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and their relevance in understanding flutter, divergence, and control reversal phenomena of transonic

aircraft is illustrated through practical examples.
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1. Introduction

Transonic flows occur over aircraft flying near Mach 1, in the
tip region of propeller blades, and in nozzles, turbines and
compressors of jet engines. Transonic flows can be loosely defined
as flows in which the local flow speed is close to the speed of
sound. More precisely, a flow is considered transonic if both
subsonic and supersonic regions exist near the body at the same
time. For example, if an aircraft is flying at a subsonic speed
(MNo1), local regions of supersonic flow will form on the wing
surface if the flight Mach number MN is above the so-called
critical Mach number Mcr for the wing. The critical Mach number
depends on the shape, thickness, and attitude of the wing–body
combination, but typically falls in the range 0.6–0.8 for most
aircraft under normal steady flight conditions such as cruise.

The theoretical study of transonic flow problems associated
with aircraft started with von Kármán’s 1947 paper on transonic
similarity principles [1]. A series of theoretical and experimental
studies followed, including the Ph.D. Thesis of Cole [2] and papers
by Guderley and Yoshihara [3], Cole [4], Spreiter [5,6], Hayes [7],
and Cole and Messiter [8]. Early experimental work on shock-
boundary-layer interactions by Liepmann et al. [9] and by Ackeret
et al. [10] are representative of the increasing interest in transonic
flows relevant to emerging high-speed aircraft in the early years
after World War II. By the time the books on the subject by
Guderley [11] and Ferrari and Tricomi [12] appeared, a relatively
good mathematical and physical understanding of steady transo-
nic flow had been developed, at least for the two-dimensional
inviscid case. At the same time as Ref. [12] came out (1968), Cole’s
text on perturbation methods [13] was published, wherein he
presented a more modern mathematical approach to transonic
flow problems based on the method of matched asymptotic
expansions, pioneered by himself and Lagerstrom [14] over the
previous 20 years. Later monographs on transonic flow that are
relevant to the present review include the books by Cole and Cook
[15], Moulden [16], Ramm [17], and Kuz’min [18]. See also the
proceedings from the series of Symposium Transsonicum held
between 1962 and 2002 [19–22] and the collection of papers in
Vol. 12 of Progress in Astronautics and Aeronautics [23].

The year 1968 also marks the beginning of new developments
in transonic flow research, brought about by a renewed interest in
the transonic effects experienced by transport aircraft cruising at
high subsonic Mach numbers. The first generation of US
commercial jet aircraft was by then 10 years old, and the new
‘‘wide-body’’ or jumbo aircraft were in flight tests and about to
enter service. The scientific computer was rapidly becoming a
powerful tool in aerodynamic and structural analysis and design,
including flutter calculations. Although computational procedures
based on linear potential flow were well advanced at this point,
these methods did not apply to the mixed subsonic–supersonic
flow-fields encountered in transonic flows over aircraft wings.

Not much progress was made on calculating transonic flows
until methods were developed to handle the mixed subsonic–
supersonic flow-field in a mathematically and physically correct
manner. A major step in this direction was the introduction of
type-dependent difference formulas by Murman and Cole in a
seminal paper published in 1971 [24]. Separate difference
formulas were used in the elliptic and hyperbolic regions of the
transonic small disturbance equation, to account for the local
domain of dependence of the potential at a given point in the
subsonic or supersonic regions. The discretized equations were
solved numerically using an iterative line relaxation algorithm.

The publication of the Murman–Cole paper had an immediate
impact on the calculation of transonic flows over aircraft wings
and provided an important impetus to the emerging field of
computational fluid dynamics (CFD). Over the next 20 years, rapid
advances were made in the calculation of steady and unsteady
transonic flows, from simple two-dimensional airfoils to the flow
around a complete aircraft. At the same time, the application of
these methods in computational aeroelasticity saw an explosive
growth that continues to this day. For a brief historical review of
the development of computational techniques for transonic flows,
see Caughey and Jameson [25]. For a detailed discussion of the
numerical challenges involved in the application of CFD to aircraft
design, see Jameson [26].

The objective of this paper is to present a review of the theory
of transonic aerodynamics and its implications in developing
mathematical and CFD-based methods for unsteady transonic
flows. The aim is not to give an in-depth presentation of the
complete theory or all relevant computational methods or codes,
but to use a combination of theoretical considerations, computa-
tional studies, and experimental data, to reach conclusions or
formulate guiding principles that might be useful to the flutter
engineer as well as the aircraft designer. The emphasis is on the
mathematical theory and the physics it predicts at various levels
of approximation, and on the differences between transonic and
subsonic or supersonic flows and their implications.

Because transonic flutter prediction is such an important
problem in aircraft design, much of the application section of this
review will focus on the role that unsteady transonic flow theory
plays in the field of modern aeroelasticity. Large commercial and
military transport aircraft cruise at transonic Mach numbers,
above the critical Mach number at which locally sonic flow first
occurs, but below Mach 1. Supersonic transport and fighter
aircraft must also be capable of sustained operation near Mach 1,
where the flutter margin is typically at a minimum and non-
classical flutter behaviors are often observed. Transonic flutter of
aircraft wings and control surfaces are dominated by the inherent
nonlinearities in the unsteady transonic flow, resulting from
moving shocks on the wing surface and from shock-boundary
layer interactions.

Previous reviews relevant to this paper include the reviews of
CFD-based unsteady aerodynamics and aeroelasticity by Edwards
and Malone [27], Edwards [28], and Bendiksen [29]. See also the
classic reviews of transonic aerodynamic theory by Cole [30] and
of unsteady transonic aerodynamics (experimental and theore-
tical) by Tijdeman and Seebass [31]. The reviews of nonlinear
aeroelasticity by Dowell et al. [32], and nonlinear aeroelastic
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prediction by de C. Henshaw et al. [33], are also of interest,
although their primary focus is not on unsteady transonic
aerodynamics.

Although the present review will deal exclusively with non-
linear transonic flows, the 1961 monograph by Landahl on (linear)
unsteady transonic flows [34] is still of interest, because of its
many insightful discussions on the propagation of acoustic waves
in a nonuniform transonic flow. See also his review article in
Symposium Transsonicum II (1976) [35]. Reviews of computational
approaches to linearization of unsteady aerodynamics and the
corresponding aeroelastic problems can be found in Refs. [33,36].
Fig. 2. Effect of wing thickness on the flutter boundary and transonic dip of the

swept NACA 65A-series wings of different airfoil thickness tested by Doggett et al.

[37] (fixed mass and stiffness properties).
2. Nonlinear aspects of transonic flow

2.1. Mixed subsonic–supersonic flow

At transonic flight Mach numbers above the critical Mach
number for an aircraft wing, in the Mach number range
McroMNE1, local regions of embedded supersonic flow exist
on and near the wing surface, as shown in Fig. 1. At the aft end of
these regions, the flow is decelerated to subsonic speeds through
a nearly normal shock wave. As the wing deforms in response to
unsteady loads, the supersonic regions grow and shrink in
harmony with the wing motion; thus the shocks move along
the wing surface, changing in strength and possibly vanishing
over part of the oscillation cycle. These moving shocks play an
important role in some of the highly nonlinear flutter behaviors
observed at Mach numbers near one. In order to model an
aeroelastic system with mixed subsonic–supersonic flow-field
with moving shocks, nonlinear field equations are required.

2.2. Why linear theory fails

Transonic flow over aircraft wings is inherently nonlinear,
even in the limit of small disturbances. The nonlinearities arise
because (1) the geometry of the wing (thickness, camber, and
airfoil type) and angle of attack enter the first-order perturbation
solution in a nonlinear manner; and (2) the mixed subsonic flow-
field with moving shocks cannot be modeled with linear
equations, even in the absence of boundary layer separation.

With respect to the effect of airfoil geometry and angle of
attack, experimental evidence also points to the need for a
nonlinear equation, even for small disturbances. It is not possible
to explain the observed sensitivity of the transonic flutter
boundaries to wing thickness and angle of attack, as shown
Fig. 1. Flow patterns about airfoils and wings in sub-transonic (subsonic) and

transonic flows without boundary layer separation.
in Figs. 2 and 3, based on linear theories. Linearized aerodynamics
implies that the effects of thickness, camber, and angle-of-attack
should be of second order, because the superposition principle
can be used to ‘‘remove’’ these effects from the first-order
unsteady problem; i.e., it suffices to consider an oscillating flat
plate, as in the Theodorsen theory. Figs. 2 and 3 show that this
assumption is not correct in the transonic region, and that the
effects of thickness and angle of attack are in fact of first order.

Furthermore, if thickness is a second-order effect, one would
expect that the thinner wings in Fig. 2 should be less affected.
However, the wind tunnel data show exactly the opposite to be
true. Also, the airfoil shape becomes of importance, and there is
often a significant difference between the flutter boundary of a
wing with a supercritical airfoil, as compared to conventional
wings of similar thickness. But the most intriguing aspect of
transonic flutter is the appearance of a transonic dip in the flutter
boundary, as shown in Figs. 2 and 3, revealing a much higher and
Fig. 3. Effect of angle of attack on the experimental flutter boundary and transonic

dip of the NRL7301 2D aeroelastic model tested by Schewe et al. [38].
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dynamics and aeroelasticity.
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very different sensitivity to Mach number than suggested by the
linearized aerodynamic theories. For some wings, a change of only
0.02 in the Mach number in the dip region can result in as much
as a 50% change in the critical dynamic pressure at flutter.

The second and perhaps more fundamental reason why
nonlinear governing equations are required to model transonic
flows is of a mathematical nature and is based on the theory of
partial differential equations. First, even in the steady limit, the
governing equation(s) must be able to change type, from locally
elliptic in the subsonic regions, to locally hyperbolic in the
supersonic regions. The spatial extent of the local supersonic or
subsonic region is not known in advance but must be determined
as part of the solution, again requiring a nonlinear equation to
describe the physics. Second, a nonlinear equation is also
necessary to model moving shock waves and to obtain the correct
time-varying Rankine–Hugoniot shock jump conditions.

2.3. Nonuniformities

Two types of nonuniformities appear in steady and unsteady
transonic flow problems: nonuniformities with respect to a
parameter, such as the Mach number, and nonuniformities with
respect to the coordinates (space and time). By nonuniformities
we mean that the solution may not be uniformly valid in space
and/or time, or may break down or blow up for certain values of a
parameter. The theoretical, computational, and experimental
difficulties caused by these nonuniformities are best illustrated
through examples.

Both parametric and coordinate-type nonuniformities can
occur if an invalid linearization of the governing equations and
boundary conditions is used. In the strongly nonlinear region near
the transonic dip, no uniformly valid linearization of the unsteady
aerodynamic problem is possible. It can be shown that the
corresponding perturbation problem is singular in the terminol-
ogy of the mathematical theory of perturbation analysis and that
a regular perturbation expansion will fail. The singularity is of
the cumulative or secular type [7,39,40], in the sense that the
nonlinear terms neglected in the linearization never become
large, but their cumulative effects over large distances or large
time intervals grow and eventually become of order one, thus
destroying the uniform validity of the linearized solution. That
this might happen for finite amplitude wing motion is not
surprising; what is surprising is that the nonuniformities persist
down to the limit of infinitesimal motion. The only difference is
that the time scale over which this happens increases as the
amplitudes decrease. But if one waits long enough, the linear
solution gradually drifts away from the nonlinear solution, until
the error becomes of order one. The consequences of the temporal
and spatial nonuniformities are more severe in the aeroelastic
stability problem, for the obvious reason that we are interested in
the global stability of the fluid–structure system, and local or
short-time stability is not sufficient and is hence only of
secondary interest.

2.4. Limitations of linear theory near Mach 1

Classical linear theory of potential flow has a singularity at
Mach one, predicting infinite aerodynamic loads. But this
singularity is artificial and somewhat misplaced, because the
linear theory breaks down as soon as the critical Mach number is
exceeded and well before Mach 1 is reached. The breakdown is of
a mathematical rather than a physical nature; that is, the
magnitudes of certain terms in the perturbation expansion have
been estimated incorrectly. The reason for this failure can be
traced back to the linear governing equation, which only permits
pressure disturbances to travel away from the wing as linear
acoustic waves at a constant speed, the speed of sound aN in the
free stream. If the wing is traveling with a relative speed UN with
respect to the air, upstream propagating wave fronts will
accumulate and stay near the wing if the Mach number
MN¼UN/aN is close to one, resulting in a large disturbance
that violates the small-disturbance assumption. The result is a
blow-up of the solution at MN¼1, which introduces the well-
known 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1

p
Prandtl–Glauert singularity in the aerody-

namic coefficients.
To remove these infinities, we must remove the artificial

restriction of a constant wave speed, and allow the local speed of
sound to vary as a nonlinear function of the local disturbance,
thus permitting the waves to radiate away from the wing.
Elementary wave theory tells us that a nonlinear governing
equation is required, even in the limit of small disturbances. Thus,
linear potential theory, or any linear theory for that matter cannot
describe the physics involved and cannot lead to a uniformly valid
solution. This does not necessarily mean that linear theories are
useless in practical engineering applications involving transonic
flows, only that such theories must by their very nature be ‘‘local’’.
That is, their domain of validity in space and time is restricted,
often so severely as to render them of limited use in aeroelastic
stability calculations.
3. Mathematical models for unsteady transonic flow

3.1. Modeling hierarchy

The modeling of unsteady transonic flow has been shown in an
approximate hierarchal order in Fig. 4, based on the physical
fidelity of the approximations involved. Not all approximations
have been included, only the more useful ones in aeroelastic
applications. We will discuss the various models in order of
increased complexity, starting with classical linear aerodynamics.

3.2. Linear potential equation

Consider a thin planar wing, as shown in Fig. 5. By scaling the
wing profile, one can consider a family of wings of the same basic
shape

Fu,lðx,yÞ ¼ dfu,lðx,yÞ ð1Þ

where d is a nondimensional thickness or scaling parameter and
fu,l(x,y) represents the basic rigid or ‘‘jig’’ wing shape, i.e., the



Fig. 5. Wing coordinate system and surface definition.

Fig. 6. Kutta–Joukowski condition at the trailing edge.
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ordinate z of a point on the wing surface, as a function of x and y.
Here, the subscripts u and l are used to denote the upper and
lower surfaces of the wing, and the shape function for the rigid
wing is given (approximately) by

fu,lðx,yÞffizcðx,yÞ7ztðx,yÞ ð2Þ

where zc(x,y) and zt(x,y) are the camber and thickness distribu-
tions, respectively. Although the trim angle of attack a0(y) of the
wing can be included in the definition of fu,l(x,y), it is convenient
in the unsteady case to consider a0 as part of the total angle of
attack.

