Virtual System Tables
_UserIO-DbWrite Number of database write operations
performed by the process.

_UserIO-Name User name of the process.

_UserIO-Usr User number of the process.

Table 20–39: Record Locking Table File (_UserLock)

Record Description

_UserLock-Chain Type of chain should always be REC, the
record lock chain.

_UserLock-Flags Any of four possible types of flags: L
(LIMBO lock), P (PURGED lock entry), Q
(QUEUED lock request), and U
(UPGRADE request).

_UserLock-Misc Miscellaneous information.

_UserLock-Name User name of the process owning the lock.

_UserLock-Recid Record ID for the record being locked.

_UserLock-Type One of the three lock types: EXCL
(EXCLUSIVE-LOCK), SHR
(SHARE-LOCK), or NOLK (NO-LOCK).

_UserLock-Usr User number of the process owning the lock.

Table 20–40: User Status (_UserStatus) (1 of 2)

Record Description

_UserStatus-Counter Count blocks accessed, records moved,
tables moved, or indexes compacted, etc.

_UserStatus-ObjectId The table or index worked on.

Table 20–38: Database Input/Output File (_UserIO) (2 of 2)

Record Description
20–37

Progress Database Administration Guide and Reference
_UserStatus-ObjectType The type of object worked on.

_UserStatus-Operation Name of the online utility for which status is
being monitored.

_UserStatus-State The state the utility is in.

_UserStatus-Target The end value of the counter (if known).

_UserStatus-UserId User number.

Table 20–40: User Status (_UserStatus) (2 of 2)

Record Description
20–38

A
Progress Monitor R&D Options

The Progress Monitor (PROMON) utility lets you monitor database activity and performance.
Chapter 19, “Database Administration Utilities,” documents the main PROMON options. In
addition, PROMON provides advanced options for in-depth monitoring of Progress activity and
performance. These options are called R&D options. This appendix describes the R&D options.

NOTE: The R&D options might change in a future release.

Accessing PROMON R&D Options
Accessing PROMON R&D Options

Follow these steps:

1 ♦ Start PROMON by entering the following command:

In these commands, db-name specifies the database you want to monitor.

The PROMON main menu appears:

The R&D option does not appear on the main menu.

Operating
System Syntax

UNIX, NT promon db-name

PROGRESS MONITOR Version 9

Database: /usr/wrk/sports2000

1. User Control
2. Locking and Waiting Statistics
3. Block Access
4. Record Locking Table
5. Activity
6. Shared Resources
7. Database Status
8. Shut Down Database

T. Transactions Control
L. Resolve Limbo Transactions
C. Coordinator Information

M. Modify Defaults
Q. Quit

Enter your selection:
A–2

Accessing PROMON R&D Options
2 ♦ At the Enter your selection prompt, enter R&D to access the R&D option.

The R&D main menu appears:

3 ♦ Choose one of the following options:

• Status Displays — Shows information about the current state of the database and its
users.

• Activity Displays — Shows information about database activity in the recent past.

Activity displays shows the total number of each type of operation for the sample
period (Total), the number of operations per minute (Per Min), the number of
operations per second (Per Sec), and the number of operations per transaction
(Per Tx).

• Other Displays — Shows information that does not fit into either the Status or
Activity categories.

• Administrative Functions — Lets you see and change options related to
administering a database.

• Adjust Monitor Options — Lets you change the way the monitor behaves.

Menus items followed by ellipses (...) access a lower level menu. See the “PROMON
R&D Main Menu” section for the menus you can access from the PROMON R&D main
(top) menu.

01/19/99 PROGRESS MONITOR (R&D)
14:50 Main (Top) Menu
1. Status Displays ...
2. Activity Displays ...
3. Other Displays ...
4. Administrative Functions ...
5. Adjust Monitor Options

Enter a number, <return>, P, T, or X (? for help):
A–3

PROMON R&D Main Menu
PROMON R&D Main Menu

Lets you access other menus by category. Table A–1 lists the main menu options.

Table A–1: PROMON R&D Main Menu (1 of 3)

1. Status Displays Accesses a menu of Stats display options, including:

1. Database

2. Backup

3. Servers

4. Processes/Clients...

1. All Processes

2. Blocked Clients

3. Active Transactions

4. Local Interactive Clients

5. Local Batch Clients

6. Remote Clients

7. Background Processes

5. Files

6. Lock Table

7. Buffer Cache

8. Logging Summary

9. BI Log

10. AI Log

11. Two-Phase Commit

12. Startup Parameters

13. Shared Resources

14. Shared Memory Segments
A–4

PROMON R&D Main Menu
2. Activity Displays Accesses a menu of Activity display options, including:

1. Summary

2. Servers

3. Buffer Cache

4. Page Writers

5. BI Log

6. AI Log

7. Lock Table

8. I/O Operations by Type

9. I/O Operations by File

10. Space Allocation

11. Index

12. Record

13. Other

3. Other Displays Accesses a menu of miscellaneous display options, including:

1. Performance Indicators

2. I/O Operations by Process

3. Lock Requests by User

4. Checkpoints

4. Administrative
Functions

Accesses a menu of options that let you view and change
settings, including:

1. Check Active Transaction Status

2. Check Two-phase Transactions

3. Resolve Limbo Transactions

4. Adjust Latch Options

5. Adjust Page Writer Options

Table A–1: PROMON R&D Main Menu (2 of 3)
A–5

PROMON R&D Main Menu
5. Adjust Monitor
Options

Accesses a menu of options that let you change PROMON
monitor behavior, including:

1. Display Page Length

2. Clear Screen for First Page

3. Monitor Sampling Interval

4. Pause Between Displays

5. Pause Between Screens

6. Number of Auto Repeats

7. Change working area

Table A–1: PROMON R&D Main Menu (3 of 3)
A–6

Menu Options
Menu Options

At the bottom of each PROMON R&D screen, PROMON displays a prompt similar to the
following:

The options you can choose depend on the screen you are viewing.

Options Available From All Screens

All screens provide the following options:

number

Displays the screen for the menu item with the number you specify.

<return>

Displays the next page of the current display. If there is no next page, returns to the
previous menu.

P

Returns to the previous menu.

T

Returns to the main menu.

X

Exits the Progress Monitor utility.

?

Displays help information for each available option.

Options Available From Status Screens

At the bottom of each screen in the Status category, PROMON displays the following prompt:

Enter a number, <return>, P, T, or X (? for help):

Enter <return>, R, P, T, or X (? for help):
A–7

Menu Options
These options perform the following functions:

<return>

Displays the next page of the current display. If there is no next page, returns to the
previous menu.

R

Repeats the current display.

P

Returns to the previous menu.

T

Returns to the main menu.

X

Exits the Progress Monitor utility.

?

Displays help information for each available option.

Options Available From Activity Screens

At the bottom of each screen in the Activity category, PROMON displays the following prompt:

These options perform the following functions:

<return>

Displays the next page of the current display. If there is no next page, returns to the
previous menu.

Enter <return>, A, L, R, S, U, Z, P, T, or X (? for help):
A–8

Menu Options
A

Activates auto-repeat mode. The display restarts after the number of seconds specified by
the current display pause time. (You can change the display pause time with the Adjust
Monitor Options menu.) The display stops after the number of times specified by the auto
repeat count or when you press CTRL-C. (You can change the auto-repeat count with the
Adjust Monitor Options menu.)

L

Loads activity counters from start of the session.

R

Repeats the current display.

S

Displays activity data collected during the last sample interval only. (You can change the
sample interval with the Adjust Monitor Options menu.) The display restarts after each
sample interval.

U

Updates activity counters and restarts the display. The display shows only changes that
have occurred since the initial set of data was collected.

Z

Zeros the activity counters. Subsequent updates show changes that have occurred since
you chose this option.

P

Returns to the previous menu.

T

Returns to the main menu.

X

Exits the Progress Monitor utility.

?

Displays help information for each available option.
A–9

Status Displays→ Database
Status Displays→ Database

Displays general database status information. Figure A–1 shows a sample Database Status
display.

Figure A–1: PROMON Database Status Display

The display in Figure A–1 contains the following fields:

• Database state — The current operating mode of the database. Table A–2 describes the
possible states.

01/25/02 Status: database
11:01:01

Database was started at: 01/25/02 9:17
It has been up for: 1:43:37
Database state: Open (1)
Database damaged flags: None
Integrity flags: None
Most recent database open: 01/25/02 9:17
Previous database open: 01/25/02 9:17
Local cache file time stamp: 02/15/01 21:41
Database block size: 1024 bytes
Number of blocks allocated: 240 (240kb in area 7)
Empty blocks: 9 (0% in area 7)
Free blocks: 0 (0% in area 7)
RM Blocks with Free Space: 1 (0% in area 7)
Last transaction id: 399
Highest table number defined: 9
Database version number: 78
Shared memory version number: 7317

Table A–2: Database States (1 of 2)

State Description

Open The database is open.

Not modified since last open The database is closed.

Recovery The database is performing crash recovery.
A–10

Status Displays→ Database
• Database damaged flags — The state of the database. Table A–3 lists the possible flags.

• Integrity flags — The integrity mode in which the database is running. Table A–4 lists
the possible flags.

• Most recent database open — The date and time when the broker for this database was
started.

• Previous database open — The date and time when the database was previously started.

Index repair The PROUTIL IDXBUILD utility is running to
rebuild indexes.

Restore The database is being restored.

Table A–2: Database States (2 of 2)

State Description

Table A–3: Database Damaged Flags

State Description

None Normal.

Opened with -F Crash recovery skipped. The database might be damaged.

Crashed with -i Crashed without integrity. The database is damaged.

Crashed with -r Crashed with buffered I/O. The database might be damaged.

Table A–4: Integrity Flags

State Description

None Normal.

Executing with -i A crash in this state will damage the database.

Executing with -r A crash in this state might damage the database.
A–11

Status Displays→ Database
• Local cache file time stamp — The time stamp used to check the validity of the schema
cache file. For more information, see the description of the Schema Cache File (-cache)
parameter in Chapter 18, “Database Startup Parameters.”

• Database block size — The database block size in bytes.

• Number of blocks allocated — The total number of blocks allocated to the database.

• RM Blocks with free space — The total number of blocks in the RM chain.

• Highest table number defined — The number of tables defined in the database.

• Database version number — Identifies the structures of all database-related data that is
resident on disk. Progress uses this number to match different executable versions with the
correct database structures.

• Shared memory version number — Identifies the version of all data structures that are
resident in shared memory and used by the database manager. Progress uses this number
to ensure that all executables accessing shared memory agree on what data is kept in
shared memory and how that data is accessed. The shared-memory version number
changes more frequently than the database version number.
A–12

Status Displays→ Backup
Status Displays→ Backup

Use this option to display information about database backups. Figure A–2 shows a sample
Backup Status display.

Figure A–2: PROMON Backup Status Display

The display in Figure A–2 contains the following fields:

• Most recent full backup — The date of the most recent full backup.

• Most recent incremental backup — The date of the most recent incremental backup.

• Database changed since backup — Yes, if the database has been modified since the last
backup. No, if the database has not changed.

• Sequence of last incremental — The count of incremental backups made since the last
full backup.

01/25/02 Status: backup
16:07

Most recent full backup: 01/25/02
Most recent incremental backup: Never
Database changed since backup: Yes
Sequence of last incremental: 0

Enter <return>, P, T, or X (? for help):
A–13

Status Displays→ Servers
Status Displays→ Servers

Displays status information about Progress servers running on the system. Figure A–3 shows a
sample Servers Status display.

Figure A–3: PROMON Servers Status Display

01/25/02 Status: Servers
16:07

Sv Cur. Max. Port
No Pid Type Protocol Logins Users Users Num

0 16140 Login TCP 0 0 5 2052
1 0 Inactive 0 0 0 0
2 0 Inactive 0 0 0 0
3 0 Inactive 0 0 0 0
4 0 Inactive 0 0 0 0
A–14

Status Displays→ Servers
The display contains the following fields:

• Type — The server type. Table A–5 describes the possible types.

• Protocol — The communications protocol used by the server and its clients. The protocol
can be one of the following: TCP/IP, TLI, or DECNET.

Table A–5: Server Types

State Description

Broker A broker process. A broker logs in clients and starts
remote servers.

Auto A server started automatically by the broker.

Manual A server started manually (with the Manual Server
(-m2) startup parameter) after the broker was
started. You might start a server manually for
debugging purposes, or on a system where a server
cannot be started automatically.

Login A secondary login broker. When a database
network includes more than one protocol, a
secondary login broker performs broker functions
for the second protocol.

Inactive Placeholder in the server table for servers that have
not yet started.
A–15

Status Displays→ Processes/Clients→ All Processes
Status Displays→ Processes/Clients→ All Processes

Displays status information about Progress processes. Figure A–4 shows a sample
Processes/Clients Status display.

Figure A–4: PROMON Processes/Clients Status Display

The display contains the following fields:

• Type — The process type. Table A–6 lists the possible types.

01/25/99 All Processes Status
16:09

Usr Name Type Wait Trans id Login time
0 rgw BROK MTX 0 0 01/25/99 08:31
1 rgw BIW IDLE 3853 0 01/25/99 08:33
2 rgw APW -- 0 0 01/25/99 08:33
3 rgw SELF BUF 0 2601 01/25/99 08:34
4 rgw MON -- 0 0 01/25/99 08:57

Table A–6: Process Types (1 of 2)

State Description

AIW After-image writer.

APLS Application server.

APW Asynchronous page writer.

BAT Batch user.

BKUP Online backup.

BIW Before-image writer.

BROK Broker.

MON Monitor.

REMC Remote client.

RPLA Replication agent.
A–16

Status Displays→ Processes/Clients→ All Processes
• Wait — The wait type. Table A–7 describes the possible types. If no value is displayed,
the process is not waiting on any database-related events.

RPLS Replication server.

SELF Self-service client.

SERV Server for remote clients.

SHUT Shutdown (PROSHUT).

WDOG Watchdog.

Table A–6: Process Types (2 of 2)

State Description

Table A–7: Process Wait Types (1 of 3)

Type Description

Lock Waits

REC Row (record) lock.

SCH Schema lock.

TRAN Transaction commit.

Resource Waits

AIRD After-image buffer read from disk.

AIWR After-image buffer write to disk.

BIRD Before-image buffer read from disk.

BIWR Before-image buffer write to disk.

BKEX Exclusive lock on database buffer.

BKSH Share lock on database buffer.

BKSI Share lock with intent to update on database buffer.
A–17

Status Displays→ Processes/Clients→ All Processes
DBBK Database buffer being backed up.

DBRD Database buffer read from disk.

DBWR Database buffer write to disk.

RGET Row get lock.

TXE Transaction commit lock.

Latch Waits

AIB After-image buffer latch.

BFP Buffer pool latch.

BHT Buffer pool hash table latch.

BUF Buffer pool buffer latch.

CPQ Checkpoint queue latch.

DLC Index delete chain.

GST Global storage pool latch.

IXD Index delete chain latch.

LKF Lock table free chain latch.

LKP Lock table purge chain latch.

LKT Lock table latch.

LRS Secondary LRU chain (not currently implemented).

LRU Buffer pool LRU chain latch.

MTX Log space allocation latch.

PWQ Page writer queue latch.

SCH Shared schema cache latch.

Table A–7: Process Wait Types (2 of 3)

Type Description
A–18

Status Displays→ Processes/Clients→ All Processes
SEQ Sequence cache latch.

TXQ Transaction queue latch.

TXT Transaction table latch.

USR User table latch.

Table A–7: Process Wait Types (3 of 3)

Type Description
A–19

Status Displays→ Processes/Clients→ Blocked Clients
Status Displays→ Processes/Clients→ Blocked Clients

Displays status information about clients waiting for a database-related resource. Figure A–5
shows a sample Blocked Clients Status display.

Figure A–5: PROMON Blocked Clients Status Display

The display contains the following fields:

• Type — The process type. Table A–6 lists the possible types.

• Wait — The resource for which the process is waiting.

• Trans id — The unique internal transaction number the process is currently working on.

• Login time — The time when the process logged into the database.

01/25/02 Status Blocked Clients
16:10

Usr Name Type Wait Trans id Login time
2 eadams SELF REC 3937 0 11/22/01 14:51
A–20

Status Displays→ Processes/Clients→ Active Transactions
Status Displays→ Processes/Clients→ Active Transactions

Displays status information about active transactions. Figure A–6 shows a sample Active
Transactions Status display.

Figure A–6: PROMON Active Transactions Status Display

The display contains the following fields:

• Type — The process type. Table A–6 lists the possible types.

• Trans id — The transaction ID.

• Trans State — The state of the transaction. Table A–8 lists the possible states.

01/25/02 Active Transactions Status
16:10

Usr Name Type Login time Tx Start Time Trans id Trans State

0 rgw SELF 01/25/02 08:31 2601 Begin

Table A–8: Transaction States

State Description

Begin A transaction table entry was allocated, and a start record is being
logged.

Active The transaction is doing forward processing.

Prep The transaction is preparing to enter phase 1 (ready to commit),
but has not sent a ready-to-commit reply.

Phase 1 In phase 1, ready to commit.

Phase 2 In phase 2.

C With two-phase commit, this user is logging for the coordinator
for the transaction.

R Ready to commit.

L Limbo transaction.
A–21

Status Displays→ Processes/Clients→ Local Interactive Clients
Status Displays→ Processes/Clients→ Local Interactive Clients

Displays status information about local interactive client processes. Figure A–7 shows a sample
Local Interactive Clients status display.

Figure A–7: PROMON Local Interactive Clients Status Display

The display contains the following fields:

• Usr — The user number of the process.

• Name — The user name of the process.

• Type — The process type. Table A–6 lists the possible types.

• Wait — The wait type. Table A–7 describes the possible types.

• Trans id — The user’s transaction ID.

• Login time — The time when the process logged into the database.

• Pid — The process ID number.

01/25/02 Local Interactive Clients Status
16:10

Usr Name Type Wait Trans id Login time Pid

0 rgw BROK MTX 0 0 01/25/02 08:31 16147
A–22

Status Displays→ Processes/Clients→ Local Batch Clients
Status Displays→ Processes/Clients→ Local Batch Clients

Displays status information about local batch client processes. Figure A–8 shows a sample
Local Batch Clients Status display.

Figure A–8: PROMON Local Batch Clients Status Display

The display contains the following fields:

• Usr — The user number of the process.

• Name — The user name of the process.

• Type — The process type. Table A–6 lists the possible types.

• Wait — The wait type. Table A–7 describes the possible types.

• Trans id — The user’s transaction ID.

• Login time — The time when the process logged into the database.

• Pid — The process ID number.

01/25/02 Local Batch Clients Status
16:10

Usr Name Type Wait Trans id Login time Pid

0 guy SELF MTX 0 402 06/25/01 08:31 678
0 rgw SELF REC 3937 0 06/25/01 08:36 687
A–23

Status Displays→ Processes/Clients→ Remote Clients
Status Displays→ Processes/Clients→ Remote Clients

Displays status information about remote client processes. Figure A–9 shows a sample Remote
Clients Status display.

