
Project 1 - Synthesis of Musical Notes and
Instrument Sounds with Sinusoids

ECE505, Spring 2020
EECS, University of Tennessee

(Due 01/24)

1 Objective

The project serves three purposes, to experience more complicated signals related
to the basic sinusoid, to get familiar with a couple of interesting phenomena pro-
duced based on basic sinusoid, and to become comfortable with MATLAB pro-
graming.

2 Background

You need a little bit background on sampling in order to best play the music you
synthesized. You also need some background in how to read musical notes such
that you can translate a music piece into sound played through the computer. Fi-
nally, some more complicated phase functions are needed in order to mimic inter-
esting instrument sounds.

2.1 Sampling

Most computers have a built-in analog-to-digital (A-to-D) converter and a digital-
to-analog (D-to-A) converter (usually on the sound card). When we record our
speech using a recorder, the A-to-D converter samples the analog speech signal,
using a sampling rate fs, and converts it to a discrete-time signal such that the
speech can be stored on computer as a sequence of numbers (or samples). When
we need to play the speech signal, the D-to-A converter interpolates the discrete
samples and reconstructs it back to its analog format such that we can hear the
sound. The sampling theorem says that if the input analog signal is a sum of
sinusoids, then the output signal, resulting from both A-to-D and D-to-A, will be
equal to the input signal if the sampling rate fs is more than twice the highest
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frequency fmax in the input. A convenient choice for the D-to-A conversion rate
is 8000 samples per second, i.e., Ts = 1/8000 sec. Another common choice is
11025 Hz, which is one-quarter of the rate used for audio CDs. For PC/Mac users,
use 11025 Hz; for Unix users, use 8000 Hz.

• Q1) Most of you know that audio CDs use a sampling rate of 44.1 kHz.
Why? or How is this number calculated?

2.2 Piano keyboards and music notes

Music tones can be modeled mathematically by sinusoidal signals. A piano, with
88 keys (Fig. 1), is divided into octaves containing 12 keys each. Within an octave,
the neighboring keys maintain a constant frequency ratio and the tones in each
octave are twice the frequency of the corresponding tones in the next lower octave.
Actually, the word octave means a doubling of the frequency. To calibrate the
frequency scale, a reference tone is needed. By convention, the A (key 49) above
middle C (key 40), which is usually called A-440 (or A4, i.e., A in the 4th octave),
is used as the reference and its frequency is 440 Hz.

Figure 1: Piano keys numbered from 1 to 88 with their corresponding frequencies.
Middle C is key 40. A-440 is key 49. The 4th octave starts from key 40 and ends
at key 51.

• Q2) What is the frequency ratio between neighboring keys within the same
octave?

• Q3) What is the frequency of middle C? Show detailed steps.

Musical notation shows which notes are to be played and their relative timing.
E.g., half notes last twice as long as quarter notes, which, in turn, last twice as long

2



as eighth notes. Figure 2 shows how the keys on the piano correspond to notes
drawn in musical notation.

Figure 2: Musical notation and piano keys [2].

2.3 FM synthesis of instrument sounds

Frequency modulation (FM) can be used to make interesting sounds that mimic
musical instruments, such as bells, woodwinds, drums, etc. We have already
demonstrated the chirp signal generated with frequency changes linearly in time.
FM music synthesis uses a more interesting phase, ψ(t), one that is sinusoidal.
Since the derivative of a sinusoidal is also sinusoidal, the instantaneous frequency
will oscillate sinusoidally. The general equation for an FM sound synthesizer is

x(t) = A(t) cos(2πfct+ I(t) cos(2πfmt+ θm) + θc)

and the instantaneous frequency

F (t) = 1
2π

d
dtψ(t)

= 1
2π

d
dt(2πfct+ I(t) cos(2πfmt+ θm) + θc)

= fc − I(t)fm sin(2πfmt+ θm) +
1
2π

dI
dt cos(2πfmt+ θm)

where A(t) is an envelope that modulates the amplitude of the signal, fc is the car-
rier frequency, fm is the modulating frequency that specifies the rate of oscillation
of the instantaneous frequency F (t), θm and θc are arbitrary phase constants, usu-
ally set to −π/2 so that x(0) = 0, and I(t) is referred to as the modulation index
envelope. The net result is that I(t) can be used to vary the harmonic content of
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the instrument sound (referred to as overtones). When I(t) is small, mainly low
frequencies will be produced. When I(t) is large, higher harmonic frequencies can
also be produced. In addition, the ratio between fc and fm is important in creating
the sound of a specific instrument. For example, for the bell, a good choice for this
ratio is 1:2, e.g., fc = 110 Hz and fm = 220 Hz. For more details, see Chowning’s
paper [3] in 1973.