At Mach numbers outside the transonic region, the unsteady
aerodynamics problem can be linearized for small-amplitude
disturbances. In this case, a regular perturbation expansion for the
velocity potential exists. By considering a limit process expansion
of the form

F¼U1fxþe1ðdÞj1ðx,y,z,tÞþe2ðdÞj2ðx,y,z,tÞþ � � �g ð3Þ

associated with the limit d-0, while keeping x, y, z, t, and MN

fixed, the classical first- and second-order aerodynamic theories
are obtained. The orders of the terms can be determined from the
boundary condition at the wing surface, and one can show that
e1¼d and e1¼d2, and that j1 satisfies the classical equation of
linearized unsteady aerodynamics:

ð1�M2
1Þ
@2j1

@x2
þ
@2j1

@y2
þ
@2j1

@z2
�

M1
a1

@2j1

@x@t
�

1

a2
1

@2j1

@t2
¼ 0 ð4Þ

subject to the linearized boundary condition

@j
@z
¼
@fa

@t
þU1

@fa

@x
�waðx,tÞ on z¼ 0,0rxrc ð5Þ

where

fa � za ¼ zcðx,yÞ�xaðy,tÞ ð6Þ

represents the boundary of the so-called antisymmetric problem;
that is, the skeleton of the wing with the thickness removed and the
shape fa determined by the camber and the instantaneous local
angle of attack a. For subsonic flow, one can show that the lifting
problem does not have a unique solution, because potential theory
(Laplace’s equation) admits an arbitrary circulation about the airfoil
or wing. Uniqueness is restored by imposing the Kutta–Joukowski

condition of zero pressure jump from the upper to the lower surface
at the wing trailing edge (TE):

DpTE ¼ 0 ð7Þ

This condition can be stated in various ways and physically means
that the flow must leave the sharp trailing edge smoothly, with no
singularities in the perturbation pressure or fluid velocity, as
shown in Fig. 6.
The second-order correction j2 satisfies a similar linear
equation, but with nonhomogeneous terms that depend on the
first-order solution j1; see, for example, Kevorkian and Cole [40].
In the steady case, the first-order solution yields the familiar
Prandtl–Glauert similarity rules of linearized compressible flow.
The mathematical basis for classical linear unsteady aerody-
namics, including Theodorsen’s theory, the Possio equation, the
kernel function (integral equation) method, doublet and vortex
lattice methods, etc., is based on the validity of the regular
perturbation expansion, Eq. (3).

Near Mach one, the linearized solution of the unsteady
aerodynamics problem breaks down, because the linear governing
equation is incapable of modeling wave propagation correctly
near sonic speeds. A nonphysical singularity at Mach 1 occurs,
resulting in the well-known blowup of the aerodynamic lift and
moment coefficients and giving rise to the myth of a ‘‘sonic wall’’.
The superposition principle also breaks down, and no uniformly
valid linearization of the aeroelastic problem is possible.

The classical linearization due to Landahl [34] is based on
the observation that for sufficiently high reduced frequencies,
such that

kb91�ML9 ð8Þ

everywhere in the flow, where ML is the local Mach number, the
unsteady linear terms in the governing equation will dominate.
The nonlinear transonic terms can then be neglected and the
Mach number set equal to 1 to this level of approximation,
resulting in the linear equation

@2j1

@y2
þ
@2j1

@z2
�

1

a1

@2j1

@x@t
�

1

a2
1

@2j1

@t2
¼ 0 ð9Þ

From what has already been said, it should be clear that the
linearization cannot be uniformly valid, even for high reduced
frequencies satisfying Eq. (8). In most practical transonic flutter
problems involving aircraft wings and control surfaces, this
frequency condition is not satisfied, because local Mach numbers
as high as 1.5 (and higher) occur, whereas the reduced frequency
at which transonic flutter is encountered is typically of the order
of k�O(0.1).

3.3. Transonic small disturbance equation

As pointed out by Cole [30], for the description of many
(but not all) features of steady transonic flow relevant to air-
plane aerodynamics, the assumption of an inviscid perfect gas
subjected to small disturbances is adequate. From the view-
point of numerical calculations, most of the essential difficulties
are contained in these equations and the qualitative features are
reproduced faithfully, at least for thin wings operating near cruise
design conditions. Unsteady transonic flows were not considered
by Cole in this context, neither were aeroelastic stability problems
such as flutter and divergence. Experience over the past 30 years
or so clearly shows that inviscid small disturbance theories have
definite limitations in such applications. However, as a starting
point for introducing the key concepts and features of transonic
flows to the engineer who wants to take the next step from linear



1 The exact form of this equation depends on the choice of the transonic

similarity parameter K or w.
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aerodynamics, the transonic small disturbance theory is
indispensable.

For example, the theory provides the simplest foundation for
isolating the effects of thickness, angle of attack, and wing shape,
which in the linear theory are second-order effects. It is again
convenient to make use of asymptotic expansions based on
certain limit processes, and to consider a family of ‘‘similar’’ wings
of the same airfoil shape, Fig. 5, by scaling the wing profile
through the thickness scaling parameter d in Eq. (1). For small
angles of attack and small elastic deformations, the equation for
the wing surface can be approximated by

Bðx,y,z,tÞ ¼ z�d fu,lðx,yÞþ
½wðy,tÞ�xaðy,tÞ�

d

� �
¼ 0 ð10Þ

where it has been assumed that the y-axis is the elastic axis of the
wing. Extensions to the general case where camber bending
occurs is straightforward; see [41].

If a limit process expansion based on the limits d-0 and
MN-1 is carried out in the original physical coordinates of the
wing, we will simply recover the classical linear potential
equation. Cole has shown how suitable expansions for a class of
steady transonic flow problems can be obtained using the method
of strained coordinates [13]. The unsteady case has been
considered by Bendiksen [41], allowing for coordinate straining
on the time scale as well:

~y ¼ lðdÞy; ~z ¼ lðdÞz; ~t ¼ tðdÞt ð11Þ

where ~y, ~z, and ~t are fixed in the limit d-0. The coordinate
straining accounts for the fact that the propagation of distur-
bances extends farther and farther in the transverse y and z

directions than in the upstream direction, as MN-1. To obtain an
expansion valid in some neighborhood of Mach 1, we let MN-1
at a certain rate,

M2
1 ¼ 1�KnðdÞ, nðdÞ-0 as M1-1 ð12Þ

The constant K, which defines the rate at which MN-1 as d-0, is
the classical form of the so-called transonic similarity parameter and
is held fixed in the limit d-0.

The expansion for the velocity potential is now assumed of the
form

F¼U1ðxþeðdÞjðx, ~y, ~z, ~t ;KÞþ � � �Þ ð13Þ

The first-order perturbation potential j in Eq. (13) involves both
the first and second order perturbations in the classical regular
expansion, Eq. (3), but not any third-order terms [40]. Since the
entropy changes at shocks are of third order in the perturbation
pressure, the same leading-order term would be obtained for the
Euler equations. To determine the relationships between the
scaling parameters, we consider the boundary condition of
tangent flow at the wing surface, which can be written in the form

DB

Dt
�
@B

@t
þuUrB¼ 0 ð14Þ

where Bðx,y,z,tÞ ¼ 0 defines the instantaneous locus of the fluid–
structure boundary, Fig. 5 and Eq. (10). Using Eqs. (10) and (13),
the leading-order terms of Eq. (14) become [41]
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To balance the terms in the quasistatic or steady limit, we need

el¼ d, a=d�Oð1Þ ð16Þ

The ordering between e, n, and l must also be chosen such that
the resulting equation for the perturbation potential j can
properly describe a transonic flow-field; that is, a flow with
both subsonic and supersonic regions, including shock waves. As
we have already pointed out, this requires a nonlinear equation.
The appropriate equation can be obtained by substituting Eq. (13)
into the full potential equation, Eq. (29), and expanding term by
term. The most general equation is obtained by balancing all
terms of dominant orders, which in the steady case is the classical
nonlinear von Kármán–Guderley equation

K�ðgþ1Þ
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� �
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þ
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þ
@2j
@~z2
¼ 0 ð17Þ

and corresponds to a so-called distinguished limit, where a definite
order between the scaling parameters is obtained:

e¼ n¼ d2=3; l¼ d1=3; K ¼
1�M2

1

d2=3
ð18Þ

In the unsteady case, the most general form is obtained by
retaining certain time derivative terms that are, strictly speaking,
of higher order (see the discussion in Ref. [41]):
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which is based on the following ordering of e, n, l, t:

e¼ n¼ t¼ d2=3

½ðgþ1ÞM2
1�

1=3

l¼ ½ðgþ1ÞM2
1d�

1=3 ð20Þ

where

w¼ 1�M2
1

½ðgþ1ÞM2
1d�

2=3
ð21Þ

is a new transonic similarity parameters, replacing K. This is also
the same parameter as obtained by Spreiter [5,6], by multiplying
together different similarity parameters. Spreiter was guided by
the observation that the new transonic similarity parameter w
gives a better fit to the experimental data when the Mach number
differs from one. The classical von Kármán parameter K was
obtained by arguing that in transonic flows, MNffi1, and the
Mach number may therefore be set equal to unity, to the order of
approximation considered in the von Kármán–Guderley equation.
In the asymptotic expansion procedure outlined by Bendiksen
[41], on the other hand, this new similarity parameter w arises
naturally in the distinguished limit.

If one neglects the terms scaled by t, the classical form of the
Transonic Small Disturbance (TSD) equation is obtained1:
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U1

@2j
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¼ 0 ð22Þ

The equivalent 2D version was the basis for the early transonic
flutter codes, such as LTRAN2, for example. This equation can be
shown to be valid only for relatively low reduced frequencies, and
is associated with the quasisteady limit where k�e-0+. To
obtain an equation that has a chance of modeling nonlinear
transonic flow over an extended time period, without nonunifor-
mities occurring on the time scale, the second derivative term
with respect to time must be retained. Although it is formally a
second-order term, it can have a first-order cumulative effect on
the unsteady flow solution over a finite time interval, because
without this term the wave propagation speed is incorrect.
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Similarly, the time derivative in the coefficient of q2j/qx2

should be retained. This is a higher-order term as well, but its
cumulative effect on the solution may become of first order over
long time intervals. First, we note that when the local Mach
number is equal to unity, the coefficient of the q2j/qx2 term in the
steady equation vanishes. The unsteady term in question makes
the coefficient nonzero and of order e, and we obtain a singular
perturbation problem. The presence of this term redefines the
region where the equivalent quasistatic equation with ‘‘frozen
coefficients’’ changes type, from locally elliptic (subsonic flow) to
locally hyperbolic (supersonic flow); hence the term will affect
the instantaneous location of the moving shocks. Second, this
term as well as the qj/qx term becomes periodic if the wing
executes harmonic motion at or near the flutter boundary. Even
away from the flutter boundary, both terms represent parametric
excitation, which could bring about instabilities in the flutter
solution through nonlinear parametric resonances. Furthermore,
because w is small in regions where the local Mach number is
close to one, the qj/qx and @j=@~t terms – albeit small – will affect
the instantaneous locus of M¼1, where the flow either changes
from subsonic to supersonic (sonic line), or from supersonic back
to subsonic (shocks). Consequently, the terms could have a
noticeable effect on the unsteady shock motion, which plays an
important role in the flutter problem [42–44]. This author
believes that it is the presence of these nonlinear parametric
excitation terms in the leading order q2j/qx2 coefficient of the
governing equation that triggers the phenomenon of ‘‘delayed
flutter’’, as will be discussed later. Mathematically, the original
small-disturbance solution suffers from a nonuniformity on the
time scale, which gradually causes the linearized solution to break
down and to drift away from the actual nonlinear solution.

Fig. 7 shows the fundamental difference between the super-
sonic regions in transonic flows and linearized supersonic flow. In
linear supersonic flow, Fig. 7(a), the characteristics (Mach waves)
are straight lines with a constant slope, and only one set of
characteristics is allowed on the upper or lower airfoil surface, in
order to satisfy the radiation condition; i.e., disturbances must
Fig. 7. Comparison of nature of supersonic regions in transonic flow with

unbounded linearized supersonic flow (2D case).
propagate away from the wing in the far field. In the transonic
case, Fig. 7(b), both families of characteristics are present in the
supersonic pocket(s), one set representing an expansion wave
and the other a compression wave. Also note that the slope of the
characteristic continually changes as one moves away from the
airfoil surface. In the simplest case of the steady TSD equation
(e.g., the von Kármán–Guderley equation (17), the local char-
acteristic surfaces (Mach cones) are given by

ðdxÞ2

ððgþ1Þð@j=@xÞÞ�K
¼ ðd ~yÞ2þðd~zÞ2 ð23Þ

in the stretched similarity coordinates. For the two-dimensional
case shown in Fig. 7(b) and (c), the local slopes of the
characteristics become

d ~y
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¼ 7

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p ð24Þ

corresponding to the two families of characteristics shown in the
figures. The slopes are real as long as

ðgþ1Þ
@j
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�K40 ð25Þ

which corresponds to a locally supersonic flow. The sonic line
corresponds to locally sonic flow,

ðgþ1Þ
@j
@x
¼ K ) M¼ 1 ð26Þ

From Eq. (24) it follows that the characteristics become vertical at
the sonic line. In the unsteady case, it follows from Eq. (19) that
the sonic line corresponds to
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and now depends on time (as do the characteristics). Thus, the
local Mach angle at a given point in the supersonic pocket is
constantly changing. Of course, if the supersonic pocket vanishes
during a part of the oscillation cycle, so do the characteristics.

Transonic expansion procedures for nonplanar flows generally
require the use of matched asymptotic expansions, involving an
inner and an outer solution valid in different domains (e.g., close
to the body and the far field, respectively), and then matched to
each other in an intermediate ‘‘overlap’’ domain. Transonic
slender body theory falls into this category; see Cole and Messiter
[8]. Other practical problems of this type include the sonic limit
MN-1 from below, and perturbations of shock-free flows; see
Cole [45].

A sonic flow (MN¼1), Fig. 7(c), is somewhat special. In this
case, the supersonic region extends to infinity, as do the sonic line
and the trailing-edge shock. A limit Mach wave (characteristic)
emerges, which is asymptotic to the sonic line at infinity and
divides the flowfield into two regions: an upstream region that
can influence the upstream flow, and a downstream region that
cannot. That is, the flow field behind the limit Mach wave cannot
influence the flow in front of the limit Mach wave, and is in this
respect similar to a supersonic flow-field. As a consequence, the
far field must change, from a dominant vortex (circulatory) term
fixed by the lift on the wing, modified by nonlinear terms, to a
more source-like far field without circulatory terms [30].

In view of these observations, it is not surprising that the
perturbation of a sonic flow is nontrivial from a mathematical
standpoint and leads to nonuniformities in the solutions. As long
as MNo1, the far field is subsonic and the dominant term is a
vortex term given by the lift. At Mach 1, this far field disappears
and is replaced by a similarity form corresponding to K¼0
(or w¼0) [45]. If one tries to model the flow as a small
perturbation about the perfectly sonic flow, a nonuniformity at



O.O. Bendiksen / Progress in Aerospace Sciences 47 (2011) 135–167142
infinity will appear. Near to the wing or body, on the other hand,
the solution is valid and from it one can deduce the important law

of stabilization or Mach number freeze,

dM

dM1

					
M1 ¼ 1

¼ 0 ð28Þ

which has interesting implications in aeroelastic problems.
3.4. Full potential equation

Within the usual framework of the dynamics of a perfect
inviscid gas, a velocity potential exists to second order in a small
parameter representative of the flow deflection. The exact
equation for this potential is simply the continuity equation,
which after some manipulations to eliminate the density r in
favor of the speed of sound a (and making use of the unsteady
Bernoulli equation) can be put in the form
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where

u¼rF, u2 ¼ uUu¼rFUrF ð30Þ

The local speed of sound can be obtained from the unsteady
Bernoulli equation:

a2 ¼ a2
1þ

g�1

2
U2
1�u2�2

@F
@t

� �
ð31Þ

The local pressure is obtained from the isentropic relation in the
form
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For computational work, the conservation-law (divergence)
form of the equation is usually preferable,
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and the isentropic relations (32) can then be used to express the
density r in terms of the velocity potential and the undisturbed
flow properties.