Figure A–9: PROMON Remote Clients Status Display

The display contains the following fields:

• Usr — The user number of the process.

• Name — The user name of the process.

• Type — The process type. Table A–6 lists the possible types.

• Wait — The wait type. Table A–7 describes the possible types.

• Trans id — The user’s transaction ID.

• Login time — The time when the process logged into the database.

• Serv — The server number serving the remote client.

01/25/02 Remote Clients Status
16:18

Usr Name Type Wait Trans id Login time Serv

0 rgw BROK MTX 0 0 01/25/01 08:31 0
A–24

Status Displays→ Processes/Clients→ Background Processes
Status Displays→ Processes/Clients→ Background Processes

Displays status information about background database processes. Figure A–10 shows a sample
Background Processes Status display.

Figure A–10: PROMON Background Processes Status Display

The display contains the following fields:

• Usr — The user number of the process.

• Name — The user name of the process.

• Type — The process type. Table A–6 lists the possible types.

• Start time — The time when the process logged into the database.

• Pid — The process ID number.

01/25/02 Background Processes Status
16:10

Usr Name Type Start time Pid

0 rgw BROK 06/25/01 08:31 16140
1 rgw BIW 06/25/01 08:33 16145
2 rgw APW 06/25/01 08:33 16146
4 rgw MON 06/25/01 08:57 16164
A–25

Status Displays→ Files
Status Displays→ Files

Displays status information about Progress database files. Figure A–11 shows a sample Files
Status display.

Figure A–11: PROMON Files Status Display

The display contains the following fields:

• File name — The name of the file, including the path specification.

• Size — The file size, in kilobytes.

• Extend — The size of the last file extension, in kilobytes.

01/25/02 Status: Files
16:20

Size Extend
File name (KB) (KB)

/disk1/sports.ai 288 24
/disk1/sports.db 245760 16384
/disk1/sports.bi 524288 65536

Enter <return>, P, T, or X (? for help):
A–26

Status Displays→ Lock Table
Status Displays→ Lock Table

Displays status information about the lock table. For a description of the lock table and its
functions, see Chapter 14, “Managing Performance.” Figure A–12 shows a sample Lock Table
Status display.

Figure A–12: PROMON Lock Table Status Display

The display contains the following fields:

• Usr — The user number of the user who owns the lock entry.

• Name — The user name.

• Type — The lock type (for example, REC, RGET).

• RECID — The RECID of the record and lock table entry.

• Flags — Table A–9 lists the possible flags.

01/25/02 Status: Lock Table
16:22

Usr Name Type RECID Flags

3 rgw REC 7843 S

Table A–9: Lock Table Flags (1 of 2)

Flag Description

S Share lock.

X Exclusive lock.

U Lock was upgraded from a share lock to an exclusive lock.

L Limbo. Lock is being held until the transaction commits.

Q Request is queued, and the user is waiting for a conflicting lock held
by another user.
A–27

Status Displays→ Lock Table
P Purged.

H Hold.

Table A–9: Lock Table Flags (2 of 2)

Flag Description
A–28

Status Displays→ Buffer Cache
Status Displays→ Buffer Cache

Display status information about Progress buffers. Figure A–13 shows a sample Buffer Cache
Status display.

Figure A–13: PROMON Buffer Cache Status Display

The display contains the following fields:

• Total buffers — The total number of buffers in the buffer cache.

• Hash Table Size — The size of the buffer hash table.

• Used Buffers — The number of buffers currently in use.

• Empty Buffers — The number of empty buffers.

• On lru Chain — The number of buffers on the least recently used (LRU) chain.

• On apw queue — The number of buffers on the page writer queue.

• On ckp queue — The number of buffers on the checkpoint queue.

• Modified buffers — The number of dirty (modified) buffers.

• Marked for ckp — The number of buffers currently marked for checkpoint.

• Last checkpoint number — The most recent checkpoint number. As checkpoints begin,
they are assigned a sequential number from the start of the session. The number is also the
number of checkpoints that have occurred.

01/25/02 Status: Buffer Cache
16:21

Total buffers: 170
Hash Table Size: 43
Used Buffers: 57
Empty Buffers: 113
On lru Chain: 168
On apw queue: 0
On ckp queue: 0
Modified buffers: 170
Marked for ckp: 0
Last checkpoint number: 0
A–29

Status Displays→ Logging Summary
Status Displays→ Logging Summary

Displays status information for the database logging function. Figure A–14 shows a sample
Logging Summary Status display.

Figure A–14: PROMON Logging Summary Status Display

The display contains the following fields:

• Crash protection — Yes, if crash protection is enabled; No, if it is not.

• Delayed Commit — The current value of the Delayed BI File Write (-Mf) parameter.

• Before-image I/O — One of the following:

– Reliable if synchronous or direct I/O is being used for BI writes.

– BUFFERED if buffered I/O is being used for BI writes. Buffered I/O is not
recommended.

• Before-image cluster age time — The period of time that must pass before Progress
reuses a BI cluster. This period ensures that database blocks flushed at checkpoint are
moved from the UNIX buffers on disk. When this occurs, the transaction is recorded on
disk.

• BI Writer status — Executing, if a BIW is running.

• Two-Phase Commit — ON, if two-phase commit is enabled; OFF, if it is not.

• After-image journalling — ON, if after-imaging is enabled; OFF, if it is not.

01/25/02 Status: Logging Summary
16:22

Crash protection: Yes
Delayed Commit: 3 seconds
Before-image I/O: Reliable
Before-image cluster age time: 60 seconds
BI Writer status: Executing
Two-Phase Commit: *** OFF ***
After-image journalling: *** OFF ***
A–30

Status Displays→ BI Log
Status Displays→ BI Log

Displays status information for before-image logging. Figure A–15 shows a sample BI Log
Status display.

Figure A–15: PROMON BI Log Status Display

The display contains the following fields:

• Before-image cluster age time — The period of time that must pass before Progress
reuses a BI cluster. This period ensures that database blocks flushed at checkpoint are
moved from the UNIX buffers on disk. When this occurs, the transaction is durably
recorded on disk.

• Before-image block size — The BI block size.

• Before-image cluster size — The BI cluster size.

• Number of before-image extents — The number of BI files.

• Before-image log size (kb) — The size of the BI log file, in kilobytes.

• Bytes free in current cluster — The number of free bytes remaining in the current BI
cluster.

• Last checkpoint was at — The time of the last checkpoint.

• Number of BI buffers — The number of BI buffers.

• Full buffers — The number of full BI buffers.

01/25/02 Status:BI Log
16:23

Before-image cluster age time: 60 seconds
Before-image block size: 1024 bytes
Before-image cluster size: 128 kb (131072 bytes)
Number of before-image extents: 0
Before-image log size (kb): 512
Bytes free in current cluster: 1548
Last checkpoint was at: 01/25/02 13:56
Number of BI buffers: 5
Full buffers: 0
A–31

Status Displays→ AI Log
Status Displays→ AI Log

Displays status information for after-image logging. Figure A–16 shows a sample AI Log Status
display.

Figure A–16: PROMON AI Log Status Display

The display contains the following fields:

• After-image begin date — The date of the last AIMAGE BEGIN command.

• After-image new date — The date of the last AIMAGE NEW command.

• After-image open date — The date when the AI log was last opened.

• After-image generation number — The generation number of the current AI extent.

• Number of after-image extents — The number of AI files or extents.

• Number of AI buffers — The number of buffers in the AI buffer pool. You can change
the number of AI buffers with the After-image Buffers (-aibufs) startup parameter. The
default value is 1.

• After-image block size — The size of the after-image block. You can change the AI block
size. This reduces I/O rates on disks where AI files are located. For more information, see
Chapter 14, “Managing Performance.”

• After-image log size — The size of the AI log file, in kilobytes.

04/14/02 Status: AI Log
16:53:30

After-image begin date: 04/14/02 16:27
After-image new date: 04/14/02 16:27
After-image open date: 04/14/02 16:48
After-image generation number: 0
Number of after-image extents: 0
Number of AI buffers: 1
After-image block size: 1024 bytes
After-image log size: 15K
A–32

Status Displays→ Two-phase Commit
Status Displays→ Two-phase Commit

Displays status information about two-phase commit. Figure A–17 shows a sample Two-Phase
Commit Status display.

Figure A–17: PROMON Two-phase Commit Status Display

The display contains the following fields:

• Coordinator nickname — The nickname that Progress uses to identify the coordinator
database. You specify a nickname when you enable two-phase commit.

• Coordinator priority — The priority for the coordinator database. You specify the
priority when you enable two-phase commit.

• After-image journalling —Yes, if after-imaging is enabled; No, if it is not. Progress
Software recommends you use after-imaging if you use two-phase commit.

04/14/02 Status: Two-Phase Commit
17:02:19

Coordinator nickname: mydemo
Coordinator priority: 0
After-image journalling: Yes
A–33

Status Displays→ Startup Parameters
Status Displays→ Startup Parameters

Displays values of Progress database startup parameters. Figure A–18 shows a sample Startup
Parameters Status display.

Figure A–18: PROMON Startup Parameters Status Display

The display contains the following fields:

• Maximum clients — The value of the Number of Users (-n) parameter.

• Maximum servers — The value of the Maximum Servers (-mn) parameter.

• Maximum clients per server — The value of the Maximum Clients per Server (-Ma)
parameter.

• Lock table size — The value of the Lock Table Entries (-L) parameter.

• Database buffers — The value of the Blocks in Database Buffers (-B) parameter.

• APW queue check time — The value of the Page Writer Queue Delay (-pwqdelay)
parameter.

• APW scan time — The value of the Page Writer Scan Delay (-pwsdelay) parameter.

01/25/02 Status: Startup Parameters
16:23

Maximum clients: 21
Maximum servers: 4
Maximum clients per server: 0
Lock table size: 512 entries
Database buffers: 168 (168 kb)
APW queue check time: 500 milliseconds
APW scan time: 1 seconds
APW buffers to scan: 1
APW max writes/scan: 25
Before-image buffers: 5 (5 kb)
After-image file name: -
After-image buffers: 1 (1 kb)
A–34

Status Displays→ Startup Parameters
• APW buffers to scan — The value of the Page Writer Scan (-pwscan) parameter.

• APW max writes/scan — The value of the Page Writer Maximum Buffers (-pwwmax)
parameter.

• Before-image buffers — The value of the Before-image Buffers (-bibufs) parameter.

• After-image file name — The value of the After-image Filename (-a) parameter.

• After-image buffers — The value of the After-image Buffers (-aibufs) parameter.
A–35

Status Displays→ Shared Resources
Status Displays→ Shared Resources

Displays status information about shared database resources. Figure A–19 shows a sample
Shared Resources Status display.

Figure A–19: PROMON Shared Resources Status Display

The display contains the following fields:

• Active transactions — The number of currently active transactions.

• Lock table entries in use — The number of lock table entries that are currently being
used, and the total number of entries available.

• Lock table high water mark — The maximum number of lock table entries that were in
use simultaneously.

• Number of servers — The number of servers running.

• Total clients — The number of clients, broken down by the following types: Self service,
Remote, and Batch.

• Watchdog status — Executing, if the Watchdog process is executing; Not executing, if
the Watchdog is not executing.

• BIW status — Executing, if the BIW is executing; Not executing, if the BIW is not
executing.

01/25/02 Status: Shared Resources
16:24

Active transactions: 1
Lock table entries in use: 1 of 512
Lock table high water mark: 2
Number of servers: 0 (5 allocated)
Total clients: 1 (21 allocated)

Self service: 1
Remote: 0
Batch: 0

Watchdog status: *** Not executing ***
BIW status: *** Not executing ***
Number of page writers: 1
Number of monitors: 1
Number of semaphores allocated: 29
Shared memory allocated: 400 K (1 segments)
A–36

Status Displays→ Shared Resources
• Number of page writers — The number of APWs running.

• Number of monitors — The number of Progress Monitor processes running.

• Number of semaphores allocated — The number of UNIX semaphores allocated.

• Shared memory allocated — The amount of shared memory allocated, in kilobytes and
in segments. For more information an shared-memory allocation, see Chapter 14,
“Managing Performance.”
A–37

Status Displays→ Shared Memory Segments
Status Displays→ Shared Memory Segments

Displays general information about shared-memory segments allocated to the Progress
database. Figure A–20 shows a sample Shared Memory Segments Status display.

Figure A–20: PROMON Shared Memory Segments Status Display

The display contains the following fields:

• Seg — The segment number. Each segment receives a sequential number when it is
created.

• Id — The number the operating system uses to reference this segment.

• Size — The total allocated segment size, in bytes.

• Used — The amount of shared memory used from the segment, in bytes.

• Free — The amount of shared memory allocated but not yet used in the segment, in bytes.

Seg Id Size Used Free

1 400 303104 152320 150784
A–38

Activity Displays→ Summary
Activity Displays→ Summary

Displays general information about database activity. Figure A–21 shows a sample Summary
Activity display.

Figure A–21: PROMON Summary Activity Display

The Summary Activity display shows the number of events that have occurred on the system,
including the cumulative total and the number of events per second. The display includes the
following events:

• Commits — The number of transactions all users have committed.

• Undos — The number of transactions rolled back.

• Record Reads — The number of records read.

• Record Updates — The number of records updated.

• Record Creates — The number of records created.

• Record Deletes — The number of records deleted.

01/25/02 Activity: Summary
16:27 from 01/25/02 15:31 to 01/25/02 16:04 (2 min. 48 sec.)

Event Total Per Sec. Event Total Per Sec.

Commits 1208 0.7 DB Reads 57 0.0
Undos 0 0.0 DB Writes 3 0.0
Record Reads 1334 0.8 BI Reads 13 0.0
Record Updates 1208 0.7 BI Writes 131 0.0
Record Creates 0 0.0 AI Writes 0 0.0
Record Deletes 0 0.0 Checkpoints 0 0.0
Record Locks 3625 2.3 Flushed at chkpt 0 0.0
Record Waits 0 0.0

Rec Lock Waits 0% BI Buf Waits 0% AI Buf Waits 0%
Writes by APW 0% Writes by BIw 96% Writes by AIW 0%
DB Size: 352K BI size: 512K AI Size: 0K
Empty blocks: 10 Free blocks: 0 RM chain: 1
Buffer hits: 98% Active trans: 1

0 Servers, 1 Clients (1 Local, 0 Remote, 0 Batch), 1 APWs
A–39

Activity Displays→ Summary
• Record Locks — The number of record locks used.

• Record Waits — The number of times users have waited to access a locked record.

• DB Reads — The number of database blocks read.

• DB Writes — The number of database blocks written to disk.

• BI Reads — The number of BI blocks read.

• BI Writes — The number of BI blocks written to disk.

• AI Writes — The number of AI blocks written to disk.

• Checkpoints — The number of checkpoints that have been performed.

• Flushed at chkpt — The number of database buffers that have been flushed to disk
because they were not written by the time the checkpoint ended.

The Summary Activity display also shows the following information:

• Rec Lock Waits — The percentage of record accesses that result in record lock waits. A
record lock wait occurs when Progress must wait to access a locked record.

For optimum performance, try to keep this number as low as possible. You can lower this
number by modifying your application to perform shorter transactions so that record locks
are held for shorter periods of time.

• BI Buf Waits — The percentage of BI buffer waits. A BI buffer wait occurs when
Progress must wait to access a BI buffer.

For optimum performance, try to keep this number as low as possible. To decrease this
number, allocate more BI buffers with the Before-image Buffers (-bibufs) parameter.

• AI Buf Waits — The percentage of AI buffer waits. An AI buffer wait occurs when
Progress must wait to access an AI buffer.

For optimum performance, try to keep this number as low as possible. To decrease this
number, allocate more AI buffers with the After-image Buffers (-aibufs) parameter.

• Writes by APW — The percentage of database blocks written to disk by the APW; this
is a percentage of the total number of database blocks written by Progress.

For optimum performance, try to keep this number as high as possible. To increase this
number, start more APWs and increase the cluster size.
A–40

Activity Displays→ Summary
• Writes by BIW — The percentage of BI blocks written to disk by the BIW; this is a
percentage of the total number of BI blocks written to disk by Progress.

 For optimum performance, try to keep this percentage fairly high. You can increase the
number of BI buffers with the -bibufs parameter.

• Writes by AIW — The percentage of AI blocks written to disk by the AIW; this is a
percentage of the total number of AI blocks written by Progress.

 For optimum performance, try to keep this percentage fairly high. You can increase the
number of AI buffers with the -aibufs parameter.

• DB Size — The size of your database, in kilobytes.

• BI Size — The size of your BI file, in kilobytes.

• AI Size — The size of your AI file, in kilobytes.

• Empty blocks — The number of empty (never used) database blocks.

• Free blocks — The number of blocks on the database’s free chain. The free chain is a chain
of previously used and then deallocated database blocks.

• RM chain — The number of blocks on the database’s RM chain. The RM chain is a chain
of partially filled database blocks.

• Buffer hits — The percentage of buffer hits. A buffer hit occurs when Progress locates a
database record in the Progress buffer pool and does not have to read the record from disk.

For optimum performance, keep this number as high as possible. To increase this number,
allocate more buffers with the -B parameter. Increase the number of buffers until one of
the following occurs:

– The number of I/Os per second is reduced to less than half the capacity of the drives.

– The buffer hit rate stops improving.

– The system starts paging.

• Active trans — The number of active transactions.
A–41

Activity Displays→ Summary
The last line of the Summary Activity display summarizes the current number of each type of
process running against the database at the time you run the Activity option. Table A–10 defines
the process types.

Table A–10: Process Types

Field Description

Servers Number of servers running against your database. This is the current
value at the time you run the Activity option, not a cumulative total.

Clients Number of client sessions running. This field is further divided into
the type of user: Local, Remote, or Batch. This is the current value
at the time you run the Activity option, not a cumulative total.

APWs Number of APWs running against your database. This is the current
value at the time you run the Activity option, not a cumulative total.
A–42

Activity Displays→ Servers
Activity Displays→ Servers

Displays information about server activity. Figure A–22 shows a sample Servers Activity
display.

Figure A–22: PROMON Servers Activity Display

The display contains the following fields:

• Messages received — The number of network packets received by the server.

• Messages sent — The number of network packets sent by the server.

• Bytes received — The number of bytes received by the server.

• Bytes sent — The number of bytes sent by the server.

• Records received — The number of transferred records received.

• Records sent — The number of transferred records sent.

• Queries received — The number of query requests received.

• Time slices — The number of query time slice switches.

01/25/02 Activity: Servers
16:28 from 01/25/02 13:56 to 01/25/02 13:57 (19 sec)

Total Per Min Per Sec Per Tx
Messages received 204 131 2.19 0.00
Messages sent 152 98 1.6 0.00
Bytes received 13252 8549 142.49 0.00
Bytes sent 40683 26247 437.45 0.00
Records received 0 0 0.00 0.00
Records sent 122 79 1.31 0.00
Queries received 54 35 0.58 0.00
Time slices 51 32 0.54 0.00

Activity for Server
A–43

Activity Displays→ Buffer Cache
Activity Displays→ Buffer Cache

Displays activity information about the database buffer cache (also called the buffer pool).
Figure A–23 shows a sample Buffer Cache Activity display.