3 Tasks

3.1 Task 1: Synthesis of musical notes

• Task 1.1: Write a function function tone = note(keynum, dur,
fs) that can produce a sinusoidal waveform corresponding to a given piano
key number for any given duration with the specified sampling rate. Suppose
you are using a PC, then the default sampling rate is 11025 Hz.

• Task 1.2: Write a MATLAB code to play scales, scale.m, e.g., the major
scale, which uses the function note.

• Task 1.3: Improve the sound by adding harmonics. True piano sounds con-
tain several frequency components, such as second and third harmonics. Be
careful to make the amplitudes of the harmonics smaller than the fundamen-
tal frequency component. Experiment what sounds the best. Write a function
function [x] = harmonic(x, n, f0, fs) to composite a new
sinusoidal signal with n harmonics based on input x which, e.g., can be the
output from note.m, and fundamental frequency, f0.

• Task 1.4: Improve the sound quality by applying envelope. The musical
passage is likely to sound artificial, because it is created from pure sinusoids.
You can improve the quality of the sound by multiplying each pure tone
signal by an envelope E(t) so that it would fade in and out.

x(t) = E(t) cos(2πf0t+ θ)

A standard way to define the envelope function is to divide E(t) into four
sections: attack (A), delay (D), sustain (S), and release (R). Together, the
method is called ADSR. The attack is a quickly rising front edge, the delay
is a small short-duration drop, the sustain is more or less constant, and the
release drops quickly back to zero. See more details at [1]. Write a function
function [x] = adsr(dur, fs) that generates such an envelope
for given duration of time.
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• Task 1.5: Synthesize Twinkle, Twinkle, Little Star. Figure 3 is the entire page
of the music. You can just synthesize the first few measures.

3.2 Task 2: FM synthesis of instrument sounds

• Task 2.1: Write a function, function [x, t] = mychirp(f1, f2,
dur, fs) that synthesizes a linear-FM chirp signal with f1 being the start-
ing frequency, f2 the ending frequency. Let f1=200, f2=2000, plot the spec-
trogram of the signal.

• Task 2.2: Write two functions, function [x] = bellenv(tau, dur,
fs) that produces the envelope function for the bell sound, and function
[x, t] = bell(fc, fm, I0, tau, dur, fs) that synthesizes the
bell sound. The amplitude envelopeA(t) and the modulation index envelope
I(t) for the bell are both decaying exponentials with the following form

y(t) = e−t/τ

where τ is a parameter that controls the decay rate of the exponential. Notice
that y(0) = 1 and y(τ) = 1/e, which means that τ is the time it takes for the
signal to decay to 1/e = 36.8% of its initial value. Therefore, τ is referred
to as the time constant. For the bell, use A(t) = e−t/τ and I(t) = I0e

−t/τ .
The table below lists 6 cases to get a variety of bells. For each case in the

CASE fc (Hz) fm (Hz) I0 τ (sec) Tdur (sec)
1 110 220 10 2 6
2 220 440 5 2 6
3 110 220 10 12 3
4 110 220 10 0.3 3
5 250 350 5 2 5
6 250 350 3 1 5

table, do the following,

1. Listen to the sound. Describe how you can hear the frequency content
changing according to I(t). Plot F (t) versus t for comparison.

2. Display a spectrogram of the signal. Describe how the frequency con-
tent changes, and how that change is related to I(t). Point out the
“harmonic” structure of the spectrogram, and calculate the fundamen-
tal frequency, f0.
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3. Plot the entire signal and compare it with A(t).

4. Plot about 100 to 200 samples from the middle of the signal and explain
what you see, especially the frequency variation.

5. Experiment different ratio between fc and fm and see which parame-
ters sound best to you.

4 What to Turn in

• a tar file or a zip file with the following items:

– Task 1: note.m, scale.m (with harmonics and envelope added), adsr.m,
harmonic.m, twinkle.m

– Task 2: mychirp.m, bellenv.m, bell.m

– Content.m: explaining what each code is for

– (5) Completeness of the above listed files

• a pdf file with the written report that includes the following

1. (10) On sampling

– (10) Explain in general how the choice of different sampling rates
(other than 8000 or 11025 Hz) affects the sound effect. This needs
to be done through experiments. But you do not need to turn in
test code. Just the explanation.

2. (45) On synthesis of musical notes

– (5) Answer Q2 and Q3 on page 2
– (10) Correctness of note.m, scale.m
– (10) Plot the ADSR envelope. Plot the spectrogram of the major

scale before and after adding improvements and explain the differ-
ence

– (5) Sound quality of the major scale
– (15) Sound quality of twinkle, twinkle, little star

3. (40) On synthesis of instrument sounds

– (15) Correctness of mychirp.m, bellenv.m, and bell.m
– (25) Answer the five listed tasks at the end of the Task 2 descrip-

tion

4. Source code print
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Twinkle, Twinkle Little Star
W. A. Mozart

Figure 3: Twinkle, Twinkle, Little Star.
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