If one needs to go beyond linear potential methods because
shock strengths and/or wing amplitudes exceed the small-
disturbance limitations, the full potential equation does not buy
much, at least not in the important transonic region. The reason is
that the equation is exact only up through second order in the
perturbation parameter. Entropy production at the shocks enters
at the 3rd order; hence extension to higher than 2nd order is not
possible in a potential flow model. Furthermore, because only
‘‘isentropic shocks’’ can be accommodated, the shocks are too
strong and too far aft on the wing chord. Both errors can have a
significant effect on flutter stability predictions.

Outside the transonic region, the nonlinear full potential
equation may provide some insights into the effects of airfoil
thickness, camber, etc., on the flutter boundaries, at a computa-
tional cost somewhat less than the Euler equations. It is also
useful as a starting point for deriving aerodynamic and aeroelastic
similarity rules.
3.5. Euler equations

In one neglects the viscous stresses, the stress tensor becomes
diagonal (sij¼�pdij) and the momentum equations reduce to the
Euler equations

Du

Dt
¼

1

rrpþf ð34Þ

where u is the fluid velocity with components ui, r is the density,
p is the pressure, and f is the body force per unit mass. The
conservation laws for mass and energy yield two additional
equations. The equation of state can be used to eliminate the
pressure from the governing equations, which is often convenient
in numerical computations.

For inviscid flows, the boundary condition on the fluid–
structure boundary is the tangent flow condition

@B

@t
þuUrB¼ 0 ð35Þ

where Bðx,y,z,tÞ ¼ 0 is the equation for the moving fluid–structure
boundary, Fig. 5. In aeroelastic applications, where the exact
position and velocity of the structural boundary is not known á
priori (explicitly) but must be calculated as part of the time-
dependent aeroelastic solution, an accurate and consistent
enforcement of the tangent flow condition is a formidable
problem. In the far field, radiation conditions are imposed to
allow only outward propagating waves. At the (sharp) trailing
edge of wing, the Kutta–Joukowski condition of zero pressure
jump must be imposed, if the edge is subsonic.

The Euler equations represent a good flow model for many
transonic flutter calculations, provided viscous effects are not
dominant and boundary layer separation does not occur. In
practice, this means that the equations can be expected to give
reasonable results for smooth flows representative of transonic
wings operating at or near design conditions. Because entropy and
vorticity production at shocks are captured in a time-accurate
manner, the shock locations and nonlinear shock dynamics are
modeled much better than in potential flow models, which can
only admit nonphysical isentropic shocks.

It is appropriate to mention that both the Euler equations and
the full potential equation can have nonunique steady solutions at
transonic Mach numbers. Early evidence of nonunique solutions in
transonic flow calculations was reported by Steinhoff and Jameson
[46]. They found that certain airfoils would admit multiple steady
solutions to the discretized two-dimensional full potential equa-
tion, for a narrow range of transonic Mach numbers and angles of
attack. Later, Jameson found similar nonunique steady solutions to
the two-dimensional Euler equations, for certain airfoils operating
at transonic Mach numbers [47]. In these cases, the individual
solutions would differ in the location(s) and/or the number of
shocks on the airfoil surface, and the aerodynamic problem
exhibited hysteresis as the solution could be made to jump from
one branch to another by changing the angle of attack. An unsteady
but not aeroelastic case was studied by Caughey [48]; see also the
paper by Hafez [49].

Bendiksen [50] has shown that if the airfoil is flexible and is

allowed to move as part of an aeroelastic system, the possible
paths that can lead to bifurcations to nonunique solutions are
much broader and less special. This is because most aeroelastic
problems are non-selfadjoint, containing circulatory forces whose
work done on the wing depends on the path taken, not just on the
end-points. As a result, sudden bifurcations to nonunique or
anomalous solutions can occur along the dynamical path of the
system, without warning. When this happens, a unique flutter or
divergence boundary may not exist, at least not in the classical
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sense. Such bifurcations had been observed in earlier Euler-based
flutter calculations by Kousen and Bendiksen [51,52].

3.6. Navier–Stokes equations

At the top of the hierarchy of unsteady flow models suitable for
engineering applications, one finds the Navier–Stokes equations.
From an engineering standpoint at the continuum level, the
equations provide a physics-based model of steady and unsteady
fluid flows, subject to certain assumptions. The assumptions, in
additional to the continuum hypothesis, have to do with the
physical nature of the stresses within a moving fluid, and
the dependence of the stress tensor on the velocity gradients.
The validity of these assumptions in any given flow problem must
ultimately be settled by experiment.

From a historical perspective, the equations credited to Navier and
Stokes are limited to the momentum equations for a viscous fluid,2
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r
rU s½ �þf ð36Þ

where [s] is the Cartesian stress tensor. The stresses are related to the
velocity gradients through a constitutive law known as Stokes’s
hypothesis:

sij ¼�pdijþ2m eij�
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where m is the viscosity and

eij ¼
1

2
ðui,jþuj,iÞ;D¼ ekk ð38Þ

are the strain rates and the volumetric expansion rate, respectively. In
a modern CFD conservation-law form, the conservation of mass and
energy are typically included and the Navier–Stokes equations
written as
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Here, qj are the components of the heat flux vector, k is the
coefficient of heat conductivity, T is the absolute temperature, cp

is the specific heat at constant pressure, and Pr is the Prandtl
number. The variation of the coefficient of viscosity m is usually
calculated using Sutherland’s law. The equation of state for a
perfect gas can be used to express the pressure in terms of the
density and the intrinsic internal energy e (total minus kinetic),
2 According to Prandtl and Titjens [53], the equations were first obtained by

Navier (1827) and Poisson (1831), based on certain assumptions regarding

intermolecular forces. Saint Venant (1843) and Stokes (1845) later found the same

equations making assumptions on the continuum level, assuming that the fluid

stresses are linear functions of the deformation velocities (Newton’s law of

viscosity) and that the mean normal stress is independent of the velocity of

dilatation. One can only wonder why only the first and the last researcher got their

names on the equations, etc.
as follows:

p¼ rðg�1Þ e�
1

2
uiui

� �
ð43Þ

The equations must be supplemented by appropriate initial and
boundary conditions on the fluid velocity field ui and the heat flux
components qj. At a solid (fluid–structure) boundary, the no-slip
condition ui¼0 is applied. Adiabatic wall conditions are usually
assumed in aerodynamic and aeroelastic calculations, although
several other conditions can obviously be applied as well.

From a theoretical standpoint, however, there is no assurance
that the resulting initial-boundary value problem will be well-
posed, in the sense of Hadamard. By well-posed we mean that the
solution exists and is unique and depends in a continuous manner
on the initial and boundary data; see, for example, the discussion
in Courant and Hilbert, vol. II [54]. Although the incompressible
2D Navier–Stokes equations can be shown to have ‘‘well-
behaved’’ solutions that remain ‘‘smooth’’ for all time, no such
proof is known for the 3D equations, even in incompressible flow.
All that can be proven is that smooth solutions to the 3D
equations exist for a short time and depend continuously on the
initial-boundary data; after that time singularities and blow-ups
(infinities) may occur in the vorticity amplitudes and/or the
kinetic energy of the fluid. The possible implications of all of this
on the verification and validations of unsteady Navier–Stokes
codes in aeroelastic applications remain largely unknown.

The challenge associated with solving the Navier–Stokes equa-
tions in practical aeroelastic problems can be described in many
ways, e.g., as the ‘‘curse of dimensionality’’ or the ‘‘curse of length
scales’’, etc., but from the viewpoint of the engineer the best
explanation is simply the abundance of excess dynamics. Flows over
full-scale transport and fighter aircraft wings are turbulent over
most of the chord, because the Reynolds numbers (Re) at typical
operating conditions are quite high (107–108). Turbulent flows
contain eddies or vortices of varying length scales, and the range of
length scales that must be resolved in an accurate direct numerical
simulation increases dramatically with increasing Reynolds num-
bers. Using arguments based on dimensional analysis, Jameson [26]
estimates that the ‘‘computational complexity’’ associated with the
full simulation of turbulent three-dimensional flows down to the
smallest length and time scales would scale proportional to the cube
of the Reynolds number. Even with revolutionary developments in
computational algorithms and computer hardware, direct numerical
simulations based on the full Navier–Stokes equations will not likely
become practical for realistic flutter calculations over the next
decade at least, perhaps much longer. This leaves us with the
Reynolds averaged or Favre averaged equations and appropriate
turbulence models. Presently, thin layer Navier–Stokes codes are
typically used in computational aeroelasticity. For recent surveys of
some of the challenges in using these codes in applications involving
novel fluid–structure interactions, see Bartels [55] and Schuster [56].
Although Large Eddy Simulation (LES) together with hybrid methods
(LES/RANS) have by now become well established in many
engineering applications [57], they have not as yet become widely
used tools in practical aeroelastic calculations.

3.7. Computational considerations

Unsteady transonic flow calculations are much more difficult
than subsonic or supersonic flow calculations, for several reasons.
First, the governing partial differential equations are nonlinear
and moving shocks must be modeled correctly. Second, the flow-
field is of a mixed type, with embedded supersonic regions if the
free-stream Mach number is less than one (subsonic far field), and
embedded subsonic regions if the free-stream Mach number is
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greater than one (supersonic far field). Third, the extent of the
embedded supersonic or subsonic regions are time-varying, as are
the moving shocks, and must be determined in a time-accurate
manner as part of the solution. In some cases, the embedded
supersonic region shrinks down to zero and vanishes together
with the shock over part of the flutter cycle.

From a computational standpoint, we may define the transonic
region for a given flow problem by the inequality McrrMNr
Mcr

sup. Here, Mcr is the critical Mach number as usually defined; that
is, the lowest value of the free-stream Mach number MN at which
the flow first becomes sonic at some point in the flowfield. In
steady potential flow, the maximum principle can be used to show
that this point must occur on the solid boundary, e.g., somewhere
on the wing surface. Note that even in the steady case, Mcr depends
on the thickness and shape as well as on the angle of attack and
elastic deformation of the wing. In the unsteady or flutter case, the
critical Mach number also depends on the flutter amplitudes
and on the flutter mode shape.

The supersonic critical Mach number Mcr
sup is defined in a similar

manner, but its determination is more elusive and a priori estimates
of its value in any given example are more difficult. It is the highest
free-stream Mach number at which the lowest Mach number in the
flowfield reaches one from above. Thus, embedded subsonic regions
in an otherwise supersonic flow are only possible for Mach numbers
in the range 1oMNoMcr

sup. For thin planar wings characteristic of
supersonic aircraft, the supersonic critical Mach number Mcr

sup in
steady flow may be very close to one. In unsteady flows, however,
Mcr

sup may be as high as 1.2, even for thin wings. In the nonlinear
Euler-based transonic flutter calculations for a flat panel by Davis
and Bendiksen [58], for example, embedded subsonic regions were
observed next to the panel surface at Mach numbers in the 1–1.2
region. The embedded subsonic pockets would grow and shrink
periodically in response to the panel flutter mode, typically
vanishing over part of the flutter cycle. Experimental results
obtained by Bryson [59] for a two-dimensional wedge section
with a leading-edge half-angle of 101 show an embedded subsonic
region between the leading edge shock and the sonic line for Mach
numbers as high as 1.32.

In the case of thin planar wings for which the transonic small
disturbance theory holds, the transonic region for the steady
problem is often defined in terms of the transonic similarity
parameter as the Mach number region for which the similarity
parameter falls in the range (Liepmann and Roshko [60])

�1r
M2
1�1

½ðgþ1ÞM2
1d�

2=3
r1 ð44Þ

In practical unsteady aerodynamics and flutter problems involving
aircraft wings, however, the transonic region is considerably
broader and extends to absolute values of the transonic similarity
parameter well beyond unity.

In a modern computational fluid dynamics (CFD) approach, the
aerodynamic model is typically expressed in a weak or integral
form of the conservation laws,

@

@t
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FUndS¼ 0 ð45Þ

where O is an element volume with boundary @O moving with
velocity U, n¼niei is the outward unit normal to @O, ei are the unit
vectors in the xi directions, and
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ð46Þ
Here, e is the total energy per unit mass, uj and Uj are the
Cartesian components of u and U, respectively, sij are the
components of the Cartesian stress tensor, and F¼Fjej.

It is not the purpose of this review to evaluate the various
discretization and integration methods that have been developed for
the Euler and Navier–Stokes equations, except to say that both finite
volume and finite element methods exist for both structured and
unstructured meshes; see Refs. [61–65]. In the author’s opinion, the
finite element method offers a systematic spatial discretization for
arbitrary unstructured meshes, and has the additional advantage
that it is readily understood by the flutter engineer or aeroelastician
who nowadays routinely uses finite elements to solve structural
dynamics problems associated with aircraft.

In the inviscid (Euler) flow model, sij¼�pdij, and the equation
of state can be used to eliminate the pressure p. In a Galerkin
finite element discretization of the Euler equations, the vector W
of unknown is approximated as

Wðx1,x2,x3,tÞ ¼
X

j

WjðtÞjjðx1,x2,x3,tÞ ð47Þ

where Wj are the nodal values of W and jj are shape
(interpolation) functions. Tetrahedral elements are often used
with linear interpolation functions. The finite element discretiza-
tion is carried out by substituting Eq. (47) into the Galerkin form
of Eq. (45) and applying the divergence theorem. The integrals are
evaluated numerically, using Gaussian integration. The space-
discretized nodal equations for the fluid domain then become [29]

d

dt

X
j

mijWjþQ i�Di ¼ 0 ð48Þ

where i¼1, 2,...,N (all nodes), and the summation on j extends over
all nodes in the ‘‘superelement’’ or control volume associated with
node i, i.e., the union of all elements that meet at node i. Here, mij is
the consistent mass matrix, Qi is the flux vector, and Di is a vector
of dissipative fluxes of a suitable type, to capture shocks and
stabilize the scheme. For example, the Jameson–Mavriplis type
dissipation operators [66,67], as modified in Refs. [68,69], have
been found to be very well suited for aeroelastic calculations.