Figure A–23: PROMON Buffer Cache Activity Display

The display lists the following types of buffer cache requests:

• Logical Reads — The number of client requests for database block read operations.

• Logical Writes — The number of client requests for database block write operations.

• O/S reads — The number of database blocks read from disk.

• O/S writes — The number of database block writes to disk.

• Checkpoints — The number of checkpoint operations.

• Marked at checkpoint — The number of blocks scheduled to be written before the end
of a checkpoint.

• Flushed at checkpoint — The number of blocks that were not written during the
checkpoint and that had to be written all at once at the end of the checkpoint.

• Writes deferred — The total number of changes to blocks that occurred before the blocks
were written. Each deferred write is potentially an I/O operation saved.

01/25/02 Activity: Buffer Cache
16:28 from 01/25/02 13:56 to 01/25/02 13:57 (19 sec)

Total Per Min Per Sec Per Tx
Logical Reads 23 73 1.21 0.00
Logical Writes 0 0 0.00 0.00
O/S reads 8 25 0.42 0.00
O/S writes 2 6 0.10 0.00
Checkpoints 0 0 0.00 0.00
Marked at checkpoint 0 0 0.00 0.00
Flushed at checkpoint 0 0 0.00 0.00
Writes deferred 0 0 0.00 0.00
LRU skips 0 0 0.00 0.00
LRU writes 0 0 0.00 0.00
APW Enqueues 0 0 0.00 0.00

Hit Ratio: 68 %
A–44

Activity Displays→ Buffer Cache
• LRU skips — The number of times a buffer on the LRU chain was skipped because it was
locked or modified.

• LRU writes — The number of blocks written to free a buffer for a read operation.

• APW Enqueues — The number of modified buffers placed on the APW queue for
writing.

• Hit Ratio — The percentage of buffer cache requests that did not require a physical disk
I/O operation.
A–45

Activity Displays→ Page Writers
Activity Displays→ Page Writers

Displays information about asynchronous page writer (APW) activity. Figure A–24 shows a
sample Page Writers Activity display.

Figure A–24: PROMON Page Writers Activity Display

The display lists the following types of APW operations:

• Total DB writes — The total number of database write operations performed by all
processes.

• APW DB writes — The number of database write operations performed by the APW.
This is a subset of the total number of DB writes:

– Scan writes — The number of buffers written during the scan cycle.

– APW queue writes — The number of buffers written to clear the APW queue.

– Ckp queue writes — The number of buffers written from the checkpoint queue.

– Scan cycles — The number of scan cycles. During a scan cycle, the APW scans a
portion of the buffer pool to look for modified buffers.

– Buffers scanned — The number of buffers scanned during each cycle.

– Bufs checkpointed — The number of buffers checkpointed.

01/25/02 Activity: Page Writers
16:29 from 01/25/02 13:56 to 01/26/02 11:23 (21 hrs 27 min)

Total Per Min Per Sec Per Tx
Total DB writes 3 0 0.00 0.00
APW DB writes 0 0 0.00 0.00

scan writes 8 25 0.42 0.00
APW queue writes 2 6 0.10 0.00
ckp queue writes 0 0 0.00 0.00
scan cycles 0 0 0.00 0.00
buffers scanned 0 0 0.00 0.00
bufs checkpointed 173 0 0.11 0.14

Checkpoints 8211 0 5.22 6.79
Marked at checkpoint 0 0 0.00 0.00
Flushed at checkpoint 0 0 0.00 0.00

Number of APWs: 1
A–46

Activity Displays→ Page Writers
• Checkpoints — The number of checkpoints that have occurred.

• Marked at checkpoint — The number of buffers that were scheduled to be written before
the end of the checkpoint.

• Flushed at checkpoint — The number of blocks that were not written during the
checkpoint and had to be written all at once at the end of the checkpoint.

• Number of APWs — The number of APWs running.
A–47

Activity Displays→ BI Log
Activity Displays→ BI Log

Displays information about BI Log Activity. Figure A–25 shows a sample BI Log Activity
display.

Figure A–25: PROMON BI Log Activity Display

The display lists the following types of BI operations:

• Total BI writes — The number of writes to the BI file.

• BIW BI writes — The number of writes to the BI file performed by the before-image
writer (BIW). For good performance, this number should be high in relation to the total
number of BI writes.

• Records written — The number of BI records (notes) written to the BI file.

• Bytes written — The amount of data written to the BI file, in bytes.

• Total BI Reads — The number of BI blocks read from the BI file (to undo transactions).

• Records read — The number of BI records (notes) read from the BI file.

• Bytes read — The amount of data read from the BI file, in bytes.

• Clusters closed — The number of BI clusters filled and closed in preparation for reuse.

01/25/02 Activity: BI Log
11:36:56 from 04/12/02 13:56 to 04/13/02 11:23 (21 hrs 27 min)

Total Per Min Per Sec Per Tx
Total BI writes 131 0 0.08 0.10
BIW BI writes 127 0 0.08 0.10
Records written 3630 25 2.31 3.00
Bytes written 129487 0 82.42 107.19
Total BI Reads 13 0 0.00 0.01
Records read 0 0 0.00 0.00
Bytes read 0 0 0.00 0.00
Clusters closed 0 0 0.00 0.00
Busy buffer waits 0 0 0.00 0.00
Empty buffer waits 0 0 0.00 0.00
Log force waits 0 0 0.00 0.00
Partial Writes 4 0 0.00 0.00
A–48

Activity Displays→ BI Log
• Busy buffer waits — The number of times a process had to wait for someone else to finish
before being able to write to a BI file.

• Empty buffer waits — The number of times a process had to wait because all buffers
were full.

• Log force waits — The number of waiting-for-commit records to be written to disk.

• Partial Writes — The number of writes to the BI file made before the BI buffer is full.
This might happen if:

– The Delayed BI File Write (-Mf) parameter timer expired before the buffer was filled.

– An APW attempts to write a block whose changes are recorded in a BI buffer that
has not been written. Because BI notes must be flushed before the AI note is flushed,
the AIW writes the data in the BI buffer before the buffer is full so it can do the AI
write.

– An AIW ran ahead of the BIW. Because BI notes must be flushed before the AI notes
can be written, the AIW writes the BI buffer before it is full, so it can do the AI write.
A–49

Activity Displays→ AI Log
Activity Displays→ AI Log

Displays after-imaging activity. Figure A–26 shows a sample AI Log Activity display.

Figure A–26: PROMON AI Log Activity Display

The display lists the following operations:

• Total AI writes — The total number of writes to the AI file.

• AIW AI writes — The number of AI writes performed by the after-image writer (AIW).
This is a subset of the total AI writes.

• Records written — The number of records (notes) written to the AI file.

• Bytes written — The amount of AI data written to the AI file, in bytes.

• Busy buffer waits — The number of times a process had to wait because a buffer was
held.

• Buffer not avail — The total number of times a process had to wait because a buffer was
not available.

01/25/02 Activity: AI Log
11:36:56 from 04/12/02 13:56 to 04/13/02 11:23 (21 hrs 27 min)

Total Per Min Per Sec Per Tx
Total AI writes 131 0 0.08 0.10
AIW AI writes 127 0 0.08 0.10
Records written 3630 25 2.31 3.00
Bytes written 129487 0 82.42 107.19
Busy buffer waits 13 0 0.00 0.01
Buffer not avail 0 0 0.00 0.00
Partial Writes 4 0 0.00 0.00
Log force waits 0 0 0.00 0.00
A–50

Activity Displays→ AI Log
• Partial writes — The number of writes to the AI file made before the AI buffer is full.
This might happen if:

– The Delayed BI File Write (-Mf) parameter timer expired before the buffer was filled.

– An APW attempts to write a block whose changes are recorded in an AI buffer that
has not been written.

• Log force waits — The number of waiting-for-commit records to be written to disk.
A–51

Activity Displays→ Lock Table
Activity Displays→ Lock Table

Displays information about Lock Table Activity. The database engine stores record locks in the
lock table. If a user tries to acquire a lock on a record, and the lock table overflows, the server
aborts.

Figure A–27 shows a sample Lock Table Activity display.

Figure A–27: PROMON Lock Table Activity Display

The display lists the following operations:

• Share requests — The number of user requests for share locks.

• Exclusive requests — The number of user requests for exclusive locks.

• Upgrade requests — The number of requests to upgrade a lock from shared lock to
exclusive lock.

• Rec Get requests — The number of granted record get locks.

• Share grants — The number of granted share lock requests.

• Exclusive grants — The number of granted exclusive lock requests.

01/25/02 Activity: Lock Table
16:24:02 from 01/25/02 15:31 to 01/25/02 16:24

Total Per Min Per Sec Per Tx

Share requests 0 0 0.00 0.00
Exclusive requests 0 0 0.00 0.00
Upgrade requests 0 0 0.00 0.00
Rec Get requests 0 0 0.00 0.00
Share grants 0 0 0.00 0.00
Exclusive grants 0 0 0.00 0.00
Upgrade grants 0 0 0.00 0.00
Rec Get grants 0 0 0.00 0.00
Share waits 0 0 0.00 0.00
Exclusive waits 0 0 0.00 0.00
Upgrade waits 0 0 0.00 0.00
Rec Get waits 0 0 0.00 0.00

Requests cancelled 0 0 0.00 0.00
Downgrades 0 0 0.00 0.00
Redundant requests 0 0 0.00 0.00
A–52

Activity Displays→ Lock Table
• Upgrade grants — The number of granted requests for lock upgrades.

• Rec Get grants — The number of granted requests for record get locks.

• Share waits — The number of times processes waited for share lock.

• Exclusive waits — The number of times processes waited for an exclusive lock.

• Upgrade waits — The number of times processes waited for upgrades.

• Rec Get waits — The number of times processes waited for record gets.

• Requests cancelled — The number of lock requests that were cancelled.

• Downgrades — The number of locks downgraded.

• Redundant requests — The number of requests for a lock already held.
A–53

Activity Displays→ I/O Operations By Type
Activity Displays→ I/O Operations By Type

Displays information about I/O activity, organized by type. Figure A–28 shows a sample I/O
Operations by Type Activity display.

Figure A–28: PROMON I/O Operations By Type Activity Display

The display lists the following types of I/O operations:

• Database reads — Total number of reads from the database:

– Index blocks — The number of reads of index blocks.

– Data blocks — The number of reads of data blocks.

• BI reads — The number of blocks read from BI files.

• AI reads — The number of blocks read from AI files.

• Total reads — Total number of database, BI, and AI read operations.

01/25/02 Activity: I/O Operations by Type
16:31 from 01/25/02 15:31 to 01/25/02 16:04

Total Per Min Per Sec Per Tx
Database reads 57 0 0.03 0.04

Index blocks 13 0 0.00 0.01
Data blocks 44 0 0.02 0.03

BI reads 13 0 0.00 0.00
AI Reads 0 0 0.00 0.05
Total reads 70 0 0.04 0.05

Database writes 3 0 0.00 0.00
Index blocks 0 0 0.00 0.00
Data blocks 3 0 0.08 0.00

BI writes 131 0 0.00 0.10
AI writes 0 0 0.00 0.00
Total writes 134 0 0.08 0.11
A–54

Activity Displays→ I/O Operations By Type
• Database writes — Total number of writes to the database:

– Index blocks — The number of writes of index blocks.

– Data blocks — The number of writes of data blocks.

• BI writes — The number of BI write operations.

• AI writes — The number of AI write operations.

• Total writes — Total number of database, BI, and AI write operations.
A–55

Activity Displays→ I/O Operations By File
Activity Displays→ I/O Operations By File

Displays information about I/O activity, organized by file. Figure A–29 shows a sample I/O
Operations by File Activity display.

Figure A–29: PROMON I/O Operations By File Activity Display

For each file, the display lists the following types of I/O operations:

• Reads — The number of read operations performed on the file.

• Writes — The number of write operations performed on the file.

• Extends — The number of extend operations performed on the file.

01/25/02 Activity: I/O Operations by File
16:32 from 01/25/02 15:31 to 01/25/02 16:04 (for 32 min. 48 sec.)

Total Per Min Per Sec Per Tx

/disk1/demo/.db
Reads 8 48 0.80 0.00
Writes 2 12 0.20 0.00
Extends 0 1 0.00 0.00

Total Per Min Per Sec Per Tx

/disk1/demo.bi
Reads 13 78 1.30 0.00
Writes 1 6 0.10 0.00
Extends 0 0.00 0.00

Total Per Min Per Sec Per Tx

/disk1/demo.ai
Reads 29 0.03 0.04
Writes 3 0.00 0.00
Extends 0 0.00 0.00
A–56

Activity Displays→ Space Allocation
Activity Displays→ Space Allocation

Displays information about Space Allocation. Figure A–30 shows a sample Space Allocation
Activity display.

Figure A–30: PROMON Space Allocation Activity Display

The display lists the following operations:

• Database extends — The number of times the database was extended.

• Take free block — The number of times a block was used from the free chain.

• Return free block — The number of times a block was returned to the free chain.

• Alloc rm space — The number of times space was allocated for a record or record
fragment.

• Alloc from rm — The number of times space was allocated from the rm chain.

• Alloc from free — The number of times space was allocated from the free chain.

• Bytes allocated — The number of bytes allocated for record fragments.

• rm blocks examined — The number of blocks examined in the rm chain while looking
for space for a record fragment.

• Remove from rm — The number of blocks removed from the rm chain.

01/25/02 Activity: Space Allocation
14:52:41 from 01/25/02 13:56 to 01/26/02 11:23 (for 21 hrs 27 min)

Total Per Min Per Sec Per Tx
Database extends 57 0 0.03 0.04
Take free block 13 0 0.00 0.01
Return free block 44 0 0.02 0.03
Alloc rm space 13 0 0.00 0.00
Alloc from rm 0 0 0.00 0.05
Alloc from free 70 0 0.04 0.05
Bytes allocated 3 0 0.00 0.00
rm blocks examined 0 0 0.00 0.00
Remove from rm 3 0 0.00 0.00
Add to rm, front 131 0 0.08 0.10
Add to rm, back 0 0 0.00 0.00
Move rm front to back 134 0 0.08 0.11
Removed locked rm entry 0 0 0.00 0.00
A–57

Activity Displays→ Space Allocation
• Add to rm, front — The number of blocks added to the front of the rm chain.

• Add to rm, back — The number of blocks added to the back of the rm chain.

• Move rm front to back — The number of blocks moved from the front to the back of the
rm chain.

• Remove locked rm entry — The number of rm chain entries that were locked.
A–58

Activity Displays→ Index
Activity Displays→ Index

Displays information about index activity. Figure A–31 shows a sample Index Activity display.

Figure A–31: PROMON Index Activity Display

The display shows the following operations:

• Find index entry — The number of times an index entry was looked up.

• Create index entry — The number of new index entries generated.

• Delete index entry — The number of index entries deleted.

• Remove locked entry — The number of old locks released at transaction end.

• Split block — The number of block splits from adding indexes.

• Free block — The number of index blocks freed during deletes.

04/14/02 Activity: Index
17:04:35 from 04/14/02 17:01 to 04/14/02 17:01 (10 sec)

Total Per Min Per Sec Per Tx

Find index entry 0 0 0.00 0.00
Create index entry 0 0 0.00 0.00
Delete index entry 0 0 0.00 0.00
Remove locked entry 0 0 0.00 0.00
Split block 0 0 0.00 0.00
Free block 0 0 0.00 0.00
A–59

Activity Displays→ Record
Activity Displays→ Record

Displays information about record activity. Figure A–32 shows a sample Record Activity
display.

Figure A–32: PROMON Record Activity Display

The display shows the following operations:

• Read record — The number of records read.

• Update record — The number of records modified.

• Create record — The number of records created.

• Delete record — The number of records deleted.

• Fragments read — The number of fragments read.

• Fragments created — The number of fragments created.

• Fragments deleted — The number of fragments deleted.

• Fragments updated — The number of fragments updated.

04/14/02 Activity: Record
17:04:35 from 04/14/02 17:01 to 04/14/02 17:01 (10 sec)

Total Per Min Per Sec Per Tx

Read record 0 0 0.00 0.00
Update record 0 0 0.00 0.00
Create record 0 0 0.00 0.00
Delete record 0 0 0.00 0.00
Fragments read 0 0 0.00 0.00
Fragments created 0 0 0.00 0.00
Fragments deleted 0 0 0.00 0.00
Fragments updated 0 0 0.00 0.00
Bytes read 2491 14946 129.10 0.00
Bytes created 0 0 0.00 0.00
Bytes deleted 0 0 0.00 0.00
Bytes updated 0 0 0.00 0.00
A–60

Activity Displays→ Record
• Bytes read — The number of bytes read.

• Bytes created — The number of record bytes created.

• Bytes deleted — The number of record bytes deleted.

• Bytes updated — The number of record bytes updated.
A–61

Activity Displays→ Other
Activity Displays→ Other

Displays information about miscellaneous activity. Figure A–33 shows a sample Other Activity
display.

Figure A–33: PROMON Other Activity Display

The display shows the following operations:

• Commit — The number of transactions committed.

• Undo — The number of transactions rolled back.

• Wait on semaphore — The number of times a process had to wait for a resource.

• Flush master block — The number of times the database master block was written to
disk.

04/14/02 Activity: Other
17:04:35 from 04/14/02 17:01 to 04/14/02 17:01 (10 sec)

Total Per Min Per Sec Per Tx

Commit 0 0 0.00 0.00
Undo 0 0 0.00 0.00
Wait on semaphore 0 0 0.00 0.00
Flush master block 3 18 0.30 0.00
A–62

Other Displays→ Performance Indicators
Other Displays→ Performance Indicators

Displays activity statistics related to performance. Figure A–34 shows a sample Performance
Indicators display.

Figure A–34: PROMON Performance Indicators Display

The Performance Indicators display shows the total number of each type of operation for the
sample period (Total), the number of operations per minute (Per Min) the number of operations
per second (Per Sec), and the number of operations per transaction (Per Tx). The display shows
the following operations:

• Commits — The number of committed transactions.

• Undos — The number of transactions that were rolled back.

• Index Operations — The total of all operations performed on indexes (for example, index
additions and deletions).

• Record Operations — The total of all operations on records (for example, record
additions and deletions).

• Total o/s i/o — The total number of read and write operations performed.

04/14/02 Activity: Performance Indicators
17:04:35 from 04/15/02 10:01 to 04/19/02 13:26 (99 hrs 24 min)

Total Per Min Per Sec Per Tx

Commits 0 0 0.00 0.00
Undos 0 0 0.00 0.00
Index Operations 0 0 0.00 0.00
Record Operations 3 18 0.30 0.00
Total o/s i/o 28 0 0.00 0.00
Total o/s reads 23 0 0.00 0.00
Total o/s writes 5 0 0.00 0.00
Background o/s writes 5 0 0.00 0.00
Partial log writes 1 0 0.00 0.00
Database extends 0 0 0.00 0.00
Total waits 0 0 0.00 0.00
Lock waits 0 0 0.00 0.00
Resource waits 0 0 0.00 0.00

buffer pool hit rate: 68%
A–63

Other Displays→ Performance Indicators
• Total o/s reads — The total number of read operations performed.