A finite element discretization of the structural domain leads
to a similar set of equations, in term of suitable generalized
Lagrangian displacement coordinates qj:

d

dt

X
j

mij _qjþQ E
i þQ D

i �Q F
i ¼ 0 ð49Þ

where the sum (assembly) must be carried out over all elements
that meet at node i. Here, Qi

E are the elastic forces, Qi
D are the

structural damping forces, and Qi
F are the consistent generalized

fluid forces associated with the ith node.
The formal mathematical similarity between the nodal (or

element) equations for the fluid and structural domains, Eqs. (48)
and (49), were exploited in Ref. [63] to formulate a new approach
to computational aeroelasticity and fluid–structure interaction
problems in general. This approach has been further developed in
a number of papers [58,64,29,70,71] and has been shown to lead
to a consistent and accurate modeling of a wide class of
aeroelastic problems. For a recent review of alternate and more
classical approaches, see [33].
4. Similarity laws for transonic flow

Similarity laws (sometimes referred to as similarity rules) are
useful in explaining the effect of thickness and angle of attack, for
example, on the stability boundaries of wings of a given airfoil
type. In particular, through the use of similarity laws the number



O.O. Bendiksen / Progress in Aerospace Sciences 47 (2011) 135–167 145
of nondimensional parameters that must be considered (as
obtained from dimensional analysis) can often be reduced to a
much smaller number of similarity parameters for the problem. It
is then possible to plot data for different airfoil thicknesses, etc.,
on a single curve.
4.1. Inviscid flow

The classical aerodynamic similarity laws for steady inviscid
transonic flow were derived by von Kármán [1], Cole [2,4], Cole and
Messiter [8], Guderley and Yoshihara [3], Spreiter [5,6], etc. More
recently, Bendiksen showed how similarity laws for unsteady
transonic flow could be derived for the quasi-steady limit k-0+

[41]. These laws were then used to establish similarity parameters
and similarity rules for transonic flutter and divergence. However, it
was noted that the quasisteady rules did not fix the time scale or
reduced frequency in an unambiguous way.

The effects of Mach number on subsonic flutter boundaries are
typically not substantial, until the transonic region is entered.
Theodorsen and Garrick [72] proposed a semi-empirical formula
in which the flutter and divergence speeds scale proportional to
(1�MN

2 )1/4. Calculations by Garrick [73] based on Possion’s linear
subsonic theory indicated that this rule is a reasonable approx-
imation for wings of high mass ratios and low values of oh/oa, in
the quasistatic limit k-0. For wings of low mass ratios, the
compressibility corrections were found to be of the order of a few
percent. However, since the rule is based on linearized subsonic
aerodynamics, it is not applicable in the transonic region. For
transport aircraft wings, this means that the rule is not valid
beyond Mach numbers of about 0.7–0.75.

The similarity parameters for unsteady transonic flow are clear
from the asymptotic expansion results in Section 3.3, Eqs. (11),
(20), and (21):

w¼ 1�M2
1

½ðgþ1ÞM2
1d�

2=3
; ~A ¼ ½ðgþ1ÞM2

1d�
1=3A
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d2=3t

½ðgþ1ÞM2
1�

1=3
ð50Þ

where g is the ratio of specific heats and A is the aspect ratio of the
wing. The similarity rules for the aerodynamic coefficients can
then be stated in the form

Cp ¼
d2=3

½ðgþ1ÞM2
1�

1=3
~C pðw, ~A, ~a,x=c,y=lÞ ð51Þ
Fig. 8. (a) Comparison of pressure coefficients on upper surfaces of NACA 0012 and N

corresponding to the same value of similarity parameter (w¼0.7903) and (b) n after ap
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1=3
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1=3
~C Mðw, ~A, ~aÞ ð53Þ
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1=3
~C Dðw, ~A, ~aÞ ð54Þ

where the functions ~C p, ~C L, ~C M , and ~C D are ‘‘similarity functions’’
for the pressure coefficient, lift coefficient, etc., and are functions
of the three similarity parameters w, ~A, and ~a in the problem. The
appearance of the ratio of specific heats g in these relations allows
comparisons of similar flows around wings tested using different
gases, e.g., Freon (or other heavy gases) as compared to air.

Similarity here means that there is a certain correspondence
between the local features of the flow between any two cases
with the same values for the similarity parameters. For example,
similar flows would have the same pressure distributions, lift,
moment, drag, etc., after they have been scaled as specified by the
similarity rules. Also, the location and strength of the shock(s)
would have the same correspondence. Note that these rules differ
fundamentally from the Prandtl–Glauert rule for linear flows, in
that we cannot have similarity between flows at different Mach
numbers for the same airfoil or wing. We can only set up this
correspondence between different airfoils or wings with different
thickness ratios, aspect ratios, and Mach numbers. The similarity
parameters in Eq. (50) indicate that in order to have similar flows
as the Mach number approaches one from below, the airfoil
thickness and the angle of attack must be reduced and the aspect
ratio must be increased.

Fig. 8 shows the result of applying the steady aerodynamic
similarity rules, Eqs. (50)–(54), to steady transonic flows about
the NACA 00xx family of airfoils at zero angle of attack, using the
fully nonlinear Euler equations. Fig. 8(a) shows the pressure
coefficient Cp vs. chord position on the upper surface of the NACA
0012 airfoil at M¼0.85, and the NACA 0006 airfoil at M¼0.9006.
These cases correspond to the same value of the transonic
similarity parameter,

w¼ 1�M2
1

½ðgþ1ÞM2
1d�

2=3
¼ 0:7903 ð55Þ

assuming g¼1.4. Fig. 8(b) shows the same pressure coefficients
after applying the similarity rule given by Eq. (51). The agreement
is surprisingly good, especially in the region upstream of
the shock, where the flow is isentropic and irrotational. Also,
the position of the shock agrees in the two calculations, to within
ACA 0006 airfoils in steady transonic flow at M¼0.85 and 0.9006, respectively,

plying transonic similarity rule, Eq. (51).
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one grid point on the mesh used (144�24 C-mesh). Downstream
of the shock, where the flow is no longer irrotational, a slight
difference is noted. The similarity rule adjustment gives a slightly
stronger shock, and hence a slightly higher pressure in the region
behind the shock, as would be expected of a rule based on
potential flow.

The relatively good agreement can be understood by recalling
that, to second order in the perturbation parameter d, the
corresponding transonic flows calculated using the Euler equa-
tions satisfy similarity rules whose dominant terms are given by
Eqs. (51)–(54). Entropy production at shocks is of 3rd order and
thus would not affect the similarity laws to this order.

For aeroelastic similarity, it was shown in [74] that the
transonic flutter similarity parameter

c¼
U

2

pm½ðgþ1ÞM2
1d�

1=3
¼
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½ðgþ1ÞM2
1d�

1=3
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must also be kept fixed, where q̂ is a nondimensional dynamic
pressure:

q̂¼
1

2
r1U2

1=
1

2
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U1

boa
ffiffiffiffimp

� �2

ð57Þ

To keep the reduced frequency k¼ob/UN fixed, the reduced
airspeed U ¼U1=boa must be held constant. In the inviscid case,
there are three primary similarity parameters: w, c, and U. In
viscous flows, the Reynolds number and the Prandtl number
provide a fourth and fifth similarity parameter. In addition, we
must include the dynamical similarity parameters for the wing
itself, which in the simplest case of a typical section model consist
of the four parameters a, xa, ra, and oh/oa. Finally, consideration
must also be given to the amplitude scaling, as reflected through
the similarity parameters ~a and ~w.
4.2. Viscous flow

The presence of a boundary layer will, of course, change the
‘‘effective’’ thickness ratio of the wing and therefore the magnitudes
of the transonic coordinate stretching in the asymptotic expansion
procedure discussed in Section 3.3. In fact the limit process
expansion based on the limits d-0 and MN-1, while keeping w
and x, ~y, ~z fixed, must be reinterpreted. Physically, the limit d-0
should leave us with a flat or slightly cambered plate (the wing) of
zero material thickness, but with a nonzero effective thickness equal
to the displacement thickness d	 of the boundary layer. This is
essentially the same argument as advanced by Liepmann and
Roshko [60] in estimating the effect of the boundary layer on the
external transonic flow-field. Assuming a laminar boundary layer
and denoting the length of the plate by l (or the first l units of a semi-
infinite plate), they approximated the effective thickness ratio due to
the boundary layer for Mach numbers near one as

d	

l
ffi1:7208

ffiffiffiffiffi
n
lU

r



1ffiffiffiffiffiffi
Re
p ð58Þ

where we have followed Liepmann and Roshko and replaced the
factor 1.7208 by unity for simplicity in the final relations. Replacing
d by d	=l in Eqs. (50) and (51) yields the following approximate
similarity parameter and similarity law for the boundary layer effect

w	 ¼ ð1�M2
1ÞRe1=3

½ðgþ1ÞM2
1�

2=3
ð59Þ

Cp ¼
1
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1Re�1=3

~C pðw	, ~A
	
, ~a	,x=c,y=lÞ ð60Þ
where superscripts (n) indicate that the corresponding similarity
parameter is based on d	=l.

In applying the transonic similarity laws, the boundary layer
displacement thickness should be added to the physical thickness
of the wing. Most (but not all) airfoils have a location of maximum
thickness in the range 0.3c–0.4c, and the boundary layer
displacement thickness should be evaluated at that point. For
example, for the NACA 64A010 airfoil, tmax=c¼ 0:10 at x¼0.4c, one
would make the following substitution in the formulas:

d-dþ2d	=c¼ 0:10þ
2ð0:4Þð1:7208Þffiffiffiffiffiffiffiffiffiffiffiffi

0:4Re
p ¼ 0:10þ

2:177ffiffiffiffiffiffi
Re
p ð61Þ

where Re is the Reynolds number based on airfoil chord and we
have reinstated the numerical factor 1.7208 in the displacement
thickness formula, Eq. (58). For example, if Re¼107, the effective
thickness ratio becomes 0.10+0.0007¼0.1007, which is a negli-
gible increase. For Re¼106, the effective thickness becomes
0.1022. Of course, most full-scale aircraft wings will not have
laminar flow at 30% or 40% chord, hence the effective thickness
estimates should be based on a turbulent boundary layer.
Assuming transition at or close to the nose of the airfoil, the
effective thickness ratio now becomes

de ¼ dþ
2ð0:4Þð0:046Þffiffiffiffiffiffiffiffiffiffiffiffi

0:4Re5
p ¼ dþ

0:0442ffiffiffiffiffiffi
Re5
p ð62Þ

for maximum thickness at 0.4c. For Re¼107, we now obtain
de¼0.1018. For Re¼106, de¼0.1028. Thus, the effect of the
boundary layer displacement thickness on the transonic similarity
laws is seen to be small, except for a flat plate or a wing of a very
small thickness. If the thickness is reduced to 3%, for example, the
effective thicknesses in the last example become de¼0.0318 and
0.0328, respectively, and do result in observable shifts in the
transonic flutter boundaries. In the case of a flat plate of zero
thickness, we recover Eqs. (59) and (60).

A different approach to incorporating the effect of viscosity
into the transonic similarity rules is to apply the same type of
limit process expansion procedure to the Navier–Stokes equations
as used to derive the inviscid TSD equation. This leads to the so-
called viscous transonic (small disturbance) equation, wherein
heat conduction and longitudinal viscosity are taken into account.
Cole appears to have been first to derive an equation of this type
in discussing the flow through a shock wave [2]. Sichel later used
this approach to study various transonic problems within the
framework of small disturbances [75,76], and obtained a new
viscous transonic similarity parameter for two-dimensional
steady transonic flow. Since the flow is still irrotational to the
TSD order of approximation, the viscous TSD equation simply
adds a term to the corresponding inviscid equation,

wv
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where wv is a viscous similarity parameter given by
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and Rel and Prl are the longitudinal Reynolds number and Prandtl
number, respectively, based on the longitudinal (compressive)
viscosity ml. Sichel has made extensive use of similarity solutions
of Eq. (63) in the study of viscous transonic flows over a wavy wall
and the influence of Reynolds number and Mach number on the
supersonic pockets and shocks. Applications of the viscous TSD
similarity principles in practical aircraft applications have not yet
(to this author’s knowledge) appeared in the published literature.
Note that the inclusion of viscosity simply adds a similarity
parameter wv, without affecting the transonic similarity para-
meter w.



O.O. Bendiksen / Progress in Aerospace Sciences 47 (2011) 135–167 147
The effects of shock-boundary layer interactions are not
included in these corrections. In the presence of viscosity, the
motion of the shocks for moderately to high angles of attack is
changed significantly. Wind tunnel observations reveal that, for
small positive angles of attack at Mach numbers slightly above
Mcr, the aft motion of the upper shock with increases in angle of
attack a is similar to what occurs in inviscid flow. But when the
shock strength becomes sufficient to separate the boundary layer,
the upper shock reverses direction and moves forward with
further increases in a or Mach number. The lower shock, which is
often not sufficiently strong to cause separation, continues its aft
movement until it is aft of the upper shock—a situation that
would not occur in inviscid flow over the same airfoil at positive
angles of attack. This ‘‘shock-reversal’’ phenomenon is shown in
Figs. 9 and 10. The effect of shock-boundary layer interactions
should therefore be greatest in the post-dip region. With further
increases in Mach number, the shocks eventually reach the
trailing edge, as in the inviscid case.

If trailing-edge separation occurs, the steep rise of the flutter
boundary in the post-dip region may not occur. Finally, additional
‘‘nonclassical’’ types of flutter may be triggered by viscous effects.
These include stall flutter and buzz-type instabilities (aileron
buzz). Interactions between the shock and the boundary layer can
also lead to buzz-like shock oscillations on the airfoil surface, even
in the absence of airfoil or wing motion, as observed in the
calculations of Edwards [77] and more recently by Raveh and
Dowell [78].

The presence of the boundary layer increases the effective
thickness of the wing, which according to transonic similarity
Fig. 9. Qualitative sketch of the behavior of shocks with increasing Mach number

in (a) inviscid flow and (b) viscous flow, illustrating the phenomenon of ‘‘shock

reversal’’ in viscous flow.

Fig. 10. Rearward motion of upper surface shock with increasing Mach n
principles should shift the flutter boundary and the transonic dip
to a slightly lower Mach number. Shock-boundary layer interac-
tions, on the other hand, slow down the rearward movement of
the steady shocks with increasing Mach number and angle of
attack, and this should have the opposite effect and shift the dip
towards higher Mach numbers. For thin wings, the net result
should still be a small shift towards lower Mach numbers, but for
moderately thick wings that may experience partial separation
before the bottom of the transonic dip, the shift could be in either
direction.
4.3. Shock-foot singularity

In the inviscid case, the shock foot must be normal to the
surface in order to satisfy the inviscid boundary condition of
tangent flow. However, since the corresponding boundary value
problem changes from hyperbolic in front of the shock to elliptic
behind the shock, a singularity in the solution must be expected.
An analysis of this singularity for the 2D airfoil case was first
carried out by Gad [79] and Oswatitsch and Zierep [80], and later
verified in a more rigorous manner by Cole and Cook [15]. The
singularity is logarithmic, and downstream of the shock

Cp � k2ðx�xsÞ lnðx�xsÞ ð65Þ

resulting in an infinite curvature of the shock foot and an infinite
acceleration of the flow immediately behind the shock foot on a
convex airfoil surface. Here, xs is the chordwise location of the
shock and k2 is a constant that depends on the shock strength and
the local surface curvature [15]. In a real (viscous) flow, shock-
boundary layer interaction tends to smear out and weaken the
singularity; however, early experiments by Ackeret et al. [10] do
show a rapid expansion behind the shock. The singularity also has
an indirect effect on boundary layer separation, in that it weakens
the shock strength near the airfoil surface. Consequently, a
stronger shock can be tolerated before boundary layer separation
occurs.

In a more recent note by Zierep [82], he concludes that the
nature of the singularity depends on the governing equations. If
the Euler equations are used, for example, the problem becomes
overdetermined (ill-posed) and the required boundary condition
of tangent flow immediately behind the shock cannot be satisfied,
and he concludes that ‘‘inviscid separation’’ must therefore occur.
In the TSD result, Eq. (65), this problem does not arise and the
tangent flow boundary condition can be satisfied behind
the shock. Zierep reconciles these differences by pointing out
that the TSD equation is not valid near a strong shock.

Fig. 11 shows a sketch of the viscous flow region at the foot
of the shock, adapted from Ramm [17]. Because of interactions
with the boundary layer, the shock foot in no longer normal to
the airfoil surface and a lambda-shock typically develops,
consisting of a series of oblique shocks and a final relatively weak
umber (RAE 102 airfoil, a¼21, t/c¼0.10). Adapted from Pearcy [81].
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normal shock. The sonic line penetrates the boundary layer
and eventually becomes essentially parallel to the local airfoil
surface.
Fig. 12. Comparison of finite element Euler calculations [83] with experimental data fo

stroke (a increasing); (b) at a¼4.821 on down-stroke (a decreasing). (AGARD CT1 tes

pitching amplitude a0¼2.411). Note Tijdeman Type B shock near leading edge.

Fig. 13. Comparisons of Euler and Navier–Stokes calculations with experimental data.

case: NACA 64A010 airfoil pitching about a quarter chord axis; MN¼0.796; k¼0.202; R

Fig. 11. Shock-boundary layer interaction [17].
5. Theory vs. experiment

5.1. Single-degree-of-freedom pitching oscillations
Fig. 12 shows representative comparisons of unsteady Euler
calculations with experimental data for an NACA 0012 airfoil
oscillating in pitch. The calculations are based on the Galerkin
finite element method outlined in Section 3.7; see also Davis [83]
and Davis and Bendiksen [68]. The experimental data is taken
from the AGARD CT1 data set, based on wind tunnel tests
performed by Landon [84]. The overall agreement between
experiment and calculation is very good, despite the fact that
the dynamic angle of attack varies over a considerable range,
from close to zero to more than 51. Note the presence of an
intermittent shock near the leading edge in Fig. 12(b). This case is
near the lower edge of the transonic range and is a reminder
that, even thought the steady flow about the NACA 0012 airfoil
at Mach 0.6 and am¼2.891 is subcritical, the superimposed
pitching oscillation triggers the formation of an intermittent
r an NACA 0012 airfoil pitching about a quarter chord axis: (a) at a¼3.841 on up-

t case [84]: MN¼0.6; k¼0.0808; Re¼4.8�106; mean angle of attack am¼2.891;

Adapted from Liu and Ji [85]. Experimental data from Davis [86] (AGARD CT6 test

e¼12.56�106; mean angle of attack am¼�0.211; pitching amplitude a0¼1.011).
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supersonic pocket terminated by a shock on the upper surface
near the leading edge.

Results for pitching oscillations of an NACA 64A010 airfoil are
shown in Figs. 13 and 14, comparing predictions from Euler and
Navier–Stokes calculations [85] with experimental data [86]. The
differences between the Euler and Navier–Stokes results for the
unsteady lift coefficient are seen to be surprisingly small and both
agree reasonably well with experiment. The Navier–Stokes results
are in slightly better agreement from a phase relation standpoint.
Pitching moment agreement is relatively poor, however, the
moment amplitudes show reasonable agreement with experi-
ment. The fact that the Navier–Stokes calculations also fail to
capture the ‘‘bulge’’ in the moment coefficient phase plot suggests
that the turbulence model is simply unable to capture the
nonuniform changes of the pitching moment as the angle of
Fig. 14. Time snapshots of the unsteady pressure coefficient corresponding to case show

square); and experiment lower surface (solid triangle).
attack passes through zero in the pitching cycle. The source of
these nonuniformities, which are apparent both on the up- as well
as the down-stroke, remains to be explained and requires further
study. It should also be noted that the experimental data do not
exhibit the expected symmetry required if the flow on the upper
and lower airfoil surfaces were identical and only shifted in
temporal phase by 1801. This slight but noticeable asymmetry
could be due to imperfections or other airfoil shape differences
between the two surfaces, or nonuniformities in the temporal
behavior of the unsteady flow on the upper and lower surfaces.

Other researchers using a variety of Navier–Stokes codes and
turbulence models have obtained essentially the same lack of
agreement for the moment coefficient. Thus, at the present time
at least, the ‘‘unsteady bulge’’ phenomenon revealed in the
experimental moment coefficient, Fig. 13, cannot be predicted
n in Fig. 13 [85]: k–o model (D); Euler (solid line); experiment upper surface (solid



Fig. 15. Nonuniform (almost singular) behavior of the lift curve slopes of the NACA 00XX series of airfoils in transonic flow, and comparison with the Prandtl–Glauert rule

(Euler calculations; linear and log scale).

Fig. 17. Predicted vs. observed location of Mach number at which CLa peaks, as a

function of airfoil thickness [89,125].

Fig. 16. Measured lift curve slope vs. Mach number for symmetric airfoils of

different thickness ratios, at a¼0, and comparison with the Prandtl–Glauert rule

for CLa at MN¼0.3. (From Ref. [88], adapted from Ref. [89]; original wind tunnel

data from Göthert [90].)
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using existing turbulence models and thin-layer Navier–Stokes
codes.

5.2. Lift curve slope nonuniformity

The transonic similarity laws predict that the lift curve slope
should scale as 1/d1/3, and a singularity results in the limit d2-0
(infinite CLa ) [87]. The blowup occurs at Mach one, in the limit of a
wing of zero thickness, and is in this respect similar to the
classical Prandtl–Glauert singularity, but its strength is different.
The moment coefficient derivative with respect to angle of attack
has the same singularity; nevertheless, the lift and moment
coefficients remain continuous and finite at Mach one in the
nonlinear theory, in contrast to linear theory. Thus, the nonlinear
transonic theory has succeeded in removing the Prandtl–Glauert
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1

p
singularity from the aerodynamic coefficients, but the

singularity in the lift and moment curve slopes is still there for
wings of zero thickness, albeit of a different strength. Of course,
wings of zero thickness do not exist, and the singularity may seem
more of a curiosity than a real engineering concern. In a real
(viscous) flow, any non-infinitesimal angle of attack of a wing of
infinitesimal thickness would cause leading edge separation,
which would in all likelihood kill the singularity.

According to the transonic theory, the effect of a finite wing
thickness (d40) is to replace the singularity by a sharp peak and
move it to a slightly lower Mach number, away from Mach one.
The sharpness of the peak should increase as d decreases,
becoming a singularity in the limit d-0, at least in the inviscid
transonic small disturbance theory.

Fig. 15 shows representative results for the calculated lift
curve slope evaluated at a¼0, as a function of airfoil thickness
and Mach number. The peaks and subsequent rapid fall-offs bear a
remarkable qualitative resemblance to the experimentally mea-
sured behavior of symmetric 2D sections shown in Fig. 16. The
effect of viscosity appears to reduce the peaks and move them to
slightly lower Mach numbers, because of the increase in the
effective airfoil thickness caused by the boundary layer. What is
surprising and of significance in an aeroelastic context, however,
is that the locations of the CLa peaks scale with the locations of the
bottoms of the transonic dips of the corresponding typical section
aeroelastic models [87]. Furthermore, the corresponding Mach
numbers follow the transonic scaling rules for airfoil thickness, up
to a thickness of about 9%; see Fig. 17. The deviations observed for
the 12% thick sections are most likely due to boundary layer
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separation, as the deviation is in the expected direction (effective
d is increased).

In Ref. [87], the author concluded that the transonic dip is
closely linked to the almost singular behavior of the lift curve
slope, because the Mach number MTD at the bottom of the primary
transonic dip coincides with the Mach number Md

peak at which the
lift curve slope peaks and exhibits almost singular behavior for
small d. From Fig. 15, it would appear that the peak values of
logCLa scale roughly linearly with Mach number, which suggests a
scaling law of the form

logCmax
La
¼ aM1þb ð66Þ

where a and b are constants. Although this scaling does not
suggest a blowup of the lift curve slope in the limit of zero airfoil
thickness, the calculations cannot readily be extended down to
dE0 with CFD methods alone, because this limit is singular in
several respects. In particular, the contribution from the singu-
larity at the leading edge as the leading edge radius approaches
zero cannot be captured with sufficient accuracy by standard CFD
methods to decide the scaling question.

The highly nonlinear behavior of CLa vs. MN at transonic Mach
numbers is well-known (see Fig. 16, for example) and has been
discussed at length in the aerodynamics literature [88,89]. However,
the abrupt break of the lift curve slope vs. Mach number after
reaching its peak has always been explained in terms of shock-
boundary layer interactions. Because the almost-singular behavior
and abrupt drop-off are also present in nonlinear inviscid transonic
flow, it would appear that the part-span shocks by themselves must
Fig. 18. Theoretical unsteady lift amplitude during pitching oscillations of NACA 0012 a

frequency k¼ob/U (am¼0; a0¼0.21). Euler calculations. Note insensitivity to reduced

Fig. 19. (a) Illustrating the validity of the similarity laws for lift and moment coefficients o

0006 (circles), and NACA 0003 (triangles) at MN¼0.90, 0.9349, and 0.9581, respectively, co

(b) same as (a), but near bottom of the transonic dip, at MN¼0.85, 0.9006, and 0.9354, re

Note highly nonlinear lift curve slopes and the breakdown of the scaling laws at low angl
play a fundamental role in bringing about this behavior. The rapid
drop-off of the lift curve slope is believed to be the main reason for
the rapid rise in the flutter boundary immediately past the transonic
dip. For thin airfoils the sharpness of the CLa peak is significantly
greater and the subsequent drop-off is larger in the inviscid case. This
suggests that Euler-based flutter calculations should be conservative
in the sense that they should predict a lower minimum and sharper
transonic dip than would be predicted using Navier–Stokes codes.

Of course, unsteady effects come into play as well, altering the
‘‘effective’’ lift curve slope. However, calculations indicate that for
the relatively low reduced frequencies (ko0.1) at which flutter is
encountered in many transonic wind tunnel tests, the transonic dip
flutter boundary would be expected to scale at least approximately
inversely proportional to the effective lift curve slope. Fig. 18 shows
results of unsteady Euler calculations for pure pitching oscillations
about midchord for the NACA 0012 and NACA 0006 airfoils, as a
function of reduced frequency and Mach number. Note that the
nonuniformities with respect to Mach number remain in the
unsteady lift amplitudes, although the peaks shift to slightly lower
Mach numbers and weaken as the reduced frequency is increased.
The unsteady moment coefficient shows a similar ‘‘peaky (almost
singular)’’ behavior, which has a profound influence on the stability
of SDOF pitching motions and the possibility of SDOF torsional
flutter at transonic Mach numbers. This subject will be discussed in
more detail in Section 7.1.

At transonic Mach numbers away from the CLa peaks, the lift
and moment coefficients closely follow the transonic scaling laws,
as shown in Fig. 19(a). But for Mach numbers close to the CLa
nd NACA 0006 airfoils about midchord as a function of Mach number and reduced

frequency at high transonic Mach numbers.

f the NACA 00XX airfoils in the upper transonic region: NACA 0012 (diamonds), NACA

rresponding to the same value of the aerodynamic similarity parameter (w¼0.5014);

spectively, corresponding to the same value of the similarity parameter (w¼0.7903).

es of attack (Euler calculations; dref¼0.06, corresponding to NACA 0006).



Fig. 20. Qualitative sketch of the effect of wing thickness on the transonic flutter

boundaries.
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peaks, the slope of the similarity lift coefficient ~C L vs. ~a starts to
increase with decreasing section thickness, Fig. 19(b), beyond
what would be predicted by the similarity rules, and a strong
nonlinearity develops in the lift and moment coefficients. The
increase in lift curve slope for thin airfoils near zero angle of
attack was observed in Ref. [41], but no explanation was given,
although it was noted that the increase could not be predicted by
the first-order transonic scaling laws. This is a rather curious
anomaly, because one would expect the transonic scaling laws to
get better and better as the wing thickness decreases, not the
other way around, as is apparent in Fig. 19(b).

Because the CLa peaks appear to fix the location of the primary
transonic dip, at least for two-dimensional typical sections, an
attempt to understand this anomalous behavior was undertaken
in Ref. [91]. After a re-examination of the limit process expansion
procedure used in deriving the transonic scaling laws, it was
realized that the limit d-0; a/d fixed, is not the only limit of
relevance in the case of flutter of thin wings. Because the shock
motion is sensitive to the local airfoil curvature, there may be a
particular span location (for a given family of airfoils) that will
cause the largest shock displacement for a given small change in
angle of attack. This hypothesis assumes that the peak in the lift
curve slope occurs at a specific Mach number, which scales
according to the transonic similarity laws, because the shocks are
at a chordwise position where the lift increment per unit span DLs

produced by the shock displacements Dxs from a small angle of
attack increment Da reaches its maximum, for a given family of
airfoils. A close examination of the pressure distributions and
shock displacements vs. Da for different airfoils has convinced
this author that the peak in the lift curve slope is produced by the
shocks, and coincides with the maximum of the lift contribution
from the shocks. For the NACA 00XX family of airfoils, this
maximum occurs when the shocks are roughly at 0.75c, where the
shock excursion amplitude for a given Da is at its maximum. The
effect of viscosity should move the peaks to slightly lower Mach
numbers and reduce their heights.
Fig. 21. Same data as in Fig. 2, after applying the transonic similarity rule for

flutter.
5.3. Effect of wing thickness

If one compares two wings with airfoils of the same family, but
with different thickness ratios d1 and d2, then for similar flows the
Mach numbers must satisfy the relation

ð1�M2
2Þ=M4=3

2

ð1�M2
1Þ=M4=3

1

¼
d2

d1

� �2=3

ð67Þ

where it has been assumed that the test medium (g) is the same in
the two tests. If d2od1, then it follows that M24M1. Thus a thinner
wing is similar to a thicker wing of the same family operating at a
lower Mach number. As the wing thickness is increased, transonic
phenomena such as the transonic dip are shifted to lower Mach
numbers, as shown in Fig. 20. Aeroelastically similar flutter points
must also have the same value for the aeroelastic similarity
parameter, c2¼c1, from which one concludes that

U2=boa
ffiffiffiffiffiffim2
p

U1=boa
ffiffiffiffiffiffim1
p ¼

M2
2d2

M2
1d1

( )1=6
q2

q1

� �
F

¼
M2

2d2

M2
1d1

( )1=3

ð68Þ

where the Mach numbers M1, M2 are related by Eq. (67). In the sonic
limit, M2EM1-1 (q2/q1)F-(d2/d1)1/3, suggesting that q2-0 if d2-

0. That is, the flutter dynamic pressure at the bottom of the transonic
dip should drop to zero as the wing thickness approaches zero and
the Mach number approaches one. The reason for this is that the
transonic scaling laws predict that the lift curve slope should scale
proportional to 1/d1/3, indicating a singularity in the limit d2-0
(infinite CLa ).
Fig. 21 shows the wind tunnel test data in Fig. 2, corrected for
wing thickness by plotting the data as the flutter similarity
parameter c vs. the aerodynamic similarity parameter w. The
effect of angle of attack is in some (but not all) respects similar
to the effect of thickness, because increasing aN will increase
the disturbances caused by wing as seen from the far field. By the
similarity rules, the transonic dip should shift towards lower
Mach numbers and up slightly as the angle of attack is increased.
This is in agreement with the experimental data shown in Fig. 3.
5.4. Effect of test medium

The advantages of using a heavy gas in flutter testing are well-
known, and include higher Reynolds numbers and lower mass
ratios (closer to the actual wing), making it easier to design
aeroelastically scaled models. Freon-12 has a significantly lower
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speed of sound than air, resulting in velocities at a given Mach
number less than half of the corresponding velocities in air.
Consequently, for a given model, the reduced frequencies at flutter
will be higher by more than a factor of two, whereas the critical
mass ratio at flutter will be lower by an even higher factor. The
flutter boundary, however, if plotted as a surface in 3-space, with
each axis representing one of the primary similarity parameters, will
not change as a result of the change in the speed of sound, because
the speed of sound only enters the aerodynamic theory through the
Mach number. However, the flutter points (on the flutter surface)
obtained during testing in Freon-12 will be different than the
corresponding flutter points in air.