• Total o/s writes — The total number of write operations performed.

• Background o/s writes — The total number of writes performed by background writers
(APWs, BIW, and AIW). For more information on background writers, see Chapter 14,
“Managing Performance.”

• Partial log writes — Writes to the BI file made before the BI buffer is full. This might
happen if:

– The Delayed BI File Write (-Mf) parameter timer expired before the buffer was filled.

– An APW attempts to write a block whose changes are recorded in a BI buffer that
has not been written. Because BI notes must be flushed before the AI note is flushed,
the AIW writes the data in the BI buffer before the buffer is full so it can do the AI
write.

– An AIW ran ahead of the BIW. Because BI notes must be flushed before the AI notes
can be written, the AIW writes the BI buffer before it is full, so it can do the AI write.

• Database extends — The total number of times the database was made larger by
allocating operating system blocks.

• Total waits — The total number of waits.

• Lock waits — The number of times Progress waited for a lock to be released.

• Resource waits — The number of times that Progress waited for a resource to become
available, such as a row lock, a buffered lock in shared memory, or a transaction end lock.

• Buffer pool hit rate — The percentage of times that Progress found a record in the
Progress buffer pool and did not have to read the record from disk.
A–64

Other Displays→ I/O Operations By Process
Other Displays→ I/O Operations By Process

Displays information about database I/O operations, organized by process. Figure A–35 shows
a sample I/O Operations by Process display.

Figure A–35: PROMON I/O Operations By Process Display

This display shows the following information:

• Usr — The user number of the process.

• Name — The user name of the process.

• Database Access — The number of database access operations performed by the process.

• Database Read — The number of database read operations performed by the process.

• Database Write — The number of database write operations performed by the process.

• BI Read — The number of BI read operations performed by the process.

• BI Write — The number of BI write operations performed by the process.

• AI Read — The number of AI read operations performed by the process.

• AI Write — The number of AI write operations performed by the process.

01/25/02 I/O Operations by Process
16:19

---------Database ------- ---- BI ----- ---- AI -----
Usr Name Access Read Write Read Write Read Write

0 rgw 22 8 3 13 1 2 1
1 rgw 3 0 0 0 127 0 0
2 rgw 3 0 0 0 0 0 0
3 rgw 3955 49 1 0 2 0 0
4 rgw 3 0 0 0 0 0 0
A–65

Other Displays→ Lock Requests By User
Other Displays→ Lock Requests By User

Displays information about lock requests, organized by user. Figure A–36 shows a sample Lock
Requests by User display.

Figure A–36: PROMON Lock Requests By User Display

This display shows the following information:

• Usr Num — The user number.

• User Name — The user name.

• Record Locks — The number of records locks acquired by the user.

• Record Waits — The number of times the user had to wait for a record lock.

• Trans Locks — Not currently implemented.

• Trans Waits — The number of times the user had to wait for a record lock.

• Schema Locks — The number of schema locks acquired by the user.

• Schema Waits — The number of times the user had to wait for a schema lock.

01/25/02 Lock Requests by User
16:19

Usr User --- Record --- ---- Trans --- ---- Schema ---
Num Name Locks Waits Locks Waits Locks Waits

0 rgw 0 0 0 0 0 0
1 rgw 0 0 0 0 0 0
2 rgw 0 0 0 0 0 0
3 rgw 3625 0 0 0 0 0
4 rgw 0 0 0 0 0 0
A–66

Other Displays→ Checkpoints
Other Displays→ Checkpoints

Displays information about checkpoints. Figure A–37 shows a sample Checkpoints display.

Figure A–37: PROMON Checkpoints Display

This display shows the following information:

• Ckpt. No. — Progress assigns a number to each checkpoint sequentially.

• Time — The time the checkpoint began.

• Len — The length of time required to complete the checkpoint.

• Dirty — The number of modified blocks scheduled to be written.

• Database Writes CPT Q — The number of blocks written from the checkpoint queue by
the APWs.

• Database Writes Scan — The number of blocks written by the APWs during the scan
cycle.

• Database Writes APW Q — The number of blocks written by the APW queue and
replaced on the least recently used (LRU) chain by APWs.

• Database Writes Flushes — The total number of blocks not written during the checkpoint
that had to be written all at once at the end of the checkpoint.

01/25/02 Checkpoints
16:19:34

Ckpt ------ Database Writes ------
No. Time Len Dirty CPT Q Scan APW Q Flushes

0 10:01:54 0 0 0 0 0 0
A–67

Administrative Functions→ Resolve Limbo Transactions
Administrative Functions→ Resolve Limbo Transactions

Lets you resolve a limbo transaction by either committing or aborting the transaction. When you
choose this option, PROMON displays the menu shown in Figure A–38.

Figure A–38: PROMON Resolve Limbo Transactions Menu

Choose one of the following options:

• Abort a Limbo Transaction — When you choose Abort a Limbo Transaction, Progress
prompts you to enter the user number of the transaction you want to abort. PROMON
displays the user’s number in the User column of the TC option screen. Type the user
number, then press RETURN.

• Commit a Limbo Transaction — When you choose Commit a Limbo Transaction,
PROMON prompts you to enter the user number of the transaction you want to commit.
(PROMON displays the user number in the Usr column of the Transaction Control option
screen.) Type the user number, then press RETURN. PROMON displays a message similar
to the following:

NOTE: To commit transactions on a database that is shut down, you must use the
2PHASE RECOVER qualifier of PROUTIL.

1 Abort a Limbo Transaction
2 Commit a Limbo Transaction
Q Quit

Enter choice>

User 1: commit transaction and disconnect.
A–68

Administrative Functions→ Adjust Latch Options
Administrative Functions→ Adjust Latch Options

Adjusts the Spin Lock mechanism used to control access to shared system resources. Figure
A–39 shows a sample Adjust Latch Options menu.

Figure A–39: PROMON Adjust Latch Options Menu

This menu contains one option:

• Spins before timeout — Specify a value to dynamically tune the Spin Lock mechanism.
This mechanism can also be tuned using the Spin Lock Tries (-spin) parameter. For more
information on spin locks, see the “Unproductive CPU Processing” section in Chapter 14,
“Managing Performance.”

01/25/02 Progress Monitor (R&D)
16:34:27 Adjust Latch Options

1. Spins before timeout 2
A–69

Administrative Functions→ Adjust Page Writer Options
Administrative Functions→ Adjust Page Writer Options

Lets you manually override APW behavior. (This should rarely be necessary. Do not change
these options unless directed to do so by Progress Software Technical Support.)

Figure A–40 shows a sample Adjust Page Writer Options menu.

Figure A–40: PROMON Adjust Page Writer Options Menu

Choose one of the following options:

• APW queue check time — Lets you dynamically adjust the value of the Page Writer
Queue Delay (-pwqdelay) parameter.

NOTE: Though you can set the value of -pwqdelay, it is a self-tuning parameter. When
the database encounters heavy loads, -pwqdelay decreases its value so that the
APW writes more often. When the demand on the database lessens, -pwqdelay
increases its value so that the APW writes less often. The default value, in
milliseconds, for -pwqdelay is 100.

• APW buffers scan time — Lets you dynamically adjust the value of the Page Writer Scan
Delay (-pwsdelay) parameter. The default value, in seconds, for -pwsdelay is 1.

• APW buffers per scan — Lets you dynamically adjust the value of the Page Writer Scan
(-pwscan) parameter.

• APW writes per scan — Lets you dynamically adjust the value of the Page Writer
Maximum Buffers (-pwwmax) parameter.

01/25/02 Progress Monitor (R&D)
16:19:34 Adjust Page Writer Options

1. APW queue check time: 100 milliseconds
2. APW buffers scan time: 1 seconds
3. APW buffers per scan: 1
4. APW writes per scan: 25
A–70

Administrative Functions→ Adjust Monitor Options
Administrative Functions→ Adjust Monitor Options

Displays parameters controlling the PROMON display and allows you to change them. Figure
A–41 shows the Adjust Monitor Options menu.

Figure A–41: PROMON Adjust Monitor Options Menu

Adjust Monitor Options displays the following information:

• Display page length — The number of lines on the terminal screen.

• Clear screen for first page — If Yes, the system clears the screen before the main menu
and before every list.

• Monitor sampling interval — The interval at which PROMON samples data, in seconds.

• Pause between displays — The delay between pages of output when in continuous
monitoring mode, in seconds. (Type u for the Continue uninterrupted option.)

• Pause between screens — The delay after the last page of output when in continuous
monitoring mode, in seconds.

• Number of auto repeats — The number of times the display is repeated when auto repeat
is selected on the activity displays.

01/25/02 Progress Monitor (R&D)
16:19:34 Adjust Monitor Options

1. Display page length: 24 lines
2. Clear screen for first page: Yes
3. Monitor sampling interval: 10 seconds
4. Pause between displays: 10 seconds
5. Pause between screens: 5 seconds
6. Number of auto repeats: 10
A–71

Administrative Functions→ Adjust Monitor Options
A–72

B
Setting Up Progress To Utilize Compaq’s NT
Clusters

This appendix describes the steps necessary to set up and configure your Compaq NT Clusters
system to run Progress Database Servers and allow failover of those servers to provide
continuous client access to your database servers. This appendix also includes examples used to
test the functionality. Some examples include scripts to start and shut down ProService. Other
examples start and stop specific database servers. There is also some sample code for the client
to consider if one of the cluster nodes fails.

This appendix contains the following sections:

• Defining NT Clusters

• Configuring the NT Cluster System

• Progress Database Server Considerations and Configuration

• 4GL Client Considerations

Progress Database Administration Guide and Reference
B.1 Defining NT Clusters
An NT Cluster is comprised of two identical Windows NT Server systems connected to a shared
SCSI storage device. The cluster shared disk storage can be either disks on the same SCSI bus
or disks connected through a smart SCSI controller. The Compaq NT Clusters’ documentation
describes all the possible and supported configurations.

NT Clusters allow server application providers to create and configure their server applications
to run seamlessly by providing failover. Failover is defined as the moving of resources from a
primary node to a secondary node when the primary node either crashes or there is manual
intervention to force resource reallocation from one node to another.

Within the scope of the NT Cluster, there are a few tools to manage the cluster. The primary tool
is the Cluster Administrator from which the Failover Manager manages the cluster failover
resources.

B.1.1 Cluster Administrator
The Cluster Administrator is a GUI tool that allows you to define Failover Groups and Failover
Objects that will failover from one node to the other. Failover Groups are user-defined entities
of Failover Objects. Failover Objects are the specific parts that are determined necessary to
allow server products to run.

Examples of Failover Objects include disks, network protocols, and scripts. Application server
providers can also provide Dynamic Link Libraries (DLLs) to make more direct calls to their
products from the Failover Manager. Examples of these are the MS SQL Server, Oracle
Database Server, Lotus Notes, and Web Servers.

B.1.2 Failover Manager
The Failover Manager is an image running on each node in the cluster. It handles the reading of
the Failover Group information and performs the startup and shut down of the Failover Objects
in the specific order in which they were defined.

The Failover Manager determines when one node has either crashed or has shutdown in some
manner, then it performs actions based on the objects that were running on the failed node. The
Failover Manager also allows for manual intervention to failover specific Failover Groups as if
the primary node failed.
B–2

Setting Up Progress To Utilize Compaq’s NT Clusters
Failover Groups

Failover Groups are created by the cluster system manager using the Cluster Administrator
interface. The Failover Group must contain at least one Failover Object and a cluster node must
be chosen as the primary node. Within each Failover Group, the Cluster Administrator requires
that there be at least one shared disk Failover Object.

After these minimum requirements are met, any number of other Failover Objects can be placed
into or removed from the Failover Group. When removing Failover Objects from a Failover
Group the Cluster Administrator will ensure that there is at least one object in the group.

Failover Groups can be deleted, in which case the Failover Objects that were in the group are
returned to the general pool of Failover Objects. A Failover Group contains all the dependencies
to allow the group to function as a unit on a node.

Failover Objects

Failover Objects are defined by the cluster manager using the Cluster Administrator interface.
Failover Objects are created and placed into a pool of available objects. When the Failover
Group is created, an object is placed into the group and removed from the pool of objects.

A Failover Object cannot be placed into two Failover Groups; in this scenario, two identical
objects would need to be created. Failover Objects have Startup and Shutdown attributes. When
a Failover Group is brought online the startup option is run; conversely, when the Failover
Manager determines that the group must be failed over, the shutdown option is run.

The two primary Failover Objects are Shared Disks and TCP/IP Alias. These objects give the
cluster the ability to make the cluster nodes transparent to the clients.

The shared disk objects are created automatically when the shared disks are given a name by the
Cluster Administrator interface. When a disk object is placed into a Failover Group, it is brought
online to the primary node by the Failover Manager. Due to the nature of SCSI, only one node
can directly access or own a shared disk at any one time.

The TCP/IP alias objects are defined by the cluster manager using IP addresses that are not
currently assigned to any other node. The cluster TCP/IP alias allows clients to access the nodes
in the cluster without the clients needing to know to which nodes they are connected.

A TCP/IP alias object is associated with only one node at a time and migrates from the primary
to the secondary node, when the Failover Manager fails over a Failover Group. In this scenario,
the client just reconnects to the same name, but now the client is attached to a different node.
B–3

Progress Database Administration Guide and Reference
There can be more than one TCP/IP alias name per cluster. This happens when each node is
acting as a server to a different database and defines only one IP address with the database
server. Management of the TCP/IP alias name dependencies is left up to the cluster system
manager. It is recommended that a TCP/IP alias object be present for each Failover Group that
has objects requiring TCP/IP services.

For Progress, the only other Failover Object used is the script object. This object allows the
Failover Manager to run either a script or a specific image as defined by the cluster system
manager.

Scripts or images that are to be run can be placed either onto a shared storage device or onto the
system disk of each node. When using the system disk, the drive letter for the system disk must
be the same on both nodes or an environment variable must be used on both nodes to mask the
drive letter.

When using shared storage for a script object script or image, the shared disk object must be
placed before the script object in the order of the Failover Group. This ensures the disk is online
before the Failover Manager attempts to run the script object.

Progress Example

For Progress, a Failover Group might be comprised of a shared disk object, a TCP/IP alias
object, and a script object that would start a database server. The database server must first have
a disk and then a TCP/IP address before the server can start. The script object can either start
the database server directly or run a written script that starts the database server.

B.2 Configuring the NT Cluster System
The configuration and setup of the actual NT Cluster is described in the NT Clusters
documentation. The order in which you install the NT Cluster software and your Progress
software is very important.

If you install Progress after installing your NT Cluster software, must reboot the node to allow
the NT Cluster software to read the Registry and system environment variables so it knows
about the Progress software.

If you install Progress first, then install the NT Cluster software, there are no such problems.
Each node in the cluster must have Progress installed onto its system disk. You should install
identical versions and service packs of Progress on both nodes to ensure the same operating
environment.
B–4

Setting Up Progress To Utilize Compaq’s NT Clusters
One other configuration issue that you should be aware of is that the system disk drive letter
must be the same for both nodes in your cluster. (Usually this letter is either C: or D: depending
on how you partition your node’s system disk.) Using the same system disk drive letter lets you
create and run scripts from your NT Cluster Failover Manager. The script location is stored in
the Failover Manager and must be listed with the same physical location on both systems.

After the two systems have the NT Cluster software running, use the Windows NT Disk
Administrator to assign a drive letter to each shared disk and then use the Cluster Administrator
to assign a name to your disks and to create your disk Failover Objects.

Use the Cluster Administrator to create your TCP/IP alias Failover Objects also. Once they are
created, these objects will appear in the Cluster Administrator display and you can begin to
create your Failover Groups for Progress.

B.3 Progress Database Server Considerations and Configuration
On the server side, think of the cluster as one node. Although from a management viewpoint,
you will still have nodes onto which you must install, configure, and update the product.

The original setup is the most time consuming because you must install, configure, and maintain
the Progress environment in addition to updating and maintaining the TCP/IP services file on
each node. However, from a user’s or an application’s viewpoint there is only one host and one
service.

For TCP/IP, the service name you associate with your database server is a name that will be used
cluster-wide. Therefore, you must edit the TCP/IP services file on both nodes and also add the
same service name and socket number on each node. You must use the same names and
numbers, because in a failover, the secondary node starts the database server and your clients
must reconnect to your service by node and service number.

After Progress is installed on both nodes, you must determine which cluster shared disks will
hold your database. Next, use the Cluster Administrator to create a new Progress Failover
Group. Place the stored disk objects into the group. Doing this places the disks online on the
node that you have chosen to be the primary node. From the primary node, use the Progress
Database Administration tools to create or copy a database onto the shared disks.

Next, use ProControl to configure the database server information, using a cluster TCP/IP alias
for the Host (-H) parameter name and the “cluster-wide” service name from the services file
for the Service (-S) parameter name.

You must duplicate this effort on both nodes, so you should have a ProControl screen visible on
both nodes so you can be sure the duplication is exact.
B–5

Progress Database Administration Guide and Reference
Within ProControl you can choose to have the database server started automatically or not. If
you have only one cluster shared disk, you should allow ProControl to start the database servers
automatically when ProControl starts ProService.

However, if you have multiple cluster shared disks and you have chosen to have each node act
as the primary node for specific database servers, this approach is not recommended. At this
time, ProControl only knows three commands, Start, Stop, and Status. Therefore, if you have
database servers running on both nodes and if one node fails and those database servers failover
to the secondary node, you would have to Stop and Start ProControl in order to start the
automatic database server startup. Doing this disrupts current users of the secondary node.

In the single cluster shared disk model, ProControl should not be already running on the
nonprimary node. So, in a failover, you start ProControl with automatic database server startup
set and your database servers will be started for you.

Continue creating Failover Groups and adding/modifying ProControl for each database server
on each shared disk.

After this is done, use the Cluster Administrator to create Script Failover Objects to be placed
in your Progress Failover Groups. These script objects can be either actual scripts or the direct
command-line interface into ProControl. In either case, you must use the ProControl
command-line interface. The following sections describe the command-line interface and give
you some examples for scripts.

B.3.1 ProControl Command-line Interface
In order to start Progress database servers on an NT node, ProControl simply runs the PCCmd
command. This image controls either starting or stopping ProService and the various database
servers. For the entire syntax of the PCCmd command, see the Progress Startup Command and
Parameter Reference.