Freon-12 has a value of g which is significantly below that of
air (1.13 vs. 1.4), which should lead to an observable shift in the
flutter boundaries in the transonic region, where the aerodynamic
nonlinearities are strongest. This is a nonlinear effect, as the
linearized equations for unsteady aerodynamics do not depend on
g. For transonic similarity, the Mach number M2 with Freon-12 as
the test medium must be such that the similarity parameter w is
invariant (w2¼w1 point by point), which requires that

ð1�M2
2Þ=M4=3

2

ð1�M2
1Þ=M4=3

1

¼
g2þ1

g1þ1

� �2=3

¼ 0:9235 ð69Þ

For similarity, the Mach number in the transonic region must
therefore be increased slightly when testing in Freon-12, as
compared to air, and the flutter boundary moves to the right by a
small amount. Simultaneously, the boundary moves down, to
satisfy the flutter similarity rule c2¼c1 for each point. The flutter
dynamic pressures at the dynamically similar Mach numbers M2

and M1 given by Eq. (69) are related by

qFF�12

qFair

¼
ðg2þ1ÞM2

2

ðg1þ1ÞM2
1

" #1=3

ð70Þ

valid in the transonic region. Thus the dynamic pressure at flutter
should be lower in Freon-12 than in air, if dynamically similar
points are compared. If the slope qqF/qM is positive or close to
zero, the corresponding boundary in Freon-12 should also be
Fig. 22. Flutter boundary in Freon-12 as compared to air for Supercritical

Benchmark Wing [87]. Also shown is the predicted shift of the flutter boundary

(dashed line), based on the transonic similarity rules.
lower at the same Mach number. In the transonic dip, however,
this slope is negative over some region of Mach numbers, and
here a higher flutter dynamic pressure may occur when testing in
Freon-12 as compared to air.

According to the transonic similarity rules, the change in g
introduced by testing in R-12 can be compensated for by changing
the thickness of the wing. If (g+1)d is kept constant, then there
should be no change in the (inviscid) flutter boundary. For example,
the 14% thick supercritical benchmark wing tested in R-12 should
have the same flutter boundary as a dynamically identical wing of
12.42% tested in air, if the effects of viscosity are neglected.

The predictions of Eqs. (69) and (70) have been compared to
flutter data from the NASA Benchmark Supercritical Wing, which
was tested both in air and in Freon-12, see Fig. 22. The predicted
shift is in good agreement with the experimental flutter data
obtained in Freon-12.
6. Applications to transonic flutter calculations

6.1. Nonlinear computational aeroelasticity

Transonic flutter prediction remains one the most challenging
problems in aeroelasticity, both from a theoretical and a
computational standpoint. Linear flutter analysis methods have
been quite successful in predicting the flutter behavior of wings at
subsonic Mach numbers, below the transonic region, and this fact
may be largely responsible for the continued dependence on
doublet lattice flutter codes in aircraft design. But linear codes are
inadequate for predicting the flutter behavior of wings at Mach
numbers close to one, and the transonic aileron reversal and wing
divergence speeds obtained by these codes are unreliable and of
limited practical use to the designer.

The advances in Computational Aeroelasticity (CA) over the
past 30 years have to a large extent been paced by the required
developments in computational fluid dynamics (CFD). On the
structural side, the development of the finite element (FE) method
started earlier, gaining momentum with the introduction of
digital computers in the 1950s. Finite element methods have by
now reached an advanced state and large-scale commercial codes
are available that can be used by engineers who are not
necessarily experts on FE techniques. The CFD field is also
sufficiently advanced that the central problems in computational
aeroelasticity have shifted from the numerical solution of the
unsteady flow and to the equally challenging problem of coupling
CFD codes to FE codes, to produce accurate and reliable
aeroelastic codes. However, many CFD codes are still hampered
by a proliferation of esoteric schemes and a lack of any generally
accepted standardization, which make their use in aeroelastic
codes difficult and requiring expert knowledge beyond that
normally possessed by flutter engineers.
6.2. Modeling requirements

A central question that has been addressed in numerous
publications is the CFD code ‘‘selection issue’’, that is, potential vs.
Euler vs. Navier–Stokes, etc. In the author’s opinion, this question
must ultimately be settled by experiments, specifically designed
to give reliable error bounds on the unsteady aerodynamic forces
and all aeroelastic variables affecting stability. The NASA Bench-
mark Models Program [92] and the DLR flutter tests on a 2D wing
section [93–95] represented important first steps, but additional
experimental research is clearly needed. For discussions of the
CFD modeling issues in computational aeroelasticity, see the
reviews of Försching [96], Edwards and Malone [27], and Edwards



Fig. 24. (a) Flutter boundary for NACA 0006 model, corresponding to fixed mass

ratio m¼20; (b) corresponding boundary if UN¼aNMN and m is decreased until

flutter occurs; (c) Theodorsen–Garrick rule for subsonic flutter. (Parts (a, b) from

nonlinear Euler-based calculations; g¼0).
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[28]. For a discussion of an alternative approach to computational
aeroelasticity and computational aerodynamics, see Dowell and
Hall [36]. The path-breaking research by Tijdeman on oscillating
airfoils in transonic flow is still very relevant to anyone working in
transonic aeroelasticity [97].

It might seem that the unsteady aerodynamic modeling
requirements could be determined independently of any aero-
elastic application, by direct comparison of theoretical or computa-
tional results with experimental data. There are two problems with
this approach. First, different aeroelastic problems place different
accuracy and fidelity requirements on the aerodynamic model.
Second, the available experimental data on unsteady flows are
seldom sufficiently complete and of a quality required to make
uncontested conclusions, as should be clear from the examples
discussed in this paper. The most reliable unsteady aerodynamic
data available are from two-dimensional tests of typical section
rigid models, as compiled in the AGARD volume, of which the
NACA 64A010 transonic wind tunnel tests by Davis [86] are
probably the most extensive; see also the more recent experiments
by Schewe et al. [93–95].

As the number and complexity of unsteady aerodynamic codes
used in aeroelastic applications continue to increase, it is
impossible for the average aeroelastician to keep up with, or
even be aware of, the latest developments in computational fluid
dynamics. From a practical standpoint, it would be highly
desirable to have a reliable yet simple classification scheme for
aeroelastic problems and the modeling fidelity required for
reliable aeroelastic stability calculations. If such a classification
were possible, the flutter engineer could avoid some of the costly
and time-consuming redundant validations of CFD-based aero-
elastic codes during production calculations or in support of wind
tunnel and flight testing. Unfortunately, there exists at present no
reliable selection scheme based on physical and aeroelastic
considerations, nor is there any plausible evidence that such a
simple solution is likely to appear in the near future. All that can
be offered are some broad guiding principles, based on a rough
classification of the flow field, as follows:

Attached or essentially attached flows: At or close to design
(cruise) conditions of a well-designed transport aircraft, one
would expect essentially attached flows to dominate, at least on
the wings. If a separation bubble exists, it should be small and not
affect the global flow to a significant degree, nor the unsteady
aerodynamic loads on the wing or lifting surface. The unsteady
Euler equations may be expected to give qualitatively and
quantitatively correct solutions, to within acceptable engineering
Fig. 23. (a) Flutter boundary as a surface in a 3D space of primary similarity parameter

tunnel tests are represented by curves or paths (a,b, etc.) on this surface, and may dif

between the flutter surface and planes representing testing at constant temperature a
tolerances. Outside the transonic region, linear potential methods
may be used for sufficiently small flow perturbation amplitudes.

Flows with small to moderate localized unsteady separation:
Examples include shock-boundary layer interactions, and trailing-
edge separation at off-design conditions or during maneuvers.
Reynolds-Averaged, Thin-Layer Navier–Stokes codes should give
acceptable results, although experimental data suggest that the
reliability and fidelity of the results are problem-dependent and
sensitive to the turbulence model used.

Globally unsteady separated flows and vortex-dominated flows:
Examples include high-angle-of-attack, high-g maneuvers of
fighter aircraft, interactions between leading-edge vortex and
separation bubble of highly swept wings, or wings with leading
edge strakes (or severe cranks), and vortex instabilities or
interactions at high angles-of-attack. These problems are on the
borderline and in some cases somewhat outside the domain of
validity of current RANS codes, depending on the complexity of
the flow. Vortex-dominated unsteady transonic flows over highly
swept delta or cranked delta wings representative of future
supersonic transport designs have been difficult to predict (or
even understand) based on calculations using current production
RANS codes; see for example the data from the US High Speed
Civil Transport (HSCT) program [98] and the recent review of
unsteady aerodynamics of nonslender delta wings [99]. For these
flows, LES and LES/RANS approaches [57,100] may be needed.
s, with all other model parameters fixed. The observed flutter boundaries in wind

fer from test to test if the temperature changes. (b) illustrates how intersections

nd mass ratio depend on the stiffness of the wing.



Fig. 25. (a) Transonic flutter boundary for NACA 0012 model, corresponding to fixed mass ratio m¼75 and zero structural damping (ra
2
¼0.25 in these calculations, not

1.024 as shown in Table 1); (b) critical dynamic pressure at flutter for NACA 0012 Benchmark Model, as observed in wind tunnel test, and compared to typical section

calculations (nonlinear Euler-based calculations; UN¼aNMN and m is decreased until flutter occurs; g¼0.0024).
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The above grouping is neither unique nor original and
corresponds in a broad sense to the 3 different flow regimes
(I–III) identified in the previous reviews of Edwards and Malone
[27] and Försching [96].

6.3. The transonic flutter boundary

The most interesting aspect of transonic flutter is the appearance
of a transonic dip in the flutter boundary. Neither the location nor
the shape of the dip can be correctly predicted by linearized
aerodynamic theories. Recent calculations show that in some cases
two closely spaced transonic dips may occur, separated by a narrow
stability cusp in the boundary. The multiple dips appear to be caused
by a complex interaction between the ‘‘almost singular’’ behavior of
the lift curve slope of thin wings at transonic Mach numbers, and the
aft movement of the aerodynamic center with increasing Mach
number. The location of the peak in the lift curve slope can be
predicted using transonic similarity rules, and generally coincides
with the bottom of the primary transonic dip, although there is a
shift toward lower Mach numbers because of reduced frequency
effects; see Fig. 18 and the accompanying discussion. The rapid
drop-off of the lift curve slope after the peak is believed to be the
main reason for the rapid rise in the flutter boundary immediately
past the transonic dip.

The transonic flutter boundary can be represented as a surface in
a three-dimensional parameter space, Fig. 23(a), with the three
primary similarity parameters MN, m, and U ¼U=boa as coordinate
axes.3 It is not possible to get a complete understanding of the
transonic flutter behavior of a wing from classical two-parameter
plots of the linear flutter speed, or dynamic pressure, vs. Mach
number. To understand why, one must first recognize that a 2D plot
of UF vs. MN (for a fixed mass ratio m0) represents the projection of
the actual 3D flutter curve ‘‘a’’ or ‘‘b’’ in Fig. 23(a) on the plane m¼m0,
parallel to the UF�M1 coordinate plane.4 There is a corresponding
projection, for each Mach number, of the 3D flutter curve onto a
plane parallel to the UF/boa�m coordinate plane and passing though
the Mach number being considered. Because the actual path traced
out on the flutter surface depends not only on the properties of the
aeroelastic model, but also on the properties of the wind tunnel and
the test procedure used, the two-parameter projections on the
3 Using the transonic similarity parameters w, c, and U would give the most

general boundary, allowing for changes in wing thickness, aspect ratio, and test

medium (different models and tests).
4 At very low mass ratios a unique flutter surface may not exist, because

period-tripling bifurcations to a new flutter mode may occur; see Section 7.6.
similarity planes are not unique for a given aeroelastic model.
Furthermore, the location and sharpness of the transonic dip depend
on the path traced out on the flutter surface, and on the angle at
which the ‘‘transonic valley’’ is entered. This can lead to confusion
when attempting to interpret transonic flutter data based on two-
parameter plots, especially if multiple transonic dips occur.

In computational flutter calculations, the mass ratio m is
usually kept fixed and the flutter boundary is plotted as U or
U=

ffiffiffiffimp vs. MN. In wind tunnel flutter tests, on the other hand, both
the Mach number MN and the density typically change from point
to point, with m often varying over an order of magnitude or more
in a given test. The reduced velocity is fixed by the relation

U ¼
U1
boa

¼
a0

ffiffiffi
y
p

boa

 !
M1 ð71Þ

where a0 is the speed of sound at SLSD conditions and y¼T/T0 is
the absolute temperature ratio. If the temperature is constant,
then U is directly proportional to the free-stream Mach number
MN. Thus, flutter testing at constant temperature will produce a
flutter boundary that represents the intersection of the flutter
surface, Fig. 23(a), with the plane given by Eq. (71), i.e., a plane
passing through the m-axis, with a slope a0

ffiffiffi
y
p

=boa with respect
to the MN�m plane; see Fig. 23(b). But if the temperature is not
constant during the test, or between different testing days, the
slope of U vs. MN will change, which will alter the reduced
frequency and mass ratio at which flutter is encountered, and
hence also the flutter boundary UF or qF vs. MN. Because the
sensitivity to temperature depends on the local slope, @U=@m,
different aeroelastic models will generally show different sensi-
tivity to changes in temperature. Note that, whereas the 2D
boundary is affected, the 3D flutter surface is unaffected by
temperature changes.

It is therefore important to distinguish between flutter
boundaries at constant mass ratio (altitude), and boundaries
obtained in a variable-density wind tunnel. As shown in Figs. 24
and 25, the two cases may yield completely different boundaries
in the transonic region, even for the same aeroelastic model. The
first example is an NACA 0006 typical section model that has been
used in several previous studies [29,52,87]. The second model is
an NACA 0012 airfoil with typical section parameters identical to
the NACA 0012 Benchmark model tested at the NASA Langley
Research Center [92] (Table 1).