Within your scripts or script objects, use the following syntax and parameters based on your
requirements:

%DLC% is a system-wide environment variable defined during Progress installation. The
parameters to ppcmd.exe dictate what is done. The following is the list of parameters you will
need:

SYNTAX

%DLC%\BIN\pccmd.exe P1 P2 [P3]
B–6

Setting Up Progress To Utilize Compaq’s NT Clusters
P1 - Parameter 1

Use P1 to specify one of the following values for the type parameter:

• PROSERVICE for ProService options

• DATABASE for Database options

P2 - Parameter 2

Use P2 to specify one of the following values for the command parameter.

START to start either ProService or the Database Server named in P3.

STOP to stop either ProService or the Database Server named in P3.

STATUS to return one of the following:

• Current status of ProService or the Database Server in P3

• Use %ERRORLEVEL% to detect return status in script

• A return of 0 indicates request is running (started)

• A return of 1 indicates request is not running (stopped)

• Else, check if %DLC% is defined correctly.

[P3] - Parameter 3

Use [P3] to specify a value for the identifier parameter. [P3] is required if Parameter 1 is
DATABASE.

If a wrong parameter is passed to PCCmd, it will be signaled to the standard output and no action
will be taken.

EXAMPLES

Some command-line examples include:

A return of 0 from this call means ProService is already running:

%DLC%\bin\pccmd.exe ProService Status

%DLC%\bin\pccmd.exe ProService Start
B–7

Progress Database Administration Guide and Reference
If run while already running, a message displays stating that ProService is already running;
otherwise, a successful run will return 0:

If run while already stopped, a message displays stating that ProService is already stopped;
otherwise, a successful run will return 0:

A return of 0 from this call indicates the Database server for DEMO is already running:

A return of 0 from this indicates the Database server for DEMO was started successfully. If a
start is attempted twice, 0 will still be returned and no message is displayed:

A return of 0 from this indicates the Database server for DEMO was stopped successfully. If a
stop is attempted twice or attempted upon a stopped database server, a 1 will be returned and no
message is displayed.

Using the above commands, you can create either an entire script to be run or Failover Objects
for ProControl and each database server to be placed into a Progress Failover Group.

Determining whether or not to create a script depends on the environment. In the simple case of
one database server per cluster, by simply starting and stopping ProService with the database
server being automatically started and shutdown by ProService, a script is unnecessary. In this
case, using the direct command-line start/stop ProService as the startup and shutdown options
to the Failover Object should be used. In the more complicated case of multiple database servers
on both nodes, you should use scripts. The scripts can then use the “status” option to determine
whether or not ProService is running, as well as determine whether or not a database server is
running for the particular object.

%DLC%\bin\pccmd.exe ProService Stop

%DLC%\bin\pccmd.exe Database Status DEMO

%DLC%\bin\pccmd.exe Database Start DEMO

%DLC%\bin\pccmd.exe Database Stop DEMO
B–8

Setting Up Progress To Utilize Compaq’s NT Clusters
NOTE: The Failover Manager is documented to perform startup in the order of the Failover
Groups and shutdown in the reverse order of the Failover Groups.

Startup of objects within each group is performed in the order listed within the group,
while shutdown is executed in reverse order. Therefore, the cluster system manager
must properly configure the order so that each Progress database server will have the
necessary disk and network objects in place before attempting to start. This becomes
especially tricky when dealing with multiple TCP/IP alias objects. The script objects
to start and stop the database should be placed into the same group as the TCP/IP
alias name for each database server that uses a particular TCP/IP alias name.

ProService Startup/Shutdown Script Examples

The following are examples of scripts that can be used to start and stop ProService. The scripts
are stored on a shared disk, which is assigned the drive letter S. The Failover Object is
configured to run the scripts for start and stop, respectively:

StartProService.cmd

StartProService.cmd
ECHO OFF
REM This is a Cluster Startup Script for the Cluster Failover Manager to
REM execute when the cluster has a problem. Its primary purpose is to restart
REM ProService if it isn’t already started on the node.
SET LOG=S:\ProgressScripts\StartProService.log
ECHO "Running on %COMPUTERNAME%" >> %LOG%
DATE /T >> %LOG%
%DLC\bin\PCCMD.EXE ProService Status >> %LOG%
IF %ERRORLEVEL% == 1 GOTO notstarted

ECHO “ProService already running >> %LOG%
GOTO done

:notstarted
ECHO "Starting ProService" >> %LOG%
%DLC%\bin\PCCMD.EXE ProService Start >> %LOG%
ECHO "Return value from start is %ERRORLEVEL%" >> %LOG%

:done
B–9

Progress Database Administration Guide and Reference
Specific Database Startup/Shutdown Script Examples

Within ProService startup or shutdown scripts, or within a separate script, once ProService has
started, then specific database servers can be started. Conversely, before ProService is shut
down, the database servers should be shut down as well.

If you have multiple databases, you might want to create a generic script that can be run with an
input parameter for the database name.

The following examples assume that you have set up ProControl to have a database server
identified as CluDemo1. (Note it is very important to match the case between the script and
ProControl.) If the scripts are contained within the ProService startup/shutdown scripts (either
directly or through a reference call), then only one object needs to be added to the Failover
Group. However, if they are separate scripts, then multiple objects are needed for each database
to be started/shut down by the Failover Group.

The following are code fragments to Start and then Stop the Progress database server for
database CluDemo1. The code assumes the same as the Start and Stop ProService examples
above with the cluster shared disk as drive letter S:

StopProService.cmd

ECHO OFF
REM This is a Script for the Cluster Failover Manager to execute when the
REM cluster has a problem. Its primary purpose is to Stop ProService if
REM it isn’t already stopped on the node.

SET LOG=S:\ProgressScripts\StopProService.log

ECHO "Running on %COMPUTERNAME%" >> %LOG%
DATE /T >> %LOG%

%DLC\bin\PCCMD.EXE ProService Status >> %LOG%
IF %ERRORLEVEL% == 1 GOTO notstarted

ECHO "Shutting down ProService" >> %LOG%
%DLC%\bin\PCCMD.EXE ProService Stop >> %LOG%
ECHO "Return value from shutdown is %ERRORLEVEL%" >> %LOG%
GOTO done

:notstarted
ECHO "ProService is already shutdown >> %LOG%

:done
B–10

Setting Up Progress To Utilize Compaq’s NT Clusters
B.4 4GL Client Considerations
On the client side, you must consider a few things. First, the client no longer connects to a
specific host using -H. Instead, the client connects to an NT Cluster TCP/IP Alias. Therefore,
any code in which you specify the host to connect to, you must modify the code to use the cluster
alias in use for the database server. You can still connect directly to a host; however, if that host
is down or not serving the database, then your client will not reconnect unless you change the
value of -H to the name of the other node.

Secondly, if you do not already have in your client P-Code error checking for the STOP signal,
you must add code to handle the STOP signal. See the section on “How Progress Handles
System and Software Failure” section in the Progress Programming Handbook for details on
the STOP condition handling.

The following code examples exhibit the types of error handling that need to be done to support
the cluster failover from the client side. When a node fails and the Cluster Manager migrates the
database server from one node to another, the Progress client is given a STOP signal, which is
trapped and handled in the code.

The client automatically receives a couple of Progress-generated error dialog boxes indicating
the last write was not performed and potentially the last transaction was not completed. Alert
your client users to these messages, so they know that they must re-enter their last transaction.

StartCluDemo1.cmd

ECHO OFF
REM This is a Script for the Cluster Failover Manager to execute when the
REM cluster has a problem.
REM It’s primary purpose is to Start the Database server for CluDemo1.

SET LOG=S:\ProgressScripts\StartCluDemo1.log
ECHO "Running on %COMPUTERNAME%" >> %LOG%
DATE /T >> %LOG%

%DLC%\bin\pccmd.exe Database Status CluDemo1 >> %LOG%
IF %ERRORLEVEL% == 1 GOTO startcludemo1

ECHO "Server for CluDemo1 already started" >> %LOG%
GOTO done cludemo1start

:startcludemo1
ECHO "Starting database server for CluDemo1" >> %LOG%
%DLC%\bin\PCCMD.EXE Database Start CluDemo1
ECHO "Return value from startup is %ERRORLEVEL%" >> %LOG%

:donecludemo1start
B–11

Progress Database Administration Guide and Reference
The following examples assume that you have a Database server running on your Windows NT
cluster with a Service (-S) name of ‘cludemo1’ using the Host (-H) name ‘cluster’. The
demonstration is strictly to exhibit what type of programming must be done to make this work.
It is not a full-featured application. The CluDemo1 database is a copy of the Progress SPORTS
demonstration database with no other changes.

Lastly, one other programming consideration that is exhibited by the demonstration program:
Do you bring your client back to the point where the failure occurred, or do you start your client
at the beginning? In other words, how much state do you keep within your code? This example
tries to bring the client back to the last customer record being updated before the STOP was
raised. Therefore, the state that is kept within this code is the last customer record chosen:

repeat.p

DEFINE NEW GLOBAL SHARED VARIABLE cur-cust AS INTEGER INITIAL O.

REPEAT ON ERROR UNDO, LEAVE
ON STOP UNDO, RETRY:
IF RETRY
THEN DO:

MESSAGE "The STOP condition has occurred." SKIP
"Do you wish to continue?" VIEW-AS ALERT-BOX QUESTION
BUTTONS yes-no UPDATE continue-ok AS LOGICAL.

IF NOT continue-ok
THEN UNDO, LEAVE.

END.

IF NOT CONNECTED ("cludemo1") THEN
connect cludemo1 -S cludemo1 -H cluster -N tcp.

IF NOT CONNECTED ("cludemo1")
THEN DO:

RUN updcust.p.
MESSAGE "Exit from updcust.p" SKIP
"Do you wish to continue?" VIEW-AS ALERT-BOX QUESTION
BUTTONS yes-no UPDATE continue-ok.

IF NOT continue-ok
THEN LEAVE.
ELSE cur-cust = O. /* Reinitialize */

END.
ELSE
DO:

MESSAGE "Database not available." SKIP
"Do you wish to continue?" VIEW-AS ALERT-BOX QUESTION
BUTTONS yes-no UPDATE continue-ok.

IF NOT continue-0k
THEN LEAVE.
END.

end.
B–12

Setting Up Progress To Utilize Compaq’s NT Clusters
updcust.p

/* If never run before cur-cust is 0 */
DEFINE SHARED VARIABLE cur-cust AS INTEGER.

DEFINE VARIABLE first-time AS LOGICAL INITIAL TRUE.

REPEAT WITH 1 COLUMN 1 DOWN:
IF first-time AND cur-cust NE 0
THEN DO:

FIND customer WHERE customer.cust-num = cur-cust NO-ERROR NO-WAIT.
END.
ELSE
DO:

PROMPT-FOR customer.cust-num.
FIND customer USING cust-num NO-ERROR NO-WAIT.

END.

first-time = FALSE.

IF NOT AVAILABLE customer
THEN DO:

MESSAGE "Customer record " INPUT customer.cust-num " not found."
SKIP

"Do you wish to continue?" VIEW-AS ALERT-BOX QUESTION
BUTTONS yes-no UPDATE continue-ok AS LOGICAL.

IF NOT continue-ok
THEN LEAVE.
cur-cust = 0.

END.
ELSE
DO:

cur-cust = customer.cust-num.
DISPLAY customer.cust-num.
UPDATE name address city state postal-code credit-limit.

END.
END.
B–13

Progress Database Administration Guide and Reference
B–14

Index
A

-a startup parameter, RFUTIL utility
19–146, 19–150, 19–153

Abnormal termination 8–21

Abort a Limbo Transaction option
PROMON utility 19–48, A–68

Absolute-path database 1–15, 4–13, 4–23,
9–6

Absolute-path, SeeDatabase

Activity option
PROMON utility 19–37

ADD qualifier
PROSTRCT utility 19–56

Addressing
Progress brokers/servers 5–7
Progress hosts 5–7

-adminport startup parameter 18–8

AdminServer 5–2
on UNIX 19–8

AdminServer Port (-adminport) startup
parameter 18–8

After-image Buffers (-aibufs) startup

parameter 14–28, 17–4, 18–9

After-image extents 8–4
backing up 6–2, 8–19, 8–20
backups 6–5
choosing backup media 11–9
defined 11–2
displaying information 19–144
emptying 19–142
fixed-length 11–3
on-line backups 6–5, 19–13
variable length 11–3
variable-length 11–3

After-image file
scanning 19–146
truncating 19–145, 19–147

After-image Filename (-a) startup parameter
RFUTIL utility 19–146, 19–150, 19–153

After-image Filenmae (-a) startup parameter
11–12

After-image files. See After-image extents

After-image Stall (-aistall) startup
parameter 11–7, 18–10

After-image writer 17–4

After-image writer process
stopping 17–4

Index

Progress Database Administration Guide and Reference
After-image writers (AIW) 14–28
PROAIW utility 17–4
starting 5–11
stopping 5–11

After-imaging
block size 14–29
buffers 14–28
changing block size 19–147
described 8–4, 11–5
disabling 19–141
enabling 11–5, 19–140
I/O impact 14–27
log-based replication 15–7
monitoring activity 14–27
roll forward recovery 6–13
two-phase commit 12–6

-aiblocksize startup parameter
RFUTIL utility 19–147

-aibufs startup parameter 18–9

AIMAGE AIOFF qualifier
RFUTIL utility 19–139

AIMAGE BEGIN qualifier
RFUTIL utility 19–140

AIMAGE END qualifier
RFUTIL utility 19–141

AIMAGE EXTENT EMPTY qualifier
RFUTIL utility 19–142

AIMAGE EXTENT FULL qualifier
RFUTIL utility 19–143

AIMAGE EXTENT LIST qualifier
RFUTIL utility 19–144

AIMAGE NEW qualifier
RFUTIL utility 19–145

AIMAGE SCAN qualifier
RFUTIL utility 19–146

AIMAGE TRUNCATE qualifier
RFUTIL utility 19–147

-aistall startup parameter 11–7, 18–10

AIW. See After-image writer

Application data area 1–8

Application data areas
obtaining descriptions 7–28

Application security
connection 10–5
designating a security administrator 10–5
passwords 10–2
user list 10–2

Architecture 1–2 to 1–3, 1–9

Archiving
backups 7–8

Areas
application data 1–8
control 1–8
primary recovery 1–8
schema 1–8
storage 1–7
transaction log 1–8

AS/400 Host Name (-H) startup parameter
18–24

Asynchronous page writers (APWs) 14–14
optimal number 5–10, 14–14
scanning cycles 14–15
starting 5–10, 14–17
stopping 5–10, 17–5

Asynchronous replication 15–3

Audience 2–xxiii

Authorization keys
inserting 19–122
setting for a database 19–90

Auto Server (-m1) startup parameter 18–27

Auto Server server type 18–27

Auto-connect
dumping records 13–9

AutoConvert 4–24
–2

Index
B

-B startup parameter 18–10
RFUTIL utility 19–151, 19–153

-b startup parameter
PROSHUT command 5–12, 17–11

Backup blocks
cyclic redundancy check 7–24

Backups
after-imaging 6–8
archiving 7–8
before-image files 6–2
developing strategy 6–9
displaying date and time of last 19–64
important files 6–2
marking databases 19–149
media 6–8, 7–10
options 7–5
schedules 8–4
structure files 6–2
testing 7–6
types 6–3

full 7–9
incremental 6–4
non-Progress 7–13
off-line 6–6, 7–9
on-line 6–5, 7–10

unscheduled 6–9

Bad load
reconstructing records 13–30

-baseindex startup parameter 18–11

-basetable startup parameter 18–12

Before-image
cluster size 19–77

Before-image block size 14–23, 19–132

Before-image buffers 14–20

Before-image Buffers (-bibufs) startup
parameter 14–20, 17–6, 18–13

Before-image Cluster Age (-G) startup

parameter 18–23

Before-image clusters 14–17
number 14–22
size 14–21, 19–132

Before-image extents. See Before-image
files

Before-image files 8–3
backing up 6–2
truncating 8–24, 19–44, 19–132
what to do when full 8–22
where to store 2–3

Before-image writers 14–20, 17–6
starting 5–11, 18–13
stopping 5–11, 17–6

Before-imaging
described 8–3
I/O impact 14–18
-Mf startup parameter 18–30
monitoring activity 14–18
suppressing BI writes 14–24

-bi startup parameter
PROUTIL TRUNCATE BI utilitye

19–132

BI Threshold
adjusting 14–26
setting 14–25
stalling 14–26

-biblocksize startup parameter PRUTIL
TRUNCATE BI utility 19–132

BIGROW qualifier
PROUTIL utility 14–23, 19–77

binary dump 13–10

binary load 13–21, 19–118

-bistall startup parameter 18–13

-bithold startup parameter 14–25, 18–14

bithreshold parameter 17–7
Index–3

Index

Progress Database Administration Guide and Reference
BIW. See Before-image writers

BKTBL chain. See Block table chain

Block Access option
PROMON utility 19–32

Block sizes
after-image 19–147
before-image 19–70, 19–132
displaying 19–64

Block sizes. See also Structure description
file

Block table chain 14–15

Blocking Factor (-bf) startup parameter
PROBKUP utility 7–3, 7–25, 19–11

Blocks
after-image 14–29, 19–147
before-image 14–23, 19–132
database

displaying information 19–64
number used 19–44

empty 19–44
error correction 7–25
free chain 19–81, 19–89
index 19–89, 19–103
recovering corrupted 7–24
RM chain 19–81

Blocks in Database Buffers (-B) startup
parameter 18–10

-bn startup parameter 5–13, 17–12

Bold typeface
as typographical convention 2–xxvi

BPRO utility
no-integrity mode 13–36

Brokers
addressing 5–7
multi-broker access 5–8
shutting down 5–12

permissions 17–14
starting 5–7

servers for remote users 5–5

Buffer hits
optimal number 14–11

Buffer Size (-B) startup parameter 14–11

Buffered I/O (-r) startup parameter 18–37
RFUTIL utility 19–151, 19–153

Buffers
after-image 14–28
before-image 14–20
database. See Database buffers
server startup parameters 18–2

Buffers (-B) startup parameter
RFUTIL utility 19–151, 19–153

BUILDDB qualifier 8–25

Bulk loader description files 13–28, 19–78
creating 13–25
modifying 13–26

Bulk Loader utility 13–27
loading database contents 13–27

BULKLOAD qualifier
PROUTIL utility 13–27, 19–78

BUSY qualifier
PROUTIL utility 7–9, 7–13, 19–79

-by startup parameter
PROSHUT command 5–13, 17–12

C

-C disconnect usernum qualifier
PROSHUT command 17–12

-C list qualifier
PROSHUT command 17–12

Case Code Page (-cpcase) startup parameter
18–15

Chains
empty 14–20
filled 14–20
–4

Index
CHANALYS qualifier
PROUTIL utility 19–81

Changing your password 10–9

Character mapping 13–14

Character sets
displaying 19–64
IBM850 19–84

Characters
allowed for database names 3–8

Checking indexes 19–107

Checkpointing 14–14, 14–17, 14–21

Checkpoints A–67

Client/server Progress
addressing 5–7
broker/server addressing 5–7

Clients
multiple 1–9

Cluster size
before-image 19–132
specifying 19–77

Clusters
before-image 14–21, 19–132

CMPDB Qualifier 19–7

Code pages
converting 19–82

CODEPAGE-COMPILER qualifier
PROUTIL utility 19–82

Collation Code Page (-cpcoll) startup
parameter 18–16

Collation names
displaying 19–64

-com startup parameter
PROBKUP utility 19–12

Commit a Limbo Transaction option

PROMON utility 19–48, A–68

Compacting indexes 9–11, 14–41, 19–109

Compiling
word rules files 19–136
work-break table 19–135

Compression (-com) startup parameter
PROBKUP utility 19–12

Configuration utilities
DBMAN 5–3, 5–4, 19–3
PROADSV 5–3, 19–8
SQLEXP 5–3

Configurations 1–9
database location 1–10
distributed database 1–11
federated database 1–11
number of databases 1–10
system platforms 1–9

conmgr.properties file 5–3, 17–9, 19–3,
19–5

Connection Modes 1–9
batch 1–10
interactive 1–10
multi-user 1–10
single-user 1–9

Connection security
establishing 10–5

Consolidating disk space 14–37

Control area 1–8

CONV89 4–18

CONV89 Qualifier 19–83

CONV89 qualifier
PROUTIL utility 4–15

CONVCHAR qualifier
PROUTIL utility 19–84

Conversion Map (-convmap) startup
parameter 18–14, 18–15
Index–5

Index

Progress Database Administration Guide and Reference
Conversion map files 19–82

Converting
database character sets 19–84
text file character sets 19–87
Version 8 databases to Version 9 4–15,

4–18

Converting codepages 19–82

CONVFILE qualifier
PROUTIL utility 19–87

-convmap startup parameter 18–14, 18–15

Coordinator (-crd) startup parameter
PROUTIL utility 12–7

Coordinator databases 12–3, 19–71
assigning 12–7
nickname 12–7

Coordinator Information option
PROMON utility 19–49

Copying a database 4–22

-cpcase startup parameter 18–15

-cpcoll startup parameter 18–16

-cpinternal startup parameter 18–17

-cplog startup parameter 18–18

-cpprint startup parameter 18–18

-cprcodein startup parameter 18–19

-cpstream startup parameter 18–20

-cpterm startup parameter 18–21

-crd startup parameter
PROUTIL 2PHASE BEGIN utility

19–71
PROUTIL 2PHASE MODIFY utility

19–75

CREATE qualifier
PROSTRCT utility 11–5, 19–58

Creating
a void database 4–11
bulk loader description file 13–25
database 4–2
databases 4–1, 4–10, 4–14

new Progress 4–1
PRODB utility 4–12
starting version 13–30

incremental data definition files 13–7
storage areas 4–8
structure description file 4–3

Cyclic Redundancy Check (CRC)
codes

backup 7–24

D

Data
bulk loading 13–27, 13–36, 18–25
dumping 13–14
loading 13–22

Data Administration tool
adding a user 10–7
changing a password 10–9
creating a database 4–14
deleting a user 10–9
designating a security administrator 10–5
dumping

auto-connect records 13–9
creating an incremental data definition

file 13–7
data definitions 13–3, 13–6
database contents 13–14
sequence definitions 13–8
sequence values 13–17
SQL view file contents 13–18
user table contents 13–17

freezing and unfreezing tables 10–12
loading

database contents 13–22
recovering from load errors 13–30
sequence values 13–24
SQL view file contents 13–24
user table contents 13–23

running a user report 10–10
–6

Index
Data definition files
creating an incremental file 13–7

Data definitions
loading 13–19

Data Dictionary
adding a user 10–7
changing a password 10–9
copying a database 4–22
creating an incremental data definition

file 13–7
deleting a user 10–9
designating a security administrator 10–5
dump and load limitations 13–3
dumping

auto-connect records 13–9
data definitions 13–3, 13–6
database contents 13–14
database definitions 13–3
sequence definitions 13–8
sequence values 13–17
SQL view file contents 13–18
user table contents 13–17

freezing and unfreezing tables 10–12
loading

database contents 13–22
database definitions 13–18
recovering from load errors 13–30
sequence values 13–24
SQL view file contents 13–24
user table contents 13–23

running a user report 10–10

Data extents
backing up 6–2

Data replication
database ownership models 15–3
log-based site replication 15–2
replication models 15–2
trigger-based replication 15–2

Data Types
limits 3–10

Data Values

limits 3–10

Database
absolute-path 1–15, 1–16
creating 4–2
relative-path 1–15 to 1–16

Database administrator (DBA)
designating 10–3
for Progress 4GL 10–3
for SQL-92 10–3
sysprogress 10–3

Database blocks
number used 19–44

Database buffers
buffer pool size 14–11
described 14–6
evicting 14–10
eviction process 14–10
modified 14–15
private read-only buffers 14–12
Progress usage 14–9

Database Configuration 1–10
cluster 1–14
distributed 1–11
federated 1–11
multi-tier 1–14

Database configurations
conmgr.properties file 5–3

Database contents
dumping 13–14
loading

bulk loader 13–27

Database definitions
dumping 13–3
loading 13–2, 13–18

Database files
backing up 6–2
sample locations, safe recovery 8–6

Database integrity 18–25
Index–7

Index

Progress Database Administration Guide and Reference
Database limits
block sizes 3–2
index limits 3–5
number of sequences 3–5
number of simultaneous transactions 3–7
number of users 3–7
records per block 3–5
size 3–6

Database Location 1–10
local 1–10
remote 1–10

Database names
characters not used 3–8

Database Quiet Points 7–11, 17–7

Database records
reading 14–9

Database servers
shutting down 7–13

Database sizes 19–44

Database startup parameters
alphabetical listing 18–8

Database state
empty 19–44

Database Status option
PROMON utility 19–43

Database structure
creating 4–10
maintaining 9–1

Database triggers
dumping and loading 13–2

Databases
absolute-path 1–15, 4–13, 4–23, 9–6
activity 19–37
analyzing fragmentation 14–37
analyzing index utilization 14–39
analyzing structure 14–37
authorization key 19–90, 19–122
backup media 7–10
backups 19–10

blocksize 19–58
configuring properties 19–23
converting

Version 8 to Version 9 4–15
converting character sets 19–84
converting from single to multi-volume

19–17
converting single-volume Version 8

4–15, 4–16
coordinator 12–3, 19–71
copying 4–22, 19–17
creating 4–1, 4–14, 19–19

a starting version 13–30
new Progress database 4–1
PRODB utility 4–12

deleting 4–1, 4–24, 19–22
determining if in use 7–9, 7–13, 19–79
determining user mode 19–101
disabling after-imaging 19–141
disk requirements 2–3
distributed 1–11
dumping 13–2

contents 13–14
definitions 13–3
sequences 13–8

dumping and reloading 13–32
limitations 13–3
quickly 13–36

events 19–37
federated 1–11
formulas for calculating size 2–3
fragmentation 19–124
loading 13–2, 19–78
loading contents 13–22

bulk loader 13–27
loading definitions 13–18
location 1–10
marking as backed up 19–149
marking backed up 7–14
monitoring 19–25, A–1
multi-volume

creating a void multi-volume database
11–5

PROSTRCT utility 19–54
naming conventions for different

operating systems 3–8
nickname 12–7
preparing for two-phase commit 12–7
–8

Index
reconstructing with after-imaging file
19–150

record sizes 19–124
relative-path 4–13, 4–23, 9–6
restoring 7–25, 8–17, 8–19
roll forward recovery 8–2
running Progress in no-integrity mode

13–36
servergroup 17–9
shutting down 5–12

PROMON 5–15
shutting down the server 7–13
states A–10
statistics for buffer pool access 19–32
status report for restore procedure 7–27
storage area location 2–3
table limits 3–5
unlocking 19–66
updating an existing schema 13–19
using one table in multiple databases

13–32
verifying backups 7–23
void 4–11
word break tables 19–135
word rules files 19–136

DBANALYS qualifier
PROUTIL utility 19–89

DBAUTHKEY qualifier
PROUTIL utility 19–90

DBIPCS qualifier
PROUTIL utility 19–92

DBMAN 5–3, 5–4, 19–3

Delayed BI File Write (-Mf) startup
parameter 14–25, 18–30

Deleting
a user from user list 10–9
databases 4–1, 4–24

Description files
See also Structure description file
Bulk Loader 13–28, 19–78

Direct I/O 14–30

Direct I/O (-directio) startup parameter
18–21

-directio startup parameter 18–21

Disconnect a User menu option
PROMON utility 19–45

Disconnect usernum qualifier
PROSHUT command 17–12

Disk I/O
balancing

multi-volume databases 14–6

Disk space
consolidation 14–37
estimating 2–3
formulas for calculating database size

2–3
maintenance 13–32
using efficiently 13–32, 14–37
what to do when full 8–21

Distributed
transactions 12–2

DOS
and on-line backups 19–13
backup utilities 6–4, 11–10

DUMP qualifier
PROUTIL utility 19–94

Dumping 13–2, 19–94
auto-connect lists 13–9
binary 13–10
data definitions 13–3
database contents 13–14
database sequences 13–8
databases 13–36

disk space maintenance 13–32
limitations 13–3

SQL view file contents 13–18
SQL-92 19–154
triggers 13–2
user table contents 13–17

Dumping tables 8–27
Index–9

Index

Progress Database Administration Guide and Reference
E

Emergency Shutdown menu option
PROMON utility 19–45

Empty blocks 19–44

ENABLEPDR qualifier
PROUTIL utility 19–100

Enabling
after-imaging 11–5
two-phase commit 12–7

Encoding passwords 10–2

Endtime startup parameter
RFUTIL utility 19–150, 19–152

Endtrans startup parameter
RFUTIL utility 19–151, 19–152

Error correction
PROBKUP utility 7–25, 19–12

ESQL
-pp startup parameter 18–37

ESQL PROPATH (-pp) startup parameter
18–37

-estimate startup parameter
PROBKUP utility 7–2, 19–11

Event-Level (-evtlevel) startup parameter
18–22

Events 19–37

-evtlevel startup parameter 18–22

Example procedures 2–xxxi

Extent types
for structure description file 4–9

Extents 1–7
See also After-image extents
adding 9–5, 19–56

to existing storage areas 9–7
creating 19–58

creating structure description file 19–60
defining 4–7

size 4–9
displaying information 19–144
fixed-length 1–7, 4–9
marking empty 19–142
maximum length 4–9
removing 9–8, 19–61
repairing 19–57, 19–63
variable-length 1–7, 4–9

function 4–9
maximum number 4–9

F

-F startup parameter
PROSHUT command 5–13, 17–12

f token
for data file length in structure

description file 4–9

Fields
formulas for calculating storage values

2–4

File descriptors
defined 1–13, 14–37

File extensions
See listing for specific extension

File handles
maximum number 3–8

Files
after-image 8–4
backing up 6–2
before-image 8–3, 8–24, 19–132
converting character sets 19–87
fragmentation 14–37
log 19–24
moving to alternate locations 14–20
structure description 19–58, 19–60
transaction log (.tl) 12–6

Fixed-length extents 4–9
after-image 11–3
on-line backups 6–5
–10

Index
Fixed-length, SeeExtents

Fixing indexes 19–111

Force Access (-F) startup parameter
PROSHUT command 5–13, 17–12
PROUTIL utility 8–28

Fragmentation 14–37
displaying degree 19–124

Free blocks
monitoring for multi-volume databases

9–2

Free chain blocks 19–81, 19–89

Free space 19–44

Freezing tables
permissions needed 10–12

Full backup restorations
examples

NT 7–30
UNIX 7–29

Full backups 7–9
examples

NT 7–17
UNIX 7–4

Full Verify (-vf) startup parameter
PROREST utility 7–7, 7–26, 19–52

G

-G startup parameter 18–23
PROUTIL utility 19–132

Group Delay (-groupdelay) startup
parameter 18–23

-groupdelay startup parameter 18–23

-Gw startup parameter
PROSHUT command 17–12

H

-H startup parameter 18–24
PROSHUT command 5–13
specifying 5–7
PROSHUT command 17–12

Hardware failures
protecting against 2–3

-hash startup parameter 18–24

Hash table
defined 14–12

Hash Table Entries (-hash) startup
parameter 14–12, 18–24

Help
Progress messages 2–xxxiv

HOLDER qualifier
PROUTIL utility 19–101

Host addressing 5–7

Host Name (-H) parameter
specifying 5–7

Host Name (-H) startup parameter 18–24
PROSHUT command 5–13, 17–12

I

-i startup parameter 18–25

I/O
after-image 14–27
before-image 14–18
bottlenecks

eliminating 14–6
buffered 19–151, 19–153
databases 14–6, 14–7
performance impact 14–6

I/O operations A–65

IBM Codepage 850 character set 19–84
Index–11

Index

Progress Database Administration Guide and Reference
IDXANALYS qualifier
PROUTIL utility 19–103

IDXBUILD qualifier
PROUTIL utility 14–42, 19–104

IDXCHECK qualifier
PROUTIL utility 19–107

IDXCOMPACT qualifier
PROUTIL utility 9–11

IDXFIX qualifier
PROUTIL utility 19–111

IDXMOVE qualifier 9–11

Incremental backup restorations 7–27
examples

NT 7–31
UNIX 7–29

Incremental backups 6–4
examples

NT 7–20
UNIX 7–14

overlap factor 19–12

-incremental startup parameter
PROBKUP utility 7–2, 7–6, 19–10,

19–12

Index Base (-baseindex) startup parameter
18–11

Index blocks 19–89
displaying information 19–103

Index Range Size (-indexrangesize) startup
parameter 18–26

Indexes
adding 9–9
analyzing utilization 14–39
checking 19–107
compacting 9–11, 19–109
corruption 14–42
fixing 19–111

fragmentation 14–39
moving 9–11, 19–114
reactivating 14–47
rebuilding 13–29, 14–42, 19–104
sorting

formulas to determine free space for
rebuilding 14–43

INDEXMOVE Qualifier
PROUTIL utility 19–114

-indexrangesize startup parameter 18–26

INPUT FROM statement 13–16

Integrity
database 18–25, 19–52

Internal Code Page (-cpinternal) startup
parameter 18–17

International character sets
specifying 5–6

-io startup parameter
PROBKUP utility 19–12

IOSTATS qualifier
PROUTIL utility 19–116

Italic typeface
as typographical convention 2–xxvi

IXANALYS qualifier
PROUTIL utility 14–39

K

Keys
authorization 19–90, 19–122

Keystrokes 2–xxvii

Kill All menu option
PROMON utility 19–45

Kill users (-by) startup parameter
PROSHUT command 5–13, 17–12
–12

Index
L

-L startup parameter 18–26

Large transactions
effect on lock table 18–27

Least recently used (LRU) chain 14–16

Limbo lock 19–36

Limbo transactions
aborting 19–76
committing 19–76
defined 12–5
detecting 12–10
how Progress processes react 12–10
PROUTIL 2PHASE COMMIT utility

19–73
resolving 12–11

Limits
database

number of simultaneous transactions
3–7

number of users 3–7
database names 3–8
dumping and reloading databases 13–3
for database names 3–8
operating systems 3–8

LIST qualifier
PROSTRCT utility 19–60

List qualifier
PROSHUT command 17–12

LOAD qualifier
PROUTIL utility 19–118

Loading 13–2, 19–118
binary 13–21
database contents 13–22

bulk loader 13–27
database definitions 13–18
databases

disk space maintenance 13–32
SQL view file contents 13–24

SQL-92 19–159
triggers 13–2
user table contents 13–23

Lock requests A–66

Lock Table Entries (-L) startup parameter
18–26

Locking
resource

UNIX 14–33

Locking and Waiting Statistics option
PROMON utility 19–27, 19–30

Locks
displaying contents of record locking

table 19–35
limbo 19–36
purged 19–36
queued requests 19–36
upgrade requests 19–36

Log (.lg) files
backing up 6–2
commands to removing entries 16–2

Log File Code Page (-cplog) startup
parameter 18–18

Log files
removing entries 19–24

Log-based replication. See Data replication

Log-based site replication 15–2

login.p procedure 10–3

M

-m1 startup parameter 18–27

-m2 startup parameter 18–28

-m3 startup parameter 18–28

-Ma startup parameter 18–29
Index–13

Index

Progress Database Administration Guide and Reference
Machine addressing 5–7

Manual
syntax notation 2–xxvii

Manual Server (-m2) startup parameter
18–28

Manual Server server type 18–28

Manual, organization of 2–xxiii

MAP option
INPUT FROM Statement 13–16

MARK BACKEDUP qualifier
RFUTIL utility 7–14, 19–149

Marking a database backed up 7–14

Maximum Clients per Server (-Ma) startup
parameter 18–29

Maximum Dynamic Server Port (-maxport)
startup parameter 18–29

Maximum Servers (-Mn) startup parameter
18–32

Maximum Servers per Broker (-Mpb)
startup parameter 18–33

-maxport startup parameter 18–29

Media estimates 7–2, 19–11

Memory
server startup parameters 18–2
shared 18–34

Memory allocation 14–31, 14–32
before-image buffers 14–20
database buffers 14–6, 14–11
server 14–32

Messages
displaying descriptions 2–xxxiv

-Mf startup parameter 18–30

-Mi startup parameter 18–31

Minimum Clients per Server (-Mi) startup
parameter 18–31

Minimum Dynamic Server (-minport)
startup parameter 18–32

-minport startup parameter 18–32

-Mn startup parameter 18–32

Modify Defaults option
PROMON utility 19–50

Modifying
bulk loader description file 13–26

Monitor
database

main menu 5–15
PROMON utility 19–25

R&D options A–1

Monitoring performance 19–116

Monitoring Progress
buffer activity 14–11
database fragmentation 14–37
index use 14–39

Monospaced typeface
as typographical convention 2–xxvi

Moving
indexes 9–11
tables 9–9

-Mp startup parameter 18–33

-Mpb startup parameter 18–33

Multi-threaded servers
defined 1–9

Multi-user Progress
starting the server 5–5
startup commands

broker 5–5
server 5–5
–14

Index
Multi-volume databases
adding extents 19–56
creating 19–58
creating structure description files 19–60
operating system limits 3–8
performance advantages 14–6
PROSTRCT utility 19–54
removing extents 19–61
repairing 19–57, 19–63
unlocking 19–66

MVSCH qualifier
PROUTIL utility 19–121

-Mxs startup parameter 18–34

N

-N startup parameter 18–35

-n startup parameter 18–35

Naps 14–5, 14–37

Network Type (-N) startup parameter 18–35

Networks
server startup parameters 18–6

Nickname (-tp) startup parameter
PROUTIL utility 12–8

Nicknames 19–71

No Crash Protection (-i) startup parameter
18–25

No kill users (-bn) startup parameter
PROSHUT command 5–13, 17–12

NO-MAP Option
INPUT FROM Statement 13–16

Non-Progress backups 7–13

NT

backup examples
full backup 7–17
incremental backups 7–20
restoring a full backup 7–30
restoring an incremental backup 7–31

NT Event Log
specifying level of information 18–22

Number of Users (-n) startup parameter
14–32, 18–35

O

Off-line backups 6–6, 7–9

On-line backups 6–5, 7–10, 19–13
after-image extents 6–5

Online startup parameter
PROBKUP utility 7–2, 7–5, 19–10

Operating System
resources 1–12 to 1–13

file descriptors 1–13
processes 1–13
semaphores 1–12
shared memory 1–13
spin locks 1–13

Operating systems
limits 3–8

Overlap factor (-io) startup parameter
PROBKUP utility 19–12

P

Parameter File (-pf) startup parameter
18–36

Partial roll forward 19–150, 19–152

Partial verify (-vp) startup parameter
Index–15

Index

Progress Database Administration Guide and Reference
Passwords 10–2
changing 10–9
encoding with the ENCODE function

10–2
establishing 10–2
validating 10–3

Performance
buffer pool 14–6
direct I/O 14–30
disk I/O 14–6

before image and after-image 14–18
memory 14–31, 14–32
monitoring 14–47, 19–116
multi-volume database advantages 14–6
server startup parameters 18–2
suppressing after-imaging 14–24
using private read-only buffers 14–12

Performance indicators A–63

-pf startup parameter 18–36

-pp startup parameter 18–37

Primary recovery area 1–8
See alsoBefore-image area 1–8
size 3–6

Print Code Page (-cpprint) startup parameter
18–18

Private read-only buffers 14–12

PROADSV 19–8

PROAIW command 17–4

PROAIW utility 5–11

PROAPW utility 5–10

PROBIW command 17–6

PROBIW utility 5–11

PROBKUP utility 7–5, 7–10, 19–10
NT examples 7–17
off-line backups 7–9
on-line backups 7–10
UNIX examples 7–4

Procedure library (.pl) files
backing up 6–2

Procedures
examples of 2–xxxi

Processes 14–33
after-image writer (AIW) 17–4
asynchronous page writer 5–10
before-image writer 5–11
before-image writer (BIW) 17–6
cleaning up 17–15

ProControl utility 19–14

PROCOPY 4–16
use to copy system tables, metaschema

4–11

PROCOPY command 4–22

PROCOPY utility 19–17

PRODB utility 4–22, 19–19
creating a database 4–12

PRODEL utility 4–24, 19–22

Progress
broker/server addressing 5–7
database

using a structure file to create 4–10
network addressing 5–7
roll forward recovery 8–2

Progress Explorer 5–2, 17–10
framework 5–2
starting 5–3
utility 19–23

Progress NT Server 19–14

PROLOG
removing log entries 16–2

PROLOG utility 19–24

PROMON utility 19–25
R&D options A–1

accessing A–2
Active Transactions status A–21
–16

Index
AI Log activity A–50
AI Log status A–32
All Processes status A–16
Background Processes status A–25
Backup status A–13
BI Log activity A–48
BI Log status A–31
Blocked Clients status A–20
Buffer Cache activity A–44
Buffer Cache status A–29
Database status A–10
Files status A–26
I/O Operations by File activity A–56
I/O Operations by Type activity A–54
Index activity A–59
Local Batch Clients status A–23
Local Interactive Clients status A–22
Lock Table activity A–52
Lock Table status A–27
Logging Summary status A–30
Main menu A–4
Other activity A–62
Page Writers activity A–46
Record activity A–60
Remote Clients status A–24
Servers activity A–43
Servers status A–14
Shared Memory Segments status A–38
Shared Resources status A–36
Space Allocation activity A–57
Startup Parameters status A–34
Summary activity A–39
Two-Phase Commit status A–33

Resolve Limbo Transaction option A–68
shutting down databases 5–15

Properties file
conmgr.properties file 5–3

PROQUIET command 7–11, 17–7
adjusting the BI Threshold 14–26

PROREST 4–17
LIST qualifier 7–28

PROREST utility 7–23, 7–26, 7–28, 19–52
full verify (-vf) startup parameter 7–26
incremental backups 7–27
-list parameter 7–26, 19–52

NT examples 7–30
partial verify (-vp) startup parameter

7–23, 7–26
UNIX examples 7–29

PROSERVE command 5–7, 17–9

PROSERVE utility 5–5

ProService 19–14

PROSHUT command 17–11

PROSTRCT
ADD qualifier 9–5, 9–7
BUILDDB qualifier 8–25
REMOVE qualifier 9–8

PROSTRCT CREATE 4–2, 4–10, 4–11
example 4–10
output 4–10

PROSTRCT LIST
use to verify database files 4–11

PROSTRCT utility 19–54
LIST qualifier 9–3
log-based replication and 15–7
qualifiers

CREATE 11–5
STATISTICS 9–2
UNLOCK 8–26

PROUTIL
CONV89 Qualifier 19–83
DUMPSPECIFIED qualifier 13–12
ENABLEPDR qualifier 19–100
IDXCOMPACT qualifier 9–11
IDXMOVE qualifier 9–11
MVSCH qualifier 19–121
TABLEMOVE qualifier 9–9
TRUNCATE AREA qualifier 9–8
TRUNCATE BI

qualifier 9–8

PROUTIL CONV89 4–19

PROUTIL utility 19–67
BIGROW qualifier 14–23
CONV89 Qualifier 4–19
DUMP qualifier 13–10
Index–17

Index

Progress Database Administration Guide and Reference
-F startup parameter 8–28
LOAD qualifier 13–21
qualifiers

2PHASE BEGIN 12–7
2PHASE COMMIT 12–16
2PHASE END 12–19
2PHASE MODIFY 12–8
2PHASE RECOVER 12–17
BULKLOAD 13–27
BUSY 7–9, 7–13
IDXBUILD 14–42
IXANALYS 14–39
TABANALYS 14–37

return codes 19–79, 19–101
system crashes 8–17
TRUNCATE BI qualifier 14–21

PROWDOG command 17–15

Purged lock 19–36

Q

Queued lock requests 19–36

R

-r startup parameter 18–37
RFUTIL utility 19–151, 19–153

R&D options
PROMON utility. See PROMON utility,

R&D options

Raw partitions 2–7

R-code
authorization key 19–90

R-code In Code Page (-cprcodein) startup
parameter 18–19

RCODEKEY qualifier
PROUTIL utility 19–122

Rebuilding indexes 14–42, 19–104
phases 14–43, 19–106

RECID field types
dumping and reloading 13–3

Record Locking Table option
PROMON utility 19–35

Record sizes 19–124

Records
modified 14–8

Recovering
from lost or damaged control area 8–25

Recovering bad blocks 7–24

Recovery Log Threshold (-bithold) startup
parameter 14–25, 18–14

Recovery plans
developing 6–9
sample 8–7

-red startup parameter
PROBKUP utility 19–12

Redundancy (-red) startup parameter
PROBKUP utility 7–25, 19–12

Relative-path database 1–15, 4–13, 4–23,
9–6

Relative-path,SeeDatabase

REMOVE qualifier
PROSTRCT utility 19–61

Removing log file entries
PROLOG 16–2

REPAIR qualifier
PROSTRCT utility 19–57, 19–63

Replication. See Data replication

Resolve Limbo Transaction option
PROMON utility 19–48, A–68

Resolving limbo transactions
case study 12–19
PROMON 12–11
PROUTIL 12–15
–18

Index
Resource locking
UNIX 14–33

kernel parameters 14–33

Restoring
backup 7–28

Restoring databases 7–25, 8–17, 8–18
recovering bad blocks 7–24

Return codes
Progress/UTILITIES utility 19–79
Progress/UTILITY command 19–101
PROUTIL utility 19–79, 19–101

RFUTIL utility 19–137
AIMAGE EXTENT FULL 19–143
AIMAGE TRUNCATE 14–29
log-based replication and 15–8
qualifiers

MARK BACKEDUP 7–14
ROLL FORWARD 8–19, 8–20

system crashes 8–17

RM chains
analyzing 19–81

ROLL FORWARD qualifier
RFUTIL utility 8–19, 8–20, 19–150

Roll forward recovery 8–2, 8–4
after-imaging 8–4
before-imaging 8–3
preparations for using 8–6
RFUTIL utility 19–137
sample scenario 8–11

Roll-forward recovery
do’s and don’ts 6–13

Running
user reports 10–10

S

-S startup parameter 5–7, 18–38
PROSHUT command 5–13, 17–12

-s startup parameter
PROCOPY utility 19–17

Scan
after-image file 19–146

Scan (-scan) startup parameter
PROBKUP utility 6–6, 19–12

Schema
adding to a void database 4–11

Schema area 1–8

Schema security
establishing 10–11
freezing and unfreezing tables 10–12

Secondary Login Broker (-m3) startup
parameter 18–28

Secondary Login Broker server type 18–28

Security
connection 10–5
establishing authentication 10–3
schema 10–11

Security administration
adding a user to user list 10–7
changing password 10–9
deleting a user from user list 10–9
designating a security administrator 10–5
freezing and unfreezing tables 10–12
running a user report 10–10
validating user ID and password 10–3

Semaphore Sets (-semsets)
broker startup parameter 14–36

Semaphore Sets (-semsets) startup
parameter 18–39
Index–19

Index

Progress Database Administration Guide and Reference
Semaphores 14–34
allocating 14–36
defined 1–12
number used 19–42
-semsets broker startup parameter 14–36

-semsets startup parameter 18–39

Sequences
dumping 13–8
dumping and loading 13–24

_seqvals.d file 13–8, 13–24

Server
multi-threaded 1–9

Server Group (-servergroup) startup
parameter 18–38

Server startup parameters
buffers 18–2
networks 18–6
performance 18–2
server type specification 18–4
statistic collection specification 18–5

Server types 18–27

servergroup 17–9

-servergroup startup parameter 17–9, 18–38

Servers
addressing 5–7
controlling number spawned for one

protocol 18–33
multi-threaded 1–9
shutting down 5–12
starting 5–7

Servers per Protocol (-Mp) startup
parameter 18–33

Server-type startup parameters 18–4

Service Name (-S) startup parameter 5–7,
18–38
PROSHUT 5–13, 17–12

SETUSERID function 10–3

Shared memory
and on-line backups 19–13
defined 1–13
file descriptors 1–13
processes 1–13
semaphores 1–12
shared memory segments 1–13
spin locks 1–13
status 19–92
status information 19–92
version number 19–42

Shared Resources option
PROMON utility 19–41

Shared-memory Overflow Size (-Mxs)
startup parameter 18–34

Shut Down Database option
PROMON utility 19–45

Shutdown commands 17–11

Shutting down
AIWs 5–11
APWs 5–10
BIWs 5–11
brokers 5–12
databases 5–12

PROMON 5–15
PROSHUT 5–12

servers 5–12

Silent (-s) startup parameter
PROCOPY utility 19–17

Single-user mode
and on-line backups 19–13

Single-user Progress
on-line backups 6–5

Site replication 15–2

Sizes
of databases 19–44

Sorting
disk space required 2–6
–20

Index
Spawning servers
manually 18–28

Spin Lock Retries (-spin) startup parameter
18–40

Spin locks 14–5, 14–37
algorithm 14–5, 14–37

-spin startup parameter 18–40

Spinning 14–5, 14–37

SQL views
dumping file contents 13–18
loading file contents 13–24

SQLDUMP Utility 19–154

SQLLOAD Utility 19–159

SQLSchema Utility 19–164

Starting Progress
AIWs 5–11
APWs 5–10
BIWs 5–11
multi-user

with a server 5–5

Startup commands
summary 17–3
syntax 17–2

Startup parameters
After-image Buffers (-aibufs) 14–28
after-image stall (-aistall) 11–7
Before-image Buffers (-bibufs) 14–20
blocking factor (-bf)

PROBKUP utility 7–25
Buffer Size (-B) 14–11
buffers 18–2
changing defaults 18–2
database server international 18–4
Delayed BI File Write (-Mf) 14–25
displaying settings 19–41
Force Access (-F)

PROUTIL utility 8–28
Hash Table Entries (-hash) 14–12
memory 18–2

networks 18–6
Number of Users (-n) 14–32
performance 18–2
redundancy (-red)

PROBKUP utility 7–25
server type specification 18–4
statistic collection specification 18–5

Statistic Collection startup parameters 18–5

Statistics
for storage utilization 9–2
PROMON utility

buffer pool access 19–32
Locking and Waiting option 19–27,

19–30
PROSTRCT utility 19–64

STATISTICS qualifier
PROSTRCT utility 19–64

Storage
logical 1–6
physical 1–5
temporary 2–6
utilization statistics 9–2
variable-length technique 2–3

Storage areas 3–2
adding 9–5
adding extents 9–7
after-image area 1–8
creating 4–8
defining 4–7
location 2–3
number of 3–2
primary recovery area

size 3–6
removing 9–8
size of 3–2
transaction log area 1–8, 12–9
truncating 19–130

Storage areas,See Areas

Storage objects 1–7

Storing databases
raw partitions 2–7
Index–21

Index

Progress Database Administration Guide and Reference
Stream Code Page (-cpstream) startup
parameter 18–20

Structure description file
creating 4–3
defining storage areas 4–7
example 4–3
specifying pathnames 4–7
updating information 9–3

Structure description files 19–58
appending 19–56
bnf syntax 4–5
creating 19–60
extent length 4–3, 4–9
extent pathname 4–3
extent type 4–3, 4–9
f token 4–9
PROSTRCT utility 8–25, 19–55, 19–56,

19–57, 19–63
repairing 19–57, 19–63

Structure files
backing up 6–2
unlocking damaged 8–26

Synchronous replication 15–2

Syntax notation 2–xxvii

System crash
backup procedures 8–18
loss of the after-image file 8–19
loss of the database backup 8–20
loss of the transaction log file 8–21
using PROUTIL and RFUTIL 8–17
using utilities 8–17
while running Progress 8–18

T

TABANALYS qualifier
PROUTIL utility 14–37, 19–124

Table Base (-basetable) startup parameter
18–12

Table Limit (-tablelimit) startup parameter
18–41

TABLEMOVE qualifier 9–9
PROUTIL utility 19–127

-tablerangesize startup parameter 18–41

Tables
adding 9–9
dumping 8–27
dumping and reloading. See Databases,

dumping and loading
freezing and unfreezing definitions

10–12
moving 9–9
user tables

dumping contents 13–17
loading contents 13–23

using one in multiple databases 13–32

TCP/IP networks
shutdown command parameters 5–15
shutting down the server 5–15
specifying host name of remote machine

5–15

Temporary storage 2–6

Terminal behavior
PROMON utility 19–50

Terminal Code Page (-cpterm) startup
parameter 18–21

Text files
converting character sets 19–87

Threshold Stall (-bistall) startup parameter
14–26, 18–13

Time stamp
for file data definition 10–11

-tp startup parameter
PROUTIL 2PHASE BEGIN utility

19–71
PROUTIL 2PHASE MODIFY utility

19–75

Transaction locks 19–31

Transaction log (.tl) files 12–6
backing up 6–2
–22

Index
Transaction log area 12–9

Transaction log file disks 8–23

Transactions
distributed 12–2
number 12–3
status 12–3
two-phase commit 8–6, 12–2

Transactions Control option
PROMON utility 19–46

Transfer speed
PROBKUP 7–3, 19–11

Trigger-based replication 15–2

Triggers
dumping and loading 13–2

TRUNCATE AREA qualifier
PROUTIL utility 19–130

TRUNCATE BI qualifier
PROUTIL utility 14–21, 19–132

Truncating
after-image file 19–145, 19–147
application data storage areas 19–130
before-image files 8–24, 19–132
log files 19–24

Tuning
BIWs 14–20
database buffers 14–11
hash table 14–12
memory

server 14–32
memory allocation 14–31, 14–32
resource locking

UNIX 14–33

2PHASE BEGIN qualifier
PROUTIL utility 19–71

Two-phase commit 12–1
after-imaging 12–6
algorithm 12–4
case study 12–19
changing nickname 19–75

changing priority 19–75
coordinator database 19–71
data replication and 15–2
deactivating 12–19
disabling 19–74
enabling 12–7, 19–71
implementation 12–3
introduction 8–6, 12–2
limbo transactions 19–73
nicknames 12–7, 19–71
phases 12–3
transaction log area 12–9

2PHASE COMMIT qualifier
PROUTIL utility 19–73

2PHASE END qualifier
PROUTIL utility 19–74

2PHASE MODIFY qualifier
PROUTIL utility 19–75

2PHASE RECOVER qualifier
PROUTIL utility 19–76

Typographical conventions 2–xxvi

U

Unconditional shutdown menu option
PROMON utility 19–45

UNIX 1–12
backup examples

full backups 7–4
incremental backups 7–14
restoring a full backup 7–29
restoring an incremental backup 7–29

backup utilities 6–4, 11–10
file descriptors 1–13
kernel parameters

resource locking 14–33
processes 1–13
semaphores 1–12, 14–34
shared memory 1–13
spin locks 1–13

UNLOCK qualifier
PROSTRCT utility 19–66
Index–23

Index

Progress Database Administration Guide and Reference
UPDATEVST qualifier
PROUTIL utility 20–2

Upgrade requests 19–36

Usage reporting
system resources 19–41

User IDs 10–2
establishing 10–2
validating 10–3

User lists 10–2

User report
running 10–10

Users
maximum number 18–35

Utilities
Autoconvert 4–24
backup 6–4, 11–10
PROAIW 5–11
PROAPW 5–10
PROBIW 5–11
PROBKUP 7–5, 7–10
PRODB 4–12
PRODEL 4–24
PROMON 5–15
PROREST 7–23, 7–26, 7–28
PROSERVE 5–5, 5–8
PROSHUT 5–12
PROSTRCT

CREATE qualifier 11–5
LIST qualifier 9–3
STATISTICS qualifier 9–2
UNLOCK qualifier 8–26

PROUTIL
BULKLOAD qualifier 13–27

RFUTIL
MARK BACKEDUP qualifier 7–14
ROLL FORWARD qualifier 8–19,

8–20
RFUTIL AIMAGE EXTENT FULL

19–143
system crashes 8–17

Utilization
index 14–39

analyzing 14–39

V

Validating user ID and password 10–3

Variable block sizes 19–58

Variable-length extents 4–9
after-image 11–3
on-line backups 6–5

Variable-length See Extents

Verbose (-verbose) startup parameter
PROBKUP utility 7–3, 19–11
RFUTIL utility 19–146

-verbose startup parameter
RFUTIL utility 19–146

Verifying a backup
PROREST utility 7–23

-vf startup parameter
PROREST utility 19–52

Virtual system tables (VST) 9–12, 14–47,
20–1
descriptions 20–8
obtaining status of utilities 9–12
summaries 20–2
updating 19–134, 20–2
updating access to 19–134, 20–2
using 20–1

VLM Page Table Entry Optimization
(-Mpte) startup parameter 18–34

VMS
backup utilities 6–4, 11–10

Volume Size (-vs) startup parameter
PROBKUP utility 7–3, 19–11

-vp startup parameter
PROREST utility 19–52
–24

Index
-vs startup parameter
PROBKUP utility 7–3, 19–11

W

Watchdog utility

See also PROWDOG utility

WBREAK-COMPILER qualifier
PROUTIL utility 19–135

Word break table 19–135
Index–25

Index

Progress Database Administration Guide and Reference
–26

	Preface
	Purpose
	Audience
	Organization Of This Manual
	Part I Planning
	Part II Administration
	Part III Reference

	How To Use This Manual
	Typographical Conventions
	Syntax Notation
	Example Procedures
	Progress Messages
	Other Useful Documentation
	Getting Started
	Development Tools
	Reporting Tools
	4GL
	Database
	DataServers
	SQL-89/Open Access
	SQL-92
	Deployment
	WebSpeed
	Reference

	The Progress Database
	Progress Database Architecture
	Other Database-related Files

	Storage Design Overview
	Storage Objects
	Extents
	Storage Areas

	Determining Configuration Variables
	System Platform
	Connection Modes
	Database Location
	Database Configurations

	Operating System Resources
	Multi-threaded Architecture
	Multi-tier and Cluster Configurations
	Self-service and Network Clients
	Relative- and Absolute-path Databases

	Administrative Planning
	Block Size Considerations
	Guidelines For Choosing Storage Area Locations

	Calculating Database Disk Requirements
	Storing Database Extents On Raw Partitions

	Progress Database Limits
	Database Block Sizes
	Number and Size Of Storage Areas
	Maximum Number Of Records Per Block
	Table and Index Limits
	Number Of Sequences
	Maximum Size Of the Primary Recovery (BI) Area
	Maximum Database Size
	Number Of Connections Per Database
	Number Of Simultaneous Transactions Per Database
	Size Of Database Buffer Pool
	Progress Database Name Limits
	Applicable Operating System Limits
	Data Types and Values

	Creating and Deleting Databases
	Ways To Create a Progress Database
	Creating a Database With PROSTRCT CREATE
	Creating a Structure Description File
	Create a Database Structure Extent
	Adding Schema To a Void Database

	Creating a Database With the PRODB Utility
	Creating a Database With the Data Administration Tool
	Migrating Version 8 Databases To Version 9 Databases
	Converting a Single-volume Version 8 Database With PROCOPY
	Converting a Single-volume Version 8 Database With PROREST
	Converting a Single-volume Version 8 Database With PROSTRCT
	Converting a Version 8 Database To Version 9

	Using the Schema Mover After Conversion
	Copying a Database
	AutoConvert Utility
	Deleting a Database

	Starting Up and Shutting Down
	The Progress Explorer Framework
	AdminServer
	Progress Explorer
	Command-line Configuration Utilities
	Using the DBMAN Command-Line Utility

	Starting a Server Or Broker
	Using the PROSERVE Command
	Specifying International Character Sets
	Network Addressing With Progress (- S and -H)
	Starting Network Brokers and Servers
	Starting Multiple Brokers Using the Same Protocol
	Accessing a Server Behind a Firewall

	Starting and Stopping Background Writers
	Starting and Stopping an APW
	Starting and Stopping a BIW
	Starting and Stopping an AIW

	Stopping a Server Or Broker
	PROSHUT Command
	PROMON Shut Down Database Option

	Backup and Recovery Strategies
	Identifying Files For Back Up
	Determining the Type Of Backup
	Incremental Backups
	Online Backups
	Offline Backups

	Choosing Backup Media
	Creating a Backup Schedule
	Database Integrity
	Database Size
	Time
	Unscheduled Backups

	Developing a Recovery Plan
	Lost Transactions
	Duration Of Offline Applications
	Time Needed For Recovery
	Distributed Transactions Occurring Inconsistently

	Recovery Guidelines

	Backing Up a Database
	Performing a Progress Backup
	Performing an Online Full Backup With PROBKUP
	Progress Backup Options
	Testing Backups
	Archiving Backups

	Performing an Offline Progress Backup
	Performing an Online Progress Backup
	Using Database Quiet Points
	Performing a Non-Progress Backup
	Database Backup Examples
	UNIX Incremental Backup Example
	Windows Full Backup Example
	Incremental Backup Example

	Verifying a Backup
	CRC Codes and Redundancy In Backup Recovery
	CRC Codes
	Error-correction Blocks

	Restoring a Database
	Using the PROREST Utility To Restore a Database
	Important Rules For Restoring Backups
	Obtaining Storage Area Descriptions Using PROREST
	Database Restore Examples

	Recovering a Database
	Introduction To Recovery Mechanisms
	Crash Recovery
	Roll-forward Recovery
	Two-phase Commit

	File Locations That Ensure Safe Recovery
	Sample Recovery Plans
	Example 1: Low Availability Requirements
	Example 2: Moderate Availability Requirements
	Example 3: Moderate-to-High Availability Requirements
	Example 4: High Availability Requirements
	Sample Recovery Scenarios

	After-imaging and Roll-forward Recovery Commands
	Recovering From System Failures
	System Crash While Running RFUTIL ROLL FORWARD
	System Crash While Running Other Utilities
	System Crash While Backing Up the Database
	System Crash While Database Is Up

	Recovering From Media Failures
	Loss Of the DB Files, BI Files, Or Both
	Loss Of the AI File
	Loss Of Database Backup
	Loss Of Transaction Log File

	Recovering From a Full Disk
	After-image Area Disk
	Control Or Primary Recovery Area Disk
	Transaction Log File Disk

	Truncating the BI File
	Recovering From a Crash
	Recovering From a Lost Or Damaged Control Area
	Unlocking Damaged Databases
	Dumping Tables From a Damaged Database
	Forcing Access To a Damaged Database With the -F Parameter

	Maintaining Database Structure
	The Progress Structure Utility
	Progress Structure Statistics Utility
	Progress Structure List Utility
	Progress Structure Add Utility
	PROSTRCT ADD and Pathnames
	Adding Extents to Existing Storage Areas

	Progress Structure Remove Utility
	Maintaining Indexes and Tables
	Moving Tables
	Moving Indexes
	Compacting Indexes

	Using Virtual System Tables To Obtain Status Of Administration Utilities

	Maintaining Security
	Establishing a Progress User ID and Password
	Progress User ID
	Progress Password
	Validating a Progress User ID and Password

	Establishing Authentication For Your Progress Database
	4GL Tables Only
	SQL-92 Tables Only
	Both 4GL and SQL-92 Tables

	Connection Security
	Designating a Security Administrator
	Adding a User
	Deleting a User
	Changing a Password

	Running a User Report
	Schema Security
	Freezing and Unfreezing a Table

	Operating Systems and Database Security

	After-Imaging
	After-image Areas and Extents
	Estimating After-imaging Disk Space Requirements
	Creating After-image Areas
	Enabling After-imaging
	Managing After-imaging Files
	Monitoring AI File Status
	Switching To a New AI File
	Archiving an AI File

	Performing Roll-forward Recovery
	Disabling After-imaging

	Using Two-phase Commit
	Distributed Transactions
	How The Database Engine Implements Two-phase Commit
	Two-phase Commit and Roll-forward Recovery

	Enabling Two-phase Commit
	Modifying the Database Nickname and Priority
	Transaction Log Area

	Detecting Limbo Transactions
	Resolving Limbo Transactions
	Resolving Limbo Transactions With the Database In Use
	Resolving Limbo Transactions With the Database Shut Down
	Resolving Limbo Transaction Scenarios

	Deactivating Two-phase Commit
	Case Study

	Dumping and Loading
	Overview Of Dumping and Loading
	Dump and Load Limitations

	Dumping 4GL Database Definitions
	Definition File Format
	Dumping 4GL Definitions
	Creating an Incremental 4GL Data Definitions File
	Dumping Sequence Definitions
	Dumping Auto-connect Records

	Dumping Database Contents
	Dumping Table Contents With PROUTIL
	Dumping Field Contents With PROUTIL
	Dumping Table Contents With a Data Tool
	Contents File Format
	Dumping Sequence Values
	Dumping User Table Contents
	Dumping an SQL View File’s Contents

	Loading Database Definitions
	Loading Table Definitions
	Loading Updated 4GL Data Definitions

	Loading Database Contents
	Loading Table Contents With the PROUTIL Command
	Loading Table Contents With a Data Tool
	Loading User Table Contents
	Loading an SQL View File Contents
	Loading Sequence Values

	Bulk Loading
	Creating a Bulk Loader Description File
	Modifying a Bulk Loader Description File
	Loading Table Contents With the Bulk Loader Qualifier

	Reconstructing Bad Load Records
	Specialized Dump and Load Techniques
	Creating a Starting Version Of a Database
	Using a Constant Table In Multiple Databases
	Economizing Disk Space
	Optimizing Data For Sequential Access
	Optimizing Data For Random Access
	Using No-integrity Mode Bulk Data Loading
	Using 4GL Tools To Save Space By Deactivating Indexes

	Managing Performance
	Introduction To Performance Managing
	Tools For Monitoring Performance
	PROMON Utility
	Virtual System Tables
	NT Performance Monitor

	Server Performance Factors
	CPU Utilization
	Idle CPU
	Unproductive CPU Processing

	Disk I/O
	Database I/O
	Before-image I/O
	After-image I/O
	Direct I/O

	Memory Utilization
	Monitoring Memory Utilization
	Controlling Memory Use

	Operating System Resources
	Processes
	Semaphores
	Spin Locks
	File Descriptors

	Database Fragmentation
	Analyzing Database Fragmentation
	Eliminating Database Fragmentation

	Index Use
	Analyzing Index Use
	Compacting Indexes
	Rebuilding Indexes

	Virtual System Tables

	Replicating Data
	Replication Schemes
	Trigger-based Replication
	Log-based Site Replication

	Replication Models
	Synchronous Model
	Asynchronous Model
	Database Ownership Models

	Implementing Log-based Site Replication
	Log-based Replication Procedure

	Using the Event Log
	Progress Version 9 Event Log File
	Managing the Event Log File Size
	Event Logging On Windows
	Managing Progress Events On Windows
	Understanding the Event Log Components
	The Event Log and the Registry

	Startup and Shutdown Commands
	Startup Command Syntax
	Database Startup and Shutdown Commands
	PROAIW Command
	PROAPW Command
	PROBIW Command
	PROQUIET Command
	PROSERVE Command
	PROSHUT Command
	PROWDOG Command

	Database Startup Parameters
	Issuing Startup Parameters
	Database Server Performance Parameters
	Database Server-type Parameters
	Database Server Internationalization Parameters
	Database Server Statistics Parameters
	Database Server Network Parameters
	Startup Parameter Usage Categories
	Alphabetical Listing Of Database Startup Parameters
	AdminServer Port (-adminport)
	After-image Buffers (-aibufs)
	After-image Stall (-aistall)
	Blocks In Database Buffers (-B)
	Base Index (-baseindex)
	Base Table (-basetable)
	Before-image Buffers (-bibufs)
	Threshold Stall (-bistall)
	Recovery Log Threshold (-bithold)
	SQL-92 Server Java Classpath (-classpath)
	Conversion Map (-convmap)
	Case Table (-cpcase)
	Collation Table (-cpcoll)
	Internal Code Page (-cpinternal)
	Log File Code Page (-cplog)
	Print Code Page (-cpprint)
	R-code In Code Page (-cprcodein)
	Stream Code Page (-cpstream)
	Terminal Code Page (-cpterm)
	Direct I/O (-directio)
	Event Level (-evtlevel)
	Before-image Cluster Age (-G)
	Group Delay (-groupdelay)
	Host Name (-H)
	Hash Table Entries (-hash)
	No Crash Protection (-i)
	Index Range Size (-indexrangesize)
	Lock Table Entries (-L)
	Auto Server (-m1)
	Manual Server (-m2)
	Secondary Login Broker (-m3)
	Maximum Clients Per Server (-Ma)
	Maximum Dynamic Server (-maxport)
	Delayed BI File Write (-Mf)
	Minimum Clients Per Server (-Mi)
	Minimum Dynamic Server (-minport)
	Maximum Servers (-Mn)
	Servers Per Protocol (-Mp)
	Maximum Servers Per Broker (-Mpb)
	VLM Page Table Entry Optimization (-Mpte)
	Shared-memory Overflow Size (-Mxs)
	Network Type (-N)
	Number Of Users (-n)
	Parameter File (-pf)
	Pin Shared Memory (-pinshm)
	Configuration Properties File (-properties)
	Buffered I/O (-r)
	Service Name (-S)
	Semaphore Sets (-semsets)
	Server Group (-servergroup)
	Spin Lock Retries (-spin)
	Table Range Size (-tablerangesize)

	Database Administration Utilities
	DBMAN Utility
	_DBUTIL CMPDB Qualifier
	PROADSV Utility
	PROBKUP Utility
	ProControl Utility
	PROCOPY Utility
	PRODB Utility
	PRODEL Utility
	Progress Explorer Utility
	PROLOG Utility
	PROMON Utility
	PROMON User Control Option
	PROMON Locking and Waiting Statistics Option
	PROMON Block Access Option
	PROMON Record Locking Table Option
	PROMON Activity Option
	PROMON Shared Resources Option
	PROMON Database Status Option
	PROMON Shut Down Database Option
	PROMON Transactions Control Option
	PROMON Resolve Limbo Transactions Option
	PROMON Coordinator Information Option
	PROMON Modify Defaults Option
	PROREST Utility
	PROSTRCT Utility
	PROSTRCT ADD Qualifier
	PROSTRCT BUILDDB Qualifier
	PROSTRCT CREATE Qualifier
	PROSTRCT LIST Qualifier
	PROSTRCT REMOVE Qualifier
	PROSTRCT REPAIR Qualifier
	PROSTRCT STATISTICS Qualifier
	PROSTRCT UNLOCK Qualifier
	PROUTIL Utility
	PROUTIL 2PHASE BEGIN Qualifier
	PROUTIL 2PHASE COMMIT Qualifier
	PROUTIL 2PHASE END Qualifier
	PROUTIL 2PHASE MODIFY Qualifier
	PROUTIL 2PHASE RECOVER Qualifier
	PROUTIL BIGROW Qualifier
	PROUTIL BULKLOAD Qualifier
	PROUTIL BUSY Qualifier
	PROUTIL CHANALYS Qualifier
	PROUTIL CODEPAGE-COMPILER Qualifier
	PROUTIL CONV89 Qualifier
	PROUTIL CONVCHAR Qualifier
	PROUTIL CONVFILE Qualifier
	PROUTIL DBANALYS Qualifier
	PROUTIL DBAUTHKEY Qualifier
	PROUTIL DBIPCS Qualifier
	PROUTIL DUMP Qualifier
	PROUTIL DUMPSPECIFIED
	PROUTIL ENABLELARGEFILES Qualifier
	PROUTIL ENABLEPDR Qualifier
	PROUTIL HOLDER Qualifier
	PROUTIL IDXANALYS Qualifier
	PROUTIL IDXBUILD Qualifier
	PROUTIL IDXCHECK Qualifier
	PROUTIL IDXCOMPACT Qualifier
	PROUTIL IDXFIX Qualifier
	PROUTIL IDXMOVE Qualifier
	PROUTIL IOSTATS Qualifier
	PROUTIL LOAD Qualifier
	PROUTIL MVSCH Qualifier
	PROUTIL RCODEKEY Qualifier
	PROUTIL TABANALYS Qualifier
	PROUTIL TABLEMOVE Qualifier
	PROUTIL TRUNCATE AREA Qualifier
	PROUTIL TRUNCATE BI Qualifier
	PROUTIL UPDATEVST Qualifier
	PROUTIL WBREAK-COMPILER Qualifier
	PROUTIL WORD-RULES Qualifier
	RFUTIL Utility
	RFUTIL AIMAGE AIOFF
	RFUTIL AIMAGE BEGIN Qualifier
	RFUTIL AIMAGE END Qualifier
	RFUTIL AIMAGE EXTENT EMPTY Qualifier
	RFUTIL AIMAGE EXTENT FULL Qualifier
	RFUTIL AIMAGE EXTENT LIST Qualifier
	RFUTIL AIMAGE NEW Qualifier
	RFUTIL AIMAGE SCAN Qualifier
	RFUTIL AIMAGE TRUNCATE Qualifier
	RFUTIL MARK BACKEDUP Qualifier
	RFUTIL ROLL FORWARD Qualifier
	RFUTIL ROLL FORWARD RETRY Qualifier
	SQLDUMP Utility
	SQLLOAD Utility
	SQLSCHEMA Utility

	Virtual System Tables
	Update Access To Virtual System Tables
	Virtual System Table Summaries
	Progress Virtual System Table Schema Descriptions

	Progress Monitor R&D Options
	Accessing PROMON R&D Options
	PROMON R&D Main Menu
	Menu Options
	Status DisplaysÆ Database
	Status DisplaysÆ Backup
	Status DisplaysÆ Servers
	Status DisplaysÆ Processes/ClientsÆ All Processes
	Status DisplaysÆ Processes/ClientsÆ Blocked Clients
	Status DisplaysÆ Processes/ClientsÆ Active Transactions
	Status DisplaysÆ Processes/ClientsÆ Local Interactive Clients
	Status DisplaysÆ Processes/ClientsÆ Local Batch Clients
	Status DisplaysÆ Processes/ClientsÆ Remote Clients
	Status DisplaysÆ Processes/ClientsÆ Background Processes
	Status DisplaysÆ Files
	Status DisplaysÆ Lock Table
	Status DisplaysÆ Buffer Cache
	Status DisplaysÆ Logging Summary
	Status DisplaysÆ BI Log
	Status DisplaysÆ AI Log
	Status DisplaysÆ Two-phase Commit
	Status DisplaysÆ Startup Parameters
	Status DisplaysÆ Shared Resources
	Status DisplaysÆ Shared Memory Segments
	Activity DisplaysÆ Summary
	Activity DisplaysÆ Servers
	Activity DisplaysÆ Buffer Cache
	Activity DisplaysÆ Page Writers
	Activity DisplaysÆ BI Log
	Activity DisplaysÆ AI Log
	Activity DisplaysÆ Lock Table
	Activity DisplaysÆ I/O Operations By Type
	Activity DisplaysÆ I/O Operations By File
	Activity DisplaysÆ Space Allocation
	Activity DisplaysÆ Index
	Activity DisplaysÆ Record
	Activity DisplaysÆ Other
	Other DisplaysÆ Performance Indicators
	Other DisplaysÆ I/O Operations By Process
	Other DisplaysÆ Lock Requests By User
	Other DisplaysÆ Checkpoints
	Administrative FunctionsÆ Resolve Limbo Transactions
	Administrative FunctionsÆ Adjust Latch Options
	Administrative FunctionsÆ Adjust Page Writer Options
	Administrative FunctionsÆ Adjust Monitor Options

	Setting Up Progress To Utilize Compaq’s NT Clusters
	Defining NT Clusters
	Cluster Administrator
	Failover Manager

	Configuring the NT Cluster System
	Progress Database Server Considerations and Configuration
	ProControl Command-line Interface

	4GL Client Considerations

	Index