These two simple examples demonstrate that two-parameter
transonic flutter boundary plots must be interpreted with caution.
The reason for the drastic differences between the boundaries in
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parts (a) and (b) of Figs. 24 and 25 is that the boundaries
represent different paths on the flutter surface (cf. paths (a) and
(b) in Fig. 23(a)); thus their projection on the 2D similarity planes
will differ. In the transonic region, the flutter surface typically
contains one or more sharp valleys (transonic dips), and in this
region the projected two-parameter boundaries become very
path-dependent. It should be noted that whenever Eq. (71) is
enforced, the reduced frequency at flutter drops as the Mach
number increases, which also affects the shape of the boundary.
7. Understanding nonlinear transonic flutter phenomena

7.1. Single-degree-of-freedom flutter

A compelling reason for arguing that transonic flutter is not
classical bending–torsion flutter in the Theodorsen–Garrick sense
is the existence of a single-degree-of-freedom (SDOF) torsional
flutter instability near the bottom of the transonic dip. This SDOF
instability is very different from the linear subsonic SDOF
torsional flutter known in the classical literature [101,102], which
requires very low reduced frequencies and a torsional axis
forward of the quarter chord.

Surprisingly, even though the SDOF torsional flutter may be
possible at a given Mach number and reduced frequency, it can
usually only be observed indirectly, through its interaction with
the bending–torsion flutter mode. The reason for this is that only
the least stable aeroelastic mode is typically observable in a wind
tunnel test, or in a time-marching flutter simulation, and in most
cases this is the bending–torsion flutter mode. But at sufficiently
high mass ratios, the SDOF instability near the bottom of
transonic dip does emerge; see Fig. 26. Wind tunnel data from
the DLR tests of the NLR 7301 wing also reveal the presence of a
SDOF torsional flutter instability near the bottom of the transonic
dip [93,94]; see Fig. 27.

Experimental evidence of a SDOF torsional flutter instability at
the transonic dip was obtained some 60 years ago in wind tunnel
tests by Bratt and Chinneck [103] and Bratt et al. [104] of a series
of airfoils permitted only a single degree of freedom in pitch,
Fig. 28. Note the extremely sharp drop in the damping in pitch
around Mach 0.85, reaching a bottom in negative damping
Table 1
Aeroelastic models.

Model a xa ra
2 oh/oa ma

NACA 0006 �0.20 +0.20 0.25 0.20 20

NACA 0012 0.0 0.0 1.024 0.6462 75

a For cases where mass ratio is kept constant.

Fig. 26. Emergence of SDOF torsional flutter at the bottom of the transonic dip of the N

ratio (g¼0.0024).
(flutter) around Mach 0.87, followed by an equally sharp rise to
positive damping as the Mach number is increased past about
0.88. Lambourne discusses this case in Ref. [105], noting that it
was suggested that the instability can probably be associated with
shock-induced separation, ‘‘yalthough as far as is known, no
physical explanation for the instability has been advanced.’’

In fact, it would be very difficult to explain the extreme
behavior of the damping curve based on flow separation alone. If
flow separation triggers the rapid loss of damping at Mach 0.85,
how can the same mechanism be responsible for the dramatic rise
in damping as the Mach number is increased by a mere 0.03?
Note that the location of the negative damping peak coincides
with the expected location of the transonic dip of a 10% thick
airfoil (Fig. 17), suggesting that the instability is triggered by
aerodynamic nonlinearities, not separation. Additional SDOF
pitching instability results from Bratt et al. [104], are consistent
with this assessment.

Although this SDOF torsional flutter data have been discussed
briefly in subsequent papers [105,106], no further analysis of the
flutter mechanism appears to have been published. It is interest-
ing to note that, at about the same time, Whitehead [107] showed
that for cascaded airfoils in turbomachinery rotors, SDOF torsional
instabilities are predicted for both incompressible and subsonic
flows, outside the transonic region. Platzer and Chalkey [108] and
Verdon and McCune [109] later showed similar SDOF torsional
instabilities in supersonic cascade flows, representative of large
fan rotors. However, coupled-bending torsion flutter can also
ACA 0012 Benchmark Model: (a) at intermediate mass ratio and (b) at high mass

Fig. 27. Transition from SDOF torsional flutter to coupled bending–torsion flutter,

as observed in wind tunnel tests of NLR 7301 model at DLR [93,94].
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occur; see Bendiksen and Friedmann [110] and Bendiksen [111].
In transonic rotors with in-passage shocks, almost pure bending
mode flutter is also possible [112].

Fig. 29 shows plots of the calculated net aerodynamic work
DWA done by the unsteady aerodynamic forces during one
pitching cycle of the 10% thick RAE 102 airfoil tested by Bratt
and Chinneck [103], for different mean angles of attack and
reduced frequencies. The pitching axis is as in the experiments at
0.455c, and the calculations are based on the unsteady Euler
equations. Note that a positive DWA indicates an instability in
pitch, and corresponds to negative damping in Fig. 28. Although
viscosity is neglected in these calculations, the rapid changes in
DWA in the Mach number range 0.75–0.90 bear a strong
qualitative resemblance to the experimentally observed behavior
of the aerodynamic damping, Fig. 28, after accounting for the
opposite signs. The theoretical region of SDOF torsional flutter is
slightly wider, extending down to about Mach 0.78 for the 31
angle-of-attack case shown in Fig. 28, but the region becomes
narrower and more like the experimental curve as the mean angle
of attack is lowered, Fig. 29(a). Note that the calculations agree
with experiment in that both show the disappearance of the SDOF
flutter instability around Mach 0.9. Also, the increase in
aerodynamic damping immediately before the torsional flutter
Fig. 29. Aerodynamic work DWA per cycle of a 10% thick RAE 102 airfoil oscillating in pitc

with k¼0.05 and (b) as a function of reduced frequency at an angle of attack of aN¼31

Fig. 28. Aerodynamic damping of a 10% thick airfoil pitching about an axis 0.455c

from leading edge. Mean angle of attack 31; amplitude 11; k¼ob/UN varies

between 0.08 and 0.02. Adapted from Lambourne [105] (data from Bratt and

Chinneck [103]).
region, as observed experimentally (Fig. 28), is also predicted by
the Euler calculations.

Fig. 30 shows similar calculations for NACA 0006 and NACA
0012 airfoils oscillating in pitch about a midchord axis. Again a
SDOF torsional instability is indicated for a narrow band of
transonic Mach numbers at and near the transonic dips. Also note
the shift in the unstable region to lower Mach numbers as the
airfoil thickness is increased from 6% to 12%, in agreement with
the transonic similarity principles.
7.2. Multiple (nested) limit cycles

Transonic limit cycle flutter, or LCO (limit cycle oscillations) as it
is sometimes called, has been observed in a number of aircraft in
flight, in wind tunnel tests of several different aeroelastic models,
as well as in time-marching and other nonlinear transonic flutter
calculations. The physical mechanism behind the observed LCOs
has been the subject of numerous investigations over the years,
and several potential mechanisms have been proposed.
7.2.1. NLR 7301 unswept wing section

Wind tunnel flutter tests at DLR in Göttingen [93,94] of a ‘‘two-
dimensional’’ wing section with an NLR 7301 supercritical airfoil,
Fig. 31, have demonstrated that limit cycle flutter can and does
occur even in the absence of noticeable flow separation or
structural nonlinearities. Near the transonic dip, a complex and
highly nonlinear flutter behavior was observed even at small
amplitudes, and the flutter mode undergoes rapid changes in
response to small changes in Mach number. For example, a
transition from bending–torsion flutter to single-degree-of-free-
dom torsional flutter (and vice versa) could be triggered through a
small change in Mach number or angle of attack, Fig. 27. This
sensitivity to Mach number is to be expected from the nonlinear
theory of transonic flutter [87], and is strongly influenced by the
part-chord shocks on the wing surface.

An intriguing result of the NLR 7301 wing flutter tests was the
discovery of multiple or ‘‘nested’’ LCOs with different amplitudes,
coexisting at the same Mach number and angle of attack, Fig. 31.
It was observed that transition from the ‘‘lower’’ to the ‘‘upper’’
LCO, and vice versa, could be accomplished by applying relatively
small force perturbations in the plunge direction, either in-phase
or out-of-phase with the plunge velocity at the elastic axis (at
quarter chord), providing short bursts of negative or positive
structural damping.
h with an amplitude of 11 about an axis at 0.455c: (a) as a function of angle-of-attack

.



Fig. 31. NLR 7301 wing model test setup in the transonic wind tunnel at DLR (top); multiple (nested) limit cycles observed during flutter tests (bottom). Adapted from Ref. [114].

Fig. 30. Aerodynamic work DWA per cycle of (a) NACA 0006 and (b) NACA 0012 airfoils oscillating in pitch about an axis at midchord with amplitudes of 0.21 and 0.41,

respectively. The mean angle of attack is zero.
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Fig. 32 shows representative results of Direct Eulerian–
Lagrangian calculations for the NLR 7301 wing, revealing the
presence of nested or multiple LCOs at a fixed Mach number.
Additional calculations show that the multiple LCOs exist over a
range of neighboring transonic Mach numbers and angles of
attack. The fundamental physical mechanism behind the multiple
limit cycles cannot be attributed to viscous effects (e.g., trailing
edge separation), because the nested LCOs here appear in Euler-
based calculations. A physical explanation for the observed nested
limit cycles was offered in Ref. [113], in terms of the influence of
the part-chord shocks and the stabilizing effect of a transition
from Tijdeman Type A to B shock motion. For a highly
nonsymmetrical wing section such as the NLR 7301, Type A to B
shock transitions occur at different amplitudes on the upper and
lower wing surfaces. Thus, two nested LCOs would be expected.
By examining unsteady pressure coefficient data from a number
of time-marching simulations, it was concluded that the lower
LCO was caused by a transition from Type A to B shock motion on
the lower wing surface, whereas the upper LCO was caused by a
Type A to B transition on the upper surface (Fig. 33). Although the
effects of trailing edge flow separation and/or structural nonlinea-
rities are important in determining the final amplitude of the outer
LCO, the computational results suggest that neither is essential in
order to explain the existence of the observed nested LCOs.

Recent results from time-marching flutter calculations [115]
suggest that the shocks also influence the stability of the inner
Fig. 33. (a) Qualitative explanation of multiple LCOs for NLR 7301 wing m

Fig. 32. Multiple (nested) LCOs for NLR 7301 wing, as predicted using the Direct Euleri

same manner as in the DLR experiments, by applying negative structural damping force

forces with gh¼0.2 brings the LCO amplitudes down to the small limit cycle again [11
limit cycle, making it very sensitive to initial conditions and
control parameters and introducing a nonuniformity on the time
scale that eventually destroys the stability of the LCO. Amplitude
instabilities will eventually surface and the LCO either decays to
zero and vanishes, or the amplitude grows until the inner LCO
‘‘morphs’’ into the outer LCO. This scenario may provide an
explanation for why the prediction of the small-amplitude LCOs
observed during wind tunnel tests of this wing has been so
difficult; see, for example Refs. [116–118]. Unless the computa-
tional code is capable of modeling the energy exchange between
the fluid and the structure with sufficient spatial and temporal
accuracy, the weakly attracting inner LCO will simply not be
detected, resulting in an LCO amplitude prediction that is off by an
order of magnitude or more.
7.2.2. Swept transport wing

In linear subsonic flow, swept wings of moderate to high
aspect ratio are susceptible to bending–torsion flutter, wherein
energy is extracted from the airstream at a sufficient rate to
produce rapidly growing flutter amplitudes. The effect of aft
sweep is predicted to be stabilizing, in agreement with wind
tunnel tests by Barmby et al. [119], although the benefit is usually
less than what would be predicted based on classical sweep-back
theory. In the transonic region, however, moving shocks on the
wing surface tend to limit the energy flow to the wing and limit
odel and (b) possible nesting configurations of multiple LCOs [115].

an–Lagrangian scheme. Transition from lower to upper LCO is accomplished in the

s over a brief time interval with gh¼�0.2. A short application of positive damping

5].
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cycle flutter becomes a real possibility. Although less common
than for low aspect ratio wings, limit cycle flutter has been
observed in wind tunnel tests by Dietz et al. [120], of a clean
swept wing representative of current transport aircraft.

The G-Wing, Fig. 34, is closely similar in planform to the wind
tunnel model studied in Ref. [120], except that the two small
trailing-edge kinks have been ignored, and the airfoil section is
the 10% thick ONERA ‘‘D’’ airfoil rather than the supercritical
airfoil of the Göttingen wing. Although previous calculations by
the author [121,122] made use of both a linear and a nonlinear
structural model, it was concluded that the linear model gave
entirely unsatisfactory results and failed to predict the observed
LCO at anywhere near the correct dynamic pressure. Because the
effective structural washout is not only a function of the sweep
angle but also of the wing deflections, and hence also the wing
loading, this coupling results in an inherently nonlinear aero-
elastic problem, and neither the aerodynamic nor the structural
nonlinearities can be ignored—even in a first approximation.

In Refs. [121,122], the author suggested that the experimental
results in Ref. [120] could be explained through the effect that the
structural washout (Fig. 35) from wing sweep has on the Type A to
B shock transition. As the wing bends, the washout reduces the
angle of attack of streamwise chord sections, unloading the
outboard region of the wing, reducing the shock strengths and
shifting the upper surface part-chord shocks in the upstream
direction. The weaker and more forward shocks lead to an earlier
Fig. 34. The G-Wing (generic transport wing) of similar plan

Fig. 35. (a) Chordwise segment A–B vs. streamwise segment C–B of a swept wing and (b)

because wCowB).
transition (at lower amplitudes) from Type A to B shock motion,
resulting in a limit cycle flutter mode that persists over a
relatively wide range of dynamic pressures and air densities
(altitudes).

For swept wings of high aspect ratio, the influence of the wing
deformations are further amplified through the structural wash-
out mechanism, and the effect on flutter can be profound and in
some cases lead to counterintuitive stability behaviors. In the case
of the G-Wing, a complex LCO-type flutter behavior was observed
involving two coexisting or nested limit cycles over a range of
transonic Mach numbers between roughly 0.84 and 0.96 (Fig. 36).
At some Mach numbers and density altitudes, both LCOs are
stable; at other flight conditions one or both LCOs were found to
be weakly unstable. A strikingly nonlinear and unexpected
behavior was observed with respect to changes in dynamic
pressure or altitude, Fig. 37, suggesting the possibility of ‘‘high-
altitude flutter’’ [122]. As shown in Fig. 37, at Mach 0.95 the wing
is stable below a density altitude of roughly 15,000 ft, yet
encounters strong LCO-type flutter at altitudes well into the
stratosphere. To the author’s knowledge, no definite experimental
verification of high-altitude flutter has ever been published in the
open literature, although he is aware of anecdotal evidence of
encounters with this phenomenon during flight tests.

The counterintuitive flutter behaviors shown in Figs. 36 and 37
arise because of strong interactions between the structural and
aerodynamic nonlinearities, in which the embedded supersonic
form to the wing studied experimentally in Ref. [120].

structural washout effect (reduction of angle of attack of streamwise segment C–B,
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pockets and the moving shocks on the wing surface play a crucial
role. This conclusion is supported by the later calculations in
Ref. [44], wherein detailed calculations of the energy transfer
from the airstream to the wing were presented. It was concluded
that the LCO behavior is strongly influenced by not only the shock
amplitudes but also by the mean position of shocks on the upper
and lower wing surfaces. If the shocks are too far forward, the
shocks are stabilizing and no limit cycle flutter is observed. When
the shocks are close to the midchord position over the important
outboard region of the wing, the strongly nonlinear transonic
flutter region is entered. This happens around Mach 0.84 for the
G-Wing, and coincides with the start of the LCO flutter instability
region, Fig. 36. Additional results (not shown) indicate that the
LCO is the result of a delicate balance between the positive
aerodynamic work done on the wing inboard of about 75% span,
and the negative work done on the outer 25% of span [44].

A similar dependence on the chordwise location of the upper
surface shock would also be expected in the viscous case, because
the aerodynamic power and work per cycle depend primarily
on the extent of the supersonic region on the upper surface,
and on the local Mach number distribution in this region. If the
steady or mean shock is in the dangerous 0.6c–0.8c region,
boundary layer separation or other viscous interactions causing
shock reversal (forward movement) would be expected to be
stabilizing. However, if the shock is behind 0.8c but not yet at the
Fig. 37. Limit cycle flutter amplitude (wing tip trailing edge) vs. altitude at a constant M

inner LCO, reached through a small perturbation from the equilibrium state. Above abou

each other.

Fig. 36. Multiple limit cycle flutter branches in transonic region. LCOs are weakly

unstable in the Mach number range 0.88–0.95, but can be stabilized by increasing

the air density (lower density altitude).
trailing edge, shock reversal could be destabilizing, if it brings the
shock back into the 0.6c–0.8c region. The increased rearward
movement of the lower surface shock, Fig. 9, should be stabilizing.

From the results in Refs. [121,122], it appears that an inviscid
analysis correctly identifies the low-amplitude LCO mode
observed in wind tunnel tests of the Göttingen wing [120]. This
suggests that viscous effects, such as shock-boundary layer
interactions, may not play a fundamental role in causing the
observed LCO-type flutter instability in this case, but rather enter
the problem as another mechanism through which the energy
flow from the fluid to the structure is further reduced or
otherwise modified as the LCO amplitudes increase.

Somewhat surprisingly, calculations [115] indicate that the
G-Wing also has nested LCOs over a range of transonic Mach
numbers; see Figs. 38 and 39. The small-amplitude LCO is reached
by starting the time-marching from the converged static aero-
elastic solution, or from an adjacent LCO at a slightly lower or
higher Mach number, as in a Mach number sweep at constant
density. The outer LCO is reached by starting the solution from the
steady solution around the corresponding rigid wing, which
introduces relatively large unbalances in the unsteady aerody-
namic forces on the wing during the first few time steps,
simulating what might happen during a gust encounter.

Although no evidence of multiple LCOs was reported in the wind
tunnel tests of the similar Göttingen wing, it should be noted that
special initial conditions would be necessary to discover the outer
LCO. Unless a sufficiently large initial disturbance is provided, the
aeroelastic solution will converge to the lower-amplitude inner LCO.
At higher transonic Mach numbers, in the 0.88–0.96 range, the outer
LCO is weakly unstable; see Fig. 39. Note that at Mach 0.88, the inner
LCO is still stable, but at Mach 0.90 both the inner and outer LCOs
are unstable. Finally, at Mach 0.96, the inner and outer LCOs
eventually merge.

A slight increase in Mach number, from 0.96 to 0.965, results in
two stable nested LCOs reappearing; see Fig. 40(a). With a further
slight increase in the Mach number to 0.97, both the inner and outer
limit cycles ‘‘evaporate’’ and the wing amplitudes decay to zero,
Fig. 40(b) and (c). Although the LCOs have disappeared, there
remains a high sensitivity of the aeroelastic response to the strength
of the initial condition. At Mach 0.99, a small LCO reappears (not
shown). The stabilization of the flutter mode at high transonic Mach
numbers is believed connected with the progressive rearward
movement of the shocks, which close to Mach 1 are at or near the
trailing edge. Once the shocks have reached the trailing edge, they
more or less become stuck and do not move much during an LCO
cycle, unless trailing-edge separation occurs. The lack of shock
mobility greatly decreases the destabilizing effect of the shocks, as
documented in an earlier study based on 2D typical section models
[43]. At these high transonic Mach numbers (0.95–1.0), transition
ach number of (a) 0.865 and (b) 0.95. The LCO amplitudes shown correspond to the

t 35,000 ft, both LCOs are weakly unstable at Mach 0.95 and eventually morph into



Fig. 39. Nested LCOs of different amplitudes of the G-Wing at intermediate to high transonic Mach numbers at a density altitude of 10,000 m (32,800 ft). All LCOs except

the inner LCO at Mach 0.88 are weakly unstable.

Fig. 38. Nested LCOs of different amplitudes of the G-Wing at low transonic Mach numbers at a density altitude of 10,000 m (32,800 ft). Both inner and outer LCOs are stable.

Fig. 40. Rapid transition of LCO behavior at upper end of transonic region and evaporation of LCOs at Mach 0.97.

O.O. Bendiksen / Progress in Aerospace Sciences 47 (2011) 135–167162
from Type A to B shock motion does not occur, but the overall effect
of the nonlinear transonic flow-field around the wing is typically
strongly stabilizing, quenching the flutter or suppressing the limit
cycle to very small amplitudes.
7.3. Transonic sweep-back theory

For high-aspect-ratio wings, classical sweep-back theory can
be used to estimate the effect of sweep on the subsonic flutter
boundary. The effect of aft sweep is predicted to be stabilizing, in
agreement with wind tunnel tests by Barmby et al. [119],
although the benefit is usually less than what would be predicted
based on classical sweep-back theory. Recent calculations [123]
on two unswept versions of the G-Wing suggest that classical
sweep-back theory is not applicable in the transonic region. This
should not come as a surprise, as the classical theory is based on
the superposition principle, which breaks down in the strongly
nonlinear transonic region.

The effect of wing sweep was shown in Ref. [126] to be much
more difficult to assess than in the linear subsonic case, for two
reasons. First, the fundamental assumptions behind classical sub-
sonic sweepback theory simply do not hold for transonic flows,
because of the nonlinear nature of the flow-field. That is, decom-
position of the relative flow velocity UN into components UN cos L
and UN sin L normal and parallel to the line of aerodynamic centers,
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and then discarding the spanwise component in the calculations of
lift and moment, will lead to incorrect results as soon as the Mach
number exceeds the critical Mach number Mcr. In the transonic
region of practical interest for transport aircraft with swept wings,
wherein the far field velocity is less than or close to one (subsonic),
McrrMNr1, classical sweepback theory should not be used in
aerodynamic or aeroelastic calculations.

Second, because structural washout caused by time-varying
wing deflections influences the instantaneous shock positions and
shock dynamics, it also affects the transonic flutter behavior of
the wing. For a flexible wing, the effective structural washout
is not only a function of the sweep angle but also of the wing
deflections, and hence also the wing loading at a particular
operating point. As a result, the effect of wing sweep on the flutter
of transonic wings cannot be studied without also considering the
wing deformations caused by the mean aerodynamic loads, as a
function of angle of attack and dynamic pressure at a given
transonic Mach number. Aft sweep is shown to be destabilizing for
some high-aspect-ratio wings, which is opposite to what classical
sweepback theory predicts. This observation may provide addi-
tional insight into past flutter instabilities observed in wind
tunnel and flight tests of highly swept wings.
7.4. Delayed flutter

The Hopf bifurcation theorem implies that small stable limit
cycles do exist in the supercritical case, and that a linear flutter
boundary also exists, because the motion amplitude can be made
infinitesimally small by adjusting the speed (or Mach number, or
mass ratio) such that the bifurcation point is approached from
above. But this also implies that no nonuniformities can occur on
the time scale, which is not generally true if nonlinear mode
Fig. 41. Some of the aeroelastic consequences of tempor
interactions occur or nonlinear parametric excitations are
present, as in the underlying unsteady aerodynamics problem
for transonic flutter. In both cases, the time invariance implicit in
harmonic solutions of the linearized equations is destroyed, and a
regular perturbation expansion will fail.

The appearance of nonuniformities on the time scale affects
stability by destroying time invariance – a concept taken for granted
in linear flutter analyses – and stable solutions may not necessarily be
uniformly stable in the Liapunov sense. The practical consequences of
all of this is that a linear flutter boundary may not exist, because the
stability of a given aeroelastic mode may depend on time, and a stable
mode may suddenly become unstable after a sufficiently long time, or
vice versa. Limit cycles are similarly affected, and an apparently stable
limit cycle may suddenly become unstable and abruptly decay to zero
and vanish, or turn into explosive delayed flutter. Examples of these
types of behaviors are shown in Fig. 41.
7.5. Anomalous mass ratio scaling

Near the transonic dip the flutter speed dependence on mass
ratio does not approach the square-root scaling expected from linear
subsonic theories. Calculations reveal two surprises: (1) a significant
drop in the flutter dynamic pressure as the mass ratio becomes
sufficiently large to allow the ‘‘naked’’ SDOF torsional flutter
instability to emerge [87] and (2) a period-tripling bifurcation of
the flutter mode at very low mass ratios (mo10) [124].

The anomalous m-scaling and the SDOF torsional instability are
closely related to the ‘‘almost singular’’ (a.s.) behavior of the lift
curve slope. The scaling could be relevant in wind tunnel tests,
where the mass ratio often varies over a significant range in a single
model test. Fig. 42 shows the dependence of the transonic flutter
boundary on mass ratio m, for the NACA 0012 Benchmark Model at
al nonuniformities and nonlinear mode interactions.
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the bottom of the transonic dip (MN¼0.85). At high mass ratios a
significant drop in the flutter dynamic pressure occurs as the SDOF
torsional flutter instability emerges, replacing the bending–torsion
instability. At very low mass ratios, a period-tripling bifurcation of
the flutter mode is observed; see Section 7.6. As the mass ratio is
increased through the range from 10 to 200, the flutter mode
undergoes a continuous transition from a bending–torsion mode
where bending dominates to a mode where torsion dominates. For
mass ratios of roughly 400 and above, the pure SDOF torsional
flutter instability can be observed, Fig. 26. As the SDOF torsional
Fig. 42. Flutter boundary vs. mass ratio for the NACA 0012 Benchmark model at

MN¼0.85 (ra
2
¼0.25 and g¼0.0024 in these calculations).

Fig. 43. Emergence of period tripling flutter at low mass ratio: (a) immediately below

boundary; (c) phase plots corresponding to (a)–(b); (d) frequency and damping plots for

from Euler-based time-marching solutions; and (e) phase plot suggesting almost-perio
flutter emerges, the reduced airspeed UF at flutter approaches an
asymptotic value close to 1/ka

c , where ka
c is the critical (maximum)

reduced frequency at which SDOF torsional flutter is possible for this
model at this Mach number and angle of attack. Simultaneously, the
speed index and the dynamic pressure at flutter continue to drop
with increasing m, as shown in Fig. 42.

These phenomena are surprising and a clear warning that in
the strongly nonlinear transonic region, our classical picture of
flutter is in need of revision. There are two implications of these
results that may be of practical consequence. First, because of the
different mass ratio scaling in the transonic flutter problem, care
must be exercised when constructing scaled wind tunnel flutter
models, and also in the planning of transonic flutter tests. If the
mass ratio of the model is too high or too low, the experimentally
obtained transonic flutter boundary cannot be scaled to physically
similar full-scale dynamic pressures, and the two-parameter flutter
boundary may be misleading. Second, the presence of the SDOF
torsional flutter at the bottom of the transonic dip – for sufficiently
high mass ratios – may have implications for transonic flight at high
altitudes. The implications are most serious for thin, heavy wings,
typical of fighter aircraft and some UAVs.
7.6. Period tripling flutter

As the mass ratio is lowered, the reduced frequency at which
flutter occurs increases. Below a mass ratio of roughly 2–5, linear
flutter boundary (note tripling has already occurred); (b) slightly above flutter

aeroelastic modes when period tripling occurs, for MN¼0.85; m¼5, as determined

dic or chaotic flutter (NACA 0012 Model; g¼0.0024).
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theories predict that flutter should become impossible and that
the flutter speed should approach infinity; see, for example the
calculations by Ashley [42]. But in the case of the NACA 0012
Benchmark model, this does not happen; instead, the aerody-
namic nonlinearities open up a new route to flutter through a
period-tripling bifurcation that lowers the reduced frequency into
the unstable range; see Fig. 43. This flutter occurs outside the first
bending–first torsion frequency interval and cannot be under-
stood within a linear flutter analysis framework [124].

During the period tripling shown in Fig. 43, the reduced
frequency of the critical aeroelastic mode drops from 0.49 to 0.19,
and at the same time the phase angle by which torsion lags
bending increases from close to zero to about 1201. At slightly
higher mass ratios, a complex quasi-periodic or possibly almost-
periodic flutter mode emerges. The corresponding phase plot,
Fig. 43(e), reveals trajectories that suggest chaotic or ‘‘almost
periodic’’ motion.
8. Concluding remarks

The mathematical theory of unsteady transonic flow may seem
too abstract for the typical aeroelastician or practicing flutter
engineer. In an age where CFD codes have become so common-
place and computers so powerful that anyone can run nonlinear
transonic flutter calculations from a laptop computer, one might
ask whether there is a need for a theory in the classical sense.
Why not simulate everything, and then just interpret the
results—as done in a wind tunnel test, for example? The problem
with this approach is that one is likely to end up with a mountain
of data, but not necessarily with a better physical understanding
of transonic flutter.

Transonic flutter is rich in nonlinear dynamic phenomena that
cannot simply be modeled with ideas based on linear aerodynamics.
Superficially, the dynamics may appear similar to the nonlinear
behaviors of classical mechanical systems. But there are important
mathematical and physical differences. First, aeroelastic systems are
essentially nonconservative involving circulatory forces and cannot
be modeled simply as dissipative mechanical spring–mass–damper
systems, with a damping that becomes negative as the flutter
boundary is crossed. Second, in the transonic case entropy
production at the moving shocks introduces a type of irreversibility
that is not found in the corresponding mechanical system, and
which results in entropy and vorticity waves being convected
downstream, affecting the global aerodynamic solution and possibly
also the stability of the fluid–structure system.

In transonic flutter, nonuniformities on the time scale affect
stability by destroying time invariance, and stable solutions may not
necessarily be uniformly stable. In some cases a linear flutter
boundary may not exist, because the stability of a given aeroelastic
mode may depend on time, and a stable mode may suddenly
become unstable after a sufficiently long time, or vice versa. Limit
cycles are similarly affected, and an apparently stable limit cycle
may suddenly become unstable and abruptly decay to zero and
vanish, or turn into explosive flutter. These phenomena can all be
explained by the mathematical theory of unsteady transonic flow.

The existence of multiple LCOs and the possible morphing
between semistable and stable LCOs brings up important code
verification and validation issues. The logical separation of the
verification step [127] (solving the equations right) and the
validation step (solving the right equations) breaks down and
becomes fuzzy, to say the least, and the two steps may become
impossible to separate from a practical standpoint. The experi-
mentalist is faced with similar difficulties in trying to understand
the flutter test results and ‘‘validate’’ the data. In aeroelastic
systems exhibiting multiple LCOs sensitive to initial conditions
and control parameters, this is a daunting problem that may
require new experimental and computational techniques.
